Gas Orific Calculation

download Gas Orific Calculation

of 25

Transcript of Gas Orific Calculation

  • 1 of 25 277295111.xls/Current Flange Spec Sheet_Monel

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 2 1 20FO-057 4/2 80 0.084 250 60 57 a 17.00 100 300 Pilot gas to acid relief header.

    2

    3

    4

    5

    6

    7

    8

    9

    101. The actual flow of 20FO-057 is about 110 SCFH for a bore diameter of 0.084.

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Flange-type Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: Monel

    Installation notes:1. Orifice dia. As specified to suit required conditions.2. Gaskets furnished by vendor.

  • 2 of 25 277295111.xls/Current Union Spec Sheet

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 1 1 20FO-184 1-1/2 80 0.285 60 57 a 0.586 100 3000 Acid pump vent header purge.

    2

    3

    4

    5

    6

    7

    8

    9

    101. Item 1 is made of monel.

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Union Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: 316SS

    Installation notes:1. Unless otherwise specified, the only markings on the orifice tab shall be the orfice diameter indicated by a decimal fraction as shown on the drawing with 1/16-in. figure stamping hand dies.2. Where lines are to be insulated, the insulated material covering the union shall be applied in such a manner that the markings on the tab will be fully exposed.3. No asbestos-bearing material is acceptable; vendor to provide TFE gaskets.

  • 3 of 25 277295111.xls/Current Flange Spec Sh_SS

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 1 1 20FO-175 4/2 80 0.135 60 55 a 17.00 100 150 Pilot gas to 20F-527.

    2

    3

    4

    5

    6

    7

    8

    9

    10

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Flange-type Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: 316SS

    Installation notes:1. Orifice dia. As specified to suit required conditions.2. Gaskets furnished by vendor.

  • 4 of 25 277295111.xls/New Union Spec Sheet

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 1 1 4/2 80 a 100

    2

    3

    4

    5

    6

    7

    8

    9

    10

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Union Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: 316SS

    Installation notes:1. Unless otherwise specified, the only markings on the orifice tab shall be the orfice diameter indicated by a decimal fraction as shown on the drawing with 1/16-in. figure stamping hand dies.2. Where lines are to be insulated, the insulated material covering the union shall be applied in such a manner that the markings on the tab will be fully exposed.3. No asbestos-bearing material is acceptable; vendor to provide TFE gaskets.

  • Yellow is an input cell: Green is a calculation:P1: 60 psig W = 11.12 PPH

    Underline is value actually used: Green in grey is a look-up value:0.603 tp = 2.500.607

    White in black is a final answer:D2 = 0.106 in.

    Important reference information about a cell is in violet:From Fluor table

    Cell for iteration with goal seek: Target (To) cell for goal seek: Changing cell for goal seek:[1st Cell] [2nd Cell] [3rd Cell]

    4.87 4.93 0.084

  • Changing cell for goal seek:

  • 7 of 25 277295111.xls/New Flange Spec Sheet_SS

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 1 1 4/2 80 a 100

    2

    3

    4

    5

    6

    7

    8

    9

    10

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Flange-type Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: 316SS

    Installation notes:1. Orifice dia. As specified to suit required conditions.2. Gaskets furnished by vendor.

  • 8 of 25 277295111.xls/New Flange Spec Sheet_Monel

    ITEM REV. QTY. TAG. NO. SCH. SERVICE

    1 1 1 4/2 80 a 100

    2

    3

    4

    5

    6

    7

    8

    9

    10

    PIPE SIZE (IN.)

    ORIFICE (IN.)

    FLOW QUANTITY (SCFH)

    UPSTREAM PRESSURE

    (PSIG)

    DP (PSI)

    MW

    SG

    TEMP. (F)

    FLANGE RATING

    INSTRUMENT SPECIFICATION

    Citgo Petroleum Corporation135th Street & New AvenueLemont, IL 60439

    Flange-type Restrictive Orifices

    ALL ITEMS SHALL COMPLY WITH GENERAL SPECIFICATION SHEETS

    MATERIAL: Monel

    Installation notes:1. Orifice dia. As specified to suit required conditions.2. Gaskets furnished by vendor.

