GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

12
GATE Aerospace Coaching by Team IGC Aircraft Structures Basics Bredth Betho Theory Torsion of thin walled section Assumption:- Wapping displacement are freely permitted is presents and every other stress component is zero doesn’t vary along thickness direction Force equilibrium along Z-axis βˆ’ 1 1 + 2 2 = 0 1 1 = 2 2 = Shear flow per unit length q in terms of torque Diagram = .

Transcript of GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Page 1: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

GATE Aerospace Coaching by Team IGC

Aircraft Structures Basics

Bredth Betho Theory

Torsion of thin walled section

Assumption:-

Wapping displacement are freely permitted

𝜏π‘₯𝑠is presents and every other stress component is zero

𝜏π‘₯𝑠doesn’t vary along thickness direction

Force equilibrium along Z-axis

βˆ’πœ1𝑑1𝑑𝑧 + 𝜏2𝑑2𝑑𝑧 = 0

𝜏1𝑑1 = 𝜏2𝑑2 = π‘ž

Shear flow per unit length

q in terms of torque

Diagram

𝑑𝑇 = π‘žπ‘‘π‘ . 𝑠

Page 2: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

𝑇 = ∫ 𝑑𝑇 = ∫ π‘žπ‘ π‘‘π‘  = 2 ∫ π‘ž1

2𝑠𝑑𝑠

𝑇 = 2 ∫ π‘ž 𝑑𝐴

𝑇 = 2π‘ž ∫ 𝑑𝐴

𝑇 = 2π΄π‘ž

π‘ž =𝑇

2𝐴

Angle of Twist

Shear strain energy stored in the structure

=1

2π‘‡πœƒβ€² β†’ π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ 𝑑𝑀𝑖𝑠𝑑

= ∫1

2. πœπ‘£ . π‘£π‘œπ‘™π‘’π‘šπ‘’

= ∫1

2

𝜏2

𝐺(𝑑𝑑𝑠 𝑋 1)

1

2π‘‡πœƒβ€² = ∫

𝜏2

2𝐺𝑑𝑑𝑠

πœƒβ€² = ∫𝜏2

𝑇𝐺𝑑𝑠

= βˆ«π‘ž2

𝑑𝑇𝐺𝑑𝑠

πœƒβ€² = βˆ«π‘ž

2πœ‹π‘‡πΊπ‘‘π‘ 

Torsional Rigidity

Page 3: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

𝐺𝑇 =𝑇

πœƒβ€² ; 𝐽 =

4𝐴2

βˆ«π‘‘π‘ 

𝑑

𝐺𝑇 =4𝐴2

βˆ«π‘‘π‘ 

𝐺𝑑

β†’ π‘‘π‘œπ‘Ÿπ‘ π‘‘π‘œπ‘›π‘Žπ‘™ 𝑅𝑖𝑔𝑖𝑑𝑖𝑑𝑦

𝐽 = 𝐼𝑃 β†’ π‘“π‘œπ‘Ÿ π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘Ÿπ‘œπ‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›

Problems:-

(1). In a thin walled rectangular subjected to equal and opposite forces as shown in fig, the shar

stress along lay is.

(a). Zero (b). constant non-zero (c). yasles linearly (d). yaslesparabolitally

Sol:-

From breathbetha theory

𝑇 = 2π΄π‘ž

𝑇 =𝑃1

2+

𝑃2

2

π‘ž =𝑇

2𝐴

𝑇 = 𝑃2 πœπ‘‘ =𝑇

2𝐴

(2). A thin walled tube of circles cross section with mean radius R has a central way which

divide it into two symmetrical cell a torque on is acting on the section. The shear flow q in

central web is

Page 4: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

(a). π‘ž =𝑀

2πœ‹π‘Ÿ2 (b). π‘ž = 0 (c). π‘ž =𝑀

4πœ‹π‘Ÿ2 (d). π‘ž =𝐾

πœ‹π‘Ÿ2

Sol:-

π‘ž = π‘ž1 βˆ’ π‘ž2

𝑇 = 2𝐴1π‘ž1 + 2𝐴2π‘ž2

πœƒ1β€² = πœƒ2

β€² (π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘šπ‘π‘Žπ‘‘π‘Žπ‘π‘–π‘™π‘–π‘‘π‘¦ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›)

