General overview of the Baikal Lake : history, functioning and environmental problems Eugene A....

90
General overview of the Baikal Lake : history, functioning and environmental problems Eugene A. Silow UNESCO Chair of Water Resources Institute of Biology Irkutsk State University Irkutsk, Russia

Transcript of General overview of the Baikal Lake : history, functioning and environmental problems Eugene A....

General overview of the Baikal Lake :

history, functioning and environmental problems

Eugene A. SilowUNESCO Chair of Water Resources

Institute of BiologyIrkutsk State University

Irkutsk, Russia

General Characteristics of the Lake Baikal

Name of the Lake A, km2

Superior (Canada/USA) 82,367

Victoria (Uganda/Kenya/Tanzania) 68,800

Huron (Canada/USA) 59,500

Michigan (USA) 58,016

Tanganyika(Burundi/Zaire/Tanzania/Zambia) 32,000

Baikal (Russia) 31,500

Great Bear (Canada) 31,326

Lake Nyasa [=Malawi] (Tanzania/Malawi/Mozambique)

30,800

Great Slave (Canada) 28,568

Name of the Lake V, km3

Baikal (Russia) 23,000

Tanganyika (Burundi/Zaire/Tanzania/Zambia)

17,800

Superior (Canada/USA) 12,221

Lake Nyasa [=Malawi] (Tanzania/Malawi/Mozambique)

8,400

Michigan (USA) 4,871

Huron (Canada/USA) 3,537

Victoria (Uganda/Kenya/Tanzania) 2,750

Great Bear (Canada) 2,236

Great Slave (Canada) 2,088

Name of the Lake zm , m

Baikal (Russia) 1,630

Tanganyika (Burundi/Zaire/Tanzania/Zambia)

1,470

Lake Nyasa [=Malawi] 758

Great Slave (Canada) 614

Lake Crater (USA) 588

Lake Tahoe (USA) 505

Great Bear (USA) 446

Superior (Canada/USA) 406

Lago Maggiore (Italy) 370

Lac Léman [=Lake Geneva] (Switzerland/France)

310

Lakes Name V A Zm “Rating”

Baikal (Asia) 1 6 1 1

Tanganyika (Africa) 2 5 2 2

Superior (N. America) 3 1 8 3

Lake Nyasa (Africa) 4 8 3 4

Michigan (N. America) 5 4 >10 5-7

Huron (N. America) 6 3 >10 5-7

Victoria (Africa) 7 2 >10 5-7

Great Slave (N. America) 9 9 4 8/9

Great Bear (N. America) 8 7 7 8/9

Lakes Name V A Zm

Baikal (Asia) 23,000 31,500 1,630

Lac Léman 89 584 310

Lac du Bourget 3.6 44.5 145

Lac d’Annecy 1.12 27.6 64.7

Lake Baikal and Alp lakes

• Some morphological characteristics of the Lake Baikal:

• Surface area 31,500 km2

• Volume 23,670 109 m3

• Maximum depth 1630 m

• Mean depth 751 m

• Normal range of annual water level fluctuation 0.6-0.8 m

• Length of shoreline 2,000 km

• Residence time 393.8 yr.

• Catchment area 560,000 km2

• The winds at the Lake Baikal are enormously strong.

• The velocity of them can reach 50 m/sec and even more.

• The water of the lake is extremely clean and extremely “fresh”.

• The transparency of it is up to 40 m, and mineral content is 96 mg/l (international standard is about 400 mg/l)

Lake Baikal,2007 06.12

MERIS

Lake Baikal,2006 02.01

MERIS

Summer Winter

Lake Baikal was designated as a UNESCO World Heritage site in

December, 1996

• More than 1,000 species of animals and about 500 species of plants inhabiting Baikal are endemic. Lake Baikal is a home of viviparous transparent fishes belonging to endemic family Comephoridae, more than 250 species of Gammaridae, the only freshwater seal and many other creatures.

