G+4 SolidSlabSystem

download G+4 SolidSlabSystem

of 182

Transcript of G+4 SolidSlabSystem

  • 8/22/2019 G+4 SolidSlabSystem

    1/182

    ETHIOPIAN CIVIL SERVICE COLLEGE

    INSTITUTE OF URBAN DEVELOPMENT STUDIES

    DEPARTMENT OF RBAN ENGINEERING

    ANALYSIS, DESIGN, AND CONSTRUCTION COST COMPARISON SOLID

    VERSUS RIBED SLAB SYSTEM OF A G+4 COMMON RESIDENTIAL BUILDING

    BY : WONDIMAGEGN SOLOMON UED_1064/98

    MESFIN GIRMA UED_1041/98

    TARIKU HAILE UED_1050/98

    TEKLEGERIMA HAILU UED_1055/98

    YINURSELAM SHIFAW UED_1067/98

    TERFE SHIFERAW UED_1056/98

    YIMER MESHESHA UED_1066/98

    ADVISOR: MELESE YOHANES

    A senior project submitted to:

    Ethiopian Civil Service College Institute of Urban Development Studies Department

    of Urban Engineering in partial fulfillment of the requirement for the degree of

    Bachelor of Science in Urban Engineering.

    JULY, 2010

    ADDIS ABABA

    ETHIOPIA

    Table of Contents Page

    PART -I: SOLID SLAB STRUCTURAL ANALYSIS AND DESIGN

  • 8/22/2019 G+4 SolidSlabSystem

    2/182

    1. Introduction

    1.1. General introduction

    1.2. The Structural System

    1.3. Building Layout

    1.4. Quality of Construction and Method of Analysis

    1.4. Construction Materials

    1.5. Loading

    1.6. Codes and References

    1.7. Design Aids

    2. Wind Load Analysis

    2.1. Roof Wind Load Analysis

    2.2. Truss Analysis and Design

    2.3. Wind load analysis on external and internal surfaces of building

    3. Solid slab analysis

    4. Stair analysis and design

    5. Earth quake analysis

    5.1. Mass, mass-center and center of rigidity determination

    5.2. D-value computation

    5.3. Story shear distribution

    5.4. Lateral load distribution among frame elements

    6. 2D Frame Analysis

    7. Beam Design

    7.1. Flexural design

    7.2. Design for shear

    7.3. Development length and bar cutoff

    8. Column Analysis and Design

  • 8/22/2019 G+4 SolidSlabSystem

    3/182

    9. Footing design

    PART -2: RIBBED SLAB STRUCTURAL ANALYSIS AND DESIGN

    1. Ribbed Slab Analysis and Design

    2. 3D frame analysis

    2.1. Loading

    2.2. Method of analysis

    2.3. Analysis result (Output)

    3. Girder design

    4. Column design

    5. Footing design

    PART -3: SOLID SLAB VERSUS RIBBED SLAB

    1. Comparison

    2. Conclusion and recommendation

  • 8/22/2019 G+4 SolidSlabSystem

    4/182

    Acknowledgement

    Successful completion of this analysis and design project is last chapter in five

    years study and hard work, which has been made possible today because of

    assistance and support of our families, instructors, fellow students, and friends.

    We would like to appreciate and thank our advisor Ato Melesse Yohannes(MSc)

    who provide us considerate project type and above all for his guidance and supportthroughout the development of the project.

    Our special thanks also go to our families and particularly to our parents who have

    been all along with us assisting and encouraging.

    Lastly, but not least we would like to express our heartfelt best gratitude to W/ro

    Rahel Yohannes and Ato Yimer Mohamed for their effort for the modification

    made and realization of our new curriculum as we are the first urban engineering

    graduates in bachelor degree in the country.

  • 8/22/2019 G+4 SolidSlabSystem

    5/182

    1. Introduction

    1.1. General introduction

    This booklet contains a static calcucalation of structural analysis and design ofa

    common residential building located in Addis Ababa. The structure has 6stories one basement, one ground, and G + 4 stories with a solid/ribbed slab floo

    system.

    The solid slab system is modeled in 2D while the ribbed slab system is in 3D, just

    for the academic interest there by to experience different scenarios.

    Analysis and design comprises roofing (EGA sheet), purlin, truss members, beams,

    columns, stairs, slabs and footings.

    Loads for analysis include dead (self & transferred) loads, live loads, wind load, and

    earth quack (lateral) loads.

    Analysis of frames in 2D/3D involves:

    Modeling based on architectural drawing.

    Stiffness computation

    Mass calculation

    Center of mass & center of gravity determination.

    Story shear distribution

    Lateral load distribution according to stiffness of frame elements(columns)

    Modeling on SAP 2000-V11/ ETABS -V9:

    o Definition of material, frame section, load cases, analysis cases,

    & combination.

    o Drawing the model

  • 8/22/2019 G+4 SolidSlabSystem

    6/182

    o Assigning joint constraints (joint restraints, diaphragm) lateral &

    gravity loads.

    o Set analysis options

    Run analysis options & export relevant analysis report.

    Using result of analysis of each of the cases, design of structural elements (slabs,

    beams, columns, stair, &footing) for flexure, lateral & axial load and shear

    followed. In addition design for development length is carried out.

    In the mean time, comparison of the two systems with respect to cost of

    construction material is made. However, only typical floor slab are considered for

    cost analysis, tacking in to account its major proportion than other more or less

    similar structural and none structural elements.

    Finally, representative structural detail drawing is produced.

    1.2. Structural System

    In general the structural system consists of a solid/ribbed slab floor system with a

    beam-column frame system. The slab system has a thickness of 130mm/200mm

    according to the structural importance and deflection requirement. 130mm section

    was used for the interior span two way slabs and 200mm for cantilever and one

    way slabs. 100mm for the ground floor slab as this slab is resting on the 250mm

    hardcore laid on the selected material fill on the ribbed mat. Square Reinforced

    concrete columns with 300mm and 400mm sections were used to take all vertica

    and lateral loads. Beams with 400mm x 400mm section were used to support al

    the slab systems. Independent footings with 300/400/600mm slab section and2500mm tall foundation column below the natural ground level were used as a

    foundation.

    1.3. Building Layout

  • 8/22/2019 G+4 SolidSlabSystem

    7/182

    a. Three Dimensional Layout of The Building

    b. Ground Floor Plan

  • 8/22/2019 G+4 SolidSlabSystem

    8/182

    c. Typical Floor Plan

    1.4. Quality of Construction and Method of Analysis

    o Class I work is assumed

    o Ultimate limit state (ULS) method for loading and serviceability limit state

    (SLS) for analysis

    For concrete (gc), persistent and transit gc=1.5

    Accidental gc=1.3

    For steel (gs), persistent and transit gs=1.15

    Accidental gs=1.00

    1.5. Construction materials

    Taking in to account availability of quality construction materials and skilledworkmanship concrete of quality C25 and steel of grade S300 are used.

    Concrete C-25:

    Fck=20Mpa,fcu =25Mpa

    Fcd=0.85fck/1.5=11.33Mpa

    Fck=0.7fctm,fctm=0.3*fck2/3

    =0.21* fck2/3=1.5473/1.5=1.0315Mpa

    Fctd=fctk/g=1.5473/1.5=1.0315Mpa

    Ecm=9.5*(fck+8)1/3=9.5*(20+8)1/3=28.85Gpa29 Gpa

    gc=24KN/m3

    steel S300:

    fyk=300Mpa

    fyd=fyk/gs=300/1.15=260.87Mpa

    gs=77KN/m3

    Es=200Gpa

    Timber

    Esu=0.6Mpa

    g=6KN/m3

    n=

    flooring

    marble tile 27KN/m3

    pvc covering 16KN m3

    wall

  • 8/22/2019 G+4 SolidSlabSystem

    9/182

    HCB gHCB=14KN/ m3

    Glazing

    Glass 25 KN/m3

    Aluminum 27 KN/m3

  • 8/22/2019 G+4 SolidSlabSystem

    10/182

    1.6. Loading

    Since the site is located in Addis Ababa, which is in the area of seismic zone 2

    according to EBCS-8/95, in addition to vertical loading Earthquake loading was

    considered. The major loadings considered are:

    Vertical Loading: Dead Load (DL) - (Self Weight, Wall Load and Finishing Load,

    Roof loading)

    Live load (LL)

    Lateral Loading: Earthquake load in X and Y direction (EQX & EQy)

    Wind Load

    The above loadings make up a total of nine different combinations.

    No. Combination Name Factored Loading Combination

    1 Comb1 1.3DL+1.6LL

    2 Comb2,3 0.75(1.3DL+1.6LL) EQx

    3 Comb4,5 0.75(1.3DL+1.6LL) EQy

    4 Comb6,7 0.75(1.3DL+1.6LL) EQx 5%Eccentricity in y dir

    5 Comb8,9 0.75(1.3DL+1.6LL) EQy 5%Eccentricity in x dir

    Out of the five combinations the critical case was taken for the analysis and design

    of beams, slabs and columns. The footing was analyzed and designed for Combo1

    (Vertical Loading).

    1.7. Codes and References

    EBCS 1-1995 EBCS 2-1995 and associated tables & charts

    EBCS 5-1995 EBCS 6-1995

    EBCS 7-1995 EBCS 8-1995 and

    Euro Code 2-1992 (as used by the software), almost similar to EBCS-2/95

    1.8. Design aids

  • 8/22/2019 G+4 SolidSlabSystem

    11/182

    Sap 2000 -V11for modeling and analysis of solid slab G+4 building as 2D

    frame

    Etabs-V9 for modeling and analysis of ribbed slab same building as 3D

    frame

    Ms-Word, Ms-Excel are also used to facilitate computation and edition of this

    booklet

    Arch-CAD12 and AutoCAD 2007 for 3D modeling, working dawning, and bar

    schedule

    2. Wind Load Analysis

    2.1. Roof wind load analysis

    ROOF LOADING

    LIVE LOAD

    ROOF CATEGORY (EBCS-1, 1995 TABLE 2.13)

    Roof not accessible except for normal maintenance, repair, painting &minor repairs

    are under category H.

    Imposed load on roof for slope category H

    Roof is qk=0.25 KN/m

    2

    Qk= 1KN

    WIND LOAD

    DETERMINATION OF EXTERNAL WIND PRESSURE (We)

    The wind pressure acting on external surface of a structure.

    We, shall be obtained from

    ( ) peeeref CzCqWe = ---------------------EBCS-1, 1995 Eqn 3.1

    Where qref = reference mean wind velocity pressure derived from reference wind

    velocity.

    Ce = exposure coefficient accounting for the terrain & height above the ground up

    to a height z.

  • 8/22/2019 G+4 SolidSlabSystem

    12/182

    (Ze) = reference height for the relevant pressure coefficient.

    B. DETERMINATION OF REFERENCE WIND PRESSURE (qref)

    refref vq2

    2

    = EBCS-1, 1995 sec. 3.7.1

    Where:

    r=air density (kg/m3) considering altitude of the place above mean sea level

    Addis Ababa is found above sea level of 2000m

    r = 0.94 kg/m3 EBCS-1,1995 table 3.1

    refv = reference wind velocity

    refv = CDIRCTEMCALT refv , 0 ..EBCS-1, 1995 sec. 3.7.2(2)

    Mean return period 50 years..EBCS-1,1995 sec. 3.7.2(1)

    Where

    CDIR =is the direction factor taken as 1

    CTEM = is the temporary (seasonal) factor to be taken as 1

    CALT = is the altitude factor to be taken as 1

    refv , 0 = is the basic value of reference wind velocity to be taken as 22m/s.

    refv = CDIRCTEMCALT refv ,0 EBCS-1,1995- eqn. 3.7

    =1*1*1*22m/se

    =22m/se

    Reference wind pressure ( refq )

    refref

    vq2

    2

    =

    22*294.0=refq

    2 =227.48

    DETERMINATION OF EXPOSSURE COEFFICIENT, Ce (z).