πœƒ1β€² = ∫

π‘ž1𝑑𝑠

2𝐴1𝐺𝑑1

πœƒ2β€² = ∫

π‘ž2𝑑𝑠

2𝐴2𝐺𝑑2

πœƒ1β€² = πœƒ2

β€²

βˆ«π‘ž1𝑑𝑠

2𝐴1𝐺𝑑1= ∫

π‘ž2𝑑𝑠

2𝐴2𝐺𝑑2

π‘ž1 = π‘ž2

π‘ž = 0

(3). An Euler Bernoulli’s Beam has rectangular cross section Beam shear in fig and subjected to

non-uniform BM along its length 𝑣2 =𝑑𝑀

𝑣2𝑦, the shear stress distribution 𝜏π‘₯π‘₯ across the cross

section

Page 5: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

(a). 𝜏π‘₯π‘₯ =π‘‰πœ

2𝐼𝑦(β„Ž

2) (b). 𝜏π‘₯π‘₯ =

π‘‰πœ(β„Ž

2)

2

2𝐼𝑦(1 βˆ’

𝜏2

β„Ž

2

) (c). 𝜏π‘₯π‘₯ =π‘‰πœ

2𝐼𝑦(

2β„Ž

2

)

2

(d). 𝜏π‘₯π‘₯ =

𝑉2(β„Ž

2)

2

2𝐼𝑦

(4). Find the torsional constant for a ring of radius is

𝐽 =4𝐴2

βˆ«π‘‘π‘ 

𝑑

=4(πœ‹π‘Ÿ)2

2πœ‹π‘Ÿ

𝑑

=4πœ‹2π‘Ÿπ‘‘

2πœ‹π‘Ÿ

𝐽 = 2πœ‹π‘Ÿ3𝑑

Page 6: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Unsymmetrical Bending:-

If the cross section of the beam is not symmetrical about any axis or applied load is not acting

through plane of symmetry than bending will be unsymmetrical

Consider a beam obituary cross section as shown in fig,

Page 7: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Internal Force System

Page 8: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Resolution of bending moments

Sign depending on the size of πœƒ.In both cases, for the sense of M shown

𝑀π‘₯ = π‘€π‘ π‘–π‘›πœƒ

𝑀𝑦 = π‘€π‘π‘œπ‘ πœƒ

Which give,

For πœƒ <πœ‹

2, 𝑀π‘₯ and 𝑀𝑦 positive (fig (a)) and for πœƒ >

πœ‹

2, 𝑀π‘₯ positive and 𝑀𝑦 negative (fig

(b)).

If the neutral axis made angle 𝛼 with x-axis

𝑦′ = π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό

Page 9: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Strain

πœ€ =𝑦′

𝑅

πœ€ =π‘₯𝑠𝑖𝑛𝛼+π‘¦π‘π‘œπ‘ π›Ό

𝑅

πœŽπ‘§ = πΈπœ€

𝜎π‘₯ =𝐸

𝑅 (π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό)

Strain relations

∫ πœŽπ‘§π‘‘π΄ = 0

(zero about Neutral axis)

Moment resultant

𝑀π‘₯ = ∫ πœŽπ‘§ 𝑦𝑑𝐴

𝑀𝑦 = ∫ πœŽπ‘§π‘₯𝑑𝐴

𝑀π‘₯ =𝐸

𝑅[𝑠𝑖𝑛𝛼 ∫ π‘₯𝑦𝑑𝐴 + π‘π‘œπ‘ π›Ό ∫ 𝑦2𝑑𝐴]

=𝐸

𝑅[𝑠𝑖𝑛𝛼𝐼π‘₯𝑦 + π‘π‘œπ‘ π›ΌπΌπ‘₯π‘₯]

Page 10: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Similarly

𝑀𝑦 =𝐸

𝑅[π‘π‘œπ‘ π›ΌπΌπ‘₯𝑦 + 𝑠𝑖𝑛𝛼𝐼𝑦𝑦]

This is matrix form

[𝑀π‘₯

𝑀𝑦] =

𝐸

𝑅[𝐼π‘₯π‘₯ 𝐼π‘₯𝑦

𝐼π‘₯𝑦 𝐼𝑦𝑦] {

π‘π‘œπ‘ π›Όπ‘ π‘–π‘›π›Ό

}

{π‘π‘œπ‘ π›Όπ‘ π‘–π‘›π›Ό

} =𝐸

𝑅[𝑀π‘₯

𝑀𝑦] [

𝐼π‘₯π‘₯ 𝐼π‘₯𝑦

𝐼π‘₯𝑦 𝐼𝑦𝑦]

βˆ’1

{π‘π‘œπ‘ π›Όπ‘ π‘–π‘›π›Ό

} =𝑅

𝐸(𝐼π‘₯π‘₯πΌπ‘¦π‘¦βˆ’πΌπ‘₯𝑦2)

