GEM Collaboration Council Meeting · GEM TN-91-31 GEM Collaboration Council Meeting November 7,...

156
GEM TN-91-31 GEM Collaboration Council Meeting November 7, 1991 Abstract: Agenda and transparencies contributed to the GEM Collaboration Council Meeting held on November 7, 1991.

Transcript of GEM Collaboration Council Meeting · GEM TN-91-31 GEM Collaboration Council Meeting November 7,...

GEM TN-91-31

GEM Collaboration Council Meeting

November 7, 1991

Abstract:

Agenda and transparencies contributed to the GEM Collaboration Council Meeting held on November 7, 1991.

AGENDA

GEM Collaboration Council Meeting

November 7, 1991

General Status of GEM (Barish)

Status of Hadronic Scintillator Calorimeter Choice (Brau)

LOIRcports Overview (Willis) Hall and Services (Sanders) Magnet (Stroynowski) Muons (Taylor) Calorimeters (Brau) Inner Tracking (Baltay) DAQ/Computing (Marlow) Computing (McFarlane) Physics Questions (P~$C) Costs/Schedules (Sanders) Management (Samios)

R&D/Enginccring Requests (Baltay)

c 0 llo.bo f'A .,.,~ Co IA IAC.i J

Mee._,~

Nov " l ttcr I

S~~c.e.-."'1H~e: L ...... +" ~rtiJc."' •·~ Da"'; lov Wo It-

Rev ct~ .' V-e.t:; "or i ~ '" i. l)J,

CD M _ _, "' .. e:. - s ~"'!> F, e ,~ © Oc.c,,_,.,...J to..~ 11"':;..,

• Rep ... t- S •• ,tt Tr1e •

S,,.p,.Jc4uv j D"'~~• j liEP

Mt>JU>l41 st~ .I (;Alt:J, I~ J •••

_ MuotJ St1sre"f. -

k' w Y"J.4' f 0 V J J:: ( r ~ ,,,_ O\J

- /1•j"'c,t -

• •

-- - -~~ Tw+J .$ IS-H

NHI C..ktl'• .. ., Pl•,,. J 0\1..Jaic ?

··' T·.l~ ', (•.P l.--· ti' &I

t ~~,_ 1 Ckt"' ~ 1.,.,i, .. 1-tuc-t.At / W& '-It _.:l

+ .sv-&..,M.J ·-~ ............ .....__

(/ #

, - ,.,,., R,j $~ c

(. J.114.tc. ( ,,_,~ k k r)

• CA~oA. 1 "&-rsR.J

* .,.""• ! M &a.Fa.

, ex pM"t P" ., J 1> .. F-a.. R, cl 'D,, *•,_.

• ..s~' ~ + H-." 'D• c.1.11 ,..., CGC"4it1..)

p

M EE T"1N(S ' J

\..-.--------------~

1'4c. s-+- ( PJI c. Die ,,.fd

cc M~j ~~ 23 .. (rcssc M.,J,.".'

be" Co 11.J, M+J M•r~/.. 8 • J / Twes,,_., <c ·t W 1.1'c. S.S ' A-,,, I J -:

C C M~J A1ri I )O

• £ ,,.., 14sti. !$'- ) ~-.) .&.l·~'f

'f

,,., q

-r-:r11c.c ow M1e ~. "'~ ~ n-.,.," (..14. •£ t t:C.:

waPa~ u A I • C.ua ATT.I

l &01- 12.l-'12.11

GEM SCINTILLATOR

HCAL DECISION

PRINCIPAL ISSUES

• Relative Cost

• Likelihood of a Module Ready for testing in 1992

• Longitudinal Sampling

• Relative Complication of Assembly, and Maintenance In Situ

lJJ /.)

:::r> e­r-

po-.1AJG- TH£ PAST MON-rH

1Mf TWo ~-.ouf's ( t. s + s ~)

f.fA\IC 1>EVf c..6Pt D I+ COl'f.M 6 Al

(I.. .,.1) Pt ~A)

A c.Aft(E° FflAc.TtoAJ •F- T~c

C.ot.c..A 6 e>~.A Tb~ J wo-.tc1A)6 oAJ

.11-1 tr -re C.MAJoc.. 0 c y AJo.,. C..4" c Sf~ N.

Wt~t., 1'b1AJ IN OAJ 1M C.

~"'otEAi e F1-·c~r

Principal Reasons to Choose a LS HCal

Yu. KamvshkOY/ORNL Nov.S SSCL

"1 Status of LS HC system I mechanics

'ti Radial extention I absorbtion length

'ti Longitudinal segmentation

41 Prototype for beam tests in 1992

Reasons to Choose Scintillating Fibers

over Liquid Scintillator for Hadron Calorimeter

1) Should choose technology for which prototypes have been built and tested

SPACAL -- 6 different prototypes built and tested 8 publications in NIM, 2 CERN reviews

13 Tons operational in Omega

SSCintCAL -- 3 different prototypes, 2 tested 2 SSC R & D reviews, 1 TNRLC review

JETSET -- 300 modules operation over 1.5 years

Liquid Scintillator -- No large prototypes.

2) 15-Ton Hadron shower-containing prototype complete by June 1992

Using existing infrastructure to build new modules 4 years into design and test beam program

Liquid scintillator R & D program much less developed Insufficient time to design and test by November 1992

I

3) Strength/Experience of Scintillating Fiber team

4)

SPACAL (for EAGLE@ LHC?) • 15% US Contribution • $2.SM effort • 30 collaborators

SSCintCAL (for GEM @ SSC) • $0.5M received in FY90 • $0.7M received in FY91 • $0.9M requested for FY92 • 40 collaborators/ 9 institutions

LS Collaboration (for GEM @ SSC?) • $1.IM requested for FY92 • 72 collaborators (35 US) I 8 institutions (5 US)

~ • ITEP commitment to SSC/GEM?

Additional option for EM calorimetry (~~ coS}) . .......':Mlt~~

SF provides 6%/sqrt(E) backup to BaF2 and LAr

LS high-resolution undeveloped

S ) Cost differences between liquid and fibers are within the errors between Draper and ORNL cost estimates

Small cost differential coupled to projectivity for SF 3 Draper and I Martin Marietta reports Explicit bids coming from industry

Second(review )of LS costing yet to be done

¥ ) e..

e 7i s~ 'f t:I& r'L {,c n

.S PA C "11- ) S « "f 41 .,. -.. ..Jc. E" "'f.

't ) t! cc. )< ... :)'~ n,. e. d. .ff l., k e ri t:.~ 1;-~-( 8 c..~ pr-·~ .. cl. ;'"«14~-1)

I So I .. ..JI o I\ C''-' f-

enf!"'JY losJ £0.rre c..li·ori fsc.e. s-l~d;t}

pt:A. f-f~rf\ ,..~ C..•j "' 'l-1• "\ (""' se~ ,·... L. ~ )

v• -1-o ( c..cscJ 1 '

p .. "' ~ l +t~--a " 'f\ of "'i.e ~

m ' s~ \ 11 r) . ET

u) pp?

Mo ~~'-10,, ( b) ,·"' L. ~ ( 11. 1 A~

• -.#

t~-... .,

"' ':' ..., .,# ._ I

"' .. d 0 a.. .2 ~

7 .

/-e ft I<~~ c:lt. { lt.~ '~" Dt\ d -' / L V" c:=tbout 14:>.k .:>"" j t\ ""Te. 0. oy ---'-----

a e +r e. I\ ll 'J,>' c O't r f. c... +.bl\

f'e. d ""t\ d "',.. c.y

-(.r4.Jce.r i>t~

E c.""-I c>t f ( o_...f )

r- Jl."" ~ ... s of F

? .

l.Je.. d .:>~ 1-I: t-~\i>r.... Jy $~ ..,,, ~ ~ -/-/() "'*

lkt.. (~D) pc...f.'f.,,.h. "'"o""1 ,,,, I'"' '" ~ ,.-c-<- J, - ~ ,,..) ~ .. , ~J -f. Le. -J.&.. ~o~ f i"ltp•' ,tr"" f- .

The Sutt\ o~ -._ (} -te_ r-ILQS~.s

Ol "'- i ~ p O I +o 'l t bw.--/­C-C)I\ s. ·~V' c.c"'f.~ri ..

if u \'+el\,{

M iss1n3 [r 1(~so lt.c...iict'\ d.nJ Tai ls _,u..I

,..- --

EM .. M"Sl1 - NAoa. ...... f.IAD'l --

~

1) L.lo.. ci~i~ .sho~u-~ CAl~~iuk.. ./a Ji,ls ~) C"'aJ.s/1)~ Ma~·,J u~lr\L~ ~ "f'e.soUe"

h (/;&V)

Lio Sclnt SJ!!l!!!.tl Difference CatHory

1.00 R&D $5.494 ."" ..... - Laraer •• -· l.M Conceotunil J!!!!l.n 1485 $405 Same

3.00 Towers 11•--· $2'.114 ~Hll!JiiMIMM'l Celt . •Sense Material) - SS.75' . Fllller a. Lla•ld

4.00 Rln• Modules $$.032 .. "' ....... .!1!!1!!!!!! Has M ... Co • -

5.00 Electronics $1~ JM!! . .Y&!ld Has More Cbllllnell

6.00 Thermal Cont $1.166 $1.166 Sa•

7.00 Beam Testln.J!Callb. $2.077 52.r71 Same

8.00 System Alam:.:. Sl.033 51.916 11-ld HM Mere ASlemblJ ODs.

9.00 Installatlon $3,480. ........ .., s · ti Has More Co . Sbaoe

10.00 Project Mana1ement $4.689 $4,"9 Same

DIRECT COST $55.042 S69,474 CONTINGENCY 26.12.,. 21.72 .. TOTAL $69,419 $89,427

Mark Rennlch/Oak Ridge NallOftal Llboratory/11·4·91

Cost Estimate Differences CDSL/ORNL

1) Fiber Materials, $ 8.3M ORNL Threading, - 5.lM CDSL

Preform Preparation - - - - - - -10.3% fiber vs. 16.7% $ 3.2M

28.72% Contingency x 1.11 R&D x 1.43 = $4.6 M

2) Top Support Plate 5168 @ $310 each (Machined) $ 1.6M ORNL 5168 @ $70 each (Zinc Cast) -0.4M CDSL

$ 1.2M x 1.43 = $1.7 M

3) Module Fabrication (Manufacturing Segmentation) .08 x .08 Supertowers

$1.6K/Supertower $ 8.IM ORNL .16 x .16 Supenowers

$4.4K/Supertower - 5.7M CDSL

4) Sheathing Sheet Metal Jackets

5168 @ $400 each Larger Sheaths

1300 @ $1000 each

5) Support Structure Inner + Outer Rings

($12/lb x 85T) Inner + Outer Rings ($8/lb x 60T)

TOTAL ABOVE

$ 2.4M x 1.43 = $3.4 M

$ 2.lM ORNL

- I.3M CDSL

$ 0.8M x 1.43 = $1.lM

$ 2.2M ORNL

- I.IM CDSL

$ I.IM x 1.43 = $1.6M

= $12.4M

OPINIONS ~A~f&P

r:o.ea.M: 'e<+k..er would. wo;k eiu~rly i.v.ell It

TO: II bot~ ~oltA+i 0t'lS /150(,_ eiua.\\y ..-isky /(

ISS.,lt c.osr

Work b; ecrtl'\i~, A'f'l'e'>,Ad.4.:r e:+at' vc.l1.tcc.cl SI= c~.if.fere.Nces f-o ~ 5°/o.

Pl•SCt Ttwf' - .f ovo"f' St=

LOM '1T~01N~c. .S A"tP'-1#6 .. -f•~ott~ 1..$ ~od.et"'o.kJ b~ po3sil,il.+y of lon:J. So.111pl.

w i -Mt s I=='

~A1"'-•T1 oF TC'tMNotoC)' - .fe."9f'tfl ~F + •+"~_.,.

Vt&Y c.e..osE CA'-'-

~C. ,,.ouP C.O~MIS,IONS'.P

"'tou, o~ NINE"

1t> ~A l&f 'M OIC.E'

GEM SCINTILLATOR

HCAL DECISION

Group of Nine Meeting (Only if Necessary)

B. Barish, W. Willis, J. Brau, R. Adair, L. Sulak, H. Paar, F. Plasil, Y. Kamyshkov, H. Newman

3:15 Meeting Opens

6:15 or Before Scintillator HCAL Decision

C~teE:

sc.1AJTIL'-.4T1AJc;. P.1 BE~

( ~rwp IS u1'u ~ ,Ae~e,fop GI'\

-. ~.,_, J-.~ le.. sc.t.••e.. 4r So Me

lo"'; 1t,, tA ;,,. •I $0.-. r I;.,.'.) '

co1JT1AJUSJ Wo&lf. I\ :- r. ~- .'? .. ,~ ! :._· G To l>A y'

O/J Gf /1 SC.I Fl CAL6«.r'4t11

BY A LArt4elL AN()

~'rftt>N~f,C.. IEAM,

I jJ

1 I 1 I f ! s5f ss11l

I .~i~i~~i~l~~i~ij~~~

c; - Y()s+

A-~~ t~,fArf::r/OA/.1 1'"0 .trC L r/(t)Af

cd~r»c. r ~~ol'J.r dNt. y .