  • Gas Properties

    y Tc, K Pc, atm Zc Hydrogen 0 33.20 12.80 65.00 0.31 -0.22Methane 0.94 190.60 45.40 99.00 0.29 0.01Ethane 0.05 305.40 48.17 148.00 0.29 0.10Propane 0.01 369.80 41.95 203.00 0.28 0.15Propylene 0 365.00 45.60 181.00 0.28 0.15Butane

    Average, Mixture: 1.0000 198.13 45.65 102.49 0.29 0.01k =

    R, atm-cm^3/(K-gmole): 8.21E+01Temperature, F: 100 311Pressure, psig.: 90 Use initial (1) properties.Viscosity, cP: 0.01151

    100 120 100 120Methane 0.011661 0.012008 0.011659 0.012006Ethane 0.00986 0.010179 0.009882 0.010201Propane 0.00853 0.008836 0.008547 0.008853Propylene 0.009013 0.009347 0.009039 0.009372Butane 0.009254 0.012779

    Caution: this sheet calculates properties based on yellow-highlighted cells. The viscosities will change and are a function of pressure and temperature, however, the NIST values for pure components will change so if T or P change update with NIST.

    Properties using coresponding states

    Vc, cm3/mol-

    1

    From VISC Sheet - manual entry-- use NIST website for individual , then use Wilke's method in spreadsheet to calculate mixture .

    , cP @ 78 psig , cP @ 90 psig

  • M6.91 2.02 0.009198.66 16.04 0.0116712.98 30.07 0.0098818.30 44.10 0.0085515.78 42.08 0.00904

    8.98 17.021.28

    Caution: this sheet calculates properties based on yellow-highlighted cells. The viscosities will change and are a function of pressure and temperature, however, the NIST values for pure components will change so if T or P change update with

    Cpo, cal/gmol-

    K , cP

    From VISC Sheet - manual entry-- use NIST website for , then use Wilke's method in spreadsheet to calculate

  • 11 of 25 Lemont, Illinois 277295111.xls/RO1

    RESTRICTIVE ORIFICE ---- Method 1Rough method provided originally in an article in Chemical Engineering magazine tb/bore diameter = 0.93P2/P1 = 0.05 Thin plate, no choked flow.

    Calculation not applicable: refer to Kirk-Cunningham method.

    D, inches; Qg, gas flow in SCFH (60 F, 1 atm); DP, P1, P2, psia; Sg = Mg/Mair Line Size tp,mmT1, R; tp, plate thickness. 0.5 1.5

    0.75 1.5Qg: 250 SCFH @ 60 F, 1 atm Complete Property Sheet 1 1.5

    57.00 Tr = 2.51 from sheet 1.5 2P1: 60 psig Pr = 0.11 2 2.5P2: 3 psi 3 3Mw: 17 4 3Sg = 0.59 manual allowed 6 3T: 100 deg. F k = 1.28 8 6Plate Rate 300 300, 600# ANSI 10 6tp = 2.50 mm From Fluor table 12 6Z: 1.00 0.98 Calculated using virial equations 14 9D1, nom: 2.00 in. Sch.: 80 16 9

    18 12Sat. Curve Test: #NAME? Test: #NAME? #NAME? 20 12

    Hot Gas Test: 0.433 #NAME? 24 16B1 = 0.135 Pr/Tr = 0.044 Z = 1.00B0 = -0.014

    Thin plate orifice Low-Moderate P

    Using table from Fluor specification: "Flange Type Restrictive Orifice"

    P =

    Using initial properties @ P1, T1

    P1:D =

    Qg/SQRT( P(P1 +P2)/(2SgT1)7 8

    X 5440

    (tp/0.125) X 1/5

    Method assumes, implicitly, that gas is ideal gas mixture or perfect gas.Flow through a thin plate is never choked flow. For this to apply, the ratio of tb/bore diameter must be < 6. (Reference: pg. 13.22, Richard Miller's "Flow Measurement Engineering Handbook," 3rd ed., McGraw Hill, 1996. Page 13-22 refers to the work of Cunningham (1951) and Ward-Smith (1979).Kirk-Cunningham applies when P2