[𝐼𝑦𝑦 βˆ’πΌπ‘₯𝑦

βˆ’πΌπ‘₯𝑦 𝐼𝑦𝑦] {

𝑀π‘₯

𝑀𝑦}

π‘π‘œπ‘ π›Ό =𝑅

𝐸(𝐼π‘₯π‘₯πΌπ‘¦π‘¦βˆ’πΌπ‘₯𝑦2)

(𝐼𝑦𝑦𝑀π‘₯ βˆ’ 𝐼π‘₯𝑦𝑀𝑦)

𝑠𝑖𝑛𝛼 =𝑅

𝐸(𝐼π‘₯π‘₯πΌπ‘¦π‘¦βˆ’πΌπ‘₯𝑦2)

(βˆ’πΌπ‘₯𝑦𝑀π‘₯ + 𝐼π‘₯π‘₯𝑀)

πœŽπ‘§ =𝐸

𝑅(π‘₯𝑠𝑖𝑛𝛼 + π‘¦π‘π‘œπ‘ π›Ό)

πœŽπ‘§ =(𝐼π‘₯π‘₯π‘€π‘¦βˆ’πΌπ‘₯π‘₯𝑀π‘₯)

(𝐼π‘₯π‘₯πΌπ‘¦π‘¦βˆ’πΌπ‘₯𝑦2)

π‘₯ +(𝐼𝑦𝑦𝑀π‘₯βˆ’πΌπ‘₯𝑦𝑀𝑦)

(𝐼π‘₯π‘₯πΌπ‘¦π‘¦βˆ’πΌπ‘₯𝑦2)

𝑦

πœŽπ‘§ =𝑀𝑦

𝐼𝑦𝑦π‘₯ +

𝑀π‘₯

𝐼π‘₯π‘₯𝑦

At 𝑀𝑦 = 0

πœŽπ‘§ =𝑀π‘₯𝑦

𝐼π‘₯π‘₯

Page 11: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

Problems:-

1). An idealized thin walled cross-section of the beam and perspective areas of boom are as

shown in a bending moment 𝑀𝑦 is acting on the cross-section the ratio of magnitude of normal

stress in the top boom that of bottom boom.

(a). 5

11

(b). 2

5

(c). 1

(d). 5

2

Sol:-

Since it is symmetric

𝜎π‘₯ =𝑀π‘₯

𝐼π‘₯π‘₯𝑦 +

𝑀𝑦

𝐼𝑦𝑦π‘₯

Since, 𝑀π‘₯ = 0( No bending stress at x-axis )

πœŽπ‘§ =𝑀𝑦

𝐼𝑦𝑦π‘₯

πœŽπ‘§ π‘‘π‘œπ‘ =𝑀𝑦

𝐼𝑦𝑦π‘₯π‘‘π‘œπ‘; πœŽπ‘§ π‘π‘œπ‘‘π‘‘π‘œπ‘š =

𝑀𝑦

𝐼𝑦𝑦π‘₯π‘π‘œπ‘‘π‘‘π‘œπ‘š

πœŽπ‘§ π‘‘π‘œπ‘

πœŽπ‘§ π‘π‘œπ‘‘π‘‘π‘œπ‘š=

𝑀𝑦

𝐼𝑦𝑦π‘₯π‘‘π‘œπ‘

𝑀𝑦

𝐼𝑦𝑦π‘₯π‘π‘œπ‘‘π‘‘π‘œπ‘š

Page 12: GATE Aerospace Coaching by Team IGC Aircraft Structures Basics

πœŽπ‘§ π‘‘π‘œπ‘

πœŽπ‘§ π‘π‘œπ‘‘π‘‘π‘œπ‘š=

π‘₯π‘‘π‘œπ‘

π‘₯π‘π‘œπ‘‘π‘‘π‘œπ‘š

π‘₯π‘‘π‘œπ‘ = 2 βˆ’ οΏ½Μ…οΏ½

π‘₯π‘π‘œπ‘‘π‘‘π‘œπ‘š = 2 + οΏ½Μ…οΏ½

οΏ½Μ…οΏ½ =βˆ‘ 𝐴�̅�

βˆ‘ 𝐴=

2 𝑋 2 𝑋 0.2+0.1 𝑋 2+0βˆ’0.2 𝑋 2

3 𝑋 0.2+2 𝑋0.1=

0.8+0.2βˆ’0.4

0.6+0.2

οΏ½Μ…οΏ½ = 0.75 =3

4

π‘₯π‘‘π‘œπ‘ = 2 βˆ’3

4=

16

4

πœŽπ‘§ π‘‘π‘œπ‘

πœŽπ‘§ π‘π‘œπ‘‘π‘‘π‘œπ‘š=

π‘₯π‘‘π‘œπ‘

π‘₯π‘π‘œπ‘‘π‘‘π‘œπ‘š=

5

411

4

=5/11