.4 ( L- Ct41(/( F"e r1 Cl N .s IN TN r ,t:<W Jl1

o/& eeDlf't 'I - 1'44f'kl?J J/lfHl.!J

C. ti" I l":r - N~ WN4 e,H~ e,,r' if r I' tx ,,, t'N rs .

( c t,r~l'f'LY- l'IMArd F-,,.. .,.1 1':0

0 k j:.Qlf (,I Pl I Tri.I e t/Jlf If~ i"? ~At'..

C\JlfH/-Nr .fJ"VJC~ IS o~

rs-c v~ 1 ~ · .' ~ r,., " ~ 11

the muon momentum resolution, dp/p, as dp/p • ap + b, where the "+" symbol denotes addition in quadrature. The "b" term, dependent on multiple scattering in the middle module and pseudorapidity, limits the resolution at low momentum. The "a" term, which depends primarily on pseudorapidity, is determined by systematic alignment errors and module spatial resolution (for a given magnetic field and ttaclcing lever arm). This term limits high momentum measurements.

Low momentum specification for muon measurement came from consideration of the intermediate mass Higgs sean:h (140 < MH < 180 GeV/c2) through the process H ·> -zz• ·> 4 muons, which is expected to have a very small line width. To achieve clean detection of the Higgs through this channel we require ior the discovay pcx:ess · ../N(signal)IN(backgroand) > 6, implJing that b < 1 %. Thus the number of ndi•rinr\ leagths in the middle superlayer must be leu than er equal to 10%. Figure 2.3-2 illusti'ales the point.

For· large momentum, the most stringent constraint for resohnion arises from the requirement of being able to assign charge 10 each of the two muons from the decay of a Z, so that accurate measurements of the forward/backward asymmetry can be mlde. As statistics limit Z searches even at die liighest luminosity, only a small &action of decay muons should be allowed to have charge misidentified, implying dp/p < 30% for about 3 sigma confidence level charge assignment. The heaviest Z accessible at the SSC has mass of about 6 TeV /c2, implying that a = dplp2 < 30%/3000 GeV = 1.0 x l0-4,()CV.

Several things contribute to the momentum resolution in an acrual system. ThcR is the iJiainsk muon chamber spatial resolution, the alignment errors, and the multiple scattering smearing. Given the baseline desi~n. outlined in Table I, the momentum resolunon u· a function of angle and. momentum for the bucline muon system is shown in Figure 2.3-3. At 90 degrees dP/P • 4.S Cl> for p = SOO GeV/c. With the parame1ers u indicated we find that over most of die momentum range, the resolution is limited by die spalia1 resolution of the tracking chambc;ts. NO&C that for. Tl < l .3, the multiple scattering limhed·resolution is about 1 %~ Note also that the cbargc sign Cail be de1ermined at the 4 to 7 ~igma level for 1to3 TeV/c muon.

Various improvemeu&s to the resolution can be effected at relatively. low c:ost. For example, the vertex can be coasa:iined in the·fi• so tbemllOll ~ which rcllliu_ ia an impnNrmeu.t for high energy mlions in the,~V:range. The·resolution can

be funher improved by adding muon tracking chambers external to the coil in the central region. In addition, the B-field can be shaped to give a larger radial component in the endcap region. While we believe that our baseline performance is quite good, we arc evaluating these enhancements in terms of cost versus benefit. It is. a characteristic of our open field solenoid design that such improvements can be made.

(b) Raojdjty coymge. In order to obtain good statistics for the Higgs to 4 muon channel (either through -zz• or 'ZZ channels) requires good solid angle (i.e. pseudonpidity) coverage for the muon chamben. The goal is to maximir.e N(sigma) = ./N(signal)/N(background). From our studies of Higgs production and detection we found that N(sigma) is roughly constant, having the value of about 6, for maximum rapidity of about 2.S. An;! a rapidity coverage of -2.S <Tl< 2.S provides greater than 90% acceptance for a 4 TeV/c2 Zand even greater acceptance for a heavier Z. (Soc Fig. 2.3-4.)

(c) Chamber Occunapcy. We Wll a a design goal to limit the occupancy at 1034/cm2.1 below 1,., in order to guarantee the unambiguous muon track finding efficiency at nearly 100%. From our detailed simulations, the inner muon chamber hit rate is about 3 Hz/cm2 at 1()34 in the barrel. Figure 2.3-S shows the ra1e as a function of 11 for tho inner, middle and outer modules, usuming 12 "­in the barrel calorimeler, and 14 A in the end cap calorimeter. For a 4m by 3cm diameter drift tube, with a 1 microsecond maximum drift time, the occupancy would be 0.4% in the barrel. In the endcap region, the rate increases to about 150 Hz!cm"2 in the inner modules at Tl • 2.S. For a one meter long and Smm wide cathode strip chamber, having integration time of 1 mic:rOsecond, the occupancy would be less than I%.

Such occupancies arc a hundred times lower than would be the case for tracking elements located inside of the calorimeter. Benefits of the relatively low rate outside the calorimeter extend to triggering as well. Figure 2.3-6 shows that the rate of muons above 5 GeV/c is a factor 100 lower than the total muon particle rate, implying that the Pt muon trigger is not seriously challenged by the background.

(d) Pattern Recognition Capibility. The most reliable way to tag a b-jet is thnJUi;h inclusive muon detection: b -+ muon + x, where the muoo is very near (within) a hadronic jet. The major blic~grn,.'ld comes from hadron punc:h-throughs. To n:ject • .• ~b background, an inner tracker i& teqUired to proviJe ~t momentum. measw:cments to milch the

Page2 v. 11n191

GEM LOI Tm Lopheet

Section l'IO. Ke5D. l•.nttor uate .!!?, Status uateuut

Introduction and Overview . Willis

GEM Detector

2.1 Hall and Surface Facilities Sanders

2.2Magnct Stroynowslci

2.3 Muons Taylor 11-5-91 In LOI (Needs to be cut down) 11-5-91 Ar,moic. 5. 75 ll!&cs + 7 25s. figures

2.4 Calorimcay Brau

2.5 Tracking Morgan 11-5-91 In LOI (Needs to be cut down) 11-5-91 A2proic. 4 ;jlfiS withW1t fiirurcs.

2.6 Triggcr/DAQ Marlow 11-6-91 In GEM LOI but needs 11-6-91 corrections (3 pgs. without figs.)

2.7 Computing Mcfarlane

l Physics Questions Paige 11-5-91 2 figs. received 3a and 3b (Ready to go into LOO

) Costs and Schedule Sanders

) Collaboration Organization Baltay

l Plan and R&D Samios

Clf /I/S CA/,0/Pll'I rr,,,, ~ ,tNOWN '10 4c z-~)C

-

A) ~r t>ottJ~ ~o ;eo" <Joo

'~~rs

b) l t c.~,.~"'"N'; e.o ro"f' ro tA1rs

c) p tJ r Fx r1r~ "'N fJ.rH INl'O

A-C'e•,..,AN Y~N(; ~Tl"•Ar.Z

R. sr1U>vt<o~sr.1 l~Hv 11/1-ISt

Oe-to!N., 'PfrC. R.e~1ew - ~EQ\JES'i Po~ Re frtlltL..YSIS OF

IJl'ISHIEL..1>£1> VS Sk1£1..1>€1> lift.WU OPT7•"'.J.

OcJ..w ID-II tS!J I

= i.(.23 G-J /. t't G-J

I/.~ ...

e., ...

-:::. 3 . .a

- {. ~

Table 1 Cost Comparison Between

Sin&lc and Double Coil Versions

MAGNET SYS'IEM SSgl

SUBSYS'IEMDESIGN 11. 7 COll. FORMS 7 .0 CIHlUCTCR 7.7 WJNDING(JNCLTOOLJNG) 12.0 'IHERMAL RADIATION SJflFI ns 2.3 VACUUMVEs.sFlS 8.2 COLD MASS SUPPORTS 7 .4 COll. ASSEMBLY 6.4 POLES 11.1 POWERJPR01EC'IION SYS'IEM S. 7 CRYOOENICS&VAaJUM 11.2 INSTALLATION 2.1

'MANAGEMENT/INTEGR.A110N 1.3

TOTALS $94.lM

$Dbl/$Sgl

1.8 2.2 3.2 3.0 1.3 1.3 3.2 2.0 t.8· 2.0 1.1 2.0 1.0

$Dbl

21.0 15.4 24.6 36.0

3.0· 10.6 24.0 12.8 20.0 11.4 12.3

4.2 1.3

$196.6M

The panel identified two aspects of the double-coil concept that represent significant t!Cbological and ~checlule risk:

1. The two coils must be supported in such a way as to prevent mechanical instabilities due to the forces between them.

2. To adhere to the schedule. it may be necessary to increase the number of winding stations. Also. the internal and extemal coil

rii.u·t«. cLt·~toot.i0 . . s

2 W\ +hock. i ro"' ( I ~c.l.&4.s.~ a.../- ft--. ~u.r/e-"'-)

3' k. "°"'"'e.~ o.f- ; c-o"' , o..d J• J c.,+ ""' .f, ~ g M

l. 3 "\ +.k.:cJc j ~"' l 10 %0..U..SS o} ~ SC(rf-u.. )

:J..0 l:..~W\"'&.~ of ,·n.,. / 0 J.J•o/. c.osl ,..., ./, S' /-1

No of.\-\o"' +' adil.\\.\.~ ~\I\ ~\Ao\~ O"'-~"'-- •t ~ ~ l

Page 1 - Printed 11 :21 AM, 10124/91

GEM Magnet Subsystem

Sing le-coil pesjgn v

Major Parameters List Rev. 3 10/24/91

parameter SymbQI .LI.nil Yaluo. BaL ~aw.

1 • Central Induction Bl T 0.80 1 1 2. Mean radius of windings Rw m 8.9 6 2 1 3. Outer Radius of outer cryostat vessel Rv,o m 9.4508 10 4 3 4. Inner Radius of IMer cryostat vessel Rv,I m 8.4 6 2 1 5. Inner Radius, magnet subsystem m 8.3 1 2 1 6. Coll length, end-to-end (per half) LI m 14.438 10 4 3 7. Pole-to-pole Inside length L m 29.0 1 1 8. Cryostat vessel length (end-to-end) Lv m 30.0 1 2 1 9. Conductor Length Le km 24 1 2 1 10. Total mass of coll windings (per half) Mw t 238 10 4 3 11. Total mass of 4 °k cold struct. (per half) Mes t 383 10 4 3 12. Total mass cryostat vessel(each half) Mv t 717 10 4 3 13. Total mass Iron end poles (each pole) Mp t 2950 1 2 1 14. Radial pressure on windings Pr kPa 255 1 2 1 15. Operating current I kA 52.5 9 3 2 16. Stored Energy Es GI 2.04 10 4 3 17. Inductance H H 1.47 1 2 1 18. Number of turns Nt # 408 9 3 2 19. Thickness, Inner thermal shield m 0.0048 10 4 3 20. Thickness, Inner cryostat tv ,I m 0.019 6 1 21. Outer radius, Inner cryostat vessel Rvl,o m 8.419 6 1 22. Inner radius, IMer LN shield m 8.723 10 4 3 23. Outer radius, Inner LN shield m 8.727 10 4 3 24. Inner radius, conductor m 8.8777 10 4 3 25. Mean radius, conductor m 8.900 6 1 26. Outer radius, conductor m 8.9222 10 4 3 27. Inner radius, bobbin m 8.9222 10 4 3 28. Outer radius, bobbin m 8.9730 10 4 3 29. Inner radius, outer LN shield m. 9.3557 10 4 3 30. Outer radius, outer LN shield m 9.3605 10 4 3 31. Thickness, outer cryostat vessel tv,o m 0.0508 10 4 3 32. Inner radius, outer cryostat vessel Rvo,i m 9.400 6 1 33. Overall outer radius (outside ribs) Fb m 10.2135 10 4 3 34. Depth of outer ribs m 0.7627 10 4 3 35 •.. Number of coll/cryostat assemblies # 2 1 36. Number of ribs per coll assembly # 3 10 4 3 37. Thickness of cryostat vessel ends m 0.0381 1 0 4 3 38. Actual axial winding length per assembly m 14.25 6 1 39. Central membrane maximum z m 0.025 6 1 40. Cryostat inner end minimum z m 0.025 6 1 41. Cryostat inner end maximum z m 0.125 6 1

' .

GEM single-coil magnet parameter list page 2 - printed 11 :21 AM, 10/24/91

parameter Symbol llnl1 ll.alua Bal. tlQla Bill/.

42. LN shield minimum z m 0.162 6 1 43. Bobbin minimum z m 0.200 6 1 44. Winding minimum z m 0.2SO 6 1 4S. Winding maximum z m 14.SOO 6 1 46. Bobbin maximum z m 14.600 6 1 47. LN shield maximum z m 14.7SO 6 1 48. Cryostat outer end minimum z m 14.900 6 1 49. Cryostat outer end maximum z m 1 S.000 6 1 so. Pole face minimum z m 14.SOO 1 1 S1. Same as line 18. 10 4 3 S2. Axial force on poles N 63.Se6 3 1 S3. Axial force on conduclor N 27.9e6 7 1 S4. Mass of one muon sector t 11.4 s 1 SS. Number of cen1ral muon sectors per half # 16 s 1 S6. Radius of CG of central muon sectors m 6.22 s 1 S7. Z-location of CG of central muon sectors m 3.89 s 1 S7. Magnet axis height above hall floor m 13.0 8 2

Referene11 1 o. J. Bowers/A. Posey/R. Yamamoto: revised layouts & calculaUons, 10/24191 9. P Martson calculation 8/27/91 8. GCD - 000002 (7125191 version) 7. G. Deis notes, "Axlal Force on Coil" 8113/91 6. P Marston notes, 8/12191 s F. Nlmblett estimates, 819191 4. Obsole18 3. P. Marston calculation, per G. Dell 2. Obsolele 1. Second Del8clor EOI

Ngtes 4. 10/24/91 - Values revised to reflect latest conceptual design for GEM cost estimate

review to be held on 10/29191 • 3. 8128191 - Values revised from Ref1 values, based on more detailed design and calc's

by P Martson. • · 2. 818191 • Value revised from Ref1 value, based on more detailed design and calc's. 1. 8/8191 - Ref 1 actually shows 0.823T, and historical number Is 0.83T.