    The exposure coefficient taken in to account, (Ce, z). The effect of

    Terrain roughness

  • 8/22/2019 G+4 SolidSlabSystem

    13/182

    Topography and

    Height above ground on the mean wind speed and turbulence

    ..EBCS-1, 1995 sec.3.8.5 (1)

    For codification purpose it has been assumed that the quasi-static gust load is

    determined from. EBCS-1, 1995 sec. 3.8.5(2)

    ( ) ( ) ( ) ( ) ( )

    +=

    zCzC

    kzCzCzC

    tr

    Ttre

    71

    22

    .EBCS-1, 1995 eqn.3.15

    Where:

    kT = is the terrain factor defined as (for terrain category IV) urban areas in which

    at least 15% of the surface is covered with building & their average height exceeds

    15m.

    kT =0.24 ...EBCS-1, 1995 tab.3.2

    Cr (z) = the roughness coefficient account for the variability of mean wind

    velocity at the site of the structure due to

    The height above the ground level (z)

    The roughness of the terrain depending on the wind direction

    ...EBCS-1, 1995 sec.3.8.2

    Cr (z), at height z is defined by logarithmic profile

    One of the two cases must satisfy

    Case-1 ( )

    =

    0

    lnz

    zKzC Tr for zmin

  • 8/22/2019 G+4 SolidSlabSystem

    14/182

    And height of building z = 16.50m

    zmin= 16m < z = 16.50m .satisfies case 1

    Roughness coefficient

    = 0.24 ln (16.50/1) = 0.673

    Topography coefficient accounts for the increase of mean wind speed over isolated

    hill & ridges.

    Ct (z) = 1 .................EBCS-1, 1995 sec. 3.8.4(2)

    Exposure coefficient

    ( ) ( ) ( )( ) ( )

    +=

    zCzC

    kzCzCzC

    tr

    Ttre

    71

    22

    = 0.673

    2

    *1

    2

    (1+(7*0.24)/(0.673*1)) = 1.5836

    D. DETERMINATION OF EXTERNAL PRESSURE COEFFICIENT (Cpe

    (z))

    External pressure coefficient for hipped roofs.

    For wind direction = 0

    0

    For wind direction = 90

    0

    ( )

    =

    0

    lnz

    zKzC Tr

    20.70 23.90

    Wind

    =00

    Wind

    =900

    a=00

    a=900

    For wind direction = 0

    0

    For wind direction

    = 90

    0

  • 8/22/2019 G+4 SolidSlabSystem

    15/182

    o= tan-1(1.5*2/20.7)=8.250 90= tan-

    1(1.5*2/10.45)=8.170

    Reference height: ze=h=16.50m Reference

    height: ze=h=16.50m

    e=b or 2h whichever is smaller

    b=cross wind dimension

    FOR WIND DIRECTION =900

    Imposed areas

    F = 2.07*3.175=6.75=2*(6.75+2.12)=17.74m2

    o.5*2.07*2.05=2.12

    G = 2.07*10.25=21.22 m2

    H = 0.5*16.60*8.38=69.55 m2

    I = 0.5*16.56*8.33=68.97 m2

    J = (0.5*20.70*10.45)-68.97=39.19 m2

    L = 2.07*10.35=21.42 m2

    M=0.5*8.28*8.28=34.28 m2*2=68.56m2

    N=0.5*(21.83+3.10)*10.35-

    34.28=94.73 m2*2

    =189.466 m2

    FOR WIND DIRECTION =00

    F=3.562*2.39=8.51

    =0.5*2.413*2.39=2.88

    =2(8.51+2.88)=22.78 m2

    G=11.95*2.39=28.56 m2

    H=0.5(18.38+3)*7.96=85.01 m2

    I=0.5(0.74+19.12)*7.96=79.04 m2

    J=2.39*7.96=19.02*2=38.05 m2

    K=0.5(3+5.52)*2.39=10.18 m2

    L=0.5(10.45*20.70)-

    84.49=23.67*2=47.34 m2

    M=0.5(9.24*18.31)=84.59*2=169.18

    m2

  • 8/22/2019 G+4 SolidSlabSystem

    16/182

    Excel values are required from

    wondmagegn

    1.3 DESIGN OF ROOF COVER (DESIGN OF EGA)

    Maximum wind load (critical windload) is

    WL=-0.521 KN/m2from

    computation

    Live load from .EBCS-1,

    1995

    Distributed live load qk=0.25 KN/m2

    Concentrated live load Qk=0.25 1KNPurlin spacing=1.5m

    Take EGA-300 from KMPF manual

    Thickness t=0.5mm, section modulus

    Sx=1970

    Load W=3.92kg/m

    Uniform load carrying capacity

    =1.36KPa=ULC

    Load computation for roof cover

    EGA width is 0.90m

    EGA load in KN/m2

    DLEGA=(3.92Kn/m)/(0.90m)

    2/044.01000

    10*

    92.0

    /92.3mKN

    m

    mKNDLEGA ==

    Case -1Pd=LLq+DL

    =1.6 qk+1.3 Gk

    =1.6*0.25+1.3(0.044)

    =1.6*0.25*cos(8.25)+1.3(0.044)

    =0.453KN/m2

  • 8/22/2019 G+4 SolidSlabSystem

    17/182

    mKNmWlPL

    M /609.08

    5.1*0572.0

    4

    5.1*58.1

    84

    22

    =+=+=

    Section modulus, SX

    Allowable carrying capacity of roof is 250N/mm2

    32

    6

    4.2434/250

    /10*609.0 mmmmN

    mNmmMSall

    x ===

    From table of KMPF manual selec EGA sheet having section of modulus Sx

    >2434

    Take section of modulus Sx =2749mm

    3

    Section property

    Thikness t=0.7mm

    Weight w=5.49kg\m

    Capacity=1.90kpa

    Dead Load of EGA=

    2/061.00.9*1000

    10*5.49mkn=

    Perpendicular dead load of EGA Ro0f is

    DL EGA =O.O61 cos8.25

    =0.0604

    Load computation at 0=8.25

    Case 1

    Pd=LLq+DL

    =1.6qk+1.3Gk

    =1.6*0.25COS8.25+1.3

    (0.0604)

    =0.474KN/m2

    Case 2

    Pd=WL+DL

    =1.6WL+0.9GK

    =1.6*O.521+0.9(0.060

    4)

    =0.834KN/m2

    Case 3

    Pd=LLQK+DL

    =1.6QK+1.3GK

    =1.6*1*cos8.25+1.3(0.0604)

    =1.583KN+0.0785KN/

    m2

    Moment Computation

  • 8/22/2019 G+4 SolidSlabSystem

    18/182

    Case1

    M=Pd

    L2/8=0.474*1.52/8=0.1

    33KNm/m

    Case 2

    M=PdL2/8=0.834*1.52/8

    =0.235kNm/m

    Case 3

    M=Pd*L/4+PdL2/8

    =1.583*1.5/4+0.0785*

    1.52/8

    =0.616kNm/m

    Section modulus computation

    SX=M/rall=0.616*106Nmm/m/250N/mm2

    2464.31mm3

  • 8/22/2019 G+4 SolidSlabSystem

    19/182

    Reaction forceKN

    WLR 344.0

    2

    5.1*459.0

    2===

    Exterior reaction force Re=0.344KN at 0.9m spacing,

    Interior reaction force Ri=0.344KN at 0.9m spacing on rafter of the truss.

    LOAD FROM TRUSS

    Material property:-property of equliptus.

    TRUSS TOTAL LENGTH COMPUTITION

    Truss 1

    Major horizontal =10.45m

    >> Vertical =1.50m

    >> Diagonal (rafter) =10.56m

    Total length =22.51m

    Vertical & diagonal members

    Spacing of vertical i=1.20m

    Slope of roof in (%)=14.36%

    No of verticals =9

    No of diagonals =8

    No of joints =10

    Total length of vertical and diagonal

    members =17.35

    TOTAL LOAD COMPUTATION

    Factor loads:

    wt(10)=16.6m*0.087 KN/m=1.44 KN

    wt(12)=22.62m*0.125

    KN/m=2.83 KN

    total load of truss

    =4.27 KN

    No of joints =10

    Unit wt.

    (KN/m3)

    diameter(

    m)

    area(m2

    )

    wt.

    (KN/m)

    remark

    10 8.5 0.10 0.0079 0.067 V&D members

    12 8.5 0.12 0.0113 0.096 major

    V,H&rafter

  • 8/22/2019 G+4 SolidSlabSystem

    20/182

    0.614

    0.6141.22

    1.22 1.221.22

    1.221.22

    1.221.22

    0.103

    R1 R2

    12 11

    R3

    0.10

    3

    0.20

    60.20

    6

    0.20

    6

    0.20

    63

    0.20

    6

    0.20

    6

    0.20

    6

    0.20

    6

    0.10

    3

    A B C D E F G H I

    I

    I

    I

    I

    I

    J

    12 3

    45

    67

    89

    Reactions on truss

    Truss Stretching Axes A-B-C

    Analysis Result

    Truss Stretching Axes 1-2-3

    Analysis Result

    2.3. Truss Analysis and Design

    Internal joints =8

    External joints =2

    Loads on truss joints

    KNsofvertical

    totalloadsernaljo 474.0

    9

    27.4

    #intint ===

    KNloadsernaljo

    sexternaljo 237.02

    474.0

    2

    intintint ===

    DEAD LOAD OF CHIP WOOD CEILING (CHIP BOARD)

    Properties of chip board

    Unit wt., =8KN/m3

    Thickness, t=8mm=0.008m

    Truss spacing =1.5m

    Length =10.45m

    Wt=*t*l*c/c spacing

    =8KN/m3*0.008m*10.45m*1.5m

    =1.0032KN

    Factored load=1.3*1.0032KN

    =1.30416 KN

    DEAD LOAD OF CEILING BATTENS (30mmx40mm)

    Spacing c/c=60mm

    In the truss direction # of ceiling

    battens=10.45/0.6=17.4

    Use 18 battens

    Other direction # of ceilingbattens=1.5/0.6=2.5,use 3 battens

    Length of ceiling battens is

    =18*1.5+3*10.45=58.35m

    Unit wt, = 6kN/m3

    Wt of

    battens=6*0.03*0.04*38.35=0.42012

    KNFactored battens load =0.546156kN

    Total load at the bottom of the truss

    Joints

    Load

    =1.30416+0.546156=1.850kN

    # Of Joints=10

    Exterior =2

    Interior =2

    Joint load Int = kN206.09

    850.1=

    Joint load ext = kN103.02

    206.0=

    Total load at the top of the truss joints

    Interior joint load =0.688+0.51=1.188

    KN

    Exterior joint load

    =0.344+0.26=0.604 KN

  • 8/22/2019 G+4 SolidSlabSystem

    21/182

    I

    2.3. Wall Wind Load Analysis on External and Internal Surfaces of

    Building

    I. Wind Load External Surfaces

    We =qrefce(ze)cpe

  • 8/22/2019 G+4 SolidSlabSystem

    22/182

    qref=5/2v2req ,

    =

    =

    3/94.0

    sec/22

    mkg

    mrefv

    since

    Addis Ababa >2500 amsl

    = 0. 94/2kg/m3 *22m/sec =2/48.227 mN

    Ce(z)=Cr2(z) Ct2(z)

    +

    )()(

    71

    zCzzC

    kg

    r

    - Terrain category IV for urban

    areas

    - Kt=0.24 zo(m)=1 zmin(m)=16

    - Crz=crz(min)=ktln(zmin/zo

    since z=15

  • 8/22/2019 G+4 SolidSlabSystem

    23/182

    C)

    h=15m and b=19.9

    he=19.9m

    We,A=227.48*1.575*-1=-0.358kN/m2

    We,D=227.48*1.575*-

    0.764=0.274kN/m2

    We,B=227.48*1.575*-0.8=-

    0.287kN/m2

    We,E=22.48*1.575*-0.3=-0.108kN/m2

    WeC=227.48*0.5=-0.5=-0.175kN/m2

    II) Wind load on internal surfaces

    These pressures are neglectedbecause the openings on both the wind ward and

    leeward directions are the same, and the net effect on the entire structure is zero.

