Gaseous Ions and Chemical Mass Spectrometry Diethard K. Böhme Ion Chemistry Laboratory Department...

34
Gaseous Ions and Chemical Mass Spectrometry Diethard K. Böhme Ion Chemistry Laboratory Department of Chemistry Centre for Research in Mass Spectrometry Centre for Research in Earth & Space Science York University, Toronto, Canada CIC Medal Lecture Winnipeg, 2007

Transcript of Gaseous Ions and Chemical Mass Spectrometry Diethard K. Böhme Ion Chemistry Laboratory Department...

Gaseous Ions and Chemical Mass Spectrometry

Diethard K. Böhme

Ion Chemistry Laboratory

Department of Chemistry Centre for Research in Mass Spectrometry

Centre for Research in Earth & Space ScienceYork University, Toronto, Canada

CIC Medal LectureWinnipeg, 2007

Gaseous Ions_____________________________________________________

C+, Fe+, Si+, Mg+

H3+

CH5+

N2H+

O2+, N2

+

HCO+

H3O+, HCNH+

HC3NH+

NH2OH+

+H3NCH2CH2COOH 

O2-

OH-, CH3O-

H3O+

OH- (H2O)n

CH3O- (CH3OH)n

H3O+ (H2O)n

C2+, C3

+, CN+

C3H3+, SiC10H8

+

FeC6H6+

HO

N

NN

N

NH2

O

HO

HH

H

CH2

H

PO

-O

OCH2

O

H

HH

HH

O

H

HH

HH

HN

N

O

O

CH3

O

H

HH

HH

N

N

NH2

O

NH

N

N

O

NH2N

O

H

HH

HHOH

NH

N

N

O

NH2N

O

H

HH

HH

HN

N

O

O

CH3

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

NH

ON

S

O

O

OH

O

Zn2+

N

S

SN

O

NH

S+CH3

H3C

NH

OH

HO CH3H

HN

O

H CH3HO

H

CH3H

NH

OHHN

OOH

O

O

NH2O

OH

HO

O

HO

HO OHO

H

N

NH

ON N

CH3

H2N

H

NHH NH2

O

NH2

O NH2

_________________________________________________________________

“Ions are jolly little buggars, you can almost see them“ Ernest Rutherford

Sr(C60)4+

Cu

N

N

N

N

N

NN

N

SO-

OO

SONa

OO

SO- O

O

S

O-

OO

C+, Fe+, Si+, Mg+

H3+, CH5

+, N2H+, HCO+

HCNH+, HC3NH+, SiC4H+, SiC10H8+

CH3+, C2H2

+, C2H3+, C3H

+, C3H3+, C4H3

+

C3N+, HCN+, HC3N

+, C60+, C60

++, C60X+

NH2OH+, +H3NCH2CH2COOH

O-, O2-, OH-, OH- (H2O)n

H3O+, H3O

+ (H2O)n

CH3CNH+

Ionospheric,Cometary and

Interstellar Ions

 

