gammaFormulas

download gammaFormulas

of 10

Transcript of gammaFormulas

  • 8/7/2019 gammaFormulas

    1/10

    Collection of formulae for Eulers constant

    Xavier Gourdon and Pascal Sebah

    numbers.computation.free.fr/Constants/constants.html

    November 11, 2008

    1 Integral formulae

    Eulers constant appears in many integrals (often related, for example, tothe gamma function or the logarithmic integral function), we propose here toenumerate a selection of such integrals. Some of those can be deduced fromothers by elementary changes of variable.

    We use the notation x for the floor function and {x} for the fractional partof a real number x.

    1 =1

    t tt2

    dt =

    1

    {t}t2

    dt

    =0

    et log tdt = (1)

    2 +2

    6=

    0

    et log2 t dt = (2)(1) (Euler-Mascheroni)

    3 2

    2 2(3) =

    0

    et log3 t dt = (3)(1) (Euler-Mascheroni)

    = 10

    log log1

    tdt

    + 2 log 2 = 4 1/20

    et2

    log t dt

    =

    0

    et

    1

    1 et 1

    t

    dt

    log2 12

    =

    0

    1

    et

    1 1

    t2

    dt ([4])

    =

    10

    1

    t+

    1

    log(1 t)

    dt

    =

    0

    1

    1 + t et

    dt

    t

    =

    0

    1

    1 + t2 cos t

    dt

    t

    1

  • 8/7/2019 gammaFormulas

    2/10

    =

    log(1 + et)et

    t2

    + 2

    dt (Prevost [11])

    ( ) = 0

    et et

    tdt > 0, > 0

    = 10

    10

    1 x(1 xy)log(xy) dxdy (Sondow [15])

    = 1 10

    1

    1 + t

    k=1

    t2k

    dt (Catalan)

    = 1 10

    1 + 2t

    1 + t + t2

    k=1

    t3k

    dt (Ramanujan [13])

    =

    1

    2 + 20

    t dt

    (t2 + 1)(e2t 1) (Hermite) = 1 +

    1

    2+ + 1

    n 1 +1

    2n log n +

    0

    2t dt

    (t2 + n2)(e2t 1)

    =

    10

    1 et e1/tt

    d t (Barnes [1])

    =

    x0

    1 cos tt

    dt x

    cos t

    tdt log x x > 0

    =

    x0

    1 ett

    dt x

    et

    tdt log x x > 0

    This last integral is often used to deduce an efficient algorithm to compute

    many digits of (see [6]).

    2 Series formulae

    In this section we provide a list of various series for .

    2.1 Basic series

    = limn

    n

    k=1

    1

    k log n

    (Euler)

    = 1 +k2

    1k + log

    1

    1

    k

    (Euler)

    = log

    4+k1

    1

    k 2log 2k + 2

    2k + 1

    = limn

    n

    k=1

    1

    k 1

    2log (n(n + 1))

    (Cesaro)

    2

  • 8/7/2019 gammaFormulas

    3/10

    = limn

    n

    k=1

    2

    2k 1 log(4n)

    = limn

    n

    k=1

    1

    k 1

    2log

    n2 + n +

    1

    3

    = limn

    n

    k=1

    1

    k 1

    4log

    n2 + n +

    1

    3

    2 1

    45

    = limn

    2

    1 +

    (n 1)2n

    +(n 1) (n 2)

    3n2+

    log(2n)

    (Kruskal [9])

    = lims1+

    k1

    1

    ks 1

    sk

    (Sondow [14])

    = limn

    n 1

    n

    (Demys)

    =log 2

    2+

    1

    log2

    k2

    (1)k log kk

    The last alternating series may be convenient to estimate Eulers constantto thousand decimal places thanks to convergence acceleration of alternatingseries (see the related essay at [6]).

    2.1.1 Ramanujans approach

    In Ramanujans famous notebooks, we find another kind of Euler-Maclaurin likeasymptotic expansion; he writes

    nk=1

    1

    k 1

    2log(n(n + 1)) + 1

    12p 1

    120p2+

    1

    630p3 1

    1680p4(1)

    with the variable p = 12

    n(n + 1), which extends Cesaros estimation. This rep-resentation may also be deduced from the classical Euler-Maclaurin expansionwith Bernoullis numbers.

    2.2 Around the zeta function

    When he studied , Euler found some interesting series which allow to computeit with the integral values of the Riemann zeta function. He used one of those

    to give the first estimation of his constant (a five correct digits approximation).There are many formulae giving as function of the Riemann zeta function

    (s), some are easy to prove. We provide the demonstration of one example.By definition, we may write

    = limn

    n

    k=1

    1

    k log n

    = 1 +

    k2

    1

    k+ log

    k 1

    k

    3

  • 8/7/2019 gammaFormulas

    4/10

    = 1 + k2

    1

    k

    + log1 1

    k

    and using the series for log(1 x) when x = 1k < 1 gives

    = 1 k2

    2

    1

    k

    then by associativity of this positive sum

    = 1 2

    1

    k2

    1

    k

    = 1

    2

    1

    (() 1) .