C.0 ,.r 'T I 11\Jl .. G- 11-1 ri.tic, ON J)E.T A- I L~ J> 'l>£S l &-N

VFJ>A-T'E.1> PA-~ltETE~ l...l ~'T" ~~v IEW OP C.0$.'T' ES17P'tfr'rc $SS' M

rol..CE.S. O,.S ll~u..~ ~Elllfot.C.EHEllT'S1 C.t.f{AIE "~IL.S €T·C.

C.lcLC.Vl..kTeb. rlO MA-do«. Pto&L.Ef1 Fo~ Cl(1111 ... EN~IPl££1.ltlfl­

tl0 P"'-°l.l..Et1 l=ol.. C.tlkl'IE

~Eft.10'1'- ll~Q.\114tef'\ENTS ow SE(.l/ftliJfP. Fct£o'1~£TIC. O'JECN

"~Al. HPrG-"'ET fol..€~

E~Pe.1t1e,.ace-

1" ~ II L.. A'ieJ>

I ~ t..A-'rel>

H lTtf fC.1~•' P1£L.!> £tlvlfl.G,.,f '1EWT A-T L.L.tJt...

«£6frf..S ~ tf~'- c,,,.r~J(lvc. 77e,./ ~tt~

x- &£A-.-e .$ .... 1Tt1 <;~10 SL.EE t/tS

CA-lol..E T(U.'(~ W IT<H '-"'.S A1Ct 50£.E:f{O,b 11'~1.VCS

Clrt.e. '"' ot l£1'TA-T10,., or= ~OL£,., c 1 i) h-c..Tvlt-n~.s

I"' ,:1EL..C>S loo- soo 3QAll.SS.

E.16'{ $iCIEL..~ltl~ OF TEltt'\11'(PrL>

No ~-l-<1£L.l>'"'" ~ ~lS~ ~t.iv'E"S ( S"O cf4""~ ~..U) 'f A-c.W fli\ G-PrV~~ I C:ifrt'VrC. C. /ll'r~~ (:~ . S,-~ ISOLAVl otl rt/c'tf.SFo«.l'tE:"IZ.. ~

,f

z 0 ._ I-a_ 0

w z _J w (J)

a: co

a: 0 1-Ll w 1-w a ~ w l.'J

Ll en en

co .. (IJ

CT'I ISi T

UJ - CSI 01 CSI

' C5I CD_;

' ISi . --ISi ...

• :i (l"I 0 > +-c :z: c t.'J u -en U,J Cl ...J a en

C:UAJE i!.A~I..

• • U) ,.. •

11'1

(W Z

• N

• - ISi -

Fn.. \. c,,..,TOVR-S OF Co1'J~T1\llJT oo\:>y fu)ac.e Ve,.;>'STTY 'Ex?Rc~~E\> :t:loo) ~'s

• ISi

. II)

. ,,..

-m e

• N

• -

a:

•·

• I t(C RE t-\.tl' T AZ.. c..o ~ ;:: ' L ~LE:c:ri.1 c kL CA #1. '°" E:"}l7'3

l 1'1 '11lf: 't>e'1'£C.:r-4l k lrt.L ( H#t~ II i:::.kf'\. P Met E ~) ,._$SS }::.

• ll'ICl.£.M.Cfl/Tfrc_. COS'(" Po'- C.LVo'-erllCS C...11.P•ll'Etrr.S

'"' "Tlt£ 1)e ieCI o«.. ttit-'-'- ( ttlC.•'1 Pt..erE)

- NO Q..-c:.cl L/rll) '-'< '-ESTtl-IC.TI•,,..>

- LAI.I* rJ\$El Of' OPEN FtSL-b MAfior~ tN O(>E.l.ft.T10,.J

"rlo Pl\~C. FIEL..!) Stv4t.G£S. T£'(l.M$ Llt1 •. L &E

~Cle SE N'T lc"f" ltf£ S'\/ fll='A-C:c;" o~ lf<c SSC. £tTE " •

5c.Jl.PAc.E:' Skl£L.t>11(Q. PL.M°E

1,tc.011PLET~. ~A-'( /IE.tap

-.. ( frL..C.IJt-lf'i/Otl S

r-/lo K.,. .... ,s i!'-to H

The safety of the electromagnetic field set up by refrigerator magnets has not yet been

determined.

i u .... .:s • -o ·c c· oO u; 02 mW •C!> Q.. ?:~ --c .. Cl> 0 --.! --Q

u I e. -

0 • 0

.... a:> N ·--·-J:J a:> -C/')

-C/')

0 (J)

a C.OrlbVC.,TOdl - 51"tL.I- Cofli"W:>VE.ll.SllrL.. JSSl.le

- LA«.{).£' NVl1!£R. Df Pto fOSD:>

l>EStfW'S

,,..... W IL.L SE.T-VP 5 PEC<fll.. PAft/cL

OF cXP£<l.TS

.. MDt>\FIC.kflO,.,.S 1"0 Acee 11 • t>k'f'£ 'F-o"-l<flr'-D Cir-LO ~'He-rt.~

Prt'J> l M P ltOv c H.DH£N1'V M (Eso1-. vTJ 11.., 14-'r ~HA-LL ( ! :

lrtf G-L£!>

• f #.fl€.G-~/t'f10..C wrn1 OT-H€tl.. S't'S1C'1S

- ~urfol..'i Fof.. MllOllf CKA-rt6r::ft..S

- svr Poe:i po<l c.'rwl-lMGrf:l-5 '*~"-Elt.

- A-C.C.~S!) 10 11<6'. 1)'£'TE'-""Q..S

- ACCELE/2.Pr1bt.

Different types of conductors for the GEM magnet

a b c

0 ~

d e f

oe SC strands stabilizer helium

'

Status of GEM Muon System: 11/7/91 (J=i:1)

Proposed Technologies for the LOI

R&D Program Overview

LOI writing

Issues to be addressed

Proposed Technologies for LOI

11 Momentum Determination and Trigger:

Central region: e > 30° (O < 'T\ < 1.3)

Pressurized Drift Tubes (PDT) Limited Steamer Drift Tubes (LSDT)

Endcap region: 9.5° < e < 30° ( 1.3 < 'T\ < 2.5) Cathode Strip Chambers (CSC) (LSDT as backup)

• Beam Crossing Tag:

Central region: Resistive Plate Chambers (RPC)

Endcap region: Cathode Strip Chambers

• Trigger:

Central region: Level 1 RPC, Level 2 PDT or LSDT

Endcap region: Levels 1 & 2 CSC

• Second Coordinate Determination: ( hoh bt1'1cl plane)

Central region: RPC for PDT option, or PDT charge division I.SOT

Endcap region: =

r 0.5.rn 0.0111

3.71n

y

Cootdlnate ~ein W1th the or1g111 Jun below the 6otto.n of MoctuJe lo. near the cemer Of the chlllnber.

R; • •

'T· i...+.-4 ... •lc.4,. .... ..:; • I

COSfvif C-RA_ y TELEscopE Dcti

B.r>'oi.r 'IJ4.{, n p~?

-2% ...

N

s

MOduie zoo Top SCIJtUll.ttor,

Moc1111e lOO

llfoc1111e ll

BOftoiin SCIJttwatora MOdlde10

->~ ~l < .. ... s _,, .... .sr "I .... :1 QI

" " 00 .... "'

---- l."•

Cover Plate (partially cut away)

Joint Coupling

End Fitting

Truss Element Tube

Clevis Truss joint

,...,.

LOI Rough [}1·aft:

• Physics considerations:

{a) Momentum resolutaon:

{b) Rapidity coverage:

{c) Chamber occupancy:

{d) Pattern recognition cap•riHty:

(e) Energy loss in calorimetef":

• Description of technologies:

• Mechanical engineering:

-"-.--

-- ··~ •.. ;;,-.:f~~~,,•j~:tJ.;~;t:-'..~~s.:, . :.. . .· '---.; . .:

~in~ Z l1c"' 20 16

15 12

10 8

5 4

0 0 140 160 180 140 160 180

16 10

'f-o= Io i 12 7.5

8 5

4 2.5

180 0

140 160 0

140 160 180

10 10

7.5 7.5

5 5

2.5 2.5

0 0

3 • v~r:f~ Hi~~S' propfAi",·,_,: r_.,, o.t;;n,,-f.17 E

a ,"T _ r + ( l. a; J ~ -(L.I<.) ~ ~s

~-~ ~ .t ~ -:ii> \;..~. Ii. ~ ~ ~ Io~ .&. ~ . '•

Id JN.A: f / 1

u. - ct..t"~~s d 3 O I"~ I

~ ~ p / 3 u_ ..!;. 0. p I

100 b I I. I I I I I I I ~ --sp/p p = 1 oo GeV le

...... -sp/p p = 500 GeV le 1 0 L ~-·---·l-·l - • -sp/p p = 1 TeV I e

··*·op/pp= 2 TeV/e

1 L :"-;"-:---··-"1 .. ~. op/p p = 4 TeV I e

'3o'ct, .... ~e.-:r.t>· - .... ::· •• •••. ·l--- ... J .. ~~ ~~-1· '."'.:.: -t I *- --- ---

0 1 °' ...... --- ---r-~ I . ~ ' ::-r:I-=r ~ =-r I - I I I I

0.01 I I I I I I I I I I 0 20 40 60 80

Muon angle (degrees)

:> Q)

8 E-1

""' . ""'" II ~ ~ ~-.

::2i -s: rN

er> .s.: ·-~

C\l 0 ..-I - co co .

0 0

aou~1daoo~ uonUI-1P

rl +rl <- .z

"<:ft 0

C"J

C\l

-a

,......... Q)

tlO ro '""' Q)

:> 0 (.)

:>.. -+-' ...... 'd ...... p, ro '""' ::t

'--'

:>..

0 ... N ... 0 I I j 0 0

0 ... ... 0 ... ...

("'I-I

<"> 2Ul:> /(zH) e1va ..s:. -GO

Occ"' I° ~ f A 6 l:

~:. d~+ec+~or ~ft..,,.,~ c:tftc:c. 1 At= ii..te.!r. f;~

F (,..3't' •. t1 " f" v

( t S i'" I~~ rJ: "" t ,"#te

A-~ l..fet0 )( "3 ( ..... ' = /2 ()0 (?tt l

_, ~

• Occ~r ~ 5 o .x /?.c x"' = o.' c.

Uo-1~ : /2 A i~ k.rr~ cJ. f 111>. i~ u~ .·

r ~

Qt. ' 't \0 £

~ ~

~

~ ~ SW. - t.J,. .. "' ~~~ ~i~j -t ko..,,

\ l I . I / a

I -

J:J /

' ,·

/

/0 .Cl/+

/

'

; ,., \ , .vA ~-

·' ., ' ,,

'Y "

l60 'ZOO ,00 I/OD ~00

E 71,.. ( '•")

-

-

p d.e'f'k 12e~ .,,.,,..f,,.,, : (_j

W: t;I, / i nsid< h~Jr.,, k j a.

r .... • -flwf--r '-11 · 5.1..A:""" ; '(' .e d IA U (f ~ ~ J, - (J, f'O Mi' ~:; ().,: '1..

c.4i; ~ J..,, ~ ! '2 A l:,,..,.,.J I 'I ). w "f''

Muon e11ergy loss, Eµ=500 Ge V, 12.A

10 2

10

1

.0 20 40 60 80 100 Energy loss (GeV)

Figure 7

~~ ~:..-~~~~~~~~~~~~~~---: -------11 ~.:..--=::=· .. -......w.._ -· ·-- I - - .. -·· hll ......... ,.

__ .. u. __ _

ol--•111•1--U..h ""'" - - tM• '-*- ,,..,..._ -m.- ..... •u-•u. Iola-.. , 111 - '-U~ fl)

---·-· UI rt~·­t.w.I• I - 2, 10 ._ --U-•s-. ISi w - -· lrm•--l•U•--'9-on-.._..,.,_.,._"'"" 1-..~u,...__...,. _"_,_._ ..... _ .. u~ •l-tw1, - ~ "­

- -· -- taa - -~--------­...... ~.~1--• -·.,·----·" u • .,.,.....,...t.._ _ _, ti•-'-....-..,tn ..... -. ,_, __ _,_, __ ..,_._ ""'----- .. ..,..._...., ... .-_: -_, .. --·- te ·-., ... --· TM f9l1-"" UM• -- ti•

------·---.,..... l ;,.,) e-1._._., - - .,_ _____ ... ____ ... --==..-=.:....- .:: .. ·--····­----·-·-········ -=--=====-==-=-· =~·.::: '"" --·· --·--· ---- -·----·--- -- ... - --·· --···-········· ------··-·----- -·-------··---· -- .... --·· 1:u ftTe&u c-1-..1.-• .. n .. u,_, _____ _

- - _,.._ <#IP• M•• • •'I'"·,_ --~-

--~ ............ ,. .. ~~---- ..... --...... -~·-­,.. ---.....-- ,_ ...... ... .. ,..... ... -------·-._._ .. ..._ ... ... ..--. --,_ .... _..,_,. .......,_ ~ "-'--"' ... - ____ ,._.