  • 12 of 25 Lemont, Illinois 277295111.xls/RO1

    Pcf = 40.98 psig Choked Flow - for thick plate D2 = 0.106 in. Beta = 0.055

  • 13 of 25 Lemont, Illinois 277295111.xls/RO2

    RESTRICTIVE ORIFICE ---- Method 2tb/db = 7.41 Thick plate method applies: choked flow. Min. Pressure is: 40.98 psig

    A: throat cross-sectional area, sq. ft; W: #/s; Co = 0.72; P1: inlet pressure, psf; gc = 32.174T1: inlet temperature, F; R = 1545.3 ft-#f/#mole-R.

    Qg: 250 SCFH @ 60 F, 1 atm St. T = 60 FW = 11.22 PPH 14.696 psia

    0.04 lbs./cf Co: 0.72D1: 1.939 in.P1: 60 psig k = 1.28 Property Sheet

    exp. = 8.03Mw: 17.02 Property Sheet

    Pcf = 40.98 psig Choked FlowT: 100 deg. F

    A = 0.004 sq. in. Complete Property SheetTr = 2.51 Using initial properties @ P1, T1

    D = 0.067 in. Pr = 0.11Beta = 0.0348 Sat. Curve Test: #NAME? Below: use chartstp = 0.50 in. Hot Gas Test: 0.433 #NAME?

    Test: #NAME? #NAME?B1 = 0.135B0 = -0.014

    Pr/Tr = 0.044

    Thick plate orifice or flow nozzle, Choked Flow

    Choked Flow: eq. 4-40, pg. 100, Daniel Crowl, Joseph Louvar, "Chemical Process Safety Fundamentals with Applications, Prentice-Hall, 1990.

    = Crowl/Louvar recommends 1.0 for Co with sharp-edged orifices with Re1 >30,000; seldom does this occur.

    P1:A = W

    Co P1 k gc M RT1

    X 2k + 1

    (k+1)/(k-1)

    4-40Crowl & Louvar assume a thick orifice plate, or flow nozzle, not a thin plate.

    Also found in Perry's 6th edition of "Chemical Engineering Handbook," pg. 5-14, equation 5.27. Assumes Beta < 0.2. (Ideal gas also assumed and implicite in solution using isentropic expansion).

    This sheet is most useful in estimating flow from nozzles and holes in vessels or pipe.

  • 14 of 25 Lemont, Illinois 277295111.xls/RO2

    Z = 1.00

  • 07/23/2015 Calculation for North American Mfg. Co. Combustion Air FE

    D. Willard International Steel Services, Inc. 277295111.xls

    ORIFICE DATA SHEET

    Type of Orifice Plate: StandardDrain Hole (for Condensate): NoneMAXIMUM (URV-Ranged) DIFFERENTIAL PRESSURE = 40 IWC Pipe Diameter?MAXIMUM FLOW RATE REQUIRED = 10,000 PPH

    131,510 SCFHDP (Required ) AT REQUIRED MAX. FLOW RATE = 29.78 IWC Y-Equation?CALCULATED MAXIMUM FLOW RATE (At URV) = 11,589 PPH hw-O.K. Turndown O.K 0.895

    152,400 SCFH Y-O.K.PERMANENT PRESSURE LOSS AT MAX. RATE (At URV) = 1.35 PSIG

    37.53 IWCORIFICE INLET MAX. CALC. REYNOLDS NUMBER = 1,050,626

    Orifice Re?NOMINAL DIFFERENTIAL PRESSURE = 7.45 IWC Re--tubulent--O.K.NOMINAL FLOW RATE = 5,000 PPH Safe Min. Rate?

    65,750 SCFH Min.---O.K.MINIMUM DIFFERENTIAL PRESSURE = 0.30 IWCMINIMUM (Practical) FLOW RATE = 1,000 PPH Mach No. OK?