Ions Found inSolution

2+ Cu

N

N

N

N

N

NN

N

SO-

OO

SONa

OO

SO- O

O

S

O-

OO

OH-, CH3O-, C2H5O-, (CH3)3CO-

C6H5-, C6H5CH2

-, C6H5C(CH3)2-, t-BuC6H5

-,

H3O+ (H2O)n, OH- (H2O)n, CH3O- (CH3OH)n,

C2H5O-(C2H5OH)n, Ca2+, Sr2+, Ba2+, H3O+

C+, C2+, C3

+, C6H6+, C60

n+, C70n+

Fe+benzene, Fe+coronene

Si+benzene, Si+naphthalene

Carbonaceous IonsAtomic Cations

Fe+ Mg+

Pt+

La+Si+

K+

Ca+

Sc+

Ti+

Ar+

V+

Cr+

Mn+

Co+

Ni+

Cu+

Zn+

Ga+

Ge+

As+

Se+

Rb+

Sr+

Y+

Zr+

Nb+

Mo+

Ru+

Rh+

Pd+

Ag+

Cd+

In+Sn+

Sb+

Te+

Cs+

Ba+

Hf+

Ta+

W+

Re+

Os+

Ir+

Au+

Hg+

Tl+

Pb+

Bi+

Ce+

Pr+

Nd+Sm+

Eu+

Gd+

Tb+

Dy+

Ho+

Er+

Tm+

Yb+

Lu+

HO

N

NN

N

NH2

O

HO

HH

H

CH2

H

PO

-O

OCH2

O

H

HH

HH

O

H

HH

HH

HN

N

O

O

CH3

O

H

HH

HH

N

N

NH2

O

NH

N

N

O

NH2N

O

H

HH

HHOH

NH

N

N

O

NH2N

O

H

HH

HH

HN

N

O

O

CH3

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

HO

N

NN

N

NH2

O

HO

HH

H

CH2

H

PO

-O

OCH2

O

H

HH

HH

O

H

HH

HH

HN

N

O

O

CH3

O

H

HH

HH

N

N

NH2

O

NH

N

N

O

NH2N

O

H

HH

HHOH

NH

N

N

O

NH2N

O

H

HH

HH

HN

N

O

O

CH3

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

Biological Ions

N

S

SN

O

NH

S+CH3

H3C

NH

OH

HO CH3H

HN

O

H CH3HO

H

CH3H

NH

OHHN

OOH

O

O

NH2O

OH

HO

O

HO

HO OHO

H

N

NH

ON N

CH3

H2N

H

NHH NH2

O

NH2

O NH2

(AGTCTG-5H+)5-

NH

ON

S

O

O

OH

O

Zn2+

Fe3+siderophore

bleomycin+

Zn2+penicillin

Looking for Ions in a Flowing Nitrogen Discharge Plasma ______________________________________________________

First quadrupole mass spectra (in Canada)

_____________________________________________________Mass Spectrometric Sampling Probe for Discharge PlasmasD.K. Böhme, J.M. Goodings. Rev. Sci. Instr. 37 (1966) 362.Ion Sampling Considerations for a Discharge Plasma of NitrogenD.K. Böhme, J.M. Goodings. J. Appl. Phys. 37 (1966) 4261.

Ion Chemistry in a Flowing Helium Plasma ______________________________________________________

kA+ + B products

- d[A+]/dt = k [A+][B]

-v d[A+]/dz = k [A+][B]

[A+]z = [A+]z=0 exp(-k[B]z/v)

t = z/v

[B] >> [A+]

In He at 0.35 Torr, 296 K(O2 + e O+, O2

+ + 2e)

O+ + H2 OH+ + HOH+ + H2 H2O+ + HH2O+ + H2 H3O+ + H_______________________________________________________________________________________________________________________________________________

Fehsenfeld, F. C.; Schmeltekopf, A. L.; Ferguson, E. E. “Thermal-energy ion-neutral reaction rates. VII. Some hydrogen-atom abstraction reactions.” J. Chem. Phys. 46 (1967) 2802-8.

O+

O2+

pseudo1st orderkinetics

Slope = - k z/v

Plasma Ions Upstream:

e + H2O OH- + H OH-(H2O)n + H2O + He OH-(H2O)n+1- + He

e + H2O H2O+ + 2e H2O+ + H2O H3O+ + OH H3O+ (H2O)n + H2O + He H3O+ (H2O)n + He

In the complete absence of bulk solvent !

SN2 : OH- + CH3Cl Cl- + CH3OHAcid-Base : OH- + CH3OH CH3O- + H2O

H3O+ + CH3OH CH3OH2+ + H2O

As a function of step-wise molecular solvation !

OH- (H2O)n + CH3Cl Cl- (H2O)n + CH3OH OH- (H2O)n + CH3OH CH3O- (H2O)n + H2O

H3O+ (H2O)n + CH3OH CH3OH2+(H2O)n + H2O

Getting at the Heart of Chemistry_____________________________________________________

Plasma Ions Upstream:

e + H2O OH- + H OH-(H2O)n + H2O + He OH-(H2O)n+1- + He

e + H2O H2O+ + 2e H2O+ + H2O H3O+ + OH H3O+ (H2O)n + H2O + He H3O+ (H2O)n + He

In the complete absence of bulk solvent !

SN2 : OH- + CH3Cl Cl- + CH3OHAcid-Base : OH- + CH3OH CH3O- + H2O

H3O+ + CH3OH CH3OH2+ + H2O

As a function of step-wise molecular solvation !