"'~ ..... --··--· -......-- ........ ---·-· ---.- ._ -....__ ........ --. .... ____ ._._ .. , ..... ,.. .. .,.._ ...... --·

111 ~., ... - .... .,.__,

... ,u,,. --- '" ... ----· - ...-.-.e,, Uat.H t .. -.U• ···--·····-.... , ... ! ~'"''-Uy ... ,.._...,,, II I .. ..._..,. ..,._tc •II- -­.......... ~ -'•-· Ttll• -· lt.iU..._ ____ N

T11e1--~u-...,,_._, ----.....-­ti.~-·---·""" IM c 111 _,... __.., - ,._ .......... __ .. __ _ ....... _,. _, u .. - . ._ __ , d __ ...... __ _

----·-~-•c' n. n.. - - e1 .. ...._'-"1.._.1 1-----. .. - ... -t- - _. t.9 lft. FIOUllll I

UI _____ _

-~··· -~····· . .. . . . .. . - . ·- -

_.......,........,__.. ......

-

u... ___ ...,. __

t .. ,... .. ..u_._ ...................... _lllaaU. ------------..-.. ....... ______ .._ ___ ,..... ......... ,...._,..... .._... ....... ._ ........ ...,.._ ..... ___, .... 11""-'-- ........ --- ... ._ ...... , ......... ..... ,._ ... ,... _______ __ - ... ..._..__ -. "*11 ~ . ..................... _ ~- .. ---~ .... m._ ._ __ __ ................... _.....,. ........................ .._.,_ ..... --................ -.., --·

..,_.,, - .. -- .. -..-.i. llllt.t•·---- ......... 1-ty. ealy • ..,,. ,__ .. ....., _ _.. ... ~ .. --~ ••lm!ICUhlll. ........... 'f/11 c :SO\l•-J·-----1 _..,. _,.,_..,.,. ""'° -- I' -~·t-- .... _ ... _, TeY/el, '->lyt .. t- • • ..,,,. c JO\IJlll tilY • l.t • lOo"'-.

"---..... ... --... ..,.,. __ ,_u. .... u .. -.,_ .. _,•"-J.

~ -," ,") .. •.•. \ ;... j

H tll It It ---Ill .... ____ .,._ ....... _, ____ ,.... -··

111 - U-.,. ... --·- CW u..111~u•--11111-u.n-.- u• ac u -.SI ._.... i.a.,.. alM _ .. tt.e. ___...._.

--- ......... --- •'9t. tlCtl-11/.fll....,.._o - tlMI I-_..-.. ....... ~-.. _.__ ............... ,.-. .................. _ .. ,__ uio1•.., el - I.I. ,,..__.. 11 ,.,hlltr _..,.. ... --·~· c 1.1 ,...w..~ - '"._._ , ... • t ..,,, .... - - ,..._ ._._ ,....~···

-

ua.,_...,., - - .-... .. _ • --. .. u. ---__ ..._....._ u.s--. .-- .. u.........._..,. __ ........ .. _._ ............ _.., -.,_ --__, ..... ,. .. --..u ....... tMa~ .. _ ... ...._ .... _.. . 1111.11111 ~-ti --­.. ................. -.-. -· :' .:';:::- ........... --....... ......... --..u. ''"'· ,........__ .... .._._, ::i:-.. ... _. ............ .

.. - .. e __._ ..-! e. It.It -__,ft .... , ....... ._ ... '·---~---- - ,. __ ... ,."'_ - _1, , ........ .._..,_ ... '-_ - ... t - "- Jllll-"• i.-1 ... t• a. -..1. fl-. - -UH llt ....... H II ·-·- 11C llll'1e .... ... ._.~---­..--. 11 ll ia - -..1 ....._._, - t• Ilia---.----...... '•If >•-*'ft~. ritll a I ,. - •art u.. - .._,., _... .... .- '" t ......... ••ttw --. ...-.. t ...... ·-,. -- , .... ,_. '" tloe ,_-.. ..

-"' ---- ... __ __ ...................... ~. <1••···-·-- .... -·­------.---. ~--,--___,I ........ .__ ... ,..,...._.. -. _.,...._ '----.. ---~! • .... a- .......... ----... - .. -......,_, -------:.:'I"' ... ,.::~: •• ::= I --..-- .............. 9t. -ua..- ... --.-., ............ ! ~-~ I

l~) r ..t.k"""..;f""' 1/ ~~s1~ ;

~~ li k ~ )/ 1 '2 ~ lo ..... -1 '>, \\of ; , .J..t..d I '

w .... J +o ~;,.,.,w<.t" ,., ,_J.,.,.. 1 '" ~~5t ..4- ~ J,·/.f.4.,..Jl::t ~·...,,..A' .. r~s

'l) 'Fo't'~ J c... r· \:"""~i-,...' j f, ;"

~ ~ .. tJ~: I '-"cli·".Ar, \S;')t j l~'4 I ~ .,<'

Y) ~tt.4 -h:, ~er"'- )'Mo-re. cf,,s~/~ w:+I-. tt'i~~er

j '('0 ""f

---.,,,.

Part VI

Calorimeter

1 Introduction

High precision electromagnetic (EM) calorimeters will have unique physics discovery potential at the SSC: in the search for Higgs particles in the mass range between 80 and 180 GeV, and in the search for new physics signatures involving electrons and photons beyond the Standard Model. GEM has thus been designed as a Precision Lepton and Photon Detector, where the calorimetry system is the centerpiece of the experiment. One of the principal goals of GEM's experimental design - and its R&D program - is to achieve the best feasible EM resolution, combined with good resolution for hadron jets and missing ET.

1.1 BaF2 EM and Scintillator HCAL, and Liquid Ar­gon/Krypton Options

The high resolution, speed, and radiation resistance requirements, and the need to complete the R&D and engineering design of the optimal calorimetry system which fits within the budgetary constraints in 1992, have pointed the way towards two complementary systems:

• A BaF 2 crystal high precision EM section, followed by a scintillator hadron calorimeter.

• A Liquid Argon (LAr) calorimeter with a fine sampling accordion [1] EM section, where the EM resolution is improved by the use of Liquid Krypton (LKr) and/or thin plates in the accordion.

The complementary advantages of the two approaches, which will lead to the highest resolution achievable in practice at the SSC, are summarized below.

1

• BaF2 PRECISION CRYSTAL EM; With SCINTILLATOR HCAL

- Higher intrinsic EM resolution: uE/E = (2.0/VE EB 0.5)%.

- High uniformity for the EM section, based on the proven carbon fiber-epoxy composite mechanical support system design used by 13.

- Higher EM and HCAL speed, resulting in a higher signal to noise ratio in a.n isolation cone, when searching for events containing isolated electrons or photons:

- Effective compensation: the intrinsically non-compensating EM section (e/tr response ratio - 1.7 can be compensated by adjusting thee/tr~ 1 in the hadron calorimeter behind the BaF 2 • This leads to a small constant term (below 2%) in the resolution for jets.

- Higher density: one can obtain more absorption lengths for a given calorimeter radius, while maintaining the jet resolution.

• LIQUID ARGON With ACCORDION EM; Liquid Krypton Option

- Intrinsic stability resulting from the use of ionization with no gain and readout of the peak current, leading to ease of calibration.

- Large systems involving plates have been tested,[2] and have demon­strated the requisite resolution and small systematics (below the 0.5% level).

- Intrinsically radiation resistant.

- Good uniformity has been demonstrated in test beam modules.

1.2 GEM Calorimetry: Rationale and Selection Pro­cedure for the Two-Pronged Approach

Many advances on the R&D, conceptual and engineering design, and simula­tion studies of a full GEM calorimeter have been made for both systems over

2

f=-. =::.~· _::.:.~· ::: :_·:=---------------::__ :::===__=:---=-J

r---: 1077 ' COARSE HADRON

l• S.74 ..

t

LI ~~=~

COARSE HADRON

992 '

_1_: ' 470

!

FINE HADRON . l-4.0.

ACCORDION EM , .. k· 1.26 .. · .· .

-1soo ~

-

. -· -··· -· FINE HADRON .·

·· .... ; ~ ~ -- -

COARSE HADRON

. ,. "'.;:;,,_ .,.,,,.;.-... ~~

COARSE HADRON -- . -- -·~:: .. : .. :;

l-S.74

ili'·M"' .. 'fl'i'~~1·j1J1'f"1:'-'f['.'f;'{j"i'•\ I ' ; µ,,,Jj ==""-'-"-

ACCORDION EM

· 3 I (;.~ ---------·-·--·--------- -·--·-. ---·-·. --·--·--·----

LAC DESIGN LENGTH EVALUATION #6

4000

11- 3.0

GEM Central Tracker Status Report

November 7, 1991

Jim Musser

.-..,---~-------------------------------------------

~\.!..~ b\s.c.o \ .... /~

~ \.. \l \4c. bo ~Q..l "-

+ "~ ~ c..cllo..lo~o_l,.-c:.~ wt\..l.. Lo~ ~la.w.-0s .Q..».~ ·

+ lt~ ~ ~u.... '"&voe lt. l,...cu.i o. ,_

~ "Pa.~ Q.u.~~~ ~ <4 ~0k.Lnuo· ._

~~ tv~. \4 .- \o~DC> -A-H

Design Proposal

Modular Assembly Of Components

• Chevron Pad and signal traces fabricated Into a conductor I Insulator laminate with readout traces/connectors .

• Pad and trace laminate bonded to graphite epoxy structures.

·Modular chamber construction of o CTE Graphite Epoxy.

• Chamber modules supported at the ends •

• Single piece cooling manifold with mounted electronics, power supply and signal readouts •

• Self-contained 2 phase room temperature evaporative cooling system.

, 11 r/ yr

E •J.: /.... 0 F" ~ A . .. .. , .... . ' , ,/ I • r • ( I . -· ) ~ -

.

.ti. ' L _. Jr. f ' . ,, .\ ' ~ I . - 'fl ·-,, • ' - • r ..., ~11 ;,_ i-, I ,, ,.., ill () ,,

La l ,' .I,_ ~ ~~ ·- ,.

• . - " ?. ': r I I •., /.-1· p .. ... k. ..

II . j I 2l "n , ) J ·~ ,... ''· J /I ' ' .. ~ .. ,._I. • ··- :0

I Jlr- .I /.. ' ' .. , -~

, , ,, • .. (. I : '" , ... ,., . I ~ t I t_) !"") " .. -I • • .. • • • n. ~.., ,.

,, " / I '• l './. • .. •

I .. .. ,, (~ ~ .... • J . '· , .. .. I I ; . .. J - ... .. ., ,, !)

, I

}. ~ I - I .o "'1' • I". • 0 ,,., llJ ~ ,J .. A •• • ..

'"' -- :

- .. .. ,, '/ '· - / .. '

• •• I~ ( ,- - . .. .. . .. •• • • • ., I r:. - t.. . -~ .. .. ) -•• ..

·If :1 L I. l .... ' ) .... ,., 1 11 : ' ; . .. , . r~ .... /, / .. ' . I -. .,.. ·1. II. I

~ ~ • /, • ... '

L 'D 4- '• .. t __ ..., ;: . ' ... ~ ... . l J. n• ·- . ... J - • .. .

~ -· I - L..-" ' . ..... 1.. _i,.,

,, - - • -• ~

I .. ' ' < I ... • -· - ... • .-. ..

l!b .. \ .. ... • .... ' . . -·- - - ':' .

/ ~ u > T ·- ,.., .. , :.r .. ' -- C- ,_

: '· I •• . ~~ .J ' .. .. ~ .. -' : - ,

/ - .. 1 '. .. . •- t I ••• ..... ~ ~ •

'· /. -F . .I ,

I •• ~ ~ a. ~ ~- I _, -· -- u

I ') . l( ., v -~ o- , .,

v ,, I • -

I '· 'J 1 ~ ) ., '2. ll )( ;)( 2. "" I I \ 'I • - I I •• I\. - a ; .,, 1. t . .

.. J .(. 11• ... "I ~o•

, I. ;..._., I ;. I l~ ... .. ' .. ... c# .. • I -:::::: - -

2 , ,) ~ ,. ,...

L· ~ /, 7-, I i, • 'I• J... ./: ,_' ~- /.. _, - 10 - >v ...• - . - 00 ...

• - - -Jt, " . ./.. ,) • I r. . I

, I.

. "· ' ' • .. -- . . •• . .. ·- . - ~ .

I J II J '. I I "·· • 111 • j

• I

. .

I I., " - 'I I. 'l - .. ,

• I L I l. /l .. ,, ) ,, , r . 0 .1, I ~ I I:- ... I •- '- . ' • .. . ..

I= I I .. I- ... ~-- t. \ ·- ·- , .. I: I ) l .. £,.. ..... o.I '· / .

I c " . • J I. I: - - .. ... - ,_, , "I I .... I r I - - I -

1...- '· J. , ... ~ +. i.,., I~ . ,, ,. ~ ,.. J L - .. / '

I I p ·' l, .. J ' . . I ·~I 7il• "'· •• ., ~ ... .. . . .. ,_ - .... • ... •

I ' .. • J( - • L-"' ~ 1.., l - . : . ( -0 f"1 •, GMk

L , : ...... I I. . ./.'I - • it ~ ... I 0 'C' i.. I , .. I r"' ~

l ~· • J.. 7 . . .I ,, ,.. q ,_, •• I I I M ., ~r -r .r

·I \ • ~ '...I.a J . , " - • • ... , .()

..,,._ I ~. •/I """ ,.. ~ . ... •..L J , I-' " JL ~I I I. I r .