    So we have ve just demonstrated a first relation between and the zeta func-tions. Because it is clear that () 1 is equivalent to 1/2 when becomeslarge, some of those series have geometric convergence (of course one has toevaluate () for different integral values of ).

    A general improvement can be made if we start the series with k > 2 bycomputing its first terms, that is, for any integer n > 1:

    = 1 +n

    k=2

    1

    k+ log

    k 1

    k

    +

    kn+1

    1

    k+ log

    k 1

    k

    and the result now becomes

    = 1 +

    n

    k=2

    1k + log

    k 1

    k2

    1

    () 1 1

    2 1

    n

    ,

    and this time

    (, n + 1) = () 1 12 1

    n 1

    (n + 1)

    so that the rate of convergence is better. This function (s, a) is known as theHurwitz Zeta function. For different values of n, the identity for gives

    n = 2 =3

    2 log 2

    2

    1

    () 1 1

    2

    n = 3 =

    11

    6 log3 21

    () 1 1

    2 1

    3

    ...

    or in term of (s, a) and the harmonic number Hn

    = Hn log n 2

    (, n + 1)

    . (2)

    4

  • 8/7/2019 gammaFormulas

    5/10

    2.2.1 Zeta series

    = 1 k2

    (k) 1k

    (Euler)

    =k2

    (k 1)((k) 1)k

    (Euler)

    = 1 log22

    k1

    (2k + 1) 12k + 1

    = log 2 k1

    (2k + 1) 1k + 1

    = 1

    log3

    2k1

    (2k + 1) 14k(2k + 1)

    (Euler-Stieltjes)

    = 2 2log2 k1

    (2k + 1) 1(k + 1)(2k + 1)

    (Glaisher)

    =k2

    (1)k (k)k

    (Euler)

    = 1 log 2 +k2

    (1)k (k) 1k

    =3

    2 log2

    k2

    (1)k(k 1) (k) 1k

    (Flajolet-Vardi)

    = 54 log2 1

    2

    k3

    (1)k(k 2) (k) 1k

    = log(8) 3 + 2k2

    (1)k (k) 1k + 1

    = 1 + log

    16

    9

    + 2

    k2

    (1)k (k) 12kk

    2.3 Other series

    = 1

    2+11

    k=2

    (1)k

    k

    (Vacca [17], Franklin [5])

    = log 2 1

    2

    12(3

    1)k= 1

    2(31+1)

    1

    (3k)3 3k (Ramanujan [2])

    =k1

    (1)k log2 kk

    (Vacca [17])

    5

  • 8/7/2019 gammaFormulas

    6/10

    1

    = lim

    n 1

    n

    n

    k=1

    nk (de la Vallee Poussin [18])

    =k1

    akk

    (Kluyver)

    = 1 log 2 +k1

    akk(k + 1)

    (Kluyver)

    =n1k=1

    1

    k log n + (n 1)!

    k1

    ak

    k(k + 1) (k + n 1)

    (Kluyver [8])

    In Kluyvers formulae the ak are rational numbers defined by:

    a1 = 12 , ak = 1k + 1

    k1=1

    k ( + 1) ak

    and 0 < ak 1k+1 . Here are the first values:

    a1

    =1

    2, a

    2=

    1

    12, a

    3=

    1

    24, a

    4=

    19

    720, a

    5=

    3

    160, a

    6=

    863

    60480, a

    7=

    275

    24192.

    Kluyvers last relation may be used to compute a few thousand digits of .

    3 Eulers constant and number theory

    3.1 Dirichlet estimation

    In 1838, Lejeune Dirichlet (1805-1859) showed that the mean of the divisorsfunction d(k) (numbers of divisors of k, [7]) of all integers from 1 to n is suchas

    1

    n

    nk=1

    d(k) = log n + 2 1 + O

    1n

    .

    For example, a direct computation with n = 105 produces

    1

    n

    nk=1

    d(k) log n = 0.1545745350...

    while 2 1 = 0.1544313298....

    3.2 Mertens formulae

    Ifp represents a prime number, Franz Mertens (1840-1927) gave in 1874 the twobeautiful formulae ([10], [7]):

    e = limn

    1

    log n

    pn

    1 1

    p

    1(3)

    6

  • 8/7/2019 gammaFormulas

    7/10

    6e

    2= lim

    n

    1

    log npn

    1 +1

    p (4)

    The product (3) is equivalent to the series

    = limn

    pn

    log

    1 1p

    log log n

    (5)

    but when p is large

    log

    1 1p

    =

    1

    p+ O

    1

    p2

    and the relation (5) for is very similar to its definition relation, but this time,

    only the prime numbers are taken into account in the sum.