OH- (H2O)n + CH3Cl Cl- (H2O)n + CH3OH OH- (H2O)n + CH3OH CH3O- (H2O)n + H2O

H3O+ (H2O)n + CH3OH CH3OH2+(H2O)n + H2O

Getting at the Heart of Chemistry_____________________________________________________

OH- + CH3Cl Cl- + CH3OHk = 1.5 x 10-9 cm3 molecule-1 s-1!! [cf: 10-26 in H2O]

__________________________________________________________________________________________Gas-phase reactions of anions with halogenated methanes at 297 ± 2K.K. Tanaka, G.I. Mackay, J.D. Payzant, D.K. Bohme. Can. J. Chem. 54, 1643-59 (1976). Bridging the gap between the gas phase and solution: transition in the kinetics of nucleophilic displacement reactions.D.K. Bohme, G.I. Mackay. J. Am. Chem. Soc. 103, 978-9 (1981).

Transition from the Gas Phase to Solution_____________________________________________________________

T = 298 K

Transition from the Gas Phase to Solution (cont’d)_____________________________________________________

_______________________________________________________________Standard acidity scale. The pKa of alcohols in the gas phase.D.K. Bohme, E. Lee-Ruff, L.B. Young. J. Am. Chem. Soc. 93, 4608-9 (1971). Acidity order of selected Broensted acids in the gas phase of 300K.D.K. Bohme, E. Lee-Ruff, L.B. Young. J. Am. Chem. Soc. 94, 5153-9 (1972). Bridging the gap between the gas phase and solution: transition in the relative acidity of water and methanol at 296 ± 2 K. G.I. Mackay, D.K. Bohme. J. Am. Chem. Soc. 100, 327 (1978).

OH- + CH3OH CH3O- + H2O, k = 1.5 x 10-9 cm3 molecule-1 s-1

2962 K K = 2.2 x 107, Go = - 9.9 kcal mol-1

X- + YH Y- + XHXH+ + Y YH+ + X

________________________________________________________________________________________Determination of proton affinities from the kinetics of proton transfer reactions. VII. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. D.K. Bohme, G.I. Mackay, H.I.

Schiff. J. Chem. Phys. 73, 4976-86 (1980).

XH+ + Y YH+ + X

Proton-Transfer and Proton Affinities__________________________________________________________

Selected-Ion Flow Tube (SIFT) Tandem Mass Spectrometry______________________________________________________

____________________________________________________________________________________________Studies of reactions involving C2Hx

+ ions with hydrogen cyanide using a modified selected ion flow tube.

G.I. Mackay, G.D. Vlachos, D.K. Bohme, H.I. Schiff. Int. J. Mass Spectrom. & Ion Physics, 36, 259 (1980). Ion-molecule reactions with carbon chain molecules: reactions with diacetylene and the diacetylene cation. S. Dheandhanoo, L. Forte, A. Fox, D.K. Bohme. Can. J. Chem. 64, 641-8 (1986)

ElectronImpactM

Sifting Ions: One Major Reactant Ion

(no Electrons)

C4H2+ + C4H2 C8H4

+

C6H2+ + C2H2

C6H2+ + C4H2 C10H4

+

________________________________________________________________

Ionic Origins of Carbenes in Space. D.K. Bohme. Nature 319, 473-4 (1986)

Ionic Origins of Carbenes in Space______________________________________________________

Carbenes occur widely in the Universe

:CH2, :C=C:, :C=S, :C=O, :C =NH, :C=C=C:, l,c-:C3H2, :C3OTheir origin may involve ionizing radiation.

Only H2C4: has not yet been observed in space.

e + propylene C3H+

Mg(HC3N)n-1+ + HC3N Mg(HC3N)n

+ + h, n 0

Mg(HC3N)n+ + e (HC3N)n + Mg

N N

NC

C

CC

N + Mg+ eCN

CN

CC

N

N

Mg+

_______________________________________________________________Extraordinary Cluster Formation and Intramolecular Ligand-Ligand Interactions in Cyanoactylene Mediated by Mg +·: Implications for the Atmospheric Chemistry of Titan and for Circumstellar Chemistry. Rebecca Milburn, Alan C. Hopkinson, Diethard K. Bohme, J. Am. Chem. Soc. 127 (2005)13070-78.

