General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila The fruit fly...

24
General Genetics Ayesha M. Khan Spring 2013

Transcript of General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila The fruit fly...

Page 1: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

General Genetics

Ayesha M. KhanSpring 2013

Page 2: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Sex Determination in Drosophila

The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs of autosomes and one pair of sex chromosomes

Presence of the Y chromosome does not determine maleness in Drosophila

Each fly’s sex is determined by a balance between genes on the autosomes and genes on the X chromosome. This type of sex determination is called the genic balance system.

The X chromosome contains genes with female producing effects, whereas the autosomes contain genes with male-producing effects.

Fly’s sex is determined by the X:A ratio, the number of X chromosomes divided by the number of haploid sets of autosomal chromosomes.

Page 3: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Sex Determination in Drosophila

An X:A ratio of 1.0 produces a female fly; an X:A ratioof 0.5 produces a male.

X:A ratio less than 0.5: a male phenotype is produced, but the fly is weak and sterile—metamales.

X:A ratio between 1.0 and 0.50: intersex fly, with a mixture of male and female characteristics.

X:A ratio > than 1.0 : Female phenotype is produced, but these flies (called metafemales) have serious developmental problems and many never emerge from the pupal case.

Page 4: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Chromosome complements and sexual phenotypes in Drosophila

Page 5: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Sex Determination in Humans

• XX-XY sex determination• Presence of a gene on the Y chromosome

determines maleness

Page 6: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

• Turner syndrome: XO; 1/3000 female births– Immature secondary sex characteristics– Normal intelligence– Sterile

• Klinefelter syndrome: XXY, or XXXY, or XXXXY, or XXYY; 1/1000 male births– Immature secondary sex characteristics – Most have normal intelligence– Sterile

• Poly-X females: 1/1000 female births– Normally regular secondary sex characteristics– Fertile– Mental retardation slightly higher

Page 7: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

The role of sex chromosomes

• The X chromosome contains genetic information essential for both sexes; at least one copy of an X chromosome is required for human development.

• The male-determining gene is located on the Y chromosome. A single copy of this chromosome, even in the presence of several X chromosomes, produces a male phenotype.

Page 8: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

The role of sex chromosomes (contd)

• The absence of the Y chromosome results in a female phenotype.

• Genes affecting fertility are located on the X and Y chromosomes. A female usually needs at least two copies of the X chromosome to be fertile.

• Additional copies of the X chromosome may upset normal development in both males and females, producing physical and mental problems that increase as the number of extra X chromosomes increases.

Page 9: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

The male-determining gene in humans

David Page (1987) Analyzed the chromosomes of sex-reversed XX

men, rare individuals who look like men but have two X chromosomes instead of one X chromosome and one Y chromosome.

Page discovered that sex-reversed males carried genes from a 140-kilobase region on the short arm of the Y chromosome.

Presumably, this region had been transferred to the X chromosome during a translocation.

Subsequent experiments narrowed down this region and found that one gene, the sex-determining region of the Y, or SRY was the master regulator of sex determination. The presence of just this region from the Y chromosome is thus sufficient to cause male development .

Page 10: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

The SRY Gene

How the Y chromosome determines sex:• The SRY gene, located on the Y chromosome, is the primary

determinant of sexual development.– That is, if a developing embryo has a functional SRY gene

in its cells, it will develop as a male. And, if there is no functional SRY, the embryo develops as female.

• Although the SRY gene is usually on the Y chromosome, it occasionally gets transferred to the X.– this leads to 46,XX males

• Also, sometimes the SRY gene is inactivated by mutation.– Leading to 46,XY females (Swyer syndrome)– it is also possible to have a partially inactive SRY gene

Page 11: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Androgen-insensitivity syndrome

-Females; X and Y chromosome-Caused by the defective androgen receptor; cells are insensitive to testosterone, and female characteristics develop.-The gene for the androgen receptor is located on the X chromosome; so persons with this condition always inherit it from their mothers.

Page 12: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Sex-linked characteristics

Sex-Linked Characteristics Are Determined by Genes on the Sex Chromosomes

• Genes on the X chromosome determine X-linked characteristics; those on the Y chromosome determine Y-linked characteristics.

Page 13: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Thomas Morgan(1866-1945)

The first person to explain sex-linked inheritance was the American biologist Thomas Hunt Morgan

X-Linked White Eyes in DrosophilaIn both humans and fruit flies (Drosophila melanogaster) females have two X chromosomes, while males have X and Y

Page 14: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Sex LinkageMorgan (1910) found a mutant white-eyed male fly, and used it in a series of experiments that showed a gene for eye color located on the X chromosome.a. First, he crossed the white-eyed male with a wild-type

(red-eyed) female. All F1 flies had red eyes. Therefore, the white-eyed trait is recessive.

b. Next, F1 were interbred. They produced an F2 with:

i. 3,470 red-eyed flies.

ii. 782 white-eyed flies.

c. All of the F2 white-eyed flies were male.

Page 15: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

X-linked inheritance of white eyes in Drosophila: Red-eyed female white-eyed male

Page 16: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

X-linked inheritance of white eyes in Drosophila: The F1 flies are interbred to produce the F2

=>This finding was clearly not the expected result for a simple recessive trait, which should appear in ¼ of both male and female F2 offspring.

Page 17: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

What happened when white eyed males and red eyed females from second generation were crossed?

=>Equal number of offspring with each eye color

Page 18: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Morgan’s hypothesis was that this eye color gene is located on the X chromosome.

Males therefore cannot be either homozygous or heterozygous but are said to be hemizygous for X-linked loci.

-Females may be homozygous or heterozygous. The wild-type female in the original cross was w+/w+ (homozygous for red eyes).-Females only show the white eyes trait if they inherit mutant genes on both X chromosomes.

“Sex-linked inheritance”

Page 19: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Reciprocal cross: Homozygous white-eyed female red-eyed ( wild-type) male

Page 20: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Reciprocal cross: The F1 flies are interbred to produce the F2

Page 21: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Morgan’s discovery of X-linked inheritance showed that when results of reciprocal crosses are different, and ratios differ between progeny of different sexes, the gene involved is likely to be X-linked (sex-linked).

This was strong evidence that genes are located on chromosomes.

Morgan received the 1933 Nobel Prize for Physiology or Medicine for this work.

Page 22: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Non-Disjunction of X Chromosomes1. Morgan’s work showed that crossing a white-eyed female

(w/w) with a red-eyed male (w+/Y) produces an F1 of white-eyed males (w/Y) and red-eyed females (w+/w). His student, Bridges, found that about 1 in 2,000 of the offspring was an exception, either a white-eyed female or red-eyed male.

2. Bridges’ hypothesis was that chromatids failed to separate normally during anaphase of meiosis I or II, resulting in non-disjunction.

3. Non-disjunction can involve either autosomes or sex chromosomes. For the eye-color trait, X chromosome non-disjunction was the relevant event. Non-disjunction in an individual with a normal set of chromosomes is called primary non-disjunction.

Page 23: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.

Nondisjunction in meiosis involving the X chromosome

Page 24: General Genetics Ayesha M. Khan Spring 2013. Sex Determination in Drosophila  The fruit fly Drosophila melanogaster, has eight chromosomes: three pairs.