GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire...

23
GEM at CERN GEM at CERN Leszek Ropelewski CERN PH Leszek Ropelewski CERN PH - - DT2 DT2 - - ST & TOTEM ST & TOTEM

Transcript of GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire...

Page 1: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM at CERNGEM at CERN

Leszek Ropelewski CERN PHLeszek Ropelewski CERN PH--DT2DT2--ST & TOTEMST & TOTEM

Page 2: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

MicroStrip Gas ChamberMicroStrip Gas Chamber

A. OedNucl. Instr. and Meth. A263 (1988) 351.

Lift-off technique

Semiconductor industry technology:

PhotolithographyEtchingCoatingDoping

Page 3: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

MicroStrip Gas ChamberMicroStrip Gas Chamber

Typical distance betweenwires limited to 1 mmdue to mechanical andelectrostatic forces

Typical distancebetween anodes 200 μmthanks to semiconductoretching technology

MWPC MSGC

anode cathodecathode

A. OedNucl. Instr. and Meth. A263 (1988) 351.

Rate capability limit due to spacecharge overcome by increased amplifying cell granularity

Page 4: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Single Wire Proportional ChamberSingle Wire Proportional Chamber

Electrons liberated by ionization drift towardsthe anode wire. Electrical field close to the wire (typical wire Ø~few tens of μm) is sufficiently high for electrons(above 10 kV/cm) to gain enough energy to ionizefurther → avalanche – exponential increase ofnumber of electron ion pairs.

( )

Cylindrical geometry is not the only one able to generate strong electric field:

parallel plate strip hole groove

arCVrV

rCVrE

ln2

)(

12

0

0

0

0

⋅=

⋅=

πε

πε C – capacitance/unit lengthanode

e-

primary electron

Page 5: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM: Gas Electron MultiplierGEM: Gas Electron MultiplierThin metal-coated polymer foil pierced by a high density of holes (50-100/mm2)Typical geometry: 5 μm Cu on 50 μm Kapton, 70 μm holes at 140 μm pitch

F. Sauli, Nucl. Instrum. Methods A386(1997)531

70 µm

140 µm

Page 6: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM PrincipleGEM Principle

70 µm

55 µm

5 µm

50 µm

GEM hole cross sectionAvalanche simulation

ElectronsElectrons

IonsIons

60 %

40 %

Page 7: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Single GEM PerformancesSingle GEM Performances

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800Pulse Height (ADC channels)

Cou

nts

GEM H2+PCAr-DME 80-20ΔV

GEM= 520 V (Gain ~5000)

GEM H2+PC X Pulse Height

102

103

104

200 300 400 500 600 700ΔVGEM

(V)

SINGLE GEM+PCB

Eff. Gain-Vgem Ar-CO2-DME

Ar-DME 70-30

Ar-CO2 70-30

Effe

ctiv

e G

ain

Gain

R. Bouclier et al NIM A 396 (1997) 50

Energy resolution5.9 keV Fe55~20% fwhm

Ar-

CO2

70-3

0

S4S4S3S3S2S2S1S1

Induction gap

e-

e-

I+

Electrons are collected on patterned readout board. A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination. All readout electrodes are at ground potential.Positive ions partially collected on the GEM electrodes.

Page 8: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

50 μm Kapton5 μm Cu both sides

Photoresist coating, masking and exposureto UV light

Metal etching

Kapton etching

Second masking

Metal etching and cleaning

Rui De OliveiraCERN-EST-DEM

GEM ManufacturingGEM Manufacturing

Page 9: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM ManufacturingGEM Manufacturing

30 cm

10 cm

33 cm

30 cm

10 cm

1500÷2000 foils manufactured at CERN 1 cm2 to 1000 cm2

30-200 µm holes, 50-300 µm pitch

Wide rage of shapes and sizesWide rage of shapes and sizes

Page 10: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Art of Kapton EtchingArt of Kapton Etching

Page 11: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM GEM –– Gas Electron MultiplierGas Electron Multiplier

A. Bressan et al, Nucl. Instr. and Meth. A425(1999)254

Full decoupling of the charge amplification structure from the charge collection andreadout structure.Both structures can be optimizedindependently !

All detectors use three GEM foils in cascade for amplificationto minimize discharge probability by reducing field strength.

