Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40...

13
Gas dispersion in atmospheric boundary layers HENRY PLISCHKA University Rostock, Chair of Modelling and Simulation 23. Februar 2018 c 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 0 / 12

Transcript of Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40...

Page 1: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Gas dispersion in atmosphericboundary layers

HENRY PLISCHKAUniversity Rostock, Chair of Modelling and Simulation

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 0 / 12

Page 2: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Motivation

• Simulation of gas dispersion in urban enviromentwith OpenFOAM

• Prediction e.g. for toxic and flamable gases

• Very complex underground

• Area upstream of dispersion should be resolved

• Reduce inlet length (synthetic turbulence at inlet)

• No precurser or recycling needed (lesscomputational costs)

∗Copyright 2016 by Julia Boldt

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 1 / 12

Page 3: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Description of solver

• Using rhoReactingBuoyantFoam solver

• Conservation equations∂ρ

∂t+∇ ·

(ρU

)= 0 (1)

∂ρU

∂t+∇ ·

(ρUU

)= −∇p +∇ · (τeff ) + ρg (2)

∂ρYi

∂t+∇ ·

(ρUYi

)= +∇ ·

(µeff∇Yi

)+ Sy (3)

∂ρh

∂t+∇ ·

(ρUh

)+∂ρK

∂t+∇ ·

(ρUK

)= −∇ ·

(αeff∇h

)+ Sh (4)

• With additional initialization of p_rgh field

• Little changes in pressure correction for stability reasons

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 2 / 12

Page 4: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Description of first test case

••

••

••

••

••••••

••

••

••

••

15◦

15◦

15◦

100 m80 m

60 m40 m

20 m

Vent locationu∞

†Jennifer Wen u. a. “Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study”. In: Proceedings of the Institution of Mechanical Engineers, PartE: Journal of Process Mechanical Engineering 227.2 (2013), S. 125–139.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 3 / 12

Page 5: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Description of first test case

• Dispersion of CO2 from jet (20 s inflow)

• Pure CO2 at the outlet

• Vent with D = 50 mm at 3 m height

• Pressure in CO2 vessel 151 bar

• Wind velocity at 2 m height≈ 1,8 m/s

• Measurements of CO2 concentrationdownstream at 1m height

∗Wen u. a., “Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study”.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 4 / 12

Page 6: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Description of simulation

• Profiles for T, U, CO2-fraction in 13 m above pipe (from †)

3 m

13 m

4 mInlet simulation

pipe

0.050.000.050.100.150.200.250.300.35

CO

2 in %

CO2 concentration

10

0

10

20

30

40

50

U in m

/s

velocity

0.0 0.5 1.0 1.5 2.0r in m

160

180

200

220

240

260

280

T in K

temperature

∗Wen u. a., “Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study”.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 5 / 12

Page 7: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Description of simulation

• RANS with constant atmospheric boundary layer profile (z0 = 0.01, suggested in †)

• Domain 190 m x 120 m x 150 m

• Mesh size 1M to 10M cells

†Wen u. a., “Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study”.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 6 / 12

Page 8: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Contour of CO2 concentration=1%

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 7 / 12

Page 9: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

CO2 concentration at 80 m

0 20 40 60 80 100

time in s

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2C

O2

in%

exp 80 mfiates 2016this work

• Good agreement with measurements

• Maximum is slightly overpredicted, second peak not occurs

‡Juliane Fiates u. a. “An alternative CFD tool for gas dispersion modelling of heavy gas”. In: Journal of Loss Prevention in the Process Industries 44 (2016), S. 583–593.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 8 / 12

Page 10: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

CO2 concentration at 100 m

0 20 40 60 80 100

time in s

0.0

0.5

1.0

1.5

2.0

CO

2in

%exp 100 mfiates 2016this work

• Good agreement with increasing time of CO2

• Overpredicted maximum, second peak is only indicated

‡Fiates u. a., “An alternative CFD tool for gas dispersion modelling of heavy gas”.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 9 / 12

Page 11: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Difficulties

In this comparison• Fluctuation in wind speed and direction

In general:• Measurements in the field are not repeatable• RANS fluctuactions are completely modelled• Modelling of highly rough walls is still subject of

research

⇒ Using high quality wind tunnel measurements fordifferent urban enviroments

⇒ Long time intervals for statistical analysis ofturbulence and gas occurrence

†Wen u. a., “Dispersion of carbon dioxide from vertical vent and horizontal releases—a numerical study”.

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 10 / 12

Page 12: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

Outlook

• Verify the LeMoS-Inflow-Generator for urban athmospheric boundary layer (currentlyworking on this, using measurements of Michelstadt experiment)

⇒ Reproduce urban atmospheric boundary layer with LES simulation in free terrain (wallfunction or porous media at the bottom, periodic BC)

⇒ Verify turbulence properties

⇒ Extract U-profiles, length scales L and reynolds stresses R

⇒ Inflow-Generator in same domain

⇒ Validate turbulent boundary layer

• Dispersion simulation with Inflow-Generatorin urban enviroment

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 11 / 12

Page 13: Gas dispersion in atmospheric boundary layers · 2018. 3. 13. · CO2 concentration at 80m 0 20 40 60 80 100 time in s 0:2 0:0 0:2 0:4 0:6 0:8 1:0 1:2 CO 2 in % exp 80m ates 2016

End

Thank you for your attention!

23. Februar 2018 c© 2018 UNIVERSITÄT ROSTOCK | CHAIR OF MODELLING AND SIMULATION 12 / 12