Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier...

26
Atmospheric corrections - Fundamentals Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier University, CNES, CNRS, IRD, France

Transcript of Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier...

Page 1: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Atmospheric corrections - Fundamentals

Gastellu-Etchegorry Jean-Philippe CESBIO

Paul Sabatier University, CNES, CNRS, IRD, France

Page 2: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

• Atmosphere and TPOA radiance

• Atmosphere (gas, aerosol) parameters for atmosphere correction

• Atmosphere correction of Sentinel 2 images

Page 3: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Pre-processing of satellite data

Objective: to remove the noise and distortion in the signal that is measured by the satellite when observing an Earth surface in order to compute a parameter (reflectance ρBOA(Ωs, Ωv)) that characterizes that surface.

• Radiometric calibration (noise removal,…): measured signal → TOA radiance LTOA - Pre-launch radiometric calibration to traceable standard (accepted reference) - Post launch calibration campaigns to maintain/monitor in flight calibration (vicarious) - On-board calibration (radiometric and spectral)

• Geometric correction: essential for multi-sensor, multi-temporal,… analyses

• Cloud screening: threshold on TOA reflectance and spectral slope 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

• Atmospheric correction

• Topographic correction

Page 4: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Atmospheric correction

Objective: to remove the impact of atmosphere in satellite measurements (TOA radiance LTOA) in order to get a parameter (reflectance) that characterize the observed Earth surface.

Topography impacts also satellite signals with effects linked to atmosphere effects. It affects local direct and diffuse (atmosphere / sky) irradiance

direct sun shadow

Page 5: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

LTOA,λ(Ω) = "Radiance LEarth,TOA,λ(Ω) due to scattering of sun flux by the Earth, only"

TOA: Top of the Atmosphere

BOA: Bottom of the Atmosphere

Atmosphere

LTOA,λ(Ω)

Latm

LEarth

Lmult

+ "Radiance Lmult,TOA,λ(Ω) due to scattering of sun flux by Earth + Atmosphere"

+ "Radiance Latm,TOA,λ(Ω) due to scattering of sun flux by the Atmosphere, only

Physical bases about radiation: Satellite signal (TOA radiance) LTOA,λ(Ω) - short wavelengths

Page 6: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

TOA radiance components: Earth and atmosphere scattering

How does the relative influence of atmosphere change with (θv, θs, V, etc.)?

0

50

100

150

200

250

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 µm

Atmosphere scattering

Radiance (W/m2/sr/µm)

Atmosphere: US Standard (V=23km - θview=0° - θsun=30°)

Earth (vegetation) scattering

Page 7: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Parameters used to characterize the atmosphere

Gasses

1) Gas vertical distribution

0

500

1000

1500

2000

0 2 4 6 8 10

Altitude (km)

P(H

2O) (

atm

.cm

/km

)

0

200

400

600

800

1000

P(at

m) (

mb)

Sub Arctic Wint.Mid. Lat. Wint.Mid. Lat. Sum.Std. USTropicalP(atm.) - Std. US

Pression atmosphérique

H2O

0

0.005

0.01

0.015

0.02

0 10 20 30 40 50

Altitude (km)

P(O

3) (a

tm.c

m/k

m)

Sub. Arctic Wint.Mid. Lat. Wint.Mid. Lat. Sum.Std. USTropical

Page 8: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Parameters used to characterize the atmosphere

2) Gas capacity to intercept radiation:

Extinction coefficient αe= absorption αe + scattering αe Extinction coefficient (m-1) = Cross section for interception per molecule (m2

/ mol) X

Density of molecules (mol / m3)

Optical depth of a medium over a distance ∆r: ∆τ(λ) = ∫ 𝛼𝛼𝑒𝑒 𝜆𝜆, 𝑟𝑟 .𝑑𝑑𝑟𝑟∆𝑟𝑟 Transmittance of a medium over a distance ∆r: T(λ, ∆r) = 𝑒𝑒−Δ𝜏𝜏(𝜕𝜕)

This expression is usually accepted. It is not exact for spectral bands ∆λ. Why?

Page 9: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Parameters used to characterize the atmosphere

Usual approximation: at λ, gas either absorbs (H2O, O3, O2,…) or scatters radiation

⇒ Transmittances of absorbing gas Tabs(λ, ∆r) & scattering gas Tscat(λ, ∆r) are independent

For satellite applications, one uses the gas optical depth ∆τgas(λ) of total atmosphere along the vertical direction, and the associated transmittance Tgas(λ)=𝑒𝑒−Δ𝜏𝜏(𝜕𝜕)

For an oblique direction Ω(θ, φ): ∆τgas(λ,Ω) = Δ𝜏𝜏(𝜕𝜕)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

and Tgas(λ,Ω)=𝑒𝑒−Δ𝜏𝜏(𝜆𝜆)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃

This expression becomes more and more inexact with oblique view and /or sun directions. Why?

