gcBiomass (English)

8
MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

Transcript of gcBiomass (English)

Page 1: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

Page 2: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

gcBIOMASS

GREENHOUSE CROP BIOMASS THE SUSTAINANABLE AND FULL ENVIRONMENT FRIENDLY BIOMASS FEEDSTOCK

In Southeastern Spain, Morgan AQUA manage from

1,086,261 t year -1 (fresh weight) up to 2,5 million t year of greenhouse crops Wastes (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgarisL., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.). This document is shown gcBIOMASS (Vegetable Greenhouse Waste) characterization. Reader must consider figures are the minimum gcBIOMASS managed by Morgan AQUA.

Morgan AQUA is the only company that has developed a proprietary technology to fit out the

greenhouse crop wastes into an homogeneous biomass, able to be provided on large scale basis to the big biomass consumers.

Economic viability of the greenhouse crop wastes like

Biomass is possible thanks to the Morgan AQUA’s environmental technologies know-how; NO other company was capable to perform it. Korean, French, Spanish, German and some other environmental expertise tech developers were trying to find out a right model for this biomass on the last 30 years with no results.

All the analyses in this work involve the use of worldwide recognized standards and methods and

all variables were performed in quintuplicate for each species (more than the required by the standards). The total potential energy for the gcBIOMASS, was determined by direct analysis using International Standards. Readers must take into account that the provided figures are MINIMUM results obtained, it means that could be bigger/better at any case. gcBIOMASS has not the higher values of HHV, but is a continued and safe source of biomass feedstock; stocks and provision are fully granted month by month, year by year.

Page 3: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

CROP RESIDUE AVERAGE VALUES OF PROXIMATE AND ELEMENTAL ANALYSIS, AND HIGHER HEATING VALUE (HHV)

HHV

(HIGHER HEATING VALUE)

CHLORIDE

(Cl)

SULPHUR

(S)

ASH

CONTENT HUMIDITY

KWh/Kg kcal/Kg Percentage (%DRY WEIGHT )

gcBIOMASS 4,7 4.073 0,007 0,001% 3,20 < 8

CEREAL A 4,2 3.614 0,04 --- 2 ---

CEREAL B 4,8 4.130 0,17 --- 3 ---

WOODCHIPS PELLETS 4,0 3.442 0,15/0,45 --- 0,2/0,5 20%

STRAW PELLETS 3,6/4,0 3.097/3.441 0,003 --- --- ---

ASH METAL, CHLORIDE AND SULPHUR SPECIES (mg/kg)

ASH %

(DRY

WEIGHT)

Al Ca Cu Fe K Mg Mn Mo Na P S Cl

CURCUBITA PEPO L. (courgette) 3,42 0,23 10,5 0,31 0,02 53 13 0,17 0,003 5 8 4,7 31,4

CUCUMIS SATIVUS L.(pepper) 3,50 0,18 11,4 0,36 0,03 62 15 0,20 0,003 6 10 5,6 37,0

SOLANUM MELONGENA L. (aubergine) 2,65 0,28 30,4 0,95 0,08 163 39 0,52 0,009 14 26 14,6 96,8

SOLANUM LYCOPERSYCUM L. (tomato) 3,04 0,26 20,7 0,63 0,05 108 26 0,35 0,006 41 17 9,7 64,0

PHASEOULUS VULGARIS L. (bean) 2,88 0,18 11,7 0,32 0,03 55 13 0,18 0,003 5 9 5,0 32,9

CAPSICUM ANNUM L. (pepper) 3,56 0,15 31,4 0,96 0,08 165 40 0,53 0,009 13 26 14,8 98,2

CITRILLUS VULGARIS SCHARAD (water melon)

3,08 0,24 22,1 0,65 0,05 111 27 0,36 0,006 9 18 10,0 66,2

CUCUMIS MELO L. (melon) 3,21 0,21 31,6 0,88 0,07 151 37 0,48 0,008 37 24 13,6 89,9

BALANCED AVERAGE 3,20 0,22 23 0,7 0,1 116 28 0,37 0,01 26 18 10,4 68,8

HIGHER HEATING VALUE (HHV)

BEFORE MAQ TREATMENT AFTER MAQ TREATMENT

KWh/Kg kcal/Kg KWh/Kg Kcal/Kg

CURCUBITA PEPO L. (courgette) 3,57 3.069,65 4,14 3.559,76

CUCUMIS SATIVUS L.(pepper) 3,50 3.009,46 4,05 3.482,37

SOLANUM MELONGENA L. (aubergine) 4,59 3.946,69 5,46 4.694,75

SOLANUM LYCOPERSYCUM L. (tomato) 4,12 3.542,56 4,85 4.170,25

PHASEOULUS VULGARIS L. (bean) 4,73 4.067,07 5,74 4.935,51

CAPSICUM ANNUM L..(pepper) 4,24 3.645,74 5,01 4.307,82

CITRILLUS VULGARIS SCHARAD (water melon) 3,96 3.404,99 4,64 3.989,68

CUCUMIS MELO L. (melon) 3,75 3.224,42 4,37 3.757,52

BALANCED AVERAGE 4,70 4.073,01

Page 4: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

MINIMUM CROP RESIDUE BIOMASS PRODUCED

STUDIED SPECIES

PLANT

REMAINS

(T Ha. Year)