Cartesian Cartesian Compass, LHCbCompass, LHCb

Small angleSmall angle

Hexaboard, padsHexaboard, padsMICEMICE

MixedMixedTotemTotem

CompassCompass TotemTotem

33 cm

NA49NA49--futurefuture

Charge correlation (Cartesian readout)

30 cm20 cm

Page 12: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

MultiMulti--GEM DetectorsGEM DetectorsDischarge Probability on Exposure to 5 MeV Alphas

Multiple structures provide equal gain at lower voltage.Discharge probability on exposure to α particles is strongly reduced.

S. Bachmann et al Nucl. Instr. and Meth. A479(2002)294

Page 13: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

GEM GEM –– Gas Electron MultiplierGas Electron Multiplier

σ = 69.6 µm

4.5 ns4.8 ns

5.3 ns9.7 ns

Rate capability

Space resolution

Time resolution

GAIN ~ 104

Ar-CO2 70-30

1 mC~2.1010 min.ion. particles

Ageing properties

2x106 H/mm2

Page 14: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

TOTEM GEM : Concept and DesignTOTEM GEM : Concept and DesignDetector requirements:Detector requirements:

Rate Capability - Charge particle rates 104 p mm-2s-1 at L = 1033 cm-2s-1

Ageing - 1 year of continuous operation 1011 p mm-2 -> 7 mC mm-2

Discharges - at probability of 10-12/part. -> 10 disch. cm-2 year-1

Time Resolution - < 10 nsSpace Resolution - < 100 µmEfficiency - > 97 %

Page 15: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

TOTEM GEM Final Detector ModuleTOTEM GEM Final Detector Module

Gas in/outHV cables

HV divider

Cooling

Support

Mother board

VFAT card

VFAT card

Page 16: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Readout board

GEM foils

Frames, spacers and supports

HV and electronics

Detector ComponentsDetector Components

Page 17: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Analysis of defects and hole sizesAnalysis of defects and hole sizes

Page 18: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

TOTEM READOUT BOARD:Radial strips (accurate track’s angle)Pad matrix (fast trigger)

TOTEM GEM TOTEM GEM -- Readout BoardReadout Board

50 μm Polyimide

25 μm Polyimide

125 μm FR4

15 μm CuEpoxy glue

5 μm Cu10 μm CuEpoxy glue

Ni Au15 μm Cu

TOTEM Readout

radial stripspads bonding contactfor pads

Page 19: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

TOTEM GEM Readout Board TestTOTEM GEM Readout Board Test

Quality test forcontinuity and shorts –Capacitance measurementbetween channels forstrips and pads

Page 20: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Detector DesignDetector Design

Component ProductionComponent Production

Component QualityComponent QualityControlControl

Detector AssemblyDetector Assembly

Detector TestDetector Test

Staf

f Tr

aining

Staf

f Tr

aining

GEM Detectors Production at CERNGEM Detectors Production at CERN

Page 21: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

PerspectivesPerspectives

Tracking and triggering (LHCb & TOTEM)Tracking and triggering (LHCb & TOTEM)TPC end cap readoutTPC end cap readout (ion feedback reduction)(ion feedback reduction)XX--ray radiographyray radiographyUV light detectionUV light detectionParallax error free detectorParallax error free detectorHadron blindHadron blindNeutron detectionNeutron detectionOptical GEMOptical GEMCryogenic detectorsCryogenic detectorsTwoTwo--phase detectorsphase detectorsHigh resolution detectors integrated with pixel CMOS chipsHigh resolution detectors integrated with pixel CMOS chips

Non planar large acceptance detectorsNon planar large acceptance detectorsLight detectors Light detectors –– mass reductionmass reductionNew readout structures adopted to experimental needsNew readout structures adopted to experimental needsLarge size detectorsLarge size detectorsIndustrialization of the mass productionIndustrialization of the mass production

Single mask process

Double mask process

http://http://gdd.web.cern.chgdd.web.cern.ch/GDD//GDD/

Page 22: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Absorption radiography with GEM (8 keV XAbsorption radiography with GEM (8 keV X--rays)rays)

Trigger from the bottom electrode of GEM.

S. Bachmann et al, Nucl. Instr. and Meth. A471(2001)115

Page 23: GEM at CERN - Leszek Ropelewski Home Pageleszek.home.cern.ch/leszek/GEM_at_CERN.pdf · Single Wire Proportional Chamber Electrons liberated by ionization drift towards the anode wire.

Absorption radiography with GEM (8 keV XAbsorption radiography with GEM (8 keV X--rays)rays)