I ~ .,,. >. .

• '...! • 'I.. ..

-~ , - ' 1 , ,, - ,, I •'

.., .. , ·" ., ... .

/ .1. • . " /'. ' '" I .. ~ .... ~. , tllldl I. h ... .· ·~ ' . I .. .

( •• J. h· ,_ I L' ( ! l fl 1 . ~ J ':..- Wt· ~· 1£ I ~~ .I .. 'I •.

. ,.. -

'"" llff u:;-, - L ... J.

~ ' & • • . .. ·-· .... - •

l Dt! l..I. . ~I --

GEM Centro I Tracking ... ao- ; •nterpolotln9 Pad Chambel"8 Endcap IPC'•

Thrff Super layel"8 of Three Chambere (Barn!)

·-IG-

----

·-~-------------------------------------------~

JO-

~~ ~~ 20 DD • ~~ ~~ ~~

10-Slllcon Vertex Detector

i

' I I ' ' I I I I I I I ' I ' I I

0 10 20 30 40 50 10 70 80 10 100 110 120 130 140 150 1IO 170 CM

IA•£ QINJ¥£1tttJQt~ PARTICLE PHYSICS GROUP

W. EMMET 1t/5/1H1

.

~~-: ~r-=--I--- .-

~- ~~·~~·~~~~:::::::::::=::::::::= -- IU r -- 11 " .

I '\ " . ' , • ; , 1 1 -r , , , ....

- 0 69 0.891.,091.13 1.33 1.,53 1.571.77' .~7 "1 !111 I

GEM TRACKER DETAIL OF IPC SUPERLAYER MODULE -EDGE w/CATHODE PAD AMPLIFIERS

cm

.. \ roc.k..~ ...... ~ ~u~cl.o._ ~~ 1

\A.l.u..lhA..,o c.1t. v~~o luJ..:. ~

l)Q.\,\. ~01.l~ I ~~Jt. H Q.'-\l j

~So lu..~o....._ ~ ~Jl.Wu. i__w~~o{ \Uu..l-k ,h. Sc:c;i_{t)

S01M.~+ Se.\4. 1 :!e.~ Te>.-\£, ~~ \.-l~l~

\. \. u. s \.u,~ ll ' Q DJ_ ~.tk.-1.t...~ ? \l"'O ~ v 0... "-""­

~ ~~ o lU.U ~ '5 L. U.c.ol.-.

":t k> 9 ~ ~C4- ~ >r­

\o r- c;.l~\~ \.l.d~

'Po..J.~ ~D t"- p~ lA.~ ,,.,,_.

L (" p- o..ll ~ ... 01L-~

'Da..-twA.Jl. b;_,U.t.'4 CL.k.~ wi..U.... Gt.A ~T +IsA:lET

S"\M..\,.,t. ~Q..~, Ell.o+ \.Uo\:.u. 1

(ku.A. M.o..-.l'i ~ ..... ~ '-\1.JL Lo ••o v-

~~ lo .. iz G- \J~o~ ~ bE.A ~ \f'uu..~~ CL.~ Yo..!.t<_

.. N~ lo l.u.~CJv-o..4 ~v--t ~~u._ oh_~A ~ .. -r,.,. - I... -

• 1..

"l~o I I'-\ .~

90 I

,1 GE

~ ( J (j

- )''). ~ 0

J' 'i ,,. 2 1. 1"

ao I, & .

70

I.~

2. C) .. 1t;.'+o

J., 1 ~ 1/2., 0

.? , ~ - /U' l.f o

2,6 - s.f~

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 CM

j i --' : .. ! I . - -: I : I . i- · -i i-'-'-'_11----;-· _,_I ----1-!.,....·-· ·+-1 ·:_··.+-i--'+--.,..-+-1 ----6-LJ '---'-1-'-'-"--1.-'=1'""':::.;;.;.:l=.-,.;-1 -iif-'--+-_.;-1-;J--.. _-+:!-,:-;---,j;---+-1,-.. ··1--; !::·I l I I 1.-J: l:::L-.J-~ :=:1::1:~-l I

-~

·----- ---- -, - -

:_:;_~_ ·-_:-_: __ -:-"": . .:c: =.c. '--j---e"-:!-"->'"1-"-- _·_::_:_._.,'_O: __ c_~:: ___ , __ -_~ '-'._:_. _:_-~c __ :_:_-_,_-• . f -=--· --:_: --- :·_:-":·: .-1 - - ----·1 ;:__ J: - -

-= .. -- ··-· ---· ;:r-:. : i:::::

--- =-= -==-·· - ..... - :-_ ~.-••;

- :.l:::.

-~ ·- =-===::;::. -

~~~

·--=-- 1.: . . :

.• .,. i----1 ---::;:-

-·-,· - --~-' .::::.~--:.:=~

-·-- --- •·-·. ... : : : j-::"1:,.-:: :;. _ -- -' .:..::.:t:::::p - .-· ::: :

7:'~+ 7°l:' ~-~

-:-1.=. :_:~ . .... :

-:. -

s - -

_:;__~

=lF=:::.io

"'"" ........ . ......... u-'H:wll .llYH ]Ml 01 01 )( 01 'IUt-totC' ·0111

0 ..

Suw..~ -t S. Q.\A..

'1a..\Q.. Ow .

.....-... ~ '-"

"'o...

1

~0.8 b

GEM tracking study

<l'""" -z:. 1' ~. '?· CU. Qo

<:f ( Si.. L:.c.o1.o..') : \ ~ )'>-

0

0. 6 ~ ~c yo..ob.) = Sb\-'"

0.4

0.2

• • • • • • • • • • • • • • • • • • •

0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 ,,_ p

y:. ~nllh..

u.i~\Q,_ 11~1bv~.

<f (~:.u....) = -\'~ \"­

q- l~J. ... ) = SJ:. r

• • •

<.o ci

• • • •

• • • • •

• • • • • • • • • • • •

0

0

:> ol

(!j

R -~

1 ... j l ~

<D

0

N 0

• • • • • • • • • • • • • • • • • •

N . .,.....

. 0

• • "<t-• 0

• • 0

0

. ~

3 -::.

i ti 1$ 0 0 ? -II .4 L

. .) 3

• • • • • • • • • • • • • • • • • • •

<O

N .

ro 0

• • + • 0

~~~ro~-L..L~L-'--'~-'--'-w__,_•t•~ , 0 <O (%) ,d/·JJ ci ~ ~ 0 0

j s

• .J

1 "J j'1 -

..v ~

.,. j 0

i oil

~ • J

c.. 3

l"l . ~ _, ., .. :J

i j -:;. 0 - 8 :J

? ., 8 '-5 " + "

0 ... •.I

ti1 ... -

"' .... • J ?' I{)

~ '"O :::J

+J

"' Ol c ·-~ (.) 0 ~ ...... ~ w 0

co 0

• • •

• • •

• • • • •

• • • • • • • • •

N

ci

0

<O .

N .

Oj

ci

'<t­o

0

ii "':.

J ·e ~

~ 0 ...,

,, ,. " ...

rt. ... ~

co ci

• •

N 0

• • • • • • • • • • • •

......

N . ......

. 0

. """" • d • •

0

0

6 -~ :::> cJ

~ ... <f .;)

0.

~ ~

"" (-t' ] l ~

~ Q,.

t ~

~ ~ i 4 d 3 v

~ (J -t-'

1 'ii .J rt> ~ - "" 1 or J \- -

-1 j d ...... ell "' i ~ c.- l.A [JJ -" .

l~ ~ T7 ,..., "' 11 0 +' cL..+l <:f

,~ v ill +> p... .II

H 1 ~ ~ . _, ~

"'{"

' . . . .

.3 j ~ - -~ ~

.... ..........•......... ... . -~---·········-+·-····· ..... -~---· .......... i·-···········-i .............. } ... ········--·~ ............. .: ........... . : : : : * : : : : : * t I t I I 0 I 0 0 . . . . . . . . . t t O 0 I I 0 I 0 ··············:·· ·······-·· --: ............ ·+····· ......... ~--...... ······!·· ............ : ........... ···:· ............. --~·-·· ······ ... +• .......... . 0 0 0 t I 0 0 0 0 t O I o t O O t I t t 0 0 0 t I 0 I t o I 0 t I I t f I t I t t t I o I ..... ·········t······· ...... --~---·········-~-........... -~- .............. ·1··· ............ ~ .••...•. ······t············· -~- .......... --~········ ...... . : *: : : : : : : : : : : : : : : : : 0 0 0 0 I 0 I I 0

· ····· ·· ··· ···:········· --···r···· ·········+···· · ·· ····· · ~--·· ·········-~·· ········· ···: ··· ······ ··· --~········· ·· ·· ·r··· ··········+····· ···· : : : : * : : : : : : : : : : ! ! : : ......... ·····:· ........ ······:·············: ............... :······· ...... :·············. :···· ........... ·:··· ... ·* ...... ··: .................. :· ........... . I 0 t I * f * 0 f 0 0

: : : : : ! ! ! : ......................... ····-----·~-----· ....... ·+ ....... ····'···{· ................... -~ ................ ··f ............... ·---~ ...................... } ................. {· ........... . . . . . . . . . . . : : : : : * : : : : 0 I 0 t t t 0 I t

................... t ................ t ............... l ................. l. ............... : ............... .:t!'.: ................. t ................ l ................ .:. ........... . ::::::::::::::f::::::::::::::~:::::::::::::t:::::::::::::~::::::::::::::i::::::::::::::~:::::::::::::~::::::::::::::~:::::::::::::t:::::::::::·· ::::::::::::::i::::::::::::::~::::::::::::::~:::::::::::::~::::::::::::::~:v.::::::::::::~::::.:::::::::~::::::::::::::~:::::::::::::~::::::::::····

~~~~~~~~~~~~~~!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j~~~~~~~~~~~~~~~~~~~~~~~~~~l~~f:~~~~~~~~!~~~~~~~~~~~~~~~~~~~~~~~~~~~f ~~~~~~~~~~:: :::::::::::::~::::::::::::::~::::::::::::::~:::::::::::::~::::::::::::~~:ii:::::::::::t::::::::::::::i::::::::::::~~:::::::::::::~:::::::::::::: ~~~~~~~~~~~~~1~~~~~~~~~~~~~~[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~j~~~~~~~~~~~l~~~~~~~~~~~~~~[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:::~ · · ·· · · ········I············· ·i-···· · ···· ··· ··} · ·· ···· · ·· ·· ·.\· ·· · ·· ··· ··· · · t ••••• • • ••• •• ··f· •••• ••• •• · •• ·• ••• ••• ••• · •• ··> •• •• · •• · • · •• ·{·· ••• ••• ·• • • ::::::::::::::~::::::::::::::~::::::::::::::~:::::::::::::~::::::::::::::~::::::::::::::::::::•:::::::~::::::::::::::~:::::::::::::~::::::::::::··

:::::~:::::::~::::::::::::::~:::::::::::::z:::::::::::::~:::::::~~==~====~::::::::E:::::::::::::~::::::::::::::t:::::::::::::z:::::~::::::: ::::::::::::::i::::::::::::::~:::::::::::::t::::::::.::::~::::::::::::::~:::::::::::::::::::::::::::::~::::::::::::::~:::::::::::::~:::::::::::: .. . . . .. . .. . . ... . . : ................. --~·-······ ..... ··:···· .......... :· .......... ····: ............ ··:··* ....... ····:·· ............. ·:· ............... ·:· ............ .

I I 0 0 I I 0 0 I . . . . . . . . . 0 0 0 0 I I I ' 0 I 0 0 I t 0 I 0 0 .............. : ....................... ~ ................ ·-=- .... ······· .. .: ................ : ......... ·---...... : ................. -~--- .......... --~ ............. -.: ............ .. I t 0 I 0 t 0 I 0 I t 0 0 I 0 I I 0 O I I I 0 0 0 I 0 . . . . . . . . . o I 0 I I 0 I t 0 . . . . . . . . . .............................. -............. -. ......................................................................................................... . 0 0 0 0 t t I 0 I * : .. : : : : * : : : : : : : : : * : : : ................... ' ....................... ; ...................... :,. ................. .,: ................. ~-- .............. ' .............. ··}····· ............ ; ................ .:- ......... . I 0 0 I 0 0 0 I I * . . . . . . . . . . . . . . . . . . 0 f t t I 0 I I I

· ·· · ··········I········· -----r···· ·· ·· ··· · -+ ·· ·· ··· ·· ·· ·· 1····· · ····· ·· · ~-- ·· ··· · ·· · ·· · ~ ·· · ···· ·· · ·· --r · · ·· · · · · ·· -· · -r ·· ·· · ·· · ·· ··· + ······ ·· -· -: : : : : : : : * : . . . . . . . . . I I 0 ' o I o I I

•••••••••••••• t ....................... ,. ............... ··:- ................ ~--· ............ t·· ...... ·-· ........ t ............... ··t· ............... ·:- ................. -:· ......... . : : : : : : : : : : : : l : : : : : ................ ; ................. -~ ................. .:. ............... .: ................. : ................. ; ................ -~- ............... -~ ............. .: .............. . : : : : : : : * : :

!.D N 0 N - - - -

(' .....

((

c

'<t I

((

I

(' .....

(,( .....

c ('

I

Silicon Tracker Rip

FY 92 Tasks

Electronics

1. S channel wide Semi-custom Analog rad hard circuit design and testing. Heat load specification.

2. 8 channel wide Semi-custom Digital rad hard circuit design and testing. Heat load specification.

3. Output driver technology review, selection, and prototype design. Heat load specification.

Mechanical

1. Silicon Tracker Conceptual design, analysis, and systems studies for the TOR.

2. GEM subsystems Integration (Funded through Integration) and management.

3. Silicon Ladder prototype including: design, analysis, specification, production planning, bonding, thermal analysis.

4. In-situ alignment measurement system design and prototype evaluation.

Pad Ch•!'beg lpqineerinq and B I p

Mechanical

1. Cooling System design and prototype testing.

2. Structural Chamber design, analysis and materials study. (Yale Coordination)

Totals It$ Total (140 lt$/FTE)

Manpower

.5

.5

.5

1. 9

(. 75 l

.25

. 8

.5

.4

.3

5.65

M&S

100

100

20

(151

15

30

40

20

20

345 1136

2. Interpolating Pad Chambers

a. Mechanical - chambers and support structure

Cost Estimate i. En ineerin & Desi n FTE Total GEM OTHER

R. Barber Los Alamos) 0.5 75 75 0 D. Makowiechi (BNL) 0.25 32 32 0 W. Emmet (Yale} 0.75 70 0 70 A. Disco (Yale) 0.25 24 0 24 T. Petersen (Yale) 0.50 25 0 25 J. Sinnott (Yale) 0. 75 32 0 32.

Kouba (Michigan} 0.50 30 30 0 288 137 151

; i . M&S for Prototypes (Yale} 75 0 75 M&S (Michigan) -1.Q_...1.Q_ _o_

115: .40 .75 _,_ ----

b. Readout Electronics 403 177" 226

i. Engineerin{ $· Design Engineer BNL) i;o· 125 125 0 Chuck Bower (Indiana) 1.0 40 0 40 Mark Gebhard (Indiana} 0.6 20 0 20 Jim Pttts· (Indiana} 0.7 25 0 25 3 Engineers (Wash. Univ.) 0.75 50 50 0

260 m- ~ M&S (BNL) 50 50 0 M&S (Indiana) so 50 0 M&S (Washington Univ.} 13 13 0

113 113 0

373 288 85

Total Interpolating Pad Chambers

776 465 311

CENTRAL TRACKING R&D REQUEST SUMMARY

Technlogy GEM Other 12!.!!.

1. Silicon Mi~rostrips 625 0 625 1(-S

2. Pad Chambers 465 311 776

3. Scintillating Fibers 100 210 310

4. Straws 75 25 100

-Totals 1265 546 lsn k's

A~' .Q. LA1.:1.- ~'t

1~3

Cen-lro.~ fro.clear

S'i a."" c..c

• L.o r S-taii..s

• fl /0 ... ," • ..t.

• 0•1•9Yl Pro9..-.. s

P..o~.-e.ft 45:1\e.& i.....,.'( CoCA.Mi.l

k-.~-1t. ft~ - Pa~ 1' s~

• Po.I cU.•-'-..... &"~f """~I\~ 3at\. ca1 •• :,"' f "'fo-..1 '&ft& al)

e S."#\w._~;."- 4J.J..,....., ~l"MClJ.