AREA

OCCUPIED

(ha)

MINIMUM AVAILABLE

BIOMASS

(TONES YEAR)

FRESH WEIGHT

MINIMUM AVAILABLE

BIOMASS

(TONES YEAR)

DRY WEIGHT

CURCUBITA PEPO L. (courgette) 20 4.492 89.840 17.968

CUCUMIS SATIVUS L. (pepper) 24 4.551 109,224 21.844,8 SOLANUM MELONGENA L. (aubergine)

27 1.622 43.794 8.758,8

SOLANUM LYCOPERSYCUM L. (tomato)

49 10.250 502.250 100.450

PHASEOULUS VULGARIS L. (bean) 23 1.259 28.957 5.791,4

CAPSICUM ANNUM L. (pepper) 28 7.057 197.596 39.519,2 CITRILLUS VULGARIS SCHARAD (water melon)

24 4.775 114.600 22.920

CUCUMIS MELO L. (melon) 33 4,981 164,373 32.874,6

TOTAL 228 38.987* 1.086.261 250.126,8

* Total area occupied that could be managed up to 46.900 ha

BIOMASS ANALYSIS METHODS

PROPERTY ANALYTICAL METHOD

PROXIMATE ANALISYS

MOISTURE CONTENT UNE-CEN/TS 14780:2008 EX; UNE-CEN/TS 14774-1:2007 EX

ASH UNE-CEN/TS 14775:2007 EX

ELEMENTAL ANALISYS

SULPHUR (S) ASTM D4239-08

CHLORINE (Cl) ASTM E776-87

HIGHER HEATING VALUE (via direct analysis). UNE 164001:2005 EX

ASH ELEMENTAL METALS UNE-CEN/TS 14775 EX

ASH FUSIBILITY ASTM D1857-04 (Oxidising Atmosphere)

ASH FUSIBILITY OF THE STUDIED SPECIES

SPECIES SPECIES FUSIBILITY

IT (◦C) ST (◦C) HT (◦C) FT (◦C)

Cucurbita pepo L. 1.546,00 1.553,00 1.650,00 1.650,00

Cucumis sativus L. 993,00 1.650,00 1.650,00 1.650,00

Solanum melongena L. 1.650,00 1.650,00 1.650,00 1.650,00

Solanum lycopersicum L. 994,00 1.650,00 1.650,00 1.650,00

Phaseoulus vulgaris L. 1.353,00 1.650,00 1.650,00 1.650,00

Capsicum annuum L. 993,00 1.650,00 1.650,00 1.650,00

Citrillus vulgaris Schrad. NO DATA NO DATA NO DATA NO DATA

Cucumis melo L. NO DATA NO DATA NO DATA NO DATA

IT: deformation temperature; ST: softening temperature; HT: hemisphere temperature; FT: fluidity temperature.

Page 5: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

POTENTIAL ENERGY OF THE STUDIED GREENHOUSE WASTES

BEFORE MAQ TREATMENT

Biomass

(t year−1)

HHV

(kJ kg−1 dry weight)

kWhkg−1 dry weight

kcal kg-1 dry weight

kJ year−1 kWh

year−1 kcal year-1

Cucurbita pepo L. - Calabacín-

17.968,0 12.849,37 3,57 3.071,07 230.877.480 64.133 55.181,04

Cucumis sativus L. - Pepino -

21.844,8 12.595,82 3,50 3.010,47 275.153.169 76.431 65.763,18

Solanum melongena L. - Berenjena -

8.758,8 16.529,71 4,59 3.950,70 144.780.424 40.217 34.603,35

Solanum lycopersicum L.- Tomate -

100.450,0 14.826,78 4,12 3.543,69 1.489.350.051 413.708 355.963,20

Phaseoulus vulgaris L. - Judías -

5.791,4 17.014,23 4,73 4.066,50 98.536.212 27.371 23.550,72

Capsicum annuum L. - Pimiento-

39.519,2 15.264,44 4,24 3.648,29 603.238.457 167.566 144.177,45

Citrillus vulgaris Schrad.- Sandía -

22.920,0 14.258,58 3,96 3.407,88 326.806.654 90.780 78.108,66

Cucumis melo L. - Melón -

32.874,6 13.501,26 3,75 3.226,88 443.848.522 123.291 106.082,34

TOTAL 250.126,8 3.612.590.968 1.003.497 863.429.241

HHV: higher heating value. AFTER MAQ TREATMENT

Biomass

(t year−1)