    3. Solid slab analysis

    Coefficient and strip methods of solid slab analysis are used here. Since the

    building is symmetric in two directions we considered quarter of the building for

    design of slabs in each typical panel.

    zone A B C D Ed/n Cpe,10 Cpe,10 Cpe,10 Cpe,10 Cpe,101 -1 -08 -0.5 +0.8 -0.34 -1 -08 -0.5 +0.6 -0.3234=1.5

    4

    15

    -1 -08 -0.5 +0-

    764

    -0.3

    B=19.

    9

    A

    B

    C

    E

    D

    H=2

    3.1

  • 8/22/2019 G+4 SolidSlabSystem

    24/182

    Quarter of typical floor layout

    3.1. Water Tank Seat Slab

    Design considerations

    5 people per household

    100 liter reserve water requirement per head (individual) for

    residential building

    4 households in each floor except ground floor

    Two water tanks

    Total volume of water; VT=4floors*4households*5individuals per

    household*100l=800l

    Each of tanks expected to hold V=800/2=400l=4m3

    Assume: A 2.5m diameter cylindrical Roto reservoir.

    V=D2h/4h=4V/D2=(4*4m3)/(2.5)2=0.815m

    Take h=1m (standard size)

  • 8/22/2019 G+4 SolidSlabSystem

    25/182

    V=(D2h)/4=(*2.52*1)/4=4.91m3

    Wwater=w*Vw=4.91m3*10KN/m3=49.1KN.

    W=49.1KN/(D2/4)=10KN/m2

    Depth determination ;Ly/Lx=1.815 Ly/Lx a

    d(0.4 +0.6*300/400)2700/a 2 25

    0.85*2700/26.85=85.475mm 1.815 ? a=25+(35-25)

    ((2-1.815)/(2-1))

    1 35

    =26.85

    Take d=86mm

    D=86+12/2+15=107mm

    Take D=110mmd=89mm

    Design Load :

    w=1.3*[0.11*25+10]+1.6*0.5; Assuming no occupancy except for casual

    maintenance.

    =17.375KN/m2

    Design Moment:

    Ly/Lx xf/xs

    1.75 0.103

    1.815 ? x=(0.111-0.103)[(1.82-1.75)/(2.1)]

    +0.103=0.105

    2 0.111

    ys=yf=0.056

    Mxs=0.105*17.375*2.72=13.3 KNm =Mxf

    Mys=0.056*17.375*2.72=7.09KNm=Myf

    Design for Flexure

  • 8/22/2019 G+4 SolidSlabSystem

    26/182

    A) For Span Moment

    Check for ductility

    Depth check:

    !.......8908.63

    33.11*1000*295.0

    /10*3.13

    **

    26

    OKmmmmmmKN

    fb

    Md

    cd

    f min

    As, cal= 0.007*1000*89mm= 623.06mm2

    i) Middle Strip

    Reinforcement

    51.54/12

    06.623

    4/12#

    2

    2

    2

    , ===

    mm

    D

    Abars

    cals

    Provide 6 12 bars per meter width

    Spacing:

    mm

    mm

    mmh

    mmAA

    S

    rebarcals

    52.181

    350

    220110*22

    52.181

    4/12*06.6231000

    /1000

    2,

    max =

    ==

    ==

    Apply 12 C/C 180mm

  • 8/22/2019 G+4 SolidSlabSystem

    27/182

    ii) Edge Strip

    Reinforcement

    =4.28[minimum reinforcement]

    Provide 5 12 bars per meter width

    Spacing

    Apply 8 C/C 230mm

    B) For Support Moment

    Depth check

    !.......77128906.4633.11*1000*295.0

    /10*09.7

    **

    26

    OKmmmmmmKN

    fb

    Md

    cd

    f =min

    As, cal= 0.00486*1000*77mm= 373.86mm2

    31.34/12

    86.3734/

    12#2

    2

    2, ===

    mmDAbars cals

    Apply 4 12 bars per meter width

  • 8/22/2019 G+4 SolidSlabSystem

    28/182

    mm

    mm

    mmh

    mmAA

    S

    rebarcals

    220

    350

    220110*22

    51.302

    4/12*86.373

    1000

    /

    1000

    2,

    max =

    ==

    ==

    Provide 12

    C/C 220mm

    3.2 Ground floor slab

    The design of ground floor slab is similar to that of the other floor slab. In theground floor slab design we have two alternatives. The first alternative is that two

    lay the slab on the ground when the stability & strength of the ground soil is good.

    Theether alternative is to suspend the ground floor slab on the tie-beames like the

    other floor.

    In our case we madethe slab lay on the soil for our academic interest

    Slab depth determination

    The minimum slab depth determined from minimum depth require for deflection

    according to EBCS 2 this depth has to be checked for flexural requirement after

    the computation of bending moment

    )4006.04.0(

    ykfd +=

    ba

    le

    Where fyk = the characteristics strength of the rebar

    Le = effective span &for two way slab the

    Be = constant from table

    Depth for cantilever slab

    One way slab

    Le = 2.15m

    Ba = 10

  • 8/22/2019 G+4 SolidSlabSystem

    29/182

    d =10

    21500.85= 182.75mm

    Clear louver for internal structure

    D = 182.75mm +15+7=204.75mm

    Slab loading

    The loads involved on designing the slab are

    1. Dead weight of slab & partition wall carried by the slab

    2. Live load to each floor is obtained according to the function of the room as

    specified EBCS 1-1995 table.

    Slab design moment (for slab)

    The bending moment that are required for the determination of reinforcement

    can be computed for the design loads computed for each panel in previoussection according to EBCS 2 1995

    Check for slab depth

    For flexure

    The slab total depths have provided was from the requirement of deflection.

    This depth has to be checked for flexure requirement has to be checked for

    flexure requirement

    mfcdbmd m= max moment in the slab

    M

    fcd= concrete strength

    b= liner width taken

    for shear

    The shale is checked for the highly loaded panel w/c is --------------------

    Slab reinforcement

    the area of steal required for a section with given the acting moment ,the depth

    &width can be calculated according limit design aids for reinforced concrete

    member issued by BDE km= 2bdm ,k3 is value from table ab=

    d

    ksmd

  • 8/22/2019 G+4 SolidSlabSystem

    30/182

    3.3. Typical Floor Slab

    a) Pannel-1

    One way end span ( which can be treated as beam ) a=24

    from serviceability requirement

    mmlef

    da

    yk170

    24

    4800*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=170mm

    b) Pannel-2

    One way interior span a=28

    mmlef

    da

    yk

    57.17828

    5000*)400

    300*6.04.0()4006.04.0( =+=+>=

    Use d=179mm

    c) Pannel-3

    Two way end span

    Lx=2150-400/2=1950mm=Le

    (Assuming a 400mm width strong band along the unsupported side)

    Ly=2700mm

    mmL

    L

    x

    y39.1

    1950

    2700==

    1.36)12

    39.12(*)3040(3039.1

    21

    239.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk914.45

    1.36

    1950*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=46mm

    Ly/Lx a2 30

    1.02 ?1 40

    Ly/Lx a

    2 30

    1.39 ?

    1 40

  • 8/22/2019 G+4 SolidSlabSystem

    31/182

    d) Pannel-4

    Two way end span

    Lx=4800mm=Le

    Ly=4900mm

    mmL

    L

    x

    y021.1

    4800

    4900==

    79.39)12

    021.12(*)3040(3039.1

    21

    2021.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk54..102

    79.39

    4800*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=46mm

    e) Pannel-5

    Two way end span

    Lx=4900mm=Le

    Ly=5000mm

    mmLL

    x

    y02.1

    49005000 ==

    8.39)12

    02.12(*)3040(3039.1

    21

    202.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk65.104

    8.39

    4800*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=105mm

    f) Pannel-6

    Two way end span

    Lx=2300-400/2=1900mm=Le

    Ly/Lx a2 30

    1.02 ?1 40

    Ly/Lx a2 30

    1.42 ?1 40

  • 8/22/2019 G+4 SolidSlabSystem

    32/182

    (Assuming a 400mm width strong band

    along one side)

    Ly=2700mm

    mm

    L

    L

    x

    y421.1

    1900

    2700==

    75.35)12

    421.12(*)3040(3039.1

    21

    2421.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk18.45

    75.35

    1900*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=46mm

    g) Pannel-7

    Two way end span

    Lx=2900mm=Le

    Ly=4800mm

    mmL

    L

    x

    y66.1

    2900

    4800 ==

    4.33)12

    66.12(*)3040(3039.1

    21

    266.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk802.73

    4.33

    42900*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=74

    h) Pannel-8

    Two way end span

    Lx=2900mm=Le

    Ly/Lx a2 30

    1.72 ?1 40

    Ly/Lx a2 30

    1.66 ?1 40

  • 8/22/2019 G+4 SolidSlabSystem

    33/182

    Ly=5000mm

    mmL

    L

    x

    y724.1

    2900

    5000==

    76.32)12

    724.12(*)3040(3039.1

    21

    2724.1

    3040

    30=

    +===>=

    =

    xmmx

    mmlef

    da

    yk24.75

    76.32

    2900*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    Use d=76mm

    For one way slabs

    The maximum effective depth so far was 170mm assuming 12 main

    reinforcement bars and 15mm clear cover

    D=170+12/2+15=191mm

    Take D=200mm==> d=200-12/2-15=179mm

    For one way slabs

    The maximum effective depth so far was d=105mm assuming 12 main

    reinforcement bars and 15mm clear cover

    D=105+12/2+15=126mm

    Take D=130mm==> d=130-12/2-15=109mm

    3.2 LOADING

    i. DEAD LOAD

    SELF WEIGHT

    130mmRCslab=0.13*25=3.25KN/m2

    200mmRCslab=0.20*25=5KN/m2

    30mm cement screed=0.03*23=0.69KN/m

    20mm floor finish(terrazzo til,ceramic, or pvc)

    20mm selling=0.02*23=0.46KN/m2

    Partition wall with finishing distributed over the respective panels:

    Pannel-1

    ((4.80+2.15)*0.2*14+(4.80+2.15)*0.04*23)*3=77.562KN

  • 8/22/2019 G+4 SolidSlabSystem

    34/182

    ==> 2/52.715.2*80.4

    562.77mKN

    mm

    KN=

    Pannel-2

    ((5.00*0.2+2.15*0.1)*14+(5.00+2.15)*0.04*23)*3=70.764KN

    ==> 2/58.615.2*00.5

    764.70mKN

    mm

    KN=

    Panel-4

    ((4.80+1.45)*0.1*14+(4.80+1.45)*0.04*23)*3=43.5KN

    ==> 2/85.7190.4*80.4

    5.43mKN

    mm

    KN=

    Pannel-5

    ((4.90*0.1*14+(4.90*0.04*23)*3=34.104 KN

    ==> 2/392.190.4*00.5

    104.34 mKNmm

    KN =

    Pannel-7

    (0.2*14+*0.04*23)*2.90*3=32.364 KN

    ==> 2/325.280.4*90.2

    364.32mKN

    mm

    KN=

    Pannel-8

    (0.1*14+0.04*23)*(2.90+5)*3=54.984 KN

    ==> 2/792.300.5*90.2

    984.54mKN

    mm

    KN=

    Note: wall along beams (on top of beam) and reasonable near beams are

    intentionally left to be loaded later on the respective beams.