Lake Origin

• Lake Baikal is supposed to be one of the oldest lakes in the world. Its age is about 25 millions years, though in the present form it exists about 1 million years.

• Baikal can be an example of typical lake of rift origin. It lays in the rift valley 1,500 km long and 7 km deep (the height from the stony bottom to the top of mountains is 10 km).

TTHHEE SSTTRRUUCCTTUURREE OOFF TTHHEE RRIIFFTT

ANOMALOUS MAGMA

VOVEMENT

Lake ecosystem functioning

Light Littoral zone Pelagic zone Littoral zone Water surface Photic zone Aphotic zone

1. Biogenic materials turnover

2. Sedimentation and exchange processes

3. Exchange between water and atmosphere

4. Inputs due to precipitation

5. Adsorption and desorption

6. Inflow and outflow

3 4

5 1 2

What are Habitat & Ecological Niche?

• Habitat of the organism is the place, where it lives, while ecological niche is its functional role in the community together with the position related with conditions of existence.

• In other words: Habitat is an “address” of organism, while niche is its “occupation”.

There are three main habitats in the lake:

• The water mass itself.

• Two boundaries:

1. Air/water.

2. Water/bottom.

Water Mass

The community of water mass (from the ecological point of view) consists of :

• Producents (algae)

• Consuments (animals)

• Reducents (microorganisms)

PRODUCENTS

CONSUMENTS REDUCENTS

Heat losses

Heat losses

Heat losses

Solar Energy

Chemical Energy

Structure of CommunityStructure of Community

Water Mass

From the limnological point of view the community of water mass consists of :

• Plankton – floating or weakly swimming organisms on the mercy of water current.

• Nekton – swimming animals, that inhabit pelagic zone and can master their position in water.

Water Mass

Plankton is subdivided into:

• Phytoplankton – microscopic (mainly) algae.

• Zooplankton – Protozoa, Rotifers, Crustaceans, Insects (often larvae).

• Bacterioplankton.

Plankton Complex of the Lake Baikal

ENDEMIC• Diatom

Phytoplankton

• Winter Rotifers• Epischura

NON-ENDEMIC• Blue-green

Phytoplankton• Green Algae• Summer Rotifers• Cyclops• Cladocerans

Bacterioplankton, Bacteria in sediments

Zoo-plankton

Zoo-benthos

Phyto-plankton

Phyto-benthos

Nekton

“Normal” Annual Behaviour for Temperate Lake :

4 oC

20 oC

SUMMER

4 oC

AUTUMN

4 oC

1 oC

WINTER

4 oC

SPRING

Annual dynamics (average) of water temperature at point #1

(1948-2002)

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Янв

арь

Фев

рал

ь

Мар

т

Апр

ель

Май

Ию

нь

Ию

ль

Авг

уст

Сен

тяб

рь

Окт

ябрь

Ноя

брь

Дек

абрь

t, °C

0 м 5 м 10 м 20 м 30 м 50 м 100 м 150 м 200 м 250 м 300 м

Annual dynamics (average) of water temperature at point #1

(1948-2002)0

50

100

150

200

250

300

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

t, °C

H, м

Январь Февраль Март Апрель

Annual dynamics (average) of water temperature at point #1

(1948-2002)0

50

100

150

200

250

300

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

t, °C

H, м

Май Июнь

Annual dynamics (average) of water temperature at point #1

(1948-2002)0

50

100

150

200

250

300

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

t, °C

H, м

Июль Август Сентябрь

Annual dynamics (average) of water temperature at point #1

(1948-2002)

0

50

100

150

200

250

300

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0

t, °C

H, м

Октябрь Ноябрь Декабрь

Annual dynamics of phytoplankton (according to chlorophyll a) at point

#1 (2002) I II III IV V V I V II V III IX X X I X II

-2 5 0

-2 0 0

-1 5 0

-1 0 0

-5 0

0

Глу

бин

а, м

М еся ц ы

0 .00

0 .25

0 .50

0 .75

1 .00

1 .25

1 .50

1 .75

2 .00

2 .25

2 .50

С х л . "а " , м г м -3

Annual dynamics of phytoplankton (according to chlorophyll a) at point

#1 (2005)