Page 10: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Gas transmittance (mid latitude summer atmosphere, without aerosols & clouds)

Atmosphere transmittance = Product of gas transmittances. Transmittance = 1 in VIS?

Page 11: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Gas transmittance: H2O, CO2

Transmittance (H 2O)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ (µm)

Atm. US standardV = 23km - θv = 0°

Atmosphère TropicaleV = 23km - θv = 0°

Transmittance (CO 2 )

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ (µm)

Atmosphère US StandardV=23km - θv = 0°

Page 12: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4Wavelength (µm)

Lac TOA LacVégétation TOA VégétationSable sec TOA Sable sec

H2O

NOAA Landsat SPOT (HRVIR/Vegetation/Pa)

H2O

CH4

CO2

H2OH2O

H2OH2OH2O

O2

O3

Sentinel 2__ Water TOA __ Ground TOA __ Vegetation TOA _

Water BOA _

Ground TOA _

Vegetation BOA

BOA and TOA spectra of water, ground and vegetation

For all surfaces, with λ < 0.55µm, TOA reflectance is larger than BOA reflectance. Why? For ground, TOA reflectance is larger than BOA reflectance for λ < 0.55µm, and smaller for λ >

0.65µm, whereas TOA water reflectance is always larger than BOA water reflectance. Why?

Page 13: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Parameters used to characterize the scattering gasses

Optical depth ∆τ(λ): very variable for absorbing gasses. For non absorbing gasses , ∆τ(λ) ≡ 𝜆𝜆−4 ⇒ blue color of the sky, etc. Normalized phase function (for scattering): 𝑃𝑃(Ω𝑐𝑐,Ω𝑣𝑣)

4𝜋𝜋

Page 14: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Scattering gas: scattering phase function: 𝑷𝑷𝒈𝒈𝒈𝒈𝒈𝒈(𝛀𝛀𝒈𝒈,𝛀𝛀𝒗𝒗)

𝟒𝟒𝝅𝝅

(Ωs)

θs θv

(Ωv)

Φv Φs

Ψsv

θsv Scattering of a photon along incident direction Ωs → Sensor Phase angle: Ψsv. Scattering angle: π - Ψsv Forward scattering: Ψsv = 0. Backward scattering: Ψsv = π.

E

Ωs E Ωs Ωs

Vertical polarisation E Horizontal polarisation E Unpolarized incident radiation

Ωs Isotropic scattering: P(Ωs,Ωv) = 1

Gas scattering of unpolarized radiation:

Page 15: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Empirical expresssions (λ: µm), for P =1atm :

- τ(λ) ≈ 0.0088 λ-4.15+0.2λ (Arpège model of Météo France: τ ≈ 0.00879 λ-4.09)

- τ(λ) ≈ 0.008569.λ-4.(1+0.0113.λ-2 + 0.00013.λ-4)

⇒ blue color of sky

Scattering gas: spectral optical depth ∆τ(λ)

Fire in Corsica

Blue NIR SWIR

Page 16: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

350 550 750 950 1150 1350 1550 1750

Gas

Continental aerosol (V=23km)

Total (gas + continental aerosol)

Ocean aerosols (V=23km)

Urban aerosols (V=23km)

∆τ(λ) and ω(λ), and their spectral variation, depend on the type of aerosols

Aerosols: spectral optical depth ∆τ(λ) and single scattering albedo ω(λ)

Spectral optical depth of gasses and 2 types of aerosols

Page 17: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Aerosols and gas optical depths: AVHRR and TM (from 6S model)

Page 18: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Aerosols: phase function 𝑷𝑷𝒈𝒈𝒂𝒂𝒂𝒂(𝛀𝛀𝒈𝒈,𝛀𝛀𝒗𝒗)𝟒𝟒𝝅𝝅

Diffusion avant

Aerosol VIS scattering. 𝑷𝑷𝒈𝒈𝒂𝒂𝒂𝒂(𝛀𝛀𝒈𝒈,𝛀𝛀𝒗𝒗)𝟒𝟒𝝅𝝅

varies with λ and the type of aerosols

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

Scattering angle

O/ =0.002µm

Phase function (x 4π)

O/ =0.0436µm

O/ =12.48µm

0.01

0.1

1

10

10

1000 Phase function of 3 types of desert aerosols, for λ=0.7µm (Shettle, 1984):

- Volume density: 2.5g/cm3. - Single scattering albedo: 0.94. - Specific extinction coefficient: 0.82m2/g - Angstrom exponant: 0.3. - Refraction index: 1.55-0.005 i.