    ii. LIVE LOAD

    Residential building==>category A

    I. Panel 3&6

    Longer side unsupported two way slabs

    (Strip method of analysis)2.70

    2.15(1-)b

    b

    K1

    (1-K1)

    -K2 (1+K 2)

  • 8/22/2019 G+4 SolidSlabSystem

    35/182

    P=1.3(5.09)+1.6(2)=9.82 KN/m2

    D=130mm, ==> d=130-12/2-15=109 mm

    fcu=25Mpa ==>fcd=11.33 Mpa

    fyk=300Mpa ==> fyk =260.87 Mpa

    Let b=0.4m ==>=0.4/2.15=0.186

    To apply at least minimum reinforcement bar in the longer direction

    i.e. rmin=o.5/fyk=0.5/300=1.67*10-3

    ==>Amin= rmin*b*d=1.67*10-3*103*109=181.67mm2/m width

    Using 8 bars:

    Spacing S= ( )m

    mm

    mmh

    A

    a

    s

    s

    69.276

    250

    300150*2267.181

    4

    8**1000

    *1000

    2

    =

    ==

    =

    take S=250mm

    Therefore 23

    2

    min 08.201250

    10*4

    8*

    mms

    ba

    As

    s ===

    3

    310*85.1

    109*10

    08.201

    ===

    bd

    As

  • 8/22/2019 G+4 SolidSlabSystem

    36/182

    We know that

    =

    yd

    cd

    cd

    sd

    f

    f

    fdb

    M*

    **

    211

    2

    Rearranging terms

    = *5.01***2

    cd

    yd

    cd

    yd

    sd f

    f

    fdbf

    f

    M cd

    mkNMsd

    =

    = 612.510*85.1*

    33.11

    87.2605.0110*85.1*33.11*109*1000*

    33.11

    87.260 332

    ==>select k1=0.5 since the panel is newly squared.

    ==>k1=0.5*9.82=4.91 kN/m2

    mkNwl

    kMys === 67.42

    95.1*91.4*5.0

    22

    1 22

    1

    ( )

    ( )

    ( ) ( )( )

    mkNwb

    M

    kk

    ys

    =

    +

    =

    += 372.0

    186.02186.0

    15.2*82.9

    67.4*2186.01

    *5.02

    21 2

    2

    2

    2

    12

    ==>k2=0.372*9.82=3.654 KN/m2

    Check!

    Mys=4.91*1.752/2-3.654*0.4*1.95=4.47 kN-mOK!

    The maximum positive moment in the y-direction strips will be located atpoint of zero shear with y1 as the distance of that point from the free edge to

    the zero shear location:

    o.4*3.654-4.91*(y-0.4)=0

    Y1=0.7m

    The maximum positive moment, found at that location is:

    Myf= k2 *0.4*( Y1-0.4/2)- k1 *((Y1-0.4)/2)2

    Myf=3.654*0.4*(0.7-0.4/2)-4.91*((0.7-0.4)/2)2=0.51KNm

    For latter reference in cutting of bars, the point of inflection is located a

    distance y2 from the free edge:

    4.91

    Myf

    Y

    1

    3.6

    54

    0.4

  • 8/22/2019 G+4 SolidSlabSystem

    37/182

    3.654*0.4*(y2-0.4/2)-(4.91/2)*(y2-0.4)2 =0

    For the x-direction slab strips, the cantilever moment is:

    (1-k1)*=(1-0.5)*9.82=4.91 KN/m2

    The cantilever Mx=4.91*2.72/2=17.9 kNm

    A ratio of negative to positive moments of 2.0 will be chosen here:Negative Mxs=17.9*2/3=11.93 KNm

    Positive Mxf=17.9 *1/3=5.97 KN/m

    The unit load on the strong band in the x-direction is:

    (1+k2)*=(1+0.372)*9.82=13.473 KN/m2

    So for the 0.4m wide band the load per meter is

    0.4*13.473=5.39 KN/m

    (Reaction from the stair is included here)

    The cantilever negative and positive strong band moments are respectively:

    Cantilever Mx=5.39*2.72/2=19.65 KN-m

    Negative Mxs=19.65*2/3=13.10 KN-m

    Positive Mxf=19.65 *1/3=6.55 KN-m

    With negative moment of 14.32 kN and support reaction of 5.39*2.7/2=7.28

    KN The point of inflection in the strong band is found as follows:

    13.473+7.28x-5.39x2/2=0

    II. Panel -6

    Longer side unsupported two way slabs

    (Solid slab analysis)

    2.70

    2.0(1-)b

    b

    K1

    (1-K1)

    -K2 (1+K

    2)

  • 8/22/2019 G+4 SolidSlabSystem

    38/182

    P=1.3(5.09)+1.6(2)=9.82 KN/m2

    D=130mm, ==> d=130-12/2-15=109 mm

    fcu=25Mpa ==>fcd=11.33 Mpa

    fyk=300Mpa ==> fyk =260.87 Mpa

    Let b=0.4m ==>=0.4/2.15=0.186

    To apply at least minimum reinforcement bar in the longer direction

    i.e. rmin=o.5/fyk=0.5/300=1.67*10-3

    ==>Amin= rmin*b*d=1.67*10-3*103*109=181.67mm2/m width

    Using 8 bars:

    Spacing S=

    ==

    ==

    mm

    mmh

    mmA

    a

    s

    s

    250

    300150*22

    69.27667.181

    4

    8**1000

    *1000

    2

    Take S=250mm

    Therefore 23

    2

    min 08.201250

    10*4

    8*

    mms

    baA ss ===

    3

    310*85.1

    109*10

    08.201

    ===

    bd

    As

    We know that

    =

    yd

    cd

    cd

    sd

    f

    f

    fdb

    M*

    **

    211

    2

    Rearranging terms

  • 8/22/2019 G+4 SolidSlabSystem

    39/182

    = *5.01*** 2

    cd

    yd

    cd

    yd

    sdf

    ffdb

    f

    fM cd

    mkNMsd

    =

    = 612.510*85.1*

    33.11

    87.2605.0110*85.1*33.11*109*1000*

    33.11

    87.260 332

    ==>select k1=0.5 since the panel is newly squared.

    ==>k1=0.5*9.82=4.91 kN/m2

    mkNwl

    kMys === 98.32

    8.1*91.4*5.0

    22

    1 22

    1

    ( )

    ( )

    ( ) ( )( )

    mkNwb

    M

    kk

    ys

    =

    +

    =

    += 326.0

    21.022.0

    2*82.9

    981.3*22.01

    *5.02

    21 2

    2

    2

    2

    12

    ==>k2=0.326*9.82=3.2 KN/m2

    Check!

    Mys=4.91*1.62/2-3.2*0.4*1.8=3.981 kN-mOK!

    The maximum positive moment in the y-direction strips will be located at

    point of zero shear with y1 as the distance of that point from the free edge to

    the zero shear location:

    o.4*3.2-4.91*(Y1-0.4)=0

    Y1=0.661m

    The maximum positive moment, found at that location is:

    Myf= k2 *0.4*( Y1-0.4/2)- k1 *((Y1-0.4)/2)2

    Myf=3.2*0.4*(0.661-0.4/2)-4.91*((0.661-0.4)/2)2

    =0.423 KN-m

    For latter reference in cutting of bars, the point of inflection is located a

    distance y2 from the free edge:

    3.2*0.4*(y2-0.4/2)-(4.91/2)*(y2-0.4)2 =0

    For the x-direction slab strips, the cantilever moment is:

    (1-k1)*=(1-0.5)*9.82=4.91 KN/m2

    4.91

    Y1

    3.

    2

    0.

    4

    Myf

  • 8/22/2019 G+4 SolidSlabSystem

    40/182

    The cantilever Mx=4.91*2.72/2=17.9 kNm

    A ratio of negative to positive moments of 2.0 will be chosen here:

    Negative Mxs=17.9*2/3=11.93 KNm

    Positive Mxf=17.9 *1/3=5.97 KN/m

    The unit load on the strong band in the x-direction is:(1+k2)*=(1+0.326)*9.82=13.02 KN/m2

    So for the 0.4m wide band the load per meter is

    0.4*13.02=5.21 KN/m

    (Reaction from the stair is included here is 5.13KN-m)

    The total load perimeter width on strong band is

    5.13+5.21 =10.34 KN/m

    The cantilever negative and positive strong band moments are respectively:

    Cantilever Mx=10.34*2.72/2=37.69 KN-m

    Negative Mxs=37.69*2/3=25.13 KN-m

    Positive Mxf=37.69 *1/3=12.56 KN-m

    With negative moment of 25.13 KN and support reaction of

    10.34*2.7/2=13.96 KN

    The point of inflection in the strong band is found as follows:25.13+13.96x-10.34x2/2=0

    III. Panel -4

    Type1 two way slab

    Lx=4.8 and Ly=4.9

    02.18.4

    9.4==

    x

    y

    L

    L

    1.0 1.1 1.02

    1

    xs 0.03

    2

    0.037 ?

    xf 0.02

    4

    0.028 ?

  • 8/22/2019 G+4 SolidSlabSystem

    41/182

    ys=0.032 yf=0.024

    x=0.032+(0.037-0.032)*((1.021-1)/(1.1-1))=0.0331

    x=0.024+(0.028-0.024)*((1.021-1)/(1.1-1))=0.025

    P=1.3DL+1.6LL

    =1.3*(3.25+0.69+2*0.46+1.89)+1.6*2=11.923 KN/m2

    Mxs=0.0331*11.923*4.82=9.093 KN-m

    Mxf=0.025*11.923*4.82=6.868 KN-m

    Mys=0.032*11.923*4.82=8.79 KN-m

    Myf=0.024*11.923*4.82=6.593 KN-m

    IV. Panel -5

    Type 2 two way slab

    Lx=4.9 and Ly=5.0

    021.19.4

    0.5==

    x

    y

    L

    L

    ys=0.039 yf=0.029

    x=0.039+(0.044-0.039)*((1.021-1)/(1.1-1))=0.04

    x=0.029+(0.033-0.029)*((1.021-1)/(1.1-1))=0.03

    P=1.3DL+1.6LL

    1.0 1.1 1.02

    1

    xs 0.03

    9

    0.044 ?

    xf 0.02

    9

    0.033 ?

    1.5 1.75 1.655

    xs 0.05

    8

    0.063 ?

    xf 0.04

    3

    0.047 ?

  • 8/22/2019 G+4 SolidSlabSystem

    42/182

    =1.3*(3.25+0.69+2*0.46+1.392)+1.6*2=11.3276 KN/m2

    Mxs=0.04*11.3276*4.92=10.879 KN-m ?

    Mxf=0.03*11.3276*4.92=8.159 KN-m?