~~~~ctr ~olorle.l CcM.a .•• ) F• ~ri. re,. 11.. lei( s

0 • -

0

"'~~ () 1~ .... - -r -:; ~-- 1-r( • (!_' I. ~

. ....x v ~ ~ "' 0

~ >.: E ·4 ,. " - Q 0 t'

£. 1] .Jjl cs 0 8 y - 0- a- ,. - -.

I/) ...

I ~ I."" "' <l 1 bQ.. {.t; I " (.

•-l Ci, ~ ("(i (ft ~ ~ .... I;&.. '-.

L _______________________ ....___._

VJ

C\' ~: c

Design Proposal

Modular Assembly Of Components

- Chevron Pad and signal traces fabricated into a conductor I Insulator laminate with readout traces/connectors.

- Pad and trace laminate bonded to graphite epoxy structures.

- Modular chamber construction of o CTE Graphite Epoxy.

- Chamber modules supported at the ends.

- Single piece coollng manifold with mounted electronics, power supply and signal readouts.

- Self-contained 2 phase room temperature evaporative cooling system.

1

'<t­o

N

0

• • • • • • • • • • • • • •· • • • • •

......

• '<t-• 0

• • 0

0

• )

(%)

tD 0

• • • • •

• • • • • N 0

• • • • • • • • • • • •

N

OCl 0

0

0

j"'1 . ~ -., ... j

i - 0

J "' - 5 j "::> ., 8 \.!i "' .+ " c

.... • .J

V) ... -

C'( ... • J '? Ji

>-. '1:l :J ....... (/)

Ol c ·-~ (.) 0 '-....... ~ w (..!>

..- 00 0

'< . I.I) ~ (%) <:d/d~ )) -5 l-~ ..i '::> _,

.n -ft

• •

• • • • • • • • • (0

""'"" 0 0

• • • • • • • • • • • •

N ci

• N . ..-

0

co 0

0

~ $ ,J

1 --• J ~ c/) -..I.-

~

.. J 0

i oil ~

• J

~ <:... ~

""'" ~ .

N • • • • • • • • • tO . ...-• >..

'"O :J

-+-' Cf)

• • • N . .,......

Ol • c • ·-.:::£. (.) 0 ~

• • co

• 0

-+-'

~ w (.!)

• • • ""'" 0 • • • 0

...... (X) tO '<:t N 0 0 0 0 0

(%) < <:d /d.o JI! 'i

-5 \-i .... :::> ..l

(/) -fi.

Su111T ~rJ YAL£ Uto11V.

,..........._

~ ...__, "'0..

1

~0.8 b

0.6

0.4

0.2

0 0

GEM tracking study

• • • • • • • • • • • • • • • • • • • 0.4 0.8 1.2 1.6

• • • ••

2 2.4

1]

re..i j e.o.,,.~'t.'7 : S; : toe. .... ...., i.oc....,

p..Js: 30 u .. - 70 C»\ "e c\elt ( oo~t-r .. :~~

20 Ge.v

'N. EMl-tET /VALE

< 25 cm -------------1

CATHODE PAD MULTILAYER BOARD llNCLUDES INSIDE SKINS OF HARDBACKS) KAPTON FLEX CIRCUIT

I I I I ·1-- .. -~ 17 \ J { I J ( I \ 1 \ I \ J \ 1 \ J ( J \ I ( J \ I t J < J I I

2.66

30 MICRON ANODE WIRES

I ~ 64 CH. AMPLIFIER (30 mW/CH)

!. -GRAPHITE/EPOXY CORRUGATED HARDBACK COOLING TUBE

HOLLOW ANODE WIRE SUPPORTS HIGH VOLTAGE DISTRIBUTION

GEM TRACKING IPC SUPERLAYER SECTIONAL OF TYPICAL BARREL MODULE

\

... -:;.\ ' C>

\·. \'. '' ',

' \_\

\

; \

"\ \ \

\

·\ ' \ ·, \ '

. . '\\ \\ \ ; '\ \ ' '\\

\ \\\ .\ \ '··-...

• , ~ -..__ . • • ' -..

-~J

-

-• ..

-.

-... -

,. '

, w ~ .. \. .,.& •\.ow -.,4'.fr'tS'.

c-,~4 4"\Aeli .. S' neded. ~.";J w'..•\ c"'~"••r•~~ n•••'-' \A q 1.

w~ ol••• cw\-..~?

w'-'•" ..C-s \"' c:.• r\ ~

·- . •) .. ~ ····-" ~-' ....,..., ............ . ' . ' .-. .. ~· '. . ..- .. __.... ~-......... I;,_ ~, ... rt .

Co.J o-+' qz. RIO ..

S G\ ct c,~ T N..\:.~Q. r et;,..~~ ( ~ . .t q 2.)

Ro....l,"•1'S' ·ff.- 'T. i'.

--, . , •

u:r o,.,.t //ne

":/-, f, I Le o<e. I .J..

• {=drm .se.+ ., .f. lli'nin/-f;,'cJe.'1. '11 arh/-fr-ad ~~/ como1na"f1on' o-f wh,'eh CQl"I Comfr/'JJt "Le-.,! 1. ~~ers .

• £..e~/ ~ 7 BX

'":f- • f, Z. L•vc. I 2.

• H.$ o ~c.c~s ~ /tnf! -,ro,"necl Etvr c.lor/,,,..-1---h, "-ts d

MJ,~ ?°s/-f,'o~ ,'n/erma-hon

CT p.,. >to Cc v/c -t"c:IJJ'i>J =I-, I, 3 Leuc.f s (~c c-;""'~,'"J ~c.-60,..,J

T, 2. "1>0.ft:1 A c;u/3/-(:,"o,, ":f., 2. ( <!Alor/,..../e,v ScA I/ti, ?-. z. Z Muon A.ls XI# w1 ;, 2. 'r 1'4uon :b··•-H S{;...J.re1 ::Jo. 'Z.4 CT Atf J SCA w. ':f. 'Z..S :l>~~\ow t4~Jo.-n.e

+.3. I e -1-/-1 y -lr'jrr-:. A.{JxtJ 7l = . Z x. Z. -fo~i--'f

E;r' I~~ e: • 1.

~ T '"'° 0c...tlJ w. 9£ ~ C'JnA oa..f/ W.

I A'""=. \ 2.

:t.3. 2 M.:10.-- Tr~

l..e~l .1. : "b?i-r.:t" -lc-~"Q"- (~clos~ \~) \..eue.l Z ! ,_'R-''t'S" -t"":~ ( c.lsa \>cai-\~on ~r&, J

7. Trigger and Data Acquisition

Version 1.1 Nov. 5, 1991

The first two parts of this section describe general features of the trigger and data acquisition (DAQ), while the third presents specific trigger strategies along with sample rate estimates.

7 .1 Trigger System The trigger/DAQ system, shown in figure 7.1, will follow a conventional three-level

approach: Level 1 is synchronous and pipelined; Level 2 is asynchronous, but inonotonic; and Level 3 is a processor ranch. Event rates and latency tiines are sumn1arized in table 7.1. The design goal for the output trigger rate of each level is ten times lower than the design goal for the input rate-handling capability of the subsequent level. Although this presents a challenge, we maintain that such an approach is essential to ensure reliable operation at C = 1033cm-2s-1 and to leave room for running at£= 1034 cm-2s-t.

GEM Trigger /DAQ Design Goals

Level Rate In Rate Out Latency Con11nents

1 62 MHz 10 kHz 3 µs Synchronous, Pipelined

2 100 kHz 300 Hz 100 /IS Asynchronous, Monotonic

3 3 kHz 10 Hz - CPU Ranch

Table 7.1 Design goals for the GEM Trigger/DAQ System. Output rates are for operation at C = 1033 cm-2s-1 .

7.1.2 Level 1 TJw f,p\•pJ 1 h·;rrrr"r ,J,,~:~:" ..... ·11 1

INNER TRACKING

-Al

c T " - AM B MUX ADC -

B -v " A\

L ~ HJ: - L >LO HI AM B - ADC - MOX • B ---

/ LO CA

"' Al

S/H B ZERO ADC - 3 v SUPP - B . .

MU j Ill Al

~ DISC I

-. - --Ll

L2 -- ~

N I I I 10

::l 0

II __, _.. 0

"010 0 .c en Q) .... .c _.. Q)

~10 ..0 0 Q) _.. 0

a::

10

~ • • • .. , ...

• '·. . ' • .. , ... • .. . ..

• • •• ... ~-· . ·-· · ....

: ·'

QCO Events-Jet PT> 10 GeV / c

HAC Veto (solid)

Shower Shape (dash)

Isolation (dot)

.. , Charged Track (dot-dash) ·, ...

. , ·-... , I -·,_

....

20

: . : .•• . . . -~-....

. ~-. · ... ~-

·-~-••• ••• . . . . . . ._ _ . . . . .__ ..... ....

-·l., ·-·-----~ • •• ...... --... .... ....... .. .. • •• •• ,_

'·· .. .

40 60 80 Cluster E, Threshold

.. ·-·--• ······-· • 100

GeV

N I

I I 10

~ 0

II ~ ..... 0

::E1 o-4 0 .c (/) Q) ~

.c ..... Q)

~10 ..0 0 Q) ..... 0

a:::

10

QCD Events-Jet Pt>10 GeV/c

Level 1 Cells (solid)

Level 2 Clusters (dashed)

. ... ·-· .. -·, .. , ··-· ···-··-----------• • • ••• ·---• • I

I I

• •

5 10 15 20 25 30 35 40 45 50 Et Threshold on 2nd Cell/Cluster GeV

Cl

0 Cl II) .

0 0 0 N

0 <> 0 N

0 0 0

0 0 a II) - s::-

0 0 a 0 0 0 . . .. . . 00 a ..... N M -s.. s.. "' Cl) Cl) Q) 0 0 0 I>.. I>.. I>.. ., ., ., - - -::t ::t ::t 0 0 0

II)

0 0 D 0

0 - 0 - N M 0 0 I I I ..... ..... 0 0 0 - - ....

(gz·o=l.Lp/1_s 2_w::>) xnu ol::>Jl.IUd pa~.nrq::>

58\:f'l SI 113.J <; <: : F' I I ,:; , Hl '"'"

:a) MUON TRIGGER STRATEGIES

OUTER SUPERLAYER

MIDDLE

INNER ...