Tetracyanocyclooctatetraene (Tetracyanosemibullvalene)

Circumstellar Envelopes

Titan’s Atmosphere

mCID

Synthesis of Exotic Carbon Rings______________________________________________________

NH3(s) + H2O(s) NH2OHh h NO + 3H

h, heat

NH2OH

Interstellar ice

Interstellar gas

h/A+ RH+

NH2OH2+NH2OH+

CH3COOHCH3CH2COOH

CH3COOHCH3CH2COOH

NH2CH2COOH+

NH2CH2CH2COOH+

NH3CH2COOH+

NH3CH2CH2COOH+

-H2O-H2O

MM+

NH2CH2COOHNH2CH2CH2COOH

e-

H

_______________________________________________________________________________

Gas-phase syntheses for interstellar carboxylic and amino acids.Blagojevic et al., Mon. Not. R. Astron. Soc. 339 (2003) L7-L11.

Ions and Life_______________________________________________________

_______________________________________________________________________________Fullerene Cation and Dication Production by Novel Thermal-Energy Reactions of He+, Ne+, and Ar+ with C60. G. Javahery, S. Petrie, J. Wang and D.K. Bohme. Chem.

Phys. Lett., 195, 7-10 (1992).Electron-Transfer Reactions with Buckminsterfullerene, C60, in the Gas Phase.

D.K. Bohme, Int. Reviews in Physical Chemistry, 13, 163-185 (1994).

Penning Ionization

He (3S1, 1S1) + C60 He(1S0) + C60+• + e

“Electron Transfer/ Electron Detachment”

He+ + C60 C602+ + He + e

“Double-Electron Transfer/ Electron Detachment”

Ar2+ + C60 C60•3+ + Ar + e

Chemical Ionization of Fullerenes_____________________________________________

Playing Chemistry with Buckyballs____________________________________________________

C60+• C60

2+

_____________________________________________________________________________________________________Derivatization of the Fullerene Dications C60

2+ and C702+ by Ion-Molecule Reactions in the Gas Phase.

S. Petrie, G. Javahery, J. Wang and D.K. Bohme. J. Am. Chem. Soc., 114, 9177-9181 (1992). Gas-Phase Reactions of the Buckminsterfullerene Cations C60

.+, C602+ and C60

.3+ with Water, Alcohols and

Ethers. R. Javahery, S. Petrie, H. Wincel, J. Wang and D.K. Bohme. J. Am. Chem. Soc., 115, 6295-6301 (1993).

______________________________________________________________________C60

3+•

Charge ………!___________________________________________________________

Gas-Phase Reactions of Fullerene Monocations, Dications and Trications with Nitriles.G. Javahery, S. Petrie, J. Wang, H. Wincel and D.K. Bohme. J. Am. Chem. Soc., 115, 9701-9707 (1993).

_______________________________________________________________________Fullerene Ions in the Gas Phase: Chemistry as a Function of Charge State.D.K. Bohme, Can. J. Chem. 77, 1453-1464 (1999).

Chemistry is increasingly pre-empted by physics (e transfer) with increasing charge state.

Chemistry as a Function of Charge State_________________________________________________________________

N C C CH+ +

+ N C C CH+ N C C CH+

N C C CH

+

++

N C C CHNCCHC

+ +·

NC

NC

C

C C

C

H

H

+•

Chemistry and Physics in Concert_______________________________________________________________

  

C60 provides charged C site for covalent bonding.

 • Polar molecule is attracted to the charge.

Electrostatic attraction is sufficient to overcome rehybridization energy required for bonding.

Intramolecular Coulomb repulsion propagates charge to the terminus of thesubstituent and so provides a new atomic site for further reaction.

• Ultimate charge separation. 

C602+ + 2 HC3N C60

+• + c-(HC3N)2+•

_________________________________________________________________Milburn et al, J. Phys. Chem. A 103 (1999) 7528.

+ N C C CH+

HC C C N

+

Gas-Phase Surface Chemistry____________________________________________________

_____________________________________________________________________________________________________________________The Influence of Surface Strain on the Chemical Reactivity of Fullerene Ions: Addition Reactions with Cyclopentadiene and 1,3-Hexadiene.. Becker, L.T. Scott and D.K. Bohme, Int. J. Mass Spectrom. Ion Processes 167/168, 519 (1997). Enhanced Reactivity of Fullerene Cations Possessing Adjacent Pentagons. S. Petrie and D.K. Bohme. Nature, 365, 426. (1993).