    Mys=0.039*11.3276*4.92=10.61 KN-m

    Myf=0.029*11.3276*4.92=7.89 KN-m

    V. Panel -7

    Type 2 two way slab

    Lx=2.9 and Ly=4.8

    655.19.2

    8.4==

    x

    y

    L

    L

    ys=0.039 yf=0.029

    x=0.058+(0.063-0.058)*((1.655-1.5)/

    (1.75-1.5))

    =0.0611

    x=0.043+(0.047-0.043)*((1.655-1.5)/

    (1.75-1.5))

    =0.046

    P=1.3DL+1.6LL

    =1.3*(3.25+0.69+2*0.46+2.325)+1.6

    *2

    =12.54 KN/m2

    Mxs=0.0611*12.54*2.92=6.44 KN-m

    Mxf=0.046*12.54*2.92=4.85 KN-m

    Mys=0.039*12.54*2.92=4.11 KN-m

    Myf=0.029*12.54*2.92=3.06 KN-m

    VI. Panel -8Type 2 two way slab

    Lx=2.9 and Ly=5.0

    724.19.2

    0.5==

    x

    y

    L

    L

    ys=0.039 yf=0.029

    1.5 1.75 1.72

    xs 0.05 0.06 ?

    xf 0.04 0.04 ?

    x=0.058+(0.063-0.058)*((1.724-1.5)/

    (1.75-1.5))

    =0.0625

    x=0.043+(0.047-0.043)*((1.724-1.5)/

    (1.75-1.5))

    =0.0466

    P=1.3DL+1.6LL

    =1.3*(3.25+0.69+2*0.46+3.792)+1.6*2

    =14.45 KN/m2

    Mxs=0.0625*14.45*2.92=7.6 KN-m

    Mxf=0.0466*14.45*2.92=5.66 KN-m

  • 8/22/2019 G+4 SolidSlabSystem

    43/182

    Mys=0.039*14.45*2.92=4.74 KN-m Myf=0.029*14.45*2.92=3.52 KN-m

  • 8/22/2019 G+4 SolidSlabSystem

    44/182

    VII. Panels- 1,2&3

  • 8/22/2019 G+4 SolidSlabSystem

    45/182

    (One way cantilever slab)

    W1=1.3*(5+0.69+2*0.46+7.52)+1.6*4KN/m=24.769KN/m

    W2=1.3*(5+0.69+2*0.46+6.58.)+1.6*4KN/m=23.547KN/m

    Assuming 20% moment redistribution:

    2.045.66

    45.66=

    x==>x2=53.16 2.0

    98.1

    98.1=

    x==>x2=1.584

    Let us find maximum span moment, where shear force is zero.

    Consider the following section:

    BM

    D

    1.584

    ? ?

    53.16KN-m

    0.40mm

    24.769

    KN/m

    4.8m

    53.16 KN-m

    RB1

    RA

    Mx

    24.769

    KN/m

    20.347

    KN/m

    BM

    D

    1.98 KN-

    m

    40.71 KN-

    m

    34.46 KN-

    m

    66.45

    KNm

    5

    m0.40

    mm

    4.8

    m

  • 8/22/2019 G+4 SolidSlabSystem

    46/182

    Taking moment about point B

    53.16+4.8RA=24.769*5.22/2

    RA=58.531KN

    RB1=70.268KN

    Now, let x be the distance of zero shear form left edge in a span AB.

    24.769*x=58.531

    ==>x=2.37m

    Mx=(2.37-0.4)*58.531-

    24.769*2.372/2

    =45.744KN

    Consider again the following section:

    Taking moment about point B.

    53.16+5RC=20.347*5 2/2

    RC=40.236 KN

    ==>RB2=5*20347-40.236=61.5KN

    RB=RB1+RB2=131.77KN

    Let y be the distance of form right edge zero shear in a span BC.

    5.0

    m RC

    RB1

    Mx

    20.347

    24.769

    KN/m

    x

    53.16 KN-m

    xR

    A

    53.16 KN-m

  • 8/22/2019 G+4 SolidSlabSystem

    47/182

    20.347*y=40.236

    ==>y=1.98m

    My=RC*y-20.347*y2/2

    =40.236*1.98-20.347*1.982/2

    =39.783 KN

    After redistribution:

    i. SECTION A-A

    Cx=0.338+(0.325-0.338)*(1.256-1.2)/(1.3-

    1.2)=0.331

    Cy=0.172+(0.135-0.172)*(1.256-1.2)/(1.3-1.2)=0.1513

    0.4

    k=0.37

    11.93 BMD1.584

    45.744

    39.783

    53.16 KN-

    m

    5.97

    k=0.2

    33

    2

    1

    4.8 5.0 2.7

    Lx/Ly Cx Cy1.2 0.33 0.171.25 ? ?1.3 0.32 0.13

    BMD1.584

    46.059 KN-m 39.72

    53.16 KN-

    m

    My

    20.347

    KN/m

    y

    53.16 KN-m

    RC

    4.187

    -7.743-4.187

    -4.187

    0.628

    4

    0.649

  • 8/22/2019 G+4 SolidSlabSystem

    48/182

    Mxf=0+0.33*11.93=3.95

    Myf=5.97+0.1513*11.93=7.775

    ii. SECTION B-B

    Cx=0.28+(0.314-0.28)*(1.02-1)/(1.1-1)=0.287

    Cy=0.38+(0.374-0.38)*(1.02-1)/(1.1-1)=0.379

    Mxf= Mxf+ CxM=6.868+0.287*(9.093-4.0314)=8.320

    11.93

    8.71

    4.187

    -7.7430.9232

    -4.187

    -4.0374 0.649

    8.71

    11.2711.27

    10.61 11.9

    39.852 9.852

    9.093 10.61

    k=0.208

    0.4

    k=0.3711.934.0374

    6.868 7.89 KN-m

    9.093 KN-m

    5.97

    k=0.2

    3321

    4.8 5.0 2.7

    10.61 KN-m

    Lx/Ly Cx Cy1 0.28 0.38

    1.02 ? ?1.1 0.31 0.37

    BMD

  • 8/22/2019 G+4 SolidSlabSystem

    49/182

    Myf= Myf+ CxM=6.593+0.379*(9.093-4.0314)=8.510

    iii. SECTION C-C

    iv. SECTION D-D

    BMDk=0.208

    3.06 3.52 KN-

    m

    4.11KN

    mk=0.2

    31

    4.8 5.0

    4.74 KN-

    m

    4.425KN

    m

    4.425KN

    m

    2

  • 8/22/2019 G+4 SolidSlabSystem

    50/182

    a) left side

    Cx=0.38+(0.356-0.38)*(1.02-1)/(1.1-1)=0.375

    Cy=0.28+(0.22-0.28)*(1.02-1)/(1.1-1)=0.268

    Mxf= Mxf+ CxM=8.320+0.375*(8.79-6.44)=9.201

    Myf= Myf+ CxM=8.510+0.268*(8.79-6.44)=9.140

    b) Right side

    Mxf= Mxf+ CxM=9.201+0.375*(8.79-0)=12.497

    Myf= Myf+ CxM=9.14+0.268*(8.79-0)=11.496

    v.

    SECTION E-E

    3.52 KN-

    m4.8 5.0

    0.628

    4

    0.3716

    BMDk=0.208

    3.06KN

    m

    4.11KN

    mk=0

    .2

    321

    4.74 KN-m

    Lx/Ly Cx Cy1 0.38 0.28

    1.02 ? ?1.1 0.35 0.22

    7.9167

    0.8733-1.4767

    7.916

    7

  • 8/22/2019 G+4 SolidSlabSystem

    51/182

    c) left side

    Cx=0.28+(0.314-0.28)*(1.02-1)/(1.1-

    1)=0.287

    Cy=0.38+(0.374-0.38)*(1.02-1)/(1.1-

    1)=0.379

    Mxf= Mxf+

    CxM=8.189+0.287*(10.879-7.6)=9.1

    Myf= Myf+ CxM=7.89+0.379*(10.879-

    7.6)=9.133

    d) Right side

    Mxf= Mxf+ CxM=9. 1+0.287*(10.879-0)=12.22

    Myf= Myf+ CxM=9.133+0.379*(10.879-0)=13.256

    Panel-5

    One way cantilever slab P=1.3Gk+1.3gk+1.6qk , Gk=wall load

    qk=2 ==>P2=1.6*2=3.2 KN/m

    gk=(13.25+0.69+2*0.46)

    ==>P3=1.3*4.86=6.38 KN

    P1=8.4*1.3=10.92 KN

    M=0.3*10.92+0.42*9.518/2=4.0374

    KN

    R=0.4*9.518+10.92=14.73 KN

    10.879 KN-

    m

    7.6 KN-m

    7.6 KN-m

    9.676

    -1.2-2.076

    9.676

    BMDk=0.345

    5.66 KN-m8.159 KN-m

    k=0.2

    AB

    C

    2.9 2.1

    5

    10.879 KN-m

    0.6334

    0.3716

    0 KN-m

    k=0.465

    4.9

    7.615

    7.615

    -7.615

    0.3 0.7-

    3.264

    M

    0.10

    mm

    24.769

    KN

    0.3

    m

    9.518 KN

  • 8/22/2019 G+4 SolidSlabSystem

    52/182

    4. Stair analysis and design

    3.3 STAIR ANALYSIS

    I. Lay out and effective depth

    From serviceability requirement:

    mmlef

    da

    yk170

    24

    4800*85.0)

    4006.04.0( ==+>=

    D=170+12/2+15=191mm

    Putting on strong band to make the depth the same as the rest of slabs and avoid

    tipping effect.

    Load Area qk

    (KN/m2)

    general 2

    stairs 3

    balconies 4

    1.80

    m3.00

    m

    1.15

    m

    1.50m

  • 8/22/2019 G+4 SolidSlabSystem

    53/182

    Serviceability Check:

    mmlef

    da

    yk25.106

    24

    3000*)

    400

    300*6.04.0()

    4006.04.0( =+=+>=

    D=106.25+12/2+15=127.25 mm

    Take D=130mm ==> d=109 mm

    01 565.26)3

    5.1(tan

    3

    5.1tan ====>=

    II. LOADING

    A. Dead Load

    1. Flight

    Slab self weight + plastering mKNCos

    /405.4565.26

    23*03.025*13.0=

    +=

    steps mKN/625.1565.26cos

    23*03.025*13.0=

    +=

    2cm marble thread + 2cm cement mortar =0.02*(23+27)=1KN/m

    13cm marble riser + 2cm cement mortar =

    mKN/5.03

    )2327(*15.0*02.0*10 =

    +=

    Total load = 4.405+1.625+1+0.5= 7.53 KN/m

    2. Landing

    13cm RC slab = 0.13*25 = 3.25 KN/m

    2cm marble = 0.02*27 = 0.54 KN/m

    3cm cement screed = 0.03*23 = 0.69KN/m

    3cm plastering = 0.03*23 = 0.69KN/m

  • 8/22/2019 G+4 SolidSlabSystem

    54/182

    Total = 5.17 KN/m

    B. Live Load

    =3KN/m2*1m(width) = 3KN/m

    C. Design load

    1. Flight=1.3*7.53+1.6*3=14.589KN/m

    2. Landing=1.3*5.17+1.6*3=11.521KN/m

    III. Analysis

    1.14 KN/m

    BMD

    7.84 KN/m

    7.62 KN/m9.43 KN/m

    11.521

    KN/m

    14.589

    KN/m11.521

    KN/m

    1.80m 3.00m 1.15m

    21.28 KN

    -22.49 KN5.13 KN 13.25 KN

    15.61 KN

    SFD

    Reactio

    n

    A B C

    5.13 KN 38.09

    KN

    34.53 KN

    KN

  • 8/22/2019 G+4 SolidSlabSystem

    55/182

    Fig. SAP Output of Moment, Shear force, and Support Reactions diagrams

    i. Design Loadsdesign moment

    span BC=7.84 KN-m

    support B=9.43 KN-m

    design shear

    span AB=15.61 KN

    span BC=22.49 KN

    ii. Check for Deflection

    Where

    W=Flight unfactored design load =7.53+3=10.53 KN/m

    L=length of stair =3m

    E=29GPa

    0003.0*10*29*384

    3*1000*53.10*59

    4

    max = =1.28mm

    According to EBCS-2, 1995 sec. 5.2.2.

    The final deflection shall not be exceed the value

    where Le effective length

    Le=3000 mm

  • 8/22/2019 G+4 SolidSlabSystem

    56/182

    mm15200

    3000==

    Here max=1.28mmVsd,max=22.49KN . . . .OK!

    iv. Reinforcement Calculation

    For Flight, span BC

    Check for ductility

    Depth check:

    D = it is ok!