........

......... . .. ··•··· .... ..·· . · .· .· .. ··

.... ...

•• .. • ••

• •

.. ......

•' • •

• ,

•• .. ..

(r-~) PROJECTION

••

....

, , .· , .. ' .·• ... . . · .. · , .. · •.. ...

f'"

,•'"

•• •• • • •

c) ,..f L2

.·//RAYS:.'! ;,, .... ~ ..... .... :.: ~ ~ .. ·· ' .. .· ...... ..···

.:' .. · It ••• , .· , •.. ···· .. ·

• •

.·· .··

•' • ••

d)

L2 . PtC UT..·"··

•• ,-··' ...

- - . --------- ·- -- ·-- - - - -- -- - ---- -- -

-N :c w I­<( a::

10

10

ETA = 0.0 r 1.5 r 2.0 T 3.0

1 03 3 - 2 - 1 No. of PADS= 1000 2000 3000 in PHI

L = cm s PADS ere 0.25•ETA Ion

t 1771 ~ 2.5

t7'

I .. Pt THR (GeV

0 , 0 20 30

I INTEGRATED L 1 DPHI

40 50 60 70 80 90 TRIGGER THRESHOLD (GeV)

SINGLE MUON TRIGGER RATES

c) --;::;-1 0 J: .......... U,,J I­<( a::

~o

10

33 -2 -1 L = 1 CJ cm s

MUON SOURCE ~ • - Pi,K DECAYS ~ 0.8 [3 - FUNCHTHROUGH ~ O 6 0 - PROMPT ~ • z

0 0.4 u ...l 0.2 l.U

17)1 ~ 3.0 Q: 0 ~~i.;,....~u,.,..i

1171 ~ 2.5 " )

t

I~ 2.0

z 1 Q i 0.8

a: 0.6 ~ 0 0.4 u ..J 0.2 lo.I a: 0

""

lu

I

Pt THR.(CeV)

~

::> • 1 • 9 "6 Pt THR.(GeV

0 1 0 20 30 40 50 60 70 80 90 TRIGGER THRESHOLD (GeV)

INTEGRATED L2(RAYS) SiNGL.E MUON TRIGGER RATES

d)

l.i.J

~ ~

10

10

CHAMBER RESOLUTION - 0.05 cm

a3 2 1 SUPERLAYER POS. INNER-MIDDLE-OUTER

- - BARREL 410 - 610 - 810 cm L = 1 cm s END CAP 610 - 1010 - 1410 cm MUON SOURCE ~

• - Pi,K DECAYS $ O.S 8 - PUNCHTHROUGH m 0 - PROMPT ~ 0.6

1171 :s: 3.0

1711 ~ 2.5

!Z 0 0.4 (.)

...i 0.2 w a:: 0 '+ior"*""~U,.,..i+_.1

10 ~

. 1 1 Pt. THR (CeV

0 1 0 20 30 40 50 60 70 80 90 TRIGGER THRESHOLD (GeV)

,INT=:GRATED L2(Pt-CUT) SINGLE MUON TRIGGER RATES

-·· ------·- ---------- -- -- -· .. ------

5 SCI... G."'p~-ll£1.Jr,..t A~ ..... • <Su.f P''"~ of ~ stM\A.lo.f-1°'-' o.:A-ii1+ie&

• Coo~ (CQ4.r•d Pe+. ~ .. ~.J>s~'~ c;lM.Jo.tl'~ ~ti:nips ~ /µ'-: ~i""~\.,.f-,~ .

• Pto,lct. or 9;c.L wcritL"4!:) CM ~lMa...1--~/l'W\

'bl"tos, ~J V-i.i.J..;"'?' ..i~. k:H<;: I I

• ~)- r2..wr.eW I t . ,... "'1= i... . c.orw.,_ u I

~ I

• ArJ...;~t d-&VC. sfucl.U ! g.~iot\l

• Te \t.C'O\~ C.. '{o~

• "Jo:W\1~ Ssc../SbC

• L. o-:r d na.F'~

Aeco..t-~ m\ i>f.)SF

1),!>h.. s10..e&.. . .:::..~ ~

f'DS~ 0-tf~ ;VJ~. ~2

• lo,o

I

'

..

Database Com~ting for High Energy/ Physics

I I I ' .

Argonne National Laboratory

Lawrence Berkeley Laboratory

University of Illinois at Chicago .. University of Maryland

SSC Laboratory

-- October ~ 1991

'

1

<:;EM 1 Lo:t ) '"':

Co'V'\f~~' ~~ ~d-.~ ! I 11J,fq1 /

I • O ~ .. ro °""" ~ ... ~ . , 0"'5QMt~f.~"' I

· . 2. e" h"r\t Co... , 14.}, ~s i .'2.. I <glow ~~o( .2. 2,. ol'\ .. (1i..e (J..e.\/t, ~

.3 '!>..~. ~h:,,.ca5t

. 4- o~- l~t CoMpC4h·~ . 0 ,,

' '

• 1 AAcal~cr~. . , 5 (o_,...,.._o k\ c.tAJfi ~ CWd ~L~wdt~ . t ~At.l\c.. £' ~ lcAs

'

..

... ---' I

Computin& Model apd Data Flow • •

--1•~ WldellMlld t' 2

'

---4~ •SlzndenltMh 1 11•

• • • • • Norml LAN Control Room Detector

& Analysis t------4~ & DAQ _____ ,... ...............

• '

I

• • • ' ' ' I

• ' • .......

Logging 0.5-ltGB/s

-··-·····----•

lOOMB/1 1 50-200MBl1 multiple stnams

Analysis (On-site)

I

Storqe/File Server

0 200MB/s

. -­• •

Ofr·Llne ···' Compute Server

Figure 1

SSC Laboratory Physics Research Division

""-,

) ;

Salient Features of Computing Model A • Detector <;::omping

I

\. Control System I

• Enables operation of detector by sjmu of two physicists from collaboration. /

• Safety /

• Quality Assurance

• Starts, stops and monitors runs

- 30-minute cold start

- I-minute warm start, I minute stop

• Calibration and logging data for primary store

~. On-Ljne <Level 3) • Filters event stream from event builder

·-• Splits stream into physics- related streams to match recorder technology

• Reduces total rate to <100 Megabytes/sec

• Estimatelf need 20,000-500,000 SSCUPS (approximate 40,000 to 1,000,000 MIPS)

'

SSC Laboratory Physics Research Division

8 . Off-Detector )

I· Primary Store tertiary ('tape•) and secondary ('disk') with consistent access method to all data (raw events. processed events. calibrations, DSTs. Holds 3 PB/year in n~-linc storage (S 1 minute to any item.) /

2.. Backup Store Physically separate i.o hold copy of all primary information (raw data, calibrations •.. J)

I ' !

S. Off-Lipe Computer Compute server for near-real-time PASS 1 processing of raw

data making of DST's, re-processing raw data after final calibration, determination of calibrations, simulation, support of analysis activity CPU Power needed: 600,000 SSCUPS

't .

41-: Analysis A workstation network, with dedicated high-performance links

to the compute server.and the data storage. Information can be fed bar!\. to the control system (Part of the analysis system may overlap)

~ Off-Sjte Analysis Some participants, especially non-U. S. ones, will need analysis

center with local storage for osr·s, data samples, etc.

'

. SSC Laboratory Physics Research Division

7.1 Control System (Control Room Computers)

CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ

IKM/bd

Run Control 11

Run Control 12

Magnet/Muon Control

Hadron Control

EM Calor.

Cantrel Tracker

Trigger/ DAQ

Level3

Analysis 11

Analysis 12

Level 3, etc.

'

----

-

------

--

Dlspllys - (10)

Luminosity Monitor ~

Accel lnterfacl -+-

I I lllgnet lntll'lacl

Cryogenics -+-

High Voltlge -+-

Low Vtremperature r+

Chamber gases r+

Trlgger/DAQ r+ - Level3 - __....,..

File :ClD Server

nters

Xterm Xterm --I --EJ

5 In electronics room, 6 In hall

SSC Laboratory Physics Research Division

)

7.1 Control Room I

• Assume use of computers plus DAQJDlct Computer Control (CAMAC). /

I • Assume sensors and most ADC m(>dules costed on detector

subsystems. i I

• Assume TV communication (tw<i way) with detector areas~

• Control room can be sited away from detector (West Campus?)

• Software includes multi-media "log-book".

• Requires software development/adaptation of commercial software.

• :&timated Cost $4,588K

--

'

SSC Laboratory Physics Research Division

7 .1 Control Room

• Assume use of computers plus DAQ and Computer Control (CAMAC).

• Assume sensors and most ADC modules costed on detector subsystems.

• Assume TV communication (two way) with detector areas.

• Control room can be sited away from detector (West Campus?)

• Software includes multi-media "log-book".

• Requires software development/adaptation of commercial software.

• Estimated Cost $4,588K

SSC Laboratory Physics Research Division

) ""'. Other Control Room Uems

'

TV Cameras (remote controlled) - 20 cHall, electronics room, etc.) /'

I

Video Recorders - 2 I TV monitors - 20 / TV interfaces for workstations - S

! TV switching equipment ; Slave displays for workstations (X terminals)- 10 Special Cabinets Magnetic Shielding UPS A/C Coffee Machine Refrigerator Microwave

--.

'

SSC Laboratory Physics Research Division

7.2 Leyel 3 (On-Line Filter)

• Filters data from DAQ, reducing data rate by 10-100 to 100 Megabytes/sec.

• Computational load could range from 20,000 - 500,000 SSCUPs.

• R&D on fill aspects (event size, structure, algorithms, compute time/event, network simulation, 1/0 ... ) is needed.

• Current cost is $1,000./SSCUP for hardware alone. (Recent bid)

• If demand is at high end, we need price/performance improvement by 100 between 1991 and construction.

• Discovery can occur in first week.

• Projected cost $1~,853. (Trend analysis)

SSC Laboratory Physics Research Division

)

7,3 Data Stora&<: This is not budgeted; 3 PB/yeflf is assumed from off-line

category. : ; I

I 7.4 Test Beam Support /

Not budgeted; either in detector s~bsystem or must be added. ' I

7,5 Project Manaeement

---

'

• •

-.

Cpmpyt!ng A&P Rtpy11t1

The proposed work in FY92 is designecf10:

• Refine the Technical Propo..,J in Co~ng • Support Increasing simulation demands

I (

' •

i

' I • !

.. · '- . ~

• Lay ground work for the final compuar 1yatem (LeYel 3 ID Analy1i1). ;

... , Projects .,.... n:. I 1. Data Acc111 Study. Join SSCIS Project, which II partly

funded by DOE High Performanct Computing Initiative; on data acctll by database methods. ntrlbution ID be cleWmlned ..

·-~ : .

2. So1lwlN development toola (CASE, SASO, •.• ). U.. UT Arlington students, postdoca, ... support hatdware, software, -.._ people. eat. $SOK. I

i

3. Fut LO In cooperation with vendor. Eat. $30K.

4. Studies of systems for near·term simulation, In cooperation with SSC.

5. Archllectural studies of data flow for data-t.klng system lncludinG networks. Est. $20-$30K·. to work with extlrMI vendors.

These tstimates include some travel to vendor sites, as well as hardware and software.

The 1o1•1 •• $1 DOK.

10000 a) H-+17 : BaF2 c) H-+17: BaF 2

10000

After Shower Shape After Preradiator

5000 5000 > Q)

t.!l '<!' 0 ..........

0 >- 0 u rn 400 b) Back. Subtracted d) Back. Subtracted 400 rn

.......... Cl) .... s:: Q) I> 200 200 r:.:i

100 150 100 150 M77 (GeV)

30000

a) H-+n : L. Ar c) H -+77: L. Ar 10000

> 20000 After Shower Shape

Cl) t.)

5000 '-d<

~10000 >-u Cl) Cl)

0 ........... 0 II] .... b) Back. Subtracted d) Back. Subtracted c: 400 Cl)

> til

250 200

0 0

100 150 100 150

M77 (GeV)

12 > u :,:) 10

"'" ~ 8

"' u >- 6 ~ ~

~ 4 c ~ 2

UJ

>

0 1.30

12

0 10 '<t

0 8 -.:: " ~ u Cl)

6

~ 4 c ~ 2

UJ

140

. * +-+-Higgs -+ ZZ -+ e e e e

150

~e(GeV)

150

~e(GeV)

160

160

BaF2

LAr

170 180

170 180

10

9

8

7. > v 0 ...,,. 6 ci -a v 5 >­u en ~ 4 !l c: v >

IJJ 3

2

1 :.;:

140

Higgs--+ zz* --+µ µ µ µ

150

~(GeV)

160 170 180

u 0 co -'ti - -..0 0 - 0

0 -.... > Q)

j ~ -0 0 2' 1::1 • - 0

I .... "" Cl.

::a QI ..... .... 0 ::a 0 IO

0 0

0 IO ON IO 0 IO 0 IO N - -

A9DQ1/AJSS/SlU9A~ A9DOZ/A~Ss/1uaA~

0 0 N 0 N 0 - - -Cl () - - ->

Q)

j ~ -0 Ao fl 0 .! 1::1 N I 0 ....

"" 0 Cl. ::a 0 .!l IO I ....