-2 5 0

-2 0 0

-1 5 0

-1 0 0

-5 0

0

Глу

бина

, м

0 .00

0 .20

0 .40

0 .60

0 .80

1 .00

1 .20

1 .40

1 .60

1 .80

2 .00

2 .20

2 .40

2 .60

С х л . "а " , м г м-3

I II III IV V V I V II V III IX X X I X II М еся ц ы

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс.экз.м-3

глуб

ин

а, м

10.02.1998

17.02.1998

25.02.1998

03.03.1998

09.03.1998

18.03.1998

25.03.1998

01.04.1998

08.04.1998

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс.экз.м-3

глуб

ин

а, м

08.05.1998

18.05.1998

25.05.1998

01.06.1998

08.06.1998

15.06.1998

23.06.1998

29.06.1998

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс.экз.м-3

глуб

ин

а, м

06.07.1998

10.07.1998

19.07.1998

28.07.1998

03.08.1998

11.08.1998

17.08.1998

25.08.1998

01.09.1998

07.09.1998

16.09.1998

24.09.1998

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс.экз.м-3

глуб

ин

а, м

01.10.1998

09.10.1998

16.10.1998

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс. экз. м-3

глуб

ин

а, м

16.02.2005

24.02.2005

02.03.2005

10.03.2005

16.03.2005

25.03.2005

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс.экз.м-3

глуб

ин

а, м

19.05.2005

31.05.2005

08.06.2005

18.06.2005

26.06.2005

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 100 200 300 400 500 600

численность, тыс.экз.м-3

глуб

ин

а, м

06.07.2005

12.07.2005

21.07.2005

27.07.2005

02.08.2005

09.08.2005

21.08.2005

28.08.2005

06.09.2005

25.09.2005

Annual dynamics of zooplankton number at point #1

0

50

100

150

200

250

0 20 40 60 80 100

численность, тыс. экз.м-3

глуб

ин

а, м

03.10.2005

17.10.2005

25.10.2005

02.11.2005

10.11.2005

27.11.2005

01.12.2005

Annual dynamics of zooplankton number at point #1 (Epischura

baicalensis), 103 spec.m-2

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12

months

Nu

mb

er

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Annual dynamics of zooplankton number at point #1 (Cyclops

kolensis), 103 spec.m-2

Cyclops kolensis

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12

months

Nu

mb

er

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Annual dynamics of zooplankton number at point #1 (Rotifers), 103

spec.m-2

Keratella quadrata

0

200400

600800

1000

12001400

1600

1 2 3 4 5 6 7 8 9 10 11 12

месяцы

чи

слен

но

сть

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Annual dynamics of zooplankton number at point #1 (Rotifers), 103

spec.m-2

Notholca grandis+N.intermedia

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

months

nu

mb

er

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

Annual Dynamics of Phytoplankton

Structure of water body Inverted stratification

Spring homothermy,

mixing

Direct stratification

Autumn homothermy,

mixing Month

February-April May-June July-September October-

November Ice +++ + +

Complex of algae: Aulacoseira baicalensis, A. skvortzowii, Stephanodiscus meyeri, Cyclotella baicalensis, Synedra ulna, S.