    13,150 SCFH Gas Orifice velocity is O.K.MINIMUM ORIFICE INLET REYNOLDS NUMBER = 10,000

    Change in Physical Properties?FLUID: Change in properties --O.K

    INITIAL GAS TEMPERATURE = 70 FINITIAL GAS PRESSURE = 30 psigGAS COMPRESSIBILITY COEFFICIENT, Z, = 1.000GAS SPECIFIC HEAT RATIO, k, = 1.3981784205GAS VISCOSITY @ FLOW CONDITIONS = 0.0163455501 cP

    BASE TEMPERATURE = 60 FBASE PRESSURE = 14.696 psigBASE COMPRESSIBILITY FACTOR, Z, = 1.000

    NOMINAL PIPE DIAMETER, INCHES = 24" CS PipePIPE INTERNAL DIAMETER, INCHES = 23.5 InchesFLANGE ORIFICE DIAMETER, do, INCHES , = 4.2622252739 Inches ORIFICE BETA = 0.1814PLATE MATERIAL = SSPLATE BASE THERMAL EXPANSION = 0.0000097 1/FPLATE THERMAL EXPANSION = 0.0000089 1/F

    CHANGE IN GAS DENSITY OVER PLATE = -0.94%CHANGE IN GAS TEMPERATURE = -4.9 FDISCHARGE MACH NO., M=1 IS CRITICAL, = 0.126

    For Maximum Flow CalculationC' (PPH) = 274.091 K = 0.5972 Y1 = 0.9905Ftb = 1.003 C' (SCFH) = 3604.474 Fpv = 1.0000

    Fm = 1.000 FG = 0.99857 FPb = 1.0000Fa = 1.000 FTf = 0.9896 Fl = 0.9998

    Flowing conditions were used to calculate the discharge rate of the orifice.

  • 07/23/2015 Calculation for FE-344'A' Reactor Toluene Atomizing Nitrogen

    D. Willard

    ORIFICE DATA SHEET

    Type of Orifice Plate: IntegralDrain Hole (for Condensate): NoneMAXIMUM (URV-Ranged) DIFFERENTIAL PRESSURE = 60.2 IWC Pipe Diameter?MAXIMUM FLOW RATE REQUIRED = 172 PPH

    2,320 SCFHDP (Required ) AT REQUIRED MAX. FLOW RATE = 60.20 IWC Y-Equation?CALCULATED MAXIMUM FLOW RATE (At URV) = 171 PPH hw-O.K. Turndown O.K 0.416

    2,320 SCFH Y-O.K.PERMANENT PRESSURE LOSS AT MAX. RATE (At URV) = 1.56 PSIG

    43.30 IWCORIFICE INLET MAX. CALC. REYNOLDS NUMBER = 176,990

    Orifice Re?NOMINAL DIFFERENTIAL PRESSURE = 15.03 IWC Re--tubulent--O.K.NOMINAL FLOW RATE = 86 PPH Safe Min. Rate?

    1,160 SCFH Min.---O.K.MINIMUM DIFFERENTIAL PRESSURE = 0.60 IWCMINIMUM (Practical) FLOW RATE = 17 PPH Mach No. OK?

    230 SCFH Gas Orifice velocity is O.K.MINIMUM ORIFICE INLET REYNOLDS NUMBER = 10,000

    Change in Physical Properties?FLUID: Change in properties --O.K

    INITIAL GAS TEMPERATURE = 70 FINITIAL GAS PRESSURE = 130 psigGAS COMPRESSIBILITY COEFFICIENT, Z, = 1.000GAS SPECIFIC HEAT RATIO, k, = 1.3GAS VISCOSITY @ FLOW CONDITIONS = 0.018 cP

    BASE TEMPERATURE = 60 FBASE PRESSURE = 14.696 psigBASE COMPRESSIBILITY FACTOR, Z, = 1.000

    NOMINAL PIPE DIAMETER, INCHES = 1/2" Sch-40 CSPIPE INTERNAL DIAMETER, INCHES = 0.664 InchesFLANGE ORIFICE DIAMETER, do, INCHES , = 0.34 Inches ORIFICE BETA = 0.5120PLATE MATERIAL = SSPLATE BASE THERMAL EXPANSION = 0.0000097 1/FPLATE THERMAL EXPANSION = 0.0000089 1/F

    CHANGE IN GAS DENSITY OVER PLATE = -0.35%CHANGE IN GAS TEMPERATURE = -1.8 FDISCHARGE MACH NO., M=1 IS CRITICAL, = 0.096

  • This method is more general.