HHV

(kJ kg−1 dry weight)

kWhkg−1 dry weight

kcal kg-1 dry weight

kJ year−1 kWh year−1 kcal year-1

CURCUBITA PEPO L. (courgette)

17.968,0 14.904,00 4,14 3.559,76 267.795.072 74.388 63.961.768

CUCUMIS SATIVUS L. (pepper)

21.844,8 14.580,00 4,05 3.482,37 318.497.184 88.471 76.071.676

SOLANUM MELONGENA L. (aubergine)

8.758,8 19.656,00 5,46 4.694,75 172.162.973 47.823 41.120.376

SOLANUM LYCOPERSYCUM L. (tomato)

100.450,0 17.460,00 4,85 4.170,25 1.753.857.000 487.183 418.901.613

PHASEOULUS VULGARIS L. (bean)

5.791,4 20.664,00 5,74 4.935,51 119.673.490 33.243 28.583.513

CAPSICUM ANNUM L. (pepper)

39.519,2 18.036,00 5,01 4.307,82 712.768.291 197.991 170.241.600

CITRILLUS VULGARIS SCHARAD (water melon)

22.920,0 16.704,00 4,64 3.989,68 382.855.680 106.349 91.443.466

CUCUMIS MELO L. (melon)

32.874,6 15.732,00 4,37 4.073,01 517.183.207 143.662 133.898.575

TOTAL 4.244.792.897 1.179.109 1.024.222.586

Page 6: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

VGW MANAGED BY MORGAN AQUA - PRODUCTION ANNUAL CALENDAR

FRESH WEIGHT DRY WEIGHT

MONTH VGW (%) VGW (m3) VGW (ton) VGW (ton)

January 19,2 654.190,66 208.562,11 48.024,35

February 10,5 460.616,21 114.057,41 26.263,31

March 5 221.682,73 54.313,05 12.506,34

April 6,4 282.496,89 69.520,70 16.008,12

May 23,6 1.029.793,97 256.357,60 59.029,92

June 18,6 812.546,77 202.044,55 46.523,58

July 9,3 408.481,28 101.022,27 23.261,79

August 0,9 49.640,12 9.776,35 2.251,14

September 0,4 26.333,74 4.345,04 1.000,51

October 1,2 59.083,05 13.035,13 3.001,52

November 1,7 83.215,38 18.466,44 4.252,16

December 3,2 143.110,89 34.760,35 8.004,06

TOTAL 100 4.231.191,69 1.086.261,00 250.126,80

VGW: Vegetable Greenhouse Wastes

250.126,80 Ton of gcBIOMASS produced yearly

Page 7: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

REFERENCES

[1] Gil Mañero, Gloria, Ujados Lopez, Manuel. Agricultural crops waste conversion on homogeneous biomass. 2008. [2] Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chronica Horticult 2004;44:28–34. [3] Callejón-Ferre AJ, Manzano-Agugliaro F, Díaz-Pérez M, Carreño-Ortega A, Pérez-Alonso J. Effect of shading with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse conditions. Span J Agric Res 2009;7:41–9. [4] Sanjuán JF. Detección de la superficie invernada en la provincia de Almería a través de imágenes ASTER. Fundación para la Investigación Agraria de la Provincia de Almería (FIAPA). Almería; 2007. [5] Castilla N. Invernaderos de plástico. Tecnología y manejo. Ed. Mundiprensa Madrid; 2005. 462 p.

[6] Callejón-Ferre AJ, López-Martínez JA. Briquettes of plant remains from the greenhouses of Almería (Spain). Span J Agric Res 2009;7:525–34. [7] Callejón-Ferre AJ, Carre˜no-Ortega A, Sánchez-Hermosilla J, Pérez-Alonso J. Environmental impact of an agricultural solid waste disposal and transformation plant in the Province of Almería (Spain). Inf Constr 2010;62:79–93. [8] Demirbas A. Combustion characteristics of different biomass fuels. Prog Energ Combust 2004;30:219–30. [9] Chen LJ, Xing L, Han LJ. Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology. Renew Sust Energ Rev 2009;13:2689–95. [10] Yanli Y, Peidong Z, Wenlong Z, Yongsheng T, Yonchong Z, Lisheng W. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew Sust Energ Rev 2010;14:3050–8. [11] Tock JY, Lay CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: a Malaysian case study. Renew Sust Energ Rev 2010;14:798–805. [12] Van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC. Large-scale bioenergy production from soybeans and switchgrass in Argentina Part A: potential and economic feasibility for national and international markets. Renew Sust Energ Rev 2009;13:1710–33. [13] Saracoglu N. Fuel word as a source of energy in Turkey. Energ Source Part B 2009;4:396–406. [14] Campbell AG. Recycling and disposing of wood ash. Tappi J 1990;73:141–6. [15] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust 2005;31:171–92. [16] Dai JJ, Sokhansanj S, Grace JR, Bi XT, Lim CJ, Melin S. Overview and some issues related to co-firing biomass and coal. Can J Chem Eng 2008;86:367–86. [17] Masarovicova E, Kralova K, Pesko M. Energetic plants – cost and benefit. Ecol Chem Eng S 2009;16:263–76. [18] Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:431–4. [19] Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioener 2005;28:499–507.