    As,min= smin*b*d=0.5/300*1000*109=181.17mm2

    b= 1000mm (unit width)

    As,cal=bd

  • 8/22/2019 G+4 SolidSlabSystem

    57/182

    = [1- ]

    [ 1-

    As, cal= 0.00261*1000*109mm= 284.25mm2

    Reinforcement

    =2.51

    Provide 3 12 bars per meter width

    Spacing:

    Apply 12 C/C 260mm

    v. Secondary Reinforcement

    According to EBCS-2, 1995 sec. 7.2.2.2.

    The ratio of the secondary reinforcement to the main reinforcement shall be at

    least equal to 0.2.

    Thus, the transverse reinforcement:

    As,t=0.2*As=0.2*341.388=68.28mm2/m< As,mi=181.17mm2

    use 10mm as=78.54mm2

    spacing,s=as*b/As=78.54*1200/181.17=433.52mm

    Use 10mm c/c 430mm

  • 8/22/2019 G+4 SolidSlabSystem

    58/182

    Fig Reinforcement Distribution design

    vi. Load transform from stair to beam

    Reaction force at support A,RA=5.13KN

    Reaction force at support B, RB=38.09KN

    Reaction force at support C, RC=34.53KN

    5. Earth Quake Analysis

    5.1. Mass, Mass-center and Center of Rigidity Determination

    I. Mass

    Weight of a typical floor

    i) weight of walls = 2,082.02KN

    ii)weight of beams =

    5*0.4*0.27*23.1*25-

    2.5*0.4*027*25

    = 305.1

    2*6*[1.95+4.5+2.5]*0.4*0.27*25

    = 289.98

    iii) slab and finishing

    4*7.8*9.8*0.13*25 = 993.72

    4*2.15*9.8*0.2*25 = 421.40

    2*2.7*4.15*0.13*25 = 72.83

    = 1487.95

    Finishing = [19.9*23.1-

    12*2.7]*0.07*23

    = 687.94

    Total = 2,175.89KN

    iV. Columns:

    30*13-0.13*2) *0.4*0.3*25 = 246.6KN

  • 8/22/2019 G+4 SolidSlabSystem

    59/182

    v. Stair = 2*2.4*(3*7.53+2.95*5.17) =

    181.64KN

    Total = 5,281.23KN Take

    5,300KN

    Weight of 5th floor [water tank

    seat]

    Slab

    2*0.11*0.3*5.3*25 = 87.45KN

    Columns

    2*4*0.3*0.4*(1/2) *1.5*25 =

    18KN

    beams

    4*(0.4-0.11)*0.4*[2.7+ (4.9-

    0.8)]*25

    = 78.88KN

    Total =184.33KN

    Take 185KN

    Weight of ground floor

    Wall

    2*3*[4.5*0.2**3+4.7*0.2*3]*14

    +2*4*0.10*14*[4.5+2.5]

    +2*2*0.2*14*[4.5+2.5]=

    620.48KN

    column

    30*(2.5/2+3/2)*0.3*0.4*25 =

    247.5KN

    Stair half stair

    [181.64] = 90.82KN

    Total = 958.8KN take

    960KN

    Weight of foot story

    Columns

    [8(2/2) +(3/2)30]*0.4*0.3*25 =

    195KN

    Beams (top tie beams)

    [5*23.1+12*(1.95+4.5+2.5]*0.4

    *0.4*25 = 891.6KN

    Roofing= (GIS + Zigba purlin

    and truss]

    purlin +EGA = 0.-76KN/m

    truss 3.08 per 1.5m

    = 3.08*2*[17+3+8*71]*0.076

    = 240.056KN

    Total = 1290.656 take

    1291KN

  • 8/22/2019 G+4 SolidSlabSystem

    60/182

    II. Mass Center

    Only typical floor mass center determination is presented here, others are done in

    similar fashion and results are used.

  • 8/22/2019 G+4 SolidSlabSystem

    61/182

  • 8/22/2019 G+4 SolidSlabSystem

    62/182

  • 8/22/2019 G+4 SolidSlabSystem

    63/182

  • 8/22/2019 G+4 SolidSlabSystem

    64/182

  • 8/22/2019 G+4 SolidSlabSystem

    65/182

    5.2. D-value computation

    Assuming 30X40 columns and 40X40 beams with similar E value

    Typical column typical beam

    Icy= (0.4*0.33)/12=0.9*10-3===kcy= (0.9*10-3)/Lc and Icx=

    (0.3*0.43)/12=1.6*10-3Kcx= (1.6*10-3)/Lc

    Ib=(0.4*0.43)/12=2.133*10-3kb=(2.133*10-3)/Lb

    k

    ka

    kc

    kbk

    +=

    =

    2

    2

    D=13.8

    16

    FRAME ON AXIS A-A

    D=4.74

    5

    D=10.1

    24

    Kb=7.90

    1

    40

    3

    0

    =

    4.

    4

    4

    4

    x

    y

    40

    4

    0

    y

    k

    ka

    kc

    kbk

    2

    5.0

    +

    +=

    =

    D=10.1

    24

    D=10.1

    24

    D=10.1

    24

    Kb=4.44

    4

    Kb=4.26

    7

    Kc=4.

    5 a=0.527D=2.372Kb=7.90

    1

    =2.23

    D=1.93

    a=0.536

    =1.234

    a=0.661D=2.378

    =2.42

    D=2.6a=0.721

    =3.38

    a=0.67D=2.009

    =4.056

    D=1.776Kb=4.26

    7

    =2.904

    a=0.426

    D=1.27

    7

    =1.481

    Kc=3.

    6

    Kc=3

    Kb=4.4

    44

    a=0.592

    Kb=7.90

    1

    1.277

    1.277

    1.277

    1.277

    1.776

    1.776

    1.776

    1.776

    2.009

    2.009

    2.009

    2.009

    a=0.426

    D=1.27

    7

    =1.481

    Kb=4.4

    44

    D=1.776Kb=4.26

    7

    =2.904

    a=0.592

    D=1.93

    a=0.536

    =1.234

    a=0.661D=2.378

    =2.42

    1.2771.776

    1.277

    1.277

    1.277

    1.776

    1.776

    1.776

  • 8/22/2019 G+4 SolidSlabSystem

    66/182

    D=10.1

    24

    11.57

    FRAME ON AXIS B-B

    11.57

    11.57

    D=11.5

    7

    D=13.8

    16

    kb=7.9

    01

    D=4.745

    D=1.27

    7

    D=1.77

    6 D=2.00

    9

    D=2.378

    =2.42

    a=0.661D=1.93

    Kc=3.6k=1.234

    a=0.536

    D=1.277

    Kb=4.44

    4

    kc=3a=0.426

    D=1.776Kb=4.26

    7

    =2.904a=0.592 D=2.019

    Kb=4.26

    7

    kc=6a=1.014

    D=2.6

    =3.38

    a=0.721

    kc=4.5

    kb=7.9

    01kc=3

    =2.23

    a=0.527

    D=2.37

    2

    =1.481 a=0.455kc=6

    Kb=7.90

    1

    =4.056

    kb=4.2

    67

    5 6

    Kb=4.44

    4

    kc=3a=0.426

    =1.481

    D=1.277D=1.776

    Kb=4.26

    7

    =2.904a=0.592

    D=2.378

    =2.42

    a=0.661 D=1.93

    Kc=3.6k=1.234

    a=0.536

    D=1.776

    D=1.776

    D=1.776

    D=1.77

    6

    D=1.776

    D=1.776

    D=1.776

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=2.019

    D=2.019

    D=2.019

    4

  • 8/22/2019 G+4 SolidSlabSystem

    67/182

    D=9.574

    D=8.6

    D=8.6

    D=8.6

    D=9.57

    D=13.8

    FRAME ON AXIS C-C

    5 64

    D=0.00

    D=1.27

    7

    D=1.77

    6 D=1.73

    4

    D=2.378

    =2.42

    a=0.661D=1.93

    Kc=3.6k=1.234

    a=0.536

    D=1.277

    Kb=4.44

    4

    kc=3a=0.426

    D=1.776

    Kb=4.26

    7

    =2.420

    a=0.592

    D=1.734

    Kb=7.90

    1

    =2.739

    a=0.578

    D=2.596

    =3.38

    a=0.721

    kb=7.901

    a=0.57

    8

    =1.481

    =2.739kb=4.2

    67

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.77

    6

    D=1.77

    6

    D=1.77

    6

    1.247

    1.247

    =1.422

    a=0.416

    D=1.247

    D=1.77

    6

    D=1.77

    6

    D=1.77

    6

    D=1.77

    6

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=1.27

    7

    D=2.378

    =2.42

    a=0.661

    D=1.776

    Kb=4.26

    7

    =2.420

    a=0.592

    D=1.93

    Kc=3.6k=1.234

    a=0.536

    D=1.277

    Kb=4.44

    4

    kc=3

    =1.481

    a=0.426

  • 8/22/2019 G+4 SolidSlabSystem

    68/182

    D=17.5

    89

    FRAME ON AXIS 1-1 and 2-2

    3.092

    D=0

    11.766

    D=11.7

    66

    D=11.7

    66

    2.7911.546

    Kc=5.333

    =0.816

    a=0.29D=1.546kb=4.354

    Kc=6.4=0.68

    a=0.44

    =2.196a=0.523

    D=2.791Kb=7.356

    =1.83a=0.608D=3.893

    =2.759a=0.580

    D=3.092Kb=7.356

    =2.99a=0.651D=4.167

    1.546 2.791 3.092

    1.546

    1.546

    1.546

    1.546

    1.546

    1.546

    3.0922.791

    3.0922.791

    Kc=5.333

    =0.816

    a=0.29

    kb=4.354

    Kc=6.4=0.68

    a=0.44

    D=11.7

    66

    D=11.7

    66

    D=2.818 D=2.818

  • 8/22/2019 G+4 SolidSlabSystem

    69/182

    FRAME ON AXIS 3

    kc=8

    D=17.5

    89

    D=11.7

    66

    D=8.44

    D=11.7

    66

    D=11.7

    66

    D=11.7

    66

    D=11.7

    66

    =1.004

    a=0.33

    4D=2.67

    4

    D=1.54

    6

    2.00

    2.90 4.90

    kc=5.3

    33=0.816

    a=0.29D=1.54

    6kb=4.354kc=6.4

    03a=0.44

    D=2.81

    8

    =0.68

    =2.196

    a=0.52

    3D=2.79

    1kb=7.356=1.82

    a=0.60

    8D=3.89

    3

    =2.759

    a=0.58D=3.09

    2

    =2.299

    a=0.65

    1D=4.16

    7

    kc=6.4

    03a=0.44

    D=2.81

    8

    =0.68

    kc=5.3

    33=0.816

    a=0.29D=1.54

    6kb=4.354

    D=1.54

    6

    D=1.546

    D=1.54

    6

    D=1.54

    6

    D=1.54

    6

    D=1.54

    6

    D=1.54

    6

    D=1.54

    6

    D=2.79

    1

    D=3.09

    2

    D=2.79

    1

    D=3.092

    D=2.79

    1

    D=3.09

    2

    D=2.79

    1

    D=3.09

    2

  • 8/22/2019 G+4 SolidSlabSystem

    70/182

  • 8/22/2019 G+4 SolidSlabSystem

    71/182

  • 8/22/2019 G+4 SolidSlabSystem

    72/182

  • 8/22/2019 G+4 SolidSlabSystem

    73/182

    (10.124)

    (10.124)

    (10.124)

    (9.574)

    1 2 3 3 2 1

    A

    (11

    .7

    6

    6)

    (11

    .7

    66

    ) (11

    .7

    66

    )(11

    .7

    669

    (11

    .7

    6

    6

    1.