acus, Gymnodinium baicalense, Peridinium baicalense, Dinobryon cylindricum

+++ + + +

Complex of algae: Monoraphidium pseudomirabile, Chrysochromulina parva, Rhodomonas pusilla, Cyclotella

minuta, Asterionella formosa, Dinobryon sociale, Synechocystis limnetica

+ + +++ +

+ Observed, ++ Developed, +++ Mass development

Annual Dynamics of Zooplankton

Structure of water body Inverted stratification

Spring homothermy, mixing

Direct stratification Autumn homothermy, mixing

Month February-April May-June July-September October-November Ice +++ + +

Epischura baicalensis +++ + +++ + Cyclops kolensis + + +++ +

Synchaeta pachypoda, Notholca grandis, Notholca intermedia

+++

Keratella quadrata, K. cochlearis, Kellicottia longispina, Filinia terminalis

++ + ++ +

Rotif

ers

Synchaeta stylata, S. grandis, Asplanchna priodonta, Collotheca

mutabilis +++ +

Zoop

lankt

on

Cladocerans +++ + + Observed, ++ Developed, +++ Mass development

0

2

4

6

8

10

12

14

16

18

t, C

0

5

10

15

20

25

30

35

40

м

1 2 3 4 5 6

0

200

400

600

800

1000

1200

1400

1600

г м

-2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

г м

-2

1 2 3 4 5 6

0

200

400

600

800

1000

1200

1400

1600

г м

-2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

г м

-2

1 2 3 4 5 6

0

20

40

60

80

100

120

140

160

мг м-3

0

5

10

15

1 2 3 4 5 6

0

200

400

600

800

1000

1200

1400

1600

г м

-2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

г м

-2

1 2 3 4 5 6

0,01

0,1

1

10

100

1000

10000

г м

-2

4 5 6 3 1 2

Long-term dynamics of plankton (1951-1999)

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

1951 1956 1961 1966 1971 1976 1981 1986 1992 1997

года

би

ом

асса,

мг

м-3

фитопланктон зоопланктон

Long-term dynamics of Epischura baicalensis

Epischura baicalensis

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10.0

2.5

5

10.0

2.5

7

10.0

2.5

9

10.0

2.6

1

10.0

2.6

3

10.0

2.6

5

10.0

2.6

7

10.0

2.6

9

10.0

2.7

1

10.0

2.7

3

10.0

2.7

5

10.0

2.7

7

10.0

2.7

9

10.0

2.8

1

10.0

2.8

3

10.0

2.8

5

10.0

2.8

7

10.0

2.8

9

10.0

2.9

1

10.0

2.9

3

10.0

2.9

5

10.0

2.9

7

10.0

2.9

9

10.0

2.0

1

10.0

2.0

3

тыс.э

кз.м-2

Long-term dynamics of Cyclops kolensis

Cyclops kolensis

0

200

400

600

800

1000

1200

1400

1600

09.0

2.6

1

09.0

2.6

3

09.0

2.6

5

09.0

2.6

7

09.0

2.6

9

09.0

2.7

1

09.0

2.7

3

09.0

2.7

5

09.0

2.7

7

09.0

2.7

9

09.0

2.8

1

09.0

2.8

3

09.0

2.8

5

09.0

2.8

7

09.0

2.8

9

09.0

2.9

1

09.0

2.9

3

09.0

2.9

5

09.0

2.9

7

09.0

2.9

9

09.0

2.0

1

09.0

2.0

3

тыс.

экз

.м-2

Long-term dynamics of Rotifers and Cladocera

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

198

1

198

2

198

3

198

4

198

5

198

6

198

7

198

8

198

9

199

0

199

1

199

2

199

3

199

4

199

5

199

6

199

7

199

8

199

9

200

0

200

1

200

2

200

3

200

4

200

5

200

6

200

7

тыс.

экз

.м-2

Cladocera Rotifera

Anthropogenic Impact

Several Stages in Economic Activity on and Around Baikal Can Be Distinguished :

The native peoples of Siberia (Mongols, Buryat, Evenki, Yakut) not influenced the lake Baikal ecosystem at all, or human pressure was minimal before arrival of Russian settlers. Before the middle of XIX century the human influence on the lake Baikal watershed was restricted to fishing, forest fires, forest cutting for fuel, building materials and for clearing pastures, land ploughing. The main negative result of it was slow increase of mineral compounds content in basin waters.

Pre-industrial stage (till the second half of XIX century).