(C surface)+ + c-C5H6 addition

The Influence of Curvature (Strain)

H HH

H

HH

HH

H

H

Fe

Fe

H HH

H

H

HHH

H

H

H

H

H

H

HHHH

H

H

Fe

FeFe

HH

++

+

+

+

Metal-Cation Ligation

on Curved Carbonaceous Surfaces

The ICP/SIFT/QqQ instrument _____________________________________________________

B low erTrip le Q uadrupole

R eagen tIn le t

H e liumIn le tP lasm a

S ource

D iffus ionP um p

TurboP um p

TurboP um p

TurboP um p

__________________________________________________________________________________________________________An Inductively-Coupled Plasma / Selected-Ion Flow Tube Mass Spectrometer Study of the Chemical Resolution of Isobaric Interferences. G.K. Koyanagi, V.I. Baranov, S. Tanner and D.K. Bohme, J. Anal. At. Spectr. 15, 1207-1210 (2000).

Argon Plasma

5500 K

P = 1 atm

Aqueous solutionof the atomic salt is injected via a nebulizer intothe Ar plasma

Periodic Table of Atomic Salt Solutions

N2O flow/(1017 molecules s-1)0.0 1.0 2.0 3.0 4.0

Ion

Sign

al

100

101

102

103

Nb+

NbN+

NbO2+

NbO2+·N2O

NbO+

NbNO+

NbNO+·N2O

NbNO+·(N2O)2

NbNO+·(N2O)3

NbO2+·(N2O)2

NbO2+·(N2O)3

Primary Oxidation and Nitration

Nb+ + N2O NbO+ + N2

NbN+ + NO

Further Oxidation

NbO+ + N2O NbO2+ + N2

NbN+ + N2O NbNO+ + N2

Clustering with N2O

NbO2+ + N2O NbO2(N2O)+

NbO2(N2O)+ +N2O NbO2(N2O)2+

NbO2(N2O)2+ +N2O NbO2(N2O)3

+

NbNO+ + N2O NbNO(N2O)+

NbNO(N2O)+ +N2ONbNO(N2O)2+

NbNO(N2O)2+ +N2ONbNO(N2O)3

+

Reactions of atomic cations: Nb+ with N2O ______________________________________________________

________________________________________________________________V.V. Lavrov et al., J. Phys. Chem. A 106 (2002) 4581.

Surfing the Periodic Table with N2O______________________________________________________

________________________________________________________________V.V. Lavrov et al., J. Phys. Chem. A 106 (2002) 4581.

M+ + N2O

MO+ + N2

MN+ + NO

M+(N2O)

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

k/(c

m3 m

olec

ules

-1 s

-1)

10-12

10-11

10-10

10-9

Pro

mot

ion

Ene

rgy/

(kca

l mol

-1)

0

20

40

60

80

100

4f n5d

0 6s1

4f n

-15d

1 6s1

_____________________________________________________G.K. Koyanagi, D.K. Bohme. J. Phys. Chem. A 105, 8964 (2001).

Ln+ + N2O LnO+ + N2

Barriers to Electron Promotion____________________________________________________

Arrhenius would be interested!____________________________________________________

kexp= kc e-PE/RT

61 atomic cations x 15 molecules = 915 reactions !!

http://www.chem.yorku.ca/profs/bohme/research/research.html

Web data base

The 87Rb+ (s0) / 87Sr+ (s1) Isobaric Interference

Rb+ (s0) + SF6 NR k 1x10-13 cm3 s-1

Sr+ (s1) + SF6 SrF+ + SF5 97% k = 5.7x10-10 cm3 s-1 SrSF5

+ + F 3%

Chemical Resolution in Elemental Analysis____________________________________________________

____________________________________________________C. Ping and D.K. Bohme, J. Phys.Chem. A, in preparation.

Discontinuities in Reactivity: Opportunities for Chemical Resolution

____________________________________________________

M+ + SF6

MFn+ + SF6-n

M+(SF6 )

SFn+ + MF6-n

Observed with:

Fe+, Ge+

Sr+ Ba+, Os+, Ir+

Eu+, Yb+

____________________________________________________Blagojevic et al., Angew. Chem. Int. Ed. 2003, 42, 4923-4927

Observed with:

Fe+, Ge+

Sr+

Ba+, Os+, Ir+

Eu+, Yb+

N2O

N2

(2) NO

CO

M+

MO+

M+

MO+

M+

MO+

NO2CO2

CO2

CO2

CO

CO

Catalytic reduction of NxOy by CO

____________________________________________________Blagojevic et al.,Angew. Chem. Int. Ed. 2003, 42, 4923-4927

Atomic Ions: the Ultimate Sites for Catalysis_____________________________________________