::a

0 0 'I:!' N

0 0 0 en N -

0

A9D01/A~SS/lU9A~

> Q)

C> N I"')

........... ~

0 Q)

>-I

u ([) ([)

........... (/) ..... c (])

> w

120

100

80

60

40

20

0 400 500 600

• • I •--, ·--·--' ---.

' .... __ '

..... ,

700 800

' .... , .... , ' ' • • ' • . ... _,

900 1000 1100 1200

M"ii (GeV)

> ., 70

"' I"')

~ 0 2-jet moss ., 60 >-

all combinations ' '-' [/) [/) 50

' "' ~ c ., > .fO UJ

30

20

10

0 l...L..JL....1-W-.1-L...L..1....J..-L. ........... ...LJ.....L...&__._JU.............:i..::i!::t::.c-.....J,...,. .......... .....i....J-a...o......U 80 120 160 200 240 280 320

M1 (GeV)

~ " 1600 ,.., ~ 0 " 1•00 >-I

(.)

V) 1200 V) .......... .:1 ~· 1000 >

LI.I

800

600

200

t ~ W b, W ~ 2jets

Constant Meon s· ma

7.216 f273. 255.3 13.-40

0 ._._._._80~_,_.,-'":-'12~0u.;L. ......... 1~60 ......... ~~200L...L.-L-..L~2~"40~ ....... ~2~80 ......... ~~32~0-L-..L-L.l

M11 (GeV)

~ (.!) ,..., 3500 ~ 0 .., >; 3000 0 (/) (/)

~2500 ....,, c .., > w 2000

1500

1000

500

2-jet moss, olf combinations

0 W-..Jl-L-L..&... ...................... ..._._...L...L-l-l.-L..1-L...JL..J....L....L..L...J..;:-C::L. ................. ~-L..l_._L.....L..I

80 120 f 60 200 240 280 320

Mi (GeV)

r-.. 1 > (l)

(.) -1

0 10 N ........... ..0 -2 E 10

-.._./ .. .. ·~ -3 ... 10 w

'O ........... b

_,. 'O 10

-5 10

-6 10

-7 10

-8 10

-9 10

~E/E - 0.00/v'E + 0.00

I :-- . I

...... f ~. -.

'"""'1 "o•o•Ho

50

'· -. -'. -..

--; I ........ ' . I :

---i

100

I I I

-. -.. .. ·- .,

150 200

' •

--· I

250

..... -· ,. -...

·--' I I

__ .J ·--- --

300 350 400

Er.mis• (GeV)

Sll/11/02 18.36

CEM F"ourth generotion 400 GeV quork which decoys lo b + W

8640

7680

6720

5760

W-jel Moss (filled - W-jet from rT)i•ed events)

91/11/01 18.07

GEM

1125

1000

875

750

625

500

J75

250

125

0

Jet-Jet Moss

Gluinos, m 300 GeV, µ - -300 GeV 10-2

, 10-5 I

I ,- -, . -. , . -:

- I I I I - . I . - . I - . - . I I I -

10-6 I . -· I . ~ I .

I ! . ,

:._ . I I ! I ·-. . .

I ·- ·-10-7

0 200 400 600 800 1000

ET.min (GeV)

7

(/)

-0 6 '-... b

-0

5

4

2

Gluinos

-· ' ' '

----· -~-: : ... , : ! ..... .... .... I I t

O I ·-' ' - .. 1 ' ' '_, ,-•

' -'

10 20

·-· I I : •-, I I

m

I I " .. I o o I 1.,.,.,I I . ' I I I

• I

300 GeV

' ... ·-' ' • ' ' ' ' ·-·

30

-, ' ' . ,_,

I I

o I

40

·-' I I I

50

s

0 C\J .-4

0 l/) (") 0 0 II ~ ......... b

0 0 .-4

0 co

0 co

0 N

l4H

0 0 C\J .-4

0 0 ...... ......

0 0 0 ......

0 0 0),.......

> Q)

(..!> '-'

0,....... o .... co Q) ........

I ..... Q) ........ '-' o~ 0 l'-

0 0 co

0 0 lO

0 0

0 '<:!'

0 co 0 N

0 0 N •

o ........ 0> 0 ., • Cl

0 0 CD C')

....... I .: • ::::s

0 ,......,_,.....,.....,....,..""T"".,...."T"""r-,.......,,......,"""T--,..-r-r""T""-.--r-r-,.......,,......,--....., 0

0 co

It) N

0 N

It) 0 - -

0 0 It) It)

o ....... o> It) QI ., CJ .......

I

t 0 :II 0 0 .,

0 0 It)

"'

0 ~~~~~~~~~~~~"'T'"~~~~~~~~"'T'"-. g

0 ...

0 0 0 CD

o,,...... O> 0 cu tD t!l

0 0 0 .,,.

--

0 L-.l.-..L.......l.......L-1.--l---JL.-.__..__,__.__,_ ......... __.~.__.._....__,__,__, 0

0 ...,. 0 t')

0 N o~ 0 ....

0

r--..-..-.....-"""T"" ....... -..--.~.--..-....-"'T'" ....... """T--.---,r--..-..-...,.--.--. g 0 ....

8 0 CID

o ........ o> 0 GI co Cl

0 0 0 ..,.

0

.......

~~ ...... ~ ....... ~~~--............ ~ ............. ~~--............................... _. 0 0 ..,. 0

M 0 N o~ 0 ....

0

,--,---y--y-,-.,-,.-.....,.....,... ............ """"T--r-ir--r-r-r-,--.--.-~ g

0 ... 0 ....

0 ....

0 0 0 ID

o ...... O> 0 Q) U) t:>

g 0 ...

........

II)

c:i

• 0 CZ>

II)

c:i I

In 0 u

.................................... ..._ ............... _._ ....................................................................................... _. ... o' 0 ... co

0 t')

0 ....

• 0 Cb

I(')

0 I

.... o'

"' 0 u

in 0

0 :.

in ci I

-o.._...._.___.,_.__o.._. ........ ___._.__o.__...._....._.___.,_o..._.__...._....._._o.._..._.._....._.~o 1

in ~ ~ N -

O:>SS/I ·o/1quaAa

In 0 u

The GEM design philosophy emphasisizes precise photon. electron

and muon measurements which are robust at high luminosity:

• The best attainable EM calorimetry, with t::..E / E

(1.5- 7.5)%/ JE EB 0.5% up to 1'71 = 2.5.

• Good hadronic calorimetry with t::..E / E = ( 50-60 )%/ JE EB 2% up to

1'71=3, and adequate forward calorimetry in the region 3 < 1'71~5.

• Precise measurement of muons to 1'71 = 2.5 in an open magnetic vol-

ume outside the calorimeter, with t::..pT/Pr ~ 10% for 1'71 < 1.5. The

muon system is operable at£ = le>34 cm-2 s-1 and higher with the

single-muon trigger threshold raised to about 50 GeV.

• Modest, but still useful, central tracking giving unambiguous space

points out to 1111 = 2.5 .

.. .

1

...

The precision and robustness of GEM's calorimetry and muon sys­

tems give it the capability to discover new physics processes. A partial

list of physics topics for which it offers unique strengths includes:

1. Search for the Higgs in the channel H 0 -+ 11, for 80 Ge V :S M H ~

160 GeV. (See Section 3.2.2.)

2. Search in the 'YI channel for other light scalar bosons ( h0 , 1r!}) occur­

ring in nonm.inimal and supersymmetric extensions of the standard

model and in technicolor models of electroweak symmetry breaking

(3].

3. The best mass resolution for H0 -+ zz• -+ e+e-e+e- for 140 GeV

~Mn < 180 GeV. (Section 3.2.2.)

4. Measurement of the spin of a Higgs (or similar particle) in the mass

range 140GeV ~ Me ~ 400GeV using the angular distribution

of the muons in H 0 -+ µ+ µ- µ+ µ- at ultrahigh luminosity, .C ;<;

1034 cm-2 s-1 •

5. Search for a very heavy Higgs (Me ;<; 800 GeV) in the four-muon

channel at ultrahigh luminosity.

6. Assured access to a wide range of flavor physics through tagging b­

quarks and, hence t-quarks, by measuring inclusive muons without

2

relying on the central tracker. Examples include heary t, b' or t'

(Sections 3.2.3, 3.2.4); a charged Higgs or technipion in decays such

as t-+ H+b (Section 3.2.3); and technipions carrying ordinary color,

such as 'IT -+ tt, 7r QQ -+ tt, tb, and 7r QL -+ br+, tr+ and, especially,

the rarer modes bµ+, tµ+ [3).

7. Search for the charged technirho in p~ - zow± -+ t+t-e±vt in the

likely mass range MPT = 1.5-2.0TeV [3). The rate is very small and

requires C = 1034 cm-2 s-1 , but the only important background is

the w± Zo continuum.

8. High-precision measurements of the mass, width and couplings of

a Z'° with M Z' ,..., 4 Te V by high-statistics studies of its e+ e- and

µ+ µ- decays at C = 1034 cm-2 s-1 • (Section 3.6.1 below.) With

somewhat less precision this can be done for heavy W'± bosons as

well.

9. Search for quark/lepton substructure in the Drell-Yan process. qq-+

t+t- up to a scale A ~ 40TeV in one year at C = 1034 cm-2 s-1

. The Lorentz structure of the effective contact interaction can be

well-studied in one year for A;() 25TeV. (Section 3.6.2, below.)

3

Wa.. \AMQ.. '("~C..~UC2..&. ~ C..O\U.f;.,.l.Q.& ~ Eu.~.

0 •• cO. 'e t\ '!) VC2..ct 11..Q. E;. ~ fro!AA.. { ~ p G t 4

S \) bS L{S. tsu" ~

1< 4 b Lo1U~ Ua. + ~~ll + "Eo.vrj -4- Q.. ~ 04-~~

\).) 'vU UL tl..a.+ 0-4 . "'\ :oo 'PM T\i..u.~ &°'( ~

J.~sc... u.~~ bt.0 ~ u....~o l~ = 21

'tt..c.S> \t) ~ u \,...o t Q.. fu-llj VQ.. !>u-l t ~ ~ \l.~ ch. t \ .. JI 0 ~

-\ov- a..11~4-~~ ~ ~ S.1.>~ ~"is lA.tM1.

Suh S.'-(~ \Qu•..t. ~\l pv-Q.f6-rO... 'l..M.. J,.Q.o l.U-~i

~ o u.>Q.o.\£.s ~ t>'2.C-~S ~ ~ '' tU.i·

a, .. .& ~4. b "f>ve> V-.:> t..~ ~ ~ \u2.. R ~; to JJ, ~':1 ~

'K.t "[) C.Owaui f-u. G !' ~ t.~\a uM,~~ ~ ~~\.... ..

· Ac..~ l:"v\.1...0.~ ~U ~ &.i...sf"v.. ~c:Q b a.t.Q.cO

~ \.-\ 0 u.f ~ ~ ~ ~ ~~~''-~~~I E> £\-l (a &>~L-

-.- ~·---

C. Baltay JO/'-'t/1f

GEM R&D REQUESTS

Requests for funds for GEM Engineering and R&D for FY1992 .were collected by the GEM R&D Committee. These requests were submitted by the coordinators of the various subsystems. They are the results of extensive discussions within each subsystems group where the requests have been screened and minimized as much u possible.

The Summary of the requests is:

1. System Integration 1,000 )(~

2. Magnet 6,220

3. Calorimetry 7,787

4. Muon System 3,450

5. Central Tracking 1,265

6. Trigger le Data Aquisition 900

7. Computing 100

Total requested 20,722 kS

···-

GEM ENGINEERING and R&D REQUES'l'.S

1. System Integration Total

2. Magnet Engineering RkD Total

3. Calorimetry Ba F2 Scintillator Liquid Argon Liquid Krypton Forward Cal. Preradiator General Cal. Engineering Technical Proposal Prep. Contingency Total

4. Muon System Pressurized Drift Tubes Limited Steamer Tubes Cathode Strip Chambert Resistive Plate Chambert Full Scale Prototype Engineering

-- __ _ Total .... -·--. 5. Central Tracking Silicon Mia()jltripa Pad Chambers Scintilla.ting Fibert Straws

·Total

6. Trigger and Data Aquisition Analog Pipeline Digital Pipeline le Level 1 Electro-Optics R.kD Total

7. Computing Total

3610 2610

1867 1527 2426 437 299 512 194 125 400

500 550 700 350 350

1000

625 465 100 75

400 300 200

1000 t\$

6220

7787

··-·. ·-··. -·----

1265

900

~ 20,722 kS

t: v~cQ. ~ll u....°"'-'- l.Lo..~ VQ..'t 1.1..Xl k~ ~.._,__

l-o \~t> u.n.~ ~ ~ v.~ t<r b E. \-{ R i 1> a ... cf(

E.u.~~~

\C Ht

i~\ . .s \~ {>vo~o.\o\~ U· o \U.0..'f:~\a..'"-'- ~o..~ UJ L

UM· ~ pe.c.A-.

~ ~~ o..~ u.cl.cl~ . ..l-~t>u.~ ,... l -+2. ~ ~ H-1> o .\-

?vo,i ..e.~t · H. 0-u..o.. ~\.V~·r.J .. ~ ... n ... &.s. ~ f.i::.H

0-~~v.l.'" ~&. lo'j \{\."-e... \4a.'"v-t~ v...t. S~L

-,-\...~~ QfU"'-u...Cl.lo\~ ~0-1.1... ~ u...u JJ. ~

G, '6. ~ ~'"ts ~ ~ --V-~ve.. ~~\A,.

"Bob W2-lob

"-ow~ll. caor~LL-