Started with the building of railroads, industrial enterprises, ports at the lake, beginning of navigation. Human pressure gradually increases with the development of agriculture and industry, population growth in the water basin.

Early industrial stage (end of XIX – middle of XX century).

The most noticeable events during this stage were significant growth of fishery during the Second World war, building of Irkutsk Power Station dam and Baikalsk Pulp and Paper Combine (BPPC).

The stage of industrial development rate increase (middle of XX

century).

It was characterized by intensive use of mineral fertilizers, pesticides (restricted in 1980th), the river Selenga pollution, increase of passengers and cargo transportation across the lake, including log rafting, building of new enterprises (including Selenginsk Pulp and Cardboard Combine), growth of mining activity, mastering of Northern part of lake and its basin, building of Baikal-Amur Railroad, explosive increase of population in the basin, beginning of mass tourism.

The intensification of economic activity in the basin (1970th –

1990th).

There were, from one hand, decrease of both industrial and agricultural production, causing decrease of pollution, from the another hand, common weakening of environmental quality control and general chaos caused by the simultaneous rampancy of “democracy” (more exact – criminal power together with ochlocracy) and gangsterism during the 1990th in the Lake Baikal basin.

The newest stage.

The last two give rise to predatory exploitation of basin resources and significant pressure on the environment. There is explosive development of wild tourism, building boom in the region and along the coasts of the lake.

As the reaction to these processes we can point the strengthening of law protection of the lake and its basin, inclusion of the lake into the list of UNESCO World Heritage sites.

During the 2000th with the restraint of, at least, gangsterism (unfortunately – not “democracy”), ecological situation became more stable, though it is evident, we are far from the cardinal solution of the problem of the lake Baikal basin nature conservation.

Water level of Baikal

455

455,2

455,4

455,6

455,8

456

456,2

456,4

456,6

456,8

457

1900

1906

1912

1918

1924

1930

1936

1942

1948

1954

1960

1966

1972

1978

1984

1990

1996

2002

2008

• 600 km2 of shoreline was flooded,

• 1200 km2 are flooded periodically.

• 500 103 t per year of materials are coming into lake.

The main sources of the lake pollution

Navigation

• 100 years ago there were 15 ships• Now – more than 300 ships and 8000

boats• Due to navigation (per year): • > 250 t of oil products, • 30 t of fecal organics, • 8 t of soluble N and 3 t P,• 2,5 103 t of garbage.

Tourists

• 1.5–2.0 mln tourists per year

• They produce:

• 780 103 t of wastes,

• 6 103 t dry fecal mass,

• N – 1.5 103 t

• P – 0.3 103 t.

Baikalian Pulp and Paper Combine (BPPC)

• For 42 year discharged from 34 to 69 106 t year-1,

• Average – 46,5 106 t year-1,

• In 2005–2008: 29 – 44 106 t year-1,

Watershed Basin

• There are 1 300 000 people,

• 1 860 000 caws, • 1 348 000 horses, • 1 164 000 sheep and• 232 000 goats.

• They produce 500 103 t of dry fecal matter,

• N – 125 103 t, • P – 25 103 t.

Watershed Basin

There are 9 103 km2 of agricultural soils.

Every year

N - 118 103 t,

P - 39 103 t,

K - 79 103 t

are extracted from soil to water and transported to lake Baikal.

Concentrations of contaminants in tributaries

Хлориды

0

10

20

30

2003 2004 2005 2006 2007 2008

мг/

л

1 2

Сульфаты

0

10

20

30

2003 2004 2005 2006 2007 2008

мг/

л

1 2 3 4 5 6Железо (все формы)

0

0,5

1

2003 2004 2005 2006 2007 2008

мг/

л

1 2

Concentrations of toxicants in tributaries

СПАВ

0,005

0,015

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Медь

0

0,003

0,006

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Нефтепродукты

0

0,05

0,1

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Фенольные соединения

0

0,0025

0,005

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Concentrations of contaminants in tributaries