Catalytic Reduction of NxOy by CO

(O-atom Transport Mediated by M+)

C O 2

N 26D F e +

T S

T S

T S

14 .9

61 .8

22 .9

0 .9

30 .6

0 .9

47 .8

47 .2

86 .7

64 .1

NOCF e

N 2O + C O N 2 + C O 2

F e + + N 2O F eO + + N 2

F eO + + C O F e + + C O 2

C O

C O

C O

C O N 2

N 2

N 2

C ON 2O6D F e +

H /k ca l m ol -1

__________________________________________________________________ V. Blagojevic, G. Orlova, D. K Bohme, J. Am. Chem. Soc. 127 (2005) 3545.

GAUSSIAN98 B3LYP/sdd/6-311+G*

Potential Energy Landscape for Catalysis______________________________________________________

ICP/SIFT/QqQ mass spectrumProposed tetrahedralstructure for Sr(C60)4

+

0 500 1000 1500 2000 2500 3000100

101

102

103

104

105

106

SrC60

+

Sr(C60

)2

+

Sr(C60

)3

+

Sr+

Inte

nsi

ty

m/z

Sr(C60

)4

+

Packing Atomic Metal Cations with C60

_____________________________________________________

_______________________________________________________________________G.K. Koyanagi, J. Xu and D. K. Bohme, unpublished

The ESI/qQ/SIFT/QqQ instrument_____________________________________________________

A – skimmer, B – q0 reaction cell, C extended stubbies, D – extended q0 rod set

_________________________________________________________________________________________A novel chemical reactor suited for studies of biophysical chemistry: construction and evaluation of a selected ion flow tube utilizing an electrospray ion source and a triple quadrupole detection system. G.K. Koyanagi et al. Int. J. Mass Spectrom. In press, 2007.

Ca++ + O3 CaO+ + O2+

(k = 1.5 × 10-9 cm3 mol-1 s-1) CaO+ + O3 CaO2

+ + O2 

(k = 5 × 10-10 cm3 mol-1 s-1)

CaO2+ + O3 CaO3

+ + O2

(k = 6 × 10-10 cm3 mol-1 s-1)

100 M CaAcetate in H2O/CH3OH (1/1)

From Atomic Dications…._____________________________________________________

Oxidation of Ca++ Initiated by Charge Separation.

…..to DNA_______________________________________________________________________________

Protonation and Hydrobrominationof (AGTCTG-5H)5-

50 M in 20/80 CH3OH/H2O

HO

N

NN

N

NH2

O

HO

HH

H

CH2

H

PO

-O

OCH2

O

H

HH

HH

O

H

HH

HH

HN

N

O

O

CH3

O

H

HH

HH

N

N

NH2

O

NH

N

N

O

NH2N

O

H

HH

HHOH

NH

N

N

O

NH2N

O

H

HH

HH

HN

N

O

O

CH3

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

O

PO

-O

OCH2

+ HBr

kobs kobs/kc

3.2 0.68

2.6 0.78

1.9 0.77

1.3 0.80x10-9 cm3 s-1

80% n = 1-7

27% n = 1-7 5–

4–

3–

2–

73%

16% n = 1-6

84%

20%

100% n = 1-5

HBr

HBr

HBr

[(AGTCTG − 5H)(HBr)n]5−

[(AGTCTG − 4H)(HBr)n]4−

[(AGTCTG − 3H)(HBr)n]3−

[(AGTCTG − 2H)(HBr)n]2−

0.0 0.4 0.8 1.2 1.610

0

101

102

103

104

5

n=1[(AGTCTG-2H)(HBr)

n]2

6

n=1[(AGTCTG-4H)(HBr)

n]4

7

n=1[(AGTCTG-3H)(HBr)

n]3

(AGTCTG-5H)5

(AGTCTG-4H)4

(AGTCTG-3H)3

(AGTCTG-2H)2

Ion

Sig

na

l/(s

1)

HBr flow/(1017

molecules s1

)

7

n=1[(AGTCTG-5H)(HBr)

n]5

Greg Koyanagi Stefan FeilJanna AnichinaVoislav Blagojevic Michael JarvisAndrea DasicTuba Gozet Sara HashemiMike DuhigSvitlana Shcherbyna

Acknowledgments