    54

    6 1.

    54

    6

    2.

    79

    1 2.

    79

    1

    1.

    54

    6

    2.

    79

    1

    3.

    09

    2 3.

    09

    2 3.

    09

    2

    2.7

    9

    1 2.7

    9

    12

    .7

    9

    1

    1.

    54

    6 1.

    54

    61.

    54

    6

    (11

    .7

    66)9

    1.77

    62.00

    9

    2.00

    91.27

    622.

    3

    17.

    5

    15.

    2

    9.84.8

    1.27

    7

    1.27

    7

    1.9

    3

    1.77

    6

    1.776

    2.00

    9

    2.00

    91.77

    6

    1.77

    6

    1.73

    4

    1.73

    4

    1.27

    7

    1.277

    1.277

    1.277

    D 4.9

    C 7.8

    7.8

    B 10.7

    A 15.66

    (10.124)

    4. 4th floor story

  • 8/22/2019 G+4 SolidSlabSystem

    74/182

  • 8/22/2019 G+4 SolidSlabSystem

    75/182

    Shear center

    1.

    a. Basement floor

    =

    x

    iy

    sD

    xDX

    6.11589.17*6

    3.22*589.175.17*589.172.15*589.178.9*589.178.4*589.170*589.17=

    +++++=

    =

    x

    ix

    sD

    yDY

    8.7816.13*5

    6.15*816.1370.10*816.138.7*816.139.4*816.130*816.13=

    ++++=

    b. Ground floor

    Xs

    766.11*6

    3.22*766.115.17*766.112.15*766.118.9*766.118.4*766.110*766.11 +++++=

    Ys 8.7)574.957.11*2124.10*2(

    6.15*124.107.10*57.118.7*574.99.4*57.110*124.10=

    ++++++

    =

    c. Typical 1st 2nd and 3rd floor

    Xs

    766.11*6

    3.23*766.115.17*766.112.15*766.118.9*766.118.4*766.110*766.11 +++++=

    Ys 8.760.82*57.11124.10*2

    6.15*124.107.10*57.118.7*60.89.4*57.110*124.10=

    ++++++

    =

    d. 4th floor

    Xs

    6.11766.11*6

    3.22*766.115.17*766.112.15*766.118.9*766.118.4*766.110*766.11=+++++=

    Ys 8.7)574.957.11*2124.10*2(

    6.15*124.107.10*57.118.7*574.99.4*57.110*124.10=

    ++++++

    =

    e. 5th floor

  • 8/22/2019 G+4 SolidSlabSystem

    76/182

    Xs 5.1244.8*2

    3.22*05.17*02.15*44.88.944.88.4*00*0=

    ++++++=

    Ys m8.7745.4*4

    6.15*745.47.10*745.48.7*09.4*745.4000*745.4=

    ++++=

    5.3. Story shear distribution

    Method response spectrum

    since the building is regular both in plan and in elevation static method

    of frame analysis will be adopted here

    We know that seismic base shear in the main direction is given by:

    Fb = Sd(Ti)w

    Ti = CiH3/4, Ci = 0.075 (RC moment resisting frame)

    = 0.075(195)3/4 H = 19.5m above the base

    = 0.696

    Sd(To) = , =oI, o=0.05,for zone 2

    =0.05*1 I=1, for ordinal building

    =0.05

    = 1.2S/T2/32.5 ,S=1.5 for sub soil class-c

    = !5.2292.23/2)696.0(

    5.1*2.1ok=

    g= g okDkekN0.70

    go=0.2 for frame system

    Kd = 1.5 for DC"M"

    Ke=1 regular in elevation

    KN= 1 for frame

    = g =0.2*1.5*1*1=0.30.7 0k!

  • 8/22/2019 G+4 SolidSlabSystem

    77/182

    Sd (Ti)=0.05*2.292*0.3=0.03440****************

    W= Gk(no need for live load allowance)

    Fb = sd (T1)*w= 0.0344*23,636= 813.08 kN

    Ft = 0.07 T1Fd= 0.07*0.696*813.08 = 39.61 kN

    Fb-Ft = 775,47 kN

    Story Wi(KN

    )

    hi(m

    )

    wihi Fi(KN)

    5th 185 19.5 3607.5 11.60+39.6

    1

    Roof 1,291 17.5 22,592.5

    72.63

    4th 5,300 14.5 .76,850 247.0543rd 5,300 11.5 60,950 195.942nd 5,300 8.5 45,050 144.831st 5,300 5.5 29,150 93.71Ground 960 2.5 2,400 7.72

    23,63

    6

    240.600 773.484

    5.4. Lateral load distribution among frame elements

    Story shear in each of the floors is distributed to each of 2D-frames

    according to their stiffness in the following tables. In addition to actual

    eccentricity accidental torsion effect is also considered

    +

    +=22

    1

    1

    )()(

    1

    xDyyDx

    yeD yxx

    ++=22

    1

    2

    )()(1 xDyyDx

    yeDyx

    x

    +

    +=22

    1

    1

    )()(

    1

    xDyyDx

    yeD xyy

    +

    +=22

    2

    2

    )()(

    1

    xDyyDx

    xeD xyy

    Qy=),max(*

    VD

    21

    yy

    yyyD

    Qx=

    ),max(*VD

    21xx

    xx

    xD

    Eyi=ey0.05Lx

  • 8/22/2019 G+4 SolidSlabSystem

    78/182

    Exi=ex0.05Ly

    Where:

    Dx, Dy: d- value of frames in the X-

    Y directions

    X, Y: co-ordinate distance from

    origin of the axis

    YX, : Distance of frame from

    shear center

    ey y-direction eccentricity

    ex x-direction eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    79/182

    1) 5th

    Floor

    X-direction

    Qx6= 51.21KN

    Axis Dx y Dx2

    ax1 ax2 Q6x

    A 1.380 0.000 7.800 83.959 1.205 0.795 15.317

    B 1.400 4.900 2.900 11.774 1.076 0.924 13.878

    C 0.000 7.800 0.000 0.000 1.000 1.000 0.000

    B 1.400 10.700 -2.900 11.774 0.924 1.076 13.878

    A 1.380 15.600 -7.800 83.959 0.795 1.205 15.317

    5.560 191.466 58.390

    eui1 eui2 eli1 eli2

    x 11.15 12.5 -1.35 23.1 1.155 -1.155 -0.195 -2.505

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qy6= 51.21KN

    Axis Dy x xb Dyxb2

    ay1 ay2 Q6y

    1 0 0 12.5 0 0.983 0.777 0.000

    2 0 4.8 7.7 0 0.989 0.863 0.000

    3 0.718 9.8 2.7 5.23422 0.996 0.952 25.509

    3 0.718 15.2 -2.7 5.23422 1.004 1.048 26.837

    2 0 17.5 -5 0 1.007 1.089 0.000

    1 0 22.3 -9.8 0 1.014 1.175 0.000

    1.436 10.468 52.346

    Total Eccentricity

    Action axis

    mass

    center

    shear

    centerActual

    eccentricity Li

    Accidental Eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    80/182

    2) 4thFloor

    X-direction

    Qx6= 72.63 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 13.616 0.000 7.800 828.397 1.228 0.772 18.119

    B 13.614 4.900 2.900 114.494 1.085 0.915 16.002

    C 12.574 7.800 0.000 0.000 1.000 1.000 13.624

    B 13.614 10.700 -2.900 114.494 0.915 1.085 16.002

    A 13.616 15.600 -7.800 828.397 0.772 1.228 18.119

    67.034 1885.782 81.865

    eui1 eui2 eli1 eli2

    x 11.15 12.5 -1.35 23.1 1.155 -1.155 -0.195 -2.505

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qy6= 72.63 KN

    Axis Dy x xb Dyxb2

    ay1

    ay2

    Q6y

    1 0.8616 0 12.5 134.625 0.994 0.926 12.035

    2 0.8616 4.8 7.7 51.084264 0.996 0.954 12.062

    3 0.8616 9.8 2.7 6.281064 0.999 0.984 12.090

    3 0.8616 15.2 -2.7 6.281064 1.001 1.016 12.298

    2 0.8616 17.5 -5 21.54 1.002 1.030 12.463

    1 0.8616 22.3 -9.8 82.748064 1.005 1.058 12.807

    Action axis

    mass

    center

    shear

    centerActual

    eccentricity Li

    Accidental Eccentricity Total Eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    81/182

    3) 3rdFloor

    X-direction

    Qy5= 247.054 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 13.616 0.000 7.800 828.397 1.218 0.782 64.491

    B 12.668 4.900 2.900 106.538 1.081 0.919 53.247

    C 10.980 7.800 0.000 0.000 1.000 1.000 42.687

    B 12.668 10.700 -2.900 106.538 0.919 1.081 53.247

    A 13.616 15.600 -7.800 828.397 0.782 1.218 64.491

    63.548 1869.871 278.162

    eui1 eui2 eli1 eli2

    x 11.15 11.6 -0.45 23.1 1.155 -1.155 0.705 -1.605

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qx5= 247.054 KN

    Axis Dy x xb Dyxb2

    ay1

    ay2

    Q6y

    1 0.8616 0 11.6 115.936896 1.019 0.956 41.979

    2 0.8616 4.8 6.8 39.840384 1.011 0.974 41.646

    3 0.8616 9.8 1.8 2.791584 1.003 0.993 41.300

    3 0.8616 15.2 -3.6 11.166336 0.994 1.014 41.743

    2 0.8616 17.5 -5.9 29.992296 0.990 1.023 42.105

    1 0.8616 22.3 -10.7 98.644584 0.982 1.041 42.862

    Accidental Eccentricity Total Eccentricity

    Action axis

    mass

    center

    shear

    centerActual

    eccentricity Li

  • 8/22/2019 G+4 SolidSlabSystem

    82/182

    4) 2ndFloor

    X-direction

    Qy5= 195.94 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 13.616 0.000 7.800 828.397 1.218 0.782 51.148

    B 12.668 4.900 2.900 106.538 1.081 0.919 42.230

    C 10.980 7.800 0.000 0.000 1.000 1.000 33.855

    B 12.668 10.700 -2.900 106.538 0.919 1.081 42.230

    A 13.616 15.600 -7.800 828.397 0.782 1.218 51.148

    63.548 1869.871 220.612

    eui1 eui2 eli1 eli2

    x 11.15 11.6 -0.45 23.1 1.155 -1.155 0.705 -1.605

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qx5= 195.94 KN

    Axis Dy x xb Dyxb2

    ay1 ay2 Q6y

    1 0.8616 0 11.6 115.936896 1.019 0.956 33.293

    2 0.8616 4.8 6.8 39.840384 1.011 0.974 33.030

    3 0.8616 9.8 1.8 2.791584 1.003 0.993 32.755

    3 0.8616 15.2 -3.6 11.166336 0.994 1.014 33.107

    2 0.8616 17.5 -5.9 29.992296 0.990 1.023 33.394

    1 0.8616 22.3 -10.7 98.644584 0.982 1.041 33.994

    Total Eccentricity

    Action axis mass center

    shear

    centerActual

    eccentricity Li

    Accidental Eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    83/182

    5) 1stFloor

    X-direction

    Qy5= 144.83 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 13.616 0.000 7.800 828.397 1.218 0.782 37.807