    17 of 25 Lemont, Illinois 277295111.xls/RO3

    RESTRICTIVE ORIFICE ---- Method 3Crane TP 410, "Flow of Fluids Through Valves, Fittings, and Pipe," 23rd printing. tb/bore diameter = 0.67P2/P1 = 0.016667 Thin plate, no choked flow.

    Standard Conditions: P, psia = 14.696 T, F = 60Complete Property Sheet

    Flange taps Tr = 1.43 from sheetQg: 86 SCFH Y = 0.72 Kirk-Cunningham Pr = 0.11

    0.06 k = 1.2859.00

    P1: 60 psig 0.607 ASME, Crane 410 Sat. Curve Test: #NAME? Test:P2: 1 psi 0.607 Cunningham Hot Gas Test: 0.433 #NAME?Mw: 24 0.607 manual allowed Pr/Tr = 0.078

    #NAME?0.01 manual allowed B1 = 0.100T: 120 deg. F B0 = -0.156Plate Rate 300 300, 600# ANSI #NAME?tp = 1.50 mm From Fluor table Z = 0.99Z: 0.99 manual allowedD1, nom: 0.75 in. Sch.: 160

    0.01151 manual allowed 4,874

    56 psig

    Wd = 5.44 PPH Wcalc = 5.47 PPH Problem solved with goal seekMatch Qg: 4.93 PPH

    Pcf = 40.98 psig Choked Flow - for thick plate Do = 0.088 in. Beta = 0.144

    Thin plate orifice All flow conditions

    ASME calculation not practical --- P2/P1 too low ---Kirk-Cunningham method.

    W: lbs./hr; Y: dimensionless; C: 1/ft; do: inches; P: psi; r: #mass/cf

    @ 14.696 psia & 1 atm.#/cf = Using initial properties @

    P1, T1P =

    C, ft-1 =

    #/cf =

    g, cP= Re1 =

    Pp =

    P1:W = P

    Equation 2-24, Crane TP 410, adapted on 3.24 of text.

    1891 Y C d 2 0

    Flow through a thin plate is never choked flow. For this to apply, the ratio of tb/bore diameter must be < 6. (Reference: pg. 13.22, Richard Miller's "Flow Measurement Engineering Handbook," 3rd ed., McGraw Hill, 1996. Page 13-22 refers to the work of Cunningham (1951) and Ward-Smith (1979). In 2005, Kirk explored the limits of Cunningham's work. He found that ASME formulas worked fine with adjustment of Y; C could be defined using ASME and other methods.Kirk-Cunningham applies when P2

  • This method is more general.

    18 of 25 Lemont, Illinois 277295111.xls/R04

    RESTRICTIVE ORIFICE ---- Method 4Crane TP 410, "Flow of Fluids Through Valves, Fittings, and Pipe," 23rd printing. tb/bore diameter = 1.82P2/P1 = 0.033333 Thin plate, no choked flow.

    Complete Property SheetEstimated Compressibility Factor (Z) for Base and Inlet Conditions

    Standard Conditions: P, psia = 14.696 T, F = 60 For (b): 1.46 Sat. Curve Test: #NAME? Test:

    OK

    0.04 Hot Gas Test: 0.400 #NAME?Flange taps 1 Cunningham Pr/Tr = 0.030 #NAME?

    Qg: 250 SCFH 0.66 Cunningham recommended Zb = 0.980 B1 = 0.1040.05 k = 1.28 manual 0.980 B0 = -0.14887.0 #NAME?