Взвешенные вещества

0

10

20

30

40

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Легкоокисляемое органическое вещество (по БПК5)

0

1

2

3

2003 2004 2005 2006 2007 2008

мг

О2 /

л

2 3 4 5 6

Трудноокисляемое органическое вещество (по ХПК)

05

101520253035

2003 2004 2005 2006 2007 2008

мгО

2 /л

1 2 3 4 5 6

Concentrations of nutrients in tributaries

Аммонийный азот

0

0,05

0,1

0,15

2003 2004 2005 2006 2007 2008

мг/л

2 3 4 5 6

Нитритный азот

0

0,03

0,06

2003 2004 2005 2006 2007 2008

мг/л

1 2 3 4 5 6

Нитратный азот

0

0,05

0,1

2003 2004 2005 2006 2007 2008

мг/л

2 3 4 5 6

Минеральный фосфор

0

0,005

0,01

2003 2004 2005 2006 2007 2008

мг/л

2

• Another major source of pollution for the lake is transport of contaminants with air masses

• During winter this giant water body has higher temperature (3-4 oC) comparing with the temperature of surrounding territories (from –15 to –50 oC).

• It produces the constant vertical flow of the air above the lake up to higher layers of atmosphere.

• The place of uplifted air mass becomes occupied by new masses, which in their turn repeat this manoeuvre.

• Particles of dust carried by water masses can not turn up and precipitate at the surface of the lake.

Per year:

• 45-50 kg km-2 Fe,

• 25-30 kg km-2 Al,

• 1-1,5 kg km-2 Pb,

• Up to 100 g km-2 Hg,

• Up to 50 g km-2 U .

Минеральный азот

0,00

0,50

1,00

1,50

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Органические вещества

0,00

10,00

20,00

30,00

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Сульфаты

0,00

5,00

10,00

15,00

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Труднорастворимые вещества

0,00

25,00

50,00

75,00

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Сумма минеральных веществ

0,00

30,00

60,00

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Суммарные выпадения

0,00

50,00

100,00

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

т км

-2 г

од-1

1 2 3 4

Income of toxicants from various sources 1 – BPPC, 2 – navigation, 3 – tourism, 4 - towns, 5 - tributaries, 6 –

atmospheric precipitations

Тяжелые металлы 4

5

6

Фенольные соединения 1

4

5

6

Нефтепродукты 123456

СПАВ 3

4

5

Income of nutrients from various sources 1 – BPPC, 2 – navigation, 3 – tourism, 4 - towns, 5 - tributaries, 6 –

atmospheric precipitations

Минеральный азот 2

3

4

5

6

Минеральный фосфор 2

3

4

5

6

Легкоразложимые органические вещества 1

2

3

4

5

Income of contaminants from various sources 1 – BPPC, 2 – navigation, 3 – tourism, 4 - towns, 5 - tributaries, 6 –

atmospheric precipitations

Серосодержащие органические вещества1

5

Сульфаты 1

4

5

6

Трудноразложимые органические вещества1

5

Income of pollutants from various sources 1 – BPPC, 2 – navigation, 3 – tourism, 4 - towns, 5 - tributaries, 6 –

atmospheric precipitations

Минерализация 1

4

5

6

Органические вещества 1

3

4

5

6

Взвешенные вещества 123456

Income of pollutants from various sources (тыс. т; %) 1 – BPPC, 2 – navigation, 3 – tourism, 4 - towns, 5 - tributaries, 6 –

atmospheric precipitations

46,889; 1%

2,791; 0%

20,363; 0%

9,07; 0%

1234; 16%

6382; 83%

1

2

3

4

5

6

Forest Fire in thenorthwest ofLake Baikal

2006 07.19 MERIS

AlgaeLake Baikal

2006 07.03

MERIS

• Nevertheless, the Lake Baikal remains the largest reservoir and producer of the most clean and fresh drinking water on Earth, containing more than 50% of available liquid fresh drinking water.