Usual approximation (double Henyey Greenstein function):

10-4 µm 0.1 µm 1 µm

Page 19: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

0

0,1

0,2

0,3

0,4

0,4 0,9 1,4 1,9 µm

Atmosphere reflectance and Sentinel 2 reflectance

Ratm(V=5km) Ratm(V=23km)

Rtoa(V=5km, r=0.05) Rtoa(V=23km, r=0.05)

Rtoa(V=5km, r=0.4) Rtoa(V=23km, r=0.4)

Page 20: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Example of atmosphere model (from 6S model) and Atmosphere correction

τ

(a) (b) (c)

(d) (e) (f)

M M M

M' M M' M M' M

(θv,φv) (θv,φv) (θv,φv)

(θv,φv) (θv,φv) (θv,φv)

Atmosphere correction: - Need to know atmosphere parameters (τaer, τgas,scat, Paer, Tg, s….), if possible from the

image to correct, depending on available spectral bands. They can be derived from in-situ measurements (Aeronet,…), MODIS, meteorological modeling (ECMWF,…),...

- Analytical inversion if we assume: environment reflectance ρe = target reflectance ρ

Page 21: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

(Moreno, 2014)

Example of atmospheric correction

TOA

BOA

Page 22: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

(Hagolle: the MACCS method)

Simulation of level 1C, 2A, 3A products with FORMOSAT 2 images

TOA

Level 1C: Top of tmosphere reflectances calibrated and orthorectified.

Level 2A: Single date surface reflectance after cloud masking and atmospheric correction.

Level 3A: 15 days time composite of surface reflectance produced every week

Preparation of MACCS (atmospheric correction, cloud screening) for Sentinel 2 (Hagolle, 2015).

Page 23: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Atmospheric correction of Sentinel 2 images

Mainly due to the high data volumes, the atmospheric correction of Sentinel-2 data will not be performed by the ground segment, but will rely on software packages to be run by the users on their data sets. (Guanter et al., 2012). Sentinel-2 atmospheric correction is being developed, using algorithms of the Atmospheric/Topographic Correction for Satellite Imagery (ATCOR, Richter & Schlaepfer, 2011) and libRadtran radiative transfer model (Mayer & Kylling, 2005). A large look-up table (LUT) created by libRadtran for a wide variety of atmospheric conditions, solar geometries and ground elevations is used as simplified model to invert the radiative transfer equation, and to calculate BOA reflectance. The algorithm additionally generates an enhanced cloud-mask. Note: present uncertainties on atmosphere modeling and parameter retrieval lead to

a minimal RMSE on BOA reflectance ≈0.005 + 0.05 ρsurf (Vermote & Kotchenova

Page 24: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Atmospheric correction of Sentinel 2 images

• Orthoimage reflectance product (Level-2A) • Classification map: quality indicators for cloud (Cirrus: 1380nm ) and snow (∆=60 m) • Aerosol map: use of short wavebands with - Adaptation of the dark target method (Richter et al., 2011) to Sentinel 2: it uses the

correlation of blue, red and shortwave infrared reflectance of dense vegetation. MODIS: ρ0.47 = 0.25 ρ2.13 and ρ0.66 = 0.5 ρ2.13

Landsat 5: ρblue = 0.409 ρswir - 0.007, ρred = 0.766 ρswir - 0.026, ρblue = 0.568 ρred + 0.002

Landsat 7: ρblue = 0.32 ρswir, ρred = 0.671 ρswir - 0.016, and ρblue = 0.479 ρred + 0.007

- Multi-temporal aerosol retrieval algorithms that use a “clean” image as a reference to quantify the impact of aerosol extinction on the rest of the images in the series, thanks to the Sentinel-2 high revisit time (Hagolle et al., 2015).

• Water vapor map: the ratio between the MSI spectral channels in 865 and 940 nm

can be used as a proxy for water vapor transmittance, which can be converted to a measure of columnar water vapor after inversion against look-up tables

Page 25: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Bands of Sentinel 2 for deriving atmosphere information for atmosphere correction

aerosols water cirrus

Normalized filter transmissions and modeled TOA radiances for deciduous forests.

Page 26: Gastellu-Etchegorry Jean-Philippe CESBIO Paul Sabatier ...seom.esa.int/landtraining2015/files/Day_2/D2T1b... · Atmospheric corrections - Fundamentals . Gastellu-Etchegorry Jean-Philippe

Example of atmosphere correction

Simulated Sentinel-2 scene containing cirrus clouds. True color coding: R/G/B = bands 4/3/1 (665, 560, 443 nm). Left: original scene, center: cirrus band (1.375 μm), right: after cirrus and atmospheric correction. (Dursch et al, 2011)