Page 8: gcBiomass (English)

MORGAN AQUA, S.L. Paseo de la Castellana, 115. 7ª 28046 Madrid. SPAIN CIF: B85476091 www.morganaqua.com

ENVIRONMENTAL TECHNOLOGIES BIOMASS AND SUSTAINABLE RAW MATERIALS

[20] Erol M, Haykiri-Acma H, Kücükbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy 2010;35:170–3. [21] Camacho-Ferre F, Callejón-Ferre AJ, Fernández-Rodríguez EJ, Montoya-García ME, Moreno-Cascó J, Valverde-García A, et al. Estudio Técnico de Plan de Higiene Rural. Término Municipal de Níjar. Ed. Mónsul Ingeniería. Almería, Spain; 2000. 554 p. [22] Agugliaro FM. Gasificación de residuos de invernadero para la obtención de energía eléctrica en el sur de España: Ubicación mediante SIG. Interciencia 2006;32:131–6. [23] Delegación Provincial de Almería. Memoria resumen. Consejería de Agricultura y Pesca de la Junta de Andalucía, 2008. [24] Céspedes-López AJ, García-García MC, Pérez-Parra JJ, Cuadrado-Gómez IM. Caracterización de la Explotación Hortícola Protegida de Almería. Ed. Isabel María Cuadrado Gómez (FIAPA). Almería; 2009. 177 p. [25] Callejón-Ferre AJ, Pérez-Alonso J, Sánchez-Hermosilla J, Carreño-Ortega A. Ergonomics and psycho-sociological quality indices in greenhouses, Almería (Spain). Span J Agric Res 2009;7:50–8. [26] UNE-CEN/TS 14780:2008 EX. Biocombustibles sólidos. Métodos para la preparación de muestras. AENOR, Madrid, Spain, 2008. [27] UNE-CEN/TS 14774-1:2007 EX. Biocombustibles sólidos. Métodos para la determinación del contenido de humedad. Método de secado en estufa. Parte 1: Humedad total. Método de referencia. AENOR, Madrid, Spain, 2007. [28] UNE-CEN/TS 14775:2007 EX. Biocombustibles sólidos. Método para la determinación del contenido de cenizas. AENOR, Madrid, Spain, 2007. [29] UNE-CEN/TS 15148:2008 EX. Biocombustibles sólidos. Método para la determinación del contenido en materias volátiles. AENOR, Madrid, Spain, 2008. [30] UNE-CEN/TS 15104:2008 EX. Biocombustibles sólidos. Determinación del contenido total de carbono, hidrógeno y nitrógeno. Métodos instrumentales. AENOR, Madrid, Spain, 2008. [31] ASTM D4239-08. Standard test methods for sulfur in the analysis simple of coal and coke using high-temperature tube furnace combustion methods. ASTM International. West Conshohocken, USA, 2008. [32] ASTM E776-87. Standard test method for forms of chlorine in refuse-derived fuel. ASTM International, West Conshohocken, USA, 2009. [33] UNE 164001:2005 EX. Biocombustibles sólidos. Método para la determinación del HHV. AENOR, Madrid, Spain, 2005. [34] ASTM D1857-04. Standard test method for fusibility of coal and coke ash. ASTM International, West Conshohocken, USA, 2004. [35] Dempster AP. Elements of Continuous Multivariate Analysis. Reading: Addison-Wesley; 1969. [36] Jobson JD. Applied multivariate data analysis, vol. 1: Regression and experimental design. New York: Springer Verlag; 1999.

[37] Tomassone R, Audrain S, Lesquoy de Turckheim E, Miller C. La Régression, Nouveaux Regards sur une Ancienne Méthode Statistique. Paris: INRA et MASSON; 1992. [38] Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value A.J.

Callejón-Ferrea,∗, B. Velázquez-Martíb, J.A. López-Martíneza, F. Manzano-Agugliaroa. Renewable and

Sustainable Energy Reviews 15 (2011) 948–955 Science Direct.