    P1: 90 psig 0.595 ASME, Crane 410 Zf = 0.980P2: 3 psi 0.607 CunninghamMw: 17 manual allowed For (1): 1.57 Sat. Curve Test= #NAME? Test:

    0.02 manual allowed 0.16 Hot Gas Test= 0.455 #NAME?T: 100 deg. F Pr/Tr = 0.100 #NAME?Plate Rate 300 300, 600# ANSI B1 = 0.113tp = 2.50 mm From Fluor table B0 = -0.122Z1: 0.991 manual allowed #NAME?D1, nom: 2.00 in. Sch.: 80 Zf = 0.991

    0.01151 manual allowed 3,233

    86 psig

    Wd = 11.43 PPH Wcalc = 11.31 PPH Problem solved with goal seekMatch Qg: PPH Qcalc = 247 SCFH

    Pcf = 57.43 psig Choked Flow - for thick plate Do = 0.054 in. Beta = 0.028

    Thin plate orifice All flow conditions

    ASME calculation not practical --- P2/P1 too low ---Kirk-Cunningham method.

    W: lbs./hr; Y: dimensionless; C: 1/ft; do: inches; P: psi; r: #mass/cfTrb =

    Choose Cunningham (1),Miller (2), or Fluor (3) for Y1: Prb =

    Y1 =b#/cf =P =

    C, ft-1 =

    Tr1 =

    1#/cf = Pr1 =

    g, cP= Re1 =

    Pp =

    P1: W = hPf1

    Adapted from equation 9.68, "The AGA equation," in Richard Miller's Flow Measurement Engineering Handbook, 3rd ed., McGraw Hill , CR 1996 (This equation was adapted originally from equation 2-24, Crane TP 410.)

    Flow through a thin plate is never choked flow. For this to apply, the ratio of tb/bore diameter must be < 6. (Reference: pg. 13.22, Richard Miller's "Flow Measurement Engineering Handbook," 3rd ed., McGraw Hill, 1996. Page 13-22 refers to the work of Cunningham (1951) and Ward-Smith (1979). In 2005, Kirk explored the limits of Cunningham's work. He found that ASME formulas worked fine with adjustment of Y; C could be defined using ASME and other methods.Kirk-Cunningham applies when P2

  • VISC

    D. Willard 07/23/2015 PlantI RELSIZE.XLS(VISC)

    G A S M I X T U R E V I S C O S I T Y

    This sheet talks with the Properties Sheet.

    Manual input values are in "Green."Temperature 38 C 100 F

    Program assumes that gases are perfect and form an ideal vapor solution. Program will deviate slightly for high pressure (>150 psig & presence of wet gas.Wilke method shows some deviations where molecular weights are significantly different, i.e., Mi>>Mj.

    Wilke Gas Mixture Viscosity Calculation for Ideal Gases or Real Gases @ Low-Moderate Pressures

    Component Man M NHydrogen 0.00 Yes 0.009189 - 2.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1Methane 0.94 Yes 0.011672 0.0117 16.04 0.000 1.000 1.473 1.899 0.000 0.000 0.000 0.000 0.000 0.000 1.033 0.011 2Ethane 0.05 Yes 0.009882 0.0099 30.07 0.000 0.665 1.000 1.300 0.000 0.000 0.000 0.000 0.000 0.000 0.689 0.001 3Propane 0.01 Yes 0.008547 0.0085 44.10 0.506 0.506 0.766 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.524 0.000 4Propylene 0.00 Yes 0.009039 - 42.08 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5Gas 6 1.00 Yes 0.000000 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6Gas 7 0.00 Yes 0.000000 - 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7Gas 8 0.00 Yes 0.000000 - 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8Gas 9 0.00 Yes 0.000000 - 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9Gas 10 0.00 Yes 0.000000 - 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10Total 2.00 0.0115