    3.3 Von Mangoldt function

    The von Mangoldt function (k) is generated by mean of the Zeta function asfollow [7]:

    (s)

    (s)=k1

    (k)

    ks, s > 1 (6)

    and it is also defined by

    (k) = log p if k = pm for any prime p,

    (k) = 0 otherwise.

    The relation (6) may also be written as

    (s) +(s)

    (s)=

    k1

    (k) 1ks

    , s > 1

    from which, by taking the limits as s tends to 1, we deduce the interesting seriesexpansion:

    = 12

    k1

    (k) 1k

    . (7)

    It is a very slow and irregular converging series, partial sums Sn with n termsare

    S1,000 = 0.57(835...),

    S10,000 = 0.57(648...),

    S100,000 = 0.57(694...),

    S1,000,000 = 0.577(417...).

    7

  • 8/7/2019 gammaFormulas

    8/10

    4 Approximations

    Unlike the constant , few approximations are available for , it may be usefulto list a few of those.

    4.1 Rational approximations

    The continued fraction representation makes it easy to find the sequence of thebest rational approximations:

    = [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65,...],

    that is, in term of fractions

    0, 1,

    1

    2,

    3

    5,

    4

    7,

    11

    19,

    15

    26,

    71

    123,

    228

    395,

    3035

    5258,

    15403

    26685,

    18438

    31943,

    33841

    58628,

    289166

    500967,

    323007

    559595,...

    .

    For example, by mean of the continued fractions, we get the two approximativevalues 3384158628

    < 3.2 1011and 376566901652385103

    < 2.0 1019.A more exotic fraction due to Castellanos [3] is9903 553 792 42705

    < 3.8 1015.4.2 Other approximations

    13

    = 0.577(350...)

    41 124110

    = 0.57721(700...)

    343

    66 +

    6 = 0.577215(396...)

    593077

    1 + 11

    7

    = 0.577215664(894...)

    8

  • 8/7/2019 gammaFormulas

    9/10

    7

    832/9

    = 0.577215(209...) (Castellanos [3])

    803 + 92

    614

    1/6= 0.577215664(572...) (Castellanos [3])

    42

    3 + 5log 2= 0.57721(411...)

    33 + 2log 3

    = 0.5772(311...)

    73293

    log

    71

    7

    = 0.57721566(601...)

    16241

    + log

    5

    3= 0.57721566(525...)

    369643115

    log (840) = 0.5772156649015(627...)

    References

    [1] E.W. Barnes, On the expression of Eulers constant as a definite integral,Messenger, (1903), vol. 33, pp. 59-61

    [2] B.C. Berndt and T. Huber, A fragment on Eulers constant in Ramanujanslost notebook, (2007)

    [3] D. Castellanos, The Ubiquitous Pi. Part I., Math. Mag., (1988), vol. 61,pp. 67-98

    [4] S. Finch and P. Sebah, Comment on Volumes spanned by random pointsin the hypercube, to appear in Random Structures and Algorithms, (2008)

    [5] F. Franklin, On an expression for Eulers constant, J. Hopkins circ., (1883),vol. 2, p. 143

    [6] X. Gourdon and P. Sebah, Numbers, Constants andComputation, World Wide Web site at the adress:http://numbers.computation.free.fr/Constants/constants.html,(1999)

    [7] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers,Oxford Science Publications, (1979)

    [8] J.C. Kluyver, De constante van Euler en de natuurlijhe getallen, Amst.Ak., (1924), vol. 33, pp. 149-151

    [9] M.D. Kruskal, American Mathematical Monthly, (1954), vol. 61, pp. 392-397

    [10] F. Mertens, Journal fur Math., (1874), vol. 78, pp. 46-62

    9

  • 8/7/2019 gammaFormulas

    10/10

    [11] M. Prevost, A Family of Criteria for Irrationality of Eulers Constant,

    preprint, (2005)[12] S. Ramanujan, A series for Eulers constant , Messenger, (1916), vol. 46,

    p. 73-80

    [13] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa,New Delhi, (1988)

    [14] J. Sondow, An antisymmetric formula for Eulers constant, MathematicsMagazine, (1998), vol. 71, number 3, pp. 219-220

    [15] J. Sondow, Criteria for irrationality of Eulers constant, Proc. Amer. Math.Soc., (2003), vol. 131, pp. 3335-3344

    [16] T.J. Stieltjes, Tables des valeurs des sommes Sk

    = n=1

    nk,Acta Math-ematica, (1887), vol. 10, pp. 299-302

    [17] G. Vacca, A New Series for the Eulerian Constant, Quart. J. Pure Appl.Math, (1910), vol. 41, pp. 363-368

    [18] C. de la Vallee Poussin, Sur les valeurs moyennes de certaines fonctionsarithmetiques, Annales de la societe scientifique de Bruxelles, (1898), vol.22, pp. 84-90

    10