    Gas a b c Mwt. a b c d e fAlCl2 97.89 9.04015 8.68E-03 ### 1.72E-09 ### 0AlCl3 -0.0006 1.36E-005 -7.11E-10 133.34 ### 2.40E-02 ### 4.81E-08 ### 5.57E-15Carbon Dioxide 0.00187 2.39E-05 -1.27E-09 44.009 6.21415 5.12E-03 ### 0 0 0Carbon Monoxide 0.00628 2.16E-05 -1.70E-09 28.01 6.42043 8.88E-04 ### 0 0 0Chlorine 0.00215 2.01E-005 2.33E-09 70.9 6.02127 6.56E-03 ### 3.01E-09 0.00000 0Hydrogen Sulfide ### 2.40E-05 -3.40E-10 33.068 6.66150 2.85E-03 ### 0 0 0Nitrogen 0.00344 4.28E-05 7.15E-09 28.013 6.89500 7.62E-04 ### 0 0 0Oxygen 0.00624 2.59E-05 -2.71E-09 31.998 6.44284 1.25E-03 ### 0 0 0HCl 0.00177 2.26E-05 3.95E-09 36.461 6.51457 ### 0 0 0 0Sulfur Dioxide ### 2.12E-05 -1.44E-09 64.058 7.11595 5.93E-03 1.08E-06 0 0 0TiCl4 0.0071 0.000073 1.16E-008 189.69 ### 2.92E-02 ### 1.32E-08 ### 2.62E-16Water -0.00096 1.97E-05 -3.84E-09 18.015 7.08976 1.55E-03 0 0 0 0

    Information Alligned for MBAL & VISC for auto entries.MAT-MATRIX Mwt a b c d e f

    #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A#N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

    Enter values in "Yellow." Calculated values in "Light Green".

    y i Manual i i i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 Sum ij Sum y i i

    m =

    = a + b(T) + c(T)2 +d(T)3 Cp = a + b(T) + c(T)2 + d(T)3 + e(T)4 + f(T)5

    Cp = a + b(T) + c(T)2 + d(T)3 + e(T)4 + f(T)5a() b () c ()

  • 0 500 1,000 1,500 2,000 2,500 3,000 3,5000.0000

    0.0100

    0.0200

    0.0300

    0.0400

    0.0500

    0.0600

    0.0700

    0.0800

    0.0900

    0.1000

    0.1100

    0.1200

    k = 1.2; M = 30k=1.3; M = 17k = 1.4; M = 2

    Q, SCFH (60 F, 14.7 psia)

    T1 = 100oF, P = 87 psig, P1 = 90 psig, Using Cunningham

    calculation for Y1, as yielding the highest Q. The pressure drop is not "hw;" the drop is the permanent pressure loss.

    W = Q(PM/RT) = QM/408.67PPH: pounds per hourQ = W(408.66/M)

  • Q, SCFH M1.2 50 0.0144 0.0144 301.2 250 0.0322 0.03221.2 500 0.0455 0.04551.2 1,000 0.0643 0.06431.2 1,500 0.0788 0.07881.2 2,000 0.0910 0.09101.2 3,000 0.1114 0.11141.2 4,000 0.1298 0.12981.2 5,000 0.1451 0.14511.3 50 0.0126 0.0126 171.3 250 0.0281 0.0281 0.02791.3 500 0.0397 0.03971.3 1,000 0.0561 0.05611.3 1,500 0.0688 0.06881.3 2,000 0.0794 0.07941.3 3,000 0.0973 0.09731.3 4,000 0.1317 0.13171.3 5,000 0.1472 0.14721.4 50 0.0072 0.0072 21.4 250 0.0163 0.01631.4 500 0.0230 0.02301.4 1,000 0.0325 0.03251.4 1,500 0.0398 0.03981.4 2,000 0.0460 0.04601.4 3,000 0.0563 0.05631.4 4,000 0.0660 0.06601.4 5,000 0.0737 0.0737

    T1 = 100oF, DP = 87 psig, P1 = 90 psig, Using Cunningham

    ko 2" "

    Current Flange Spec Sheet_MonelCurrent Union Spec SheetCurrent Flange Spec Sh_SSNew Union Spec SheetInstructionsNew Flange Spec Sheet_SSNew Flange Spec Sheet_MonelPropertiesRO1RO2ORF1ORF5aRO3R04VISCAssembed UnionBeta ChartSheet1