    B 12.668 4.900 2.900 106.538 1.081 0.919 31.215

    C 10.980 7.800 0.000 0.000 1.000 1.000 25.024

    B 12.668 10.700 -2.900 106.538 0.919 1.081 31.215

    A 13.616 15.600 -7.800 828.397 0.782 1.218 37.807

    63.548 1869.871 163.067

    eui1 eui2 eli1 eli2

    x 11.15 11.6 -0.45 23.1 1.155 -1.155 0.705 -1.605

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qx5= 144.83 KN

    Axis Dy x xb Dyxb2

    ay1 ay2 Q6y

    1 0.8616 0 11.6 115.936896 1.019 0.956 24.609

    2 0.8616 4.8 6.8 39.840384 1.011 0.974 24.414

    3 0.8616 9.8 1.8 2.791584 1.003 0.993 24.211

    3 0.8616 15.2 -3.6 11.166336 0.994 1.014 24.471

    2 0.8616 17.5 -5.9 29.992296 0.990 1.023 24.683

    1 0.8616 22.3 -10.7 98.644584 0.982 1.041 25.127

    Action axis

    Total Eccentricity

    mass center

    shear

    centerActual

    eccentricity Li

    Accidental Eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    84/182

    6) GroundFloor

    X-direction

    Qy5= 93.71 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 13.616 0.000 7.800 828.397 1.224 0.776 23.971

    B 12.668 4.900 2.900 106.538 1.083 0.917 19.740

    C 12.574 7.800 0.000 0.000 1.000 1.000 18.088

    B 12.668 10.700 -2.900 106.538 0.917 1.083 19.740

    A 13.616 15.600 -7.800 828.397 0.776 1.224 23.971

    65.142 1869.871 105.510

    eui1 eui2 eli1 eli2

    x 11.15 11.6 -0.45 23.1 1.155 -1.155 0.705 -1.605

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qx5= 93.71 KN

    Axis Dy x xb Dyxb2

    ay1 ay2 Q6y

    1 0.8616 0 11.6 115.936896 1.019 0.956 15.923

    2 0.8616 4.8 6.8 39.840384 1.011 0.974 15.797

    3 0.8616 9.8 1.8 2.791584 1.003 0.993 15.666

    3 0.8616 15.2 -3.6 11.166336 0.994 1.014 15.833

    2 0.8616 17.5 -5.9 29.992296 0.990 1.023 15.971

    1 0.8616 22.3 -10.7 98.644584 0.982 1.041 16.258

    Accidental Eccentricity Total Eccentricity

    Action axis mass center

    shear

    centerActual

    eccentricity Li

  • 8/22/2019 G+4 SolidSlabSystem

    85/182

    7) Basment Floor

    X-direction

    Qy5= 7.72 KN

    Axis Dx y Dx2

    ax1

    ax2

    Q6x

    A 20.660 0.000 7.800 1256.954 1.236 0.764 1.908

    B 20.660 4.900 2.900 173.751 1.088 0.912 1.679

    C 20.660 7.800 0.000 0.000 1.000 1.000 1.544

    B 20.660 10.700 -2.900 173.751 0.912 1.088 1.679

    A 20.660 15.600 -7.800 1256.954 0.764 1.236 1.908

    103.300 2861.410 8.718

    eui1 eui2 eli1 eli2

    x 11.15 11.6 -0.45 23.1 1.155 -1.155 0.705 -1.605

    y 7.8 7.8 0 19.1 0.955 -0.955 0.955 -0.955

    Y-direction

    Qx5= 7.72 KN

    Axis Dy x xb Dyxb2

    ay1 ay2 Q6y

    1 1.17 0 11.6 157.4352 1.018 0.960 1.309

    2 1.17 4.8 6.8 54.1008 1.010 0.977 1.300

    3 1.17 9.8 1.8 3.7908 1.003 0.994 1.290

    3 1.17 15.2 -3.6 15.1632 0.995 1.012 1.303

    2 1.17 17.5 -5.9 40.7277 0.991 1.020 1.313

    1 1.17 22.3 -10.7 133.9533 0.984 1.037 1.334

    Total Eccentricity

    Action axis mass center

    shear

    centerActual

    eccentricity Li

    Accidental Eccentricity

  • 8/22/2019 G+4 SolidSlabSystem

    86/182

    1. 2D Frame Analysis

    Gravity loads on the frame are transferred from slabs (own weight of slabs

    plus additional loads from partition walls and finishing), walls reasonably

    close to support beams, and own weight of the frame elements. The lateral

    loading is a result of analysis of earth quake loading which is distributedaccording to capacity of each frame. The loading of each frame is shown in

    the following pages each of the frames are analyzed using SAP 2000

    For sap analysis three combinations were applied.

    Comb 1 : 1.3DL+1.6LL

    Comb 2 : 0.75(1.3DL+1.6LL)+EQleft

    Comb 2 : 0.75(1.3DL+1.6LL)+EQright

    The output is shown only for severe maximum and sever minimum, which

    were used as basis for design of the frame elements. Hence output shows

    the envelope for desired action.

    For sake of clarity and readability the loading and analysis results are

    presented graphically.

    7. Beam analysis and Design

    7.1 Analysis

    I. Load Transfer to Beams

    Coefficient and other conventional load transfer method is used for two way

    slabs.

    a. Panel-1,2,& 3

    Reaction R=58.531KN on cantilever beam on axis 1-1

    Reaction R=58.531KN on cantilever beam on axis 2-2

    Reaction R=58.531KN on cantilever beam on axis 3-3

    Reaction from two way one long edge unsupported on cantilever

    beams.

  • 8/22/2019 G+4 SolidSlabSystem

    87/182

    i. Non-strong band portion

    W1= (1-k1)w

    R=

    ii. Strong band portion

    W2=(1+k2)*wR=

    Reaction on beam 3-4 on axis A-A

    R=k1w*(1-)*b-k2*w b =0.5*9.82*1.75-

    0.372*9.82*0.4=7.13KN/m

    b. Panel -6 type-1

    Bvx=0.336+ (0.39-0.36)*(1.02-1)/(1.1-1)=0.336

    Bvy=0.33

    Vx=0.336*11.923*4.8=19.23KN/m

    Vy=0.336*11.923*4.8=18.23KN/m

    c. Panel -7 type-2

    Vx,c=0.336*(0.39-0.36)*(1.02-1)/(1.1-1)=0.336

    Ly/Lx Bvx1.0 1.001.021 ?1.1 0.36

  • 8/22/2019 G+4 SolidSlabSystem

    88/182

    Vx,d=____

    Vy,c=0.36

    Vy,d=0.24

    Vy,c=0.336*11.3276*4.9=18.65KN/m

    Vx,d=____

    Vy,c=0.36*11.3276*4.9=20KN/m

    Bvy,d=0.24*11.3276*4.9=20KN/m

    d. Panel-8: Longer side unsupported two way slabs

    -Reaction on beam AB on axis 3-3

    i. Non-strong band portion

    R=

    ii. Strong band portion and reaction from stair

    R=(10.34*2.7)/2=13.96

    -Reaction on beam 3-3 on axis A-A

    .

    e. Panel-9 type -2 two way slab

    Ly/Lx Bvx1.0 0.361.02 ?1.1 0.39

  • 8/22/2019 G+4 SolidSlabSystem

    89/182

    Vx,c=0.47+(0.5-0.47)*(1.655-1.5)/

    (1.75-1.5)=0.49

    Vx,d=____

    Vy,c=0.36

    Vy,d=0.24

    Vx,c=0.49*12.54*2.9=17.77KN/m

    Vx,d=____

    Vy,c=0.36*12.54*2.9=13.092KN/m

    Bvy,d=0.24*12.54*2.9=13.092KN/

    m

    f. Panel -10 type 2 two way slab

    Vx,c=0.47+(0.5-0.47)*(1.724-

    1.5)/(1.75-1.5)

    =0.497

    Vx,d=____

    Vy,c=0.36

    Vy,d=0.24

    Vx,c=0.49*14.45*2.9=20.83KN/m

    Vx,d=____

    Vy,c=0.36*

    14.45*2.9=15.09KN/m

    vy,d=0.24*14.45*2.9=10.06K

    N/m

    g. Panel-5

    R=0.4*9.518+10.92=14.727KN/m on beam A-B on axis 1-1

    Load Transfer to Grade Beams

    Slab on grade type of construction of ground floor slab is assumed and hence

    loads on grade beam are from self and wall load.

    a. Axis 1-1

    1. Beam AB

    Wall load

    =(0.15*14+0.04*23)*3=9.06KN/m

    Ly/Lx Bvx1.0 0.361.02 ?1.1 0.39

  • 8/22/2019 G+4 SolidSlabSystem

    90/182

    2. Beam BC

    Wall load =9.06KN/m

    b. Axis 2-2

    1. Beam AB

    Wall load

    =(0.1*14+0.04*23)*3=6.96KN/m

    2. Beam BC

    Wall load

    =(0.1*14+0.04*23)*3=9.96KN/m

    c. Axis 3-3

    Wall load

    =(0.2*14+0.04*23)*3=11.19KN/m

    d. Axis A-A

    1. Beam 1-2

    Wall load

    =(0.15*14+0.04*23)*3=9.06KN/m

    2. Beam2-3

    Wall load=(0.15*14+0.04*23)*3=9.06KN/m

    3. Beam3-3

    Wall load

    =(0.15*14+0.04*23)*3=9.06KN/m

    e. Axis B-B

    1. Beam 1-2, 2-3, and 3-3

    No load

    f. Axis c-c

    1. Beam 1-2 and 2-3

    Wall load

    =(0.15*14+0.04*23)*3=9.06KN/m

    Load transfer to beams of a typical floor

    a. Axis 1-1

    1. Cantilever beam

    Reaction from panel -1 and panel

    -2

    = 58.531KN/m

    2. beam A-B

    Reaction from panel -5=

    14.727KN/m

    Shear transfer from panel -6 =

    19.23KN/m

    3. Beam B-C

    Shear transfer from panel -9 =

    8.73KN/m

    b. Axis 2-2

    1. Cantilever beam

    Reaction from panel -2and panel -3

    = 131.767KN/m

    2. beam A-B

    Shear transfer from panel -6 =

    19.23KN/m

  • 8/22/2019 G+4 SolidSlabSystem

    91/182

    Shear transfer from panel -7 =

    20KN/m

    Total shear transfer

    =39.23KN/m

    Wall load =

    (0.1*14+0.04*23)*3=6.96KN/m

    3. Beam B-C

    Shear transfer from panel -6 =

    19.23KN/m

    Shear transfer from panel -7 =

    20KN/m

    Total shear transfer

    =28.182KN/m

    c. Axis 3-3

    1. Cantilever beam

    Non strong band portion

    Reaction from panel -3 =

    40.236KN/m

    Reaction from panel -4 = 6.63KN/m

    Wall load =

    (0.2*14+0.04*23)*3=11.16KN/m

    Total =58.026KN/m

    strong band portion

    Reaction from panel -3 =

    40.236KN/m

    Reaction from panel -4 = 7.28KN/m

    Wall load

    =

    (0.2*14+0.04*23)*3=11.16KN/

    m

    Total =58.676KN/m

    2. Beam A-B

    -Non strong band portion

    Shear from panel -7 =

    13.32KN/m

    Wall load =11.16KN/m

    Reaction from panel -8 =

    6.63KN/m

    Total =17.79KN/m

    -strong band portion

    Wall load = 11.16KN/m

    Reaction from panel -8=

    13.96KN/m

    Total =25.12KN/m

    Shear from panel -7 =

    13.32KN/m

    -Stair hole portion

    Wall load =11.16KN/m

    Shear transfer from panel

    -7=13.32KN/m

    3. Beam B-C

    Wall load 11.16KN/m

    Shear transfer from panel -10=

    10.06KN/m

    d. Axis A-A

  • 8/22/2019 G+4 SolidSlabSystem

    92/182

    1. Cantilever beam

    Wall load =

    (10.2*14+0.04*23)*3=11.16KN/m

    2. Beam 1-2

    Shear transfer from panel -6=

    18.89KN/m

    3. Beam 2-3

    Shear transfer from panel -7=

    18.65KN/m

    4. Beam 3-3

    Shear transfer from panel -4=

    7.13KN/m

    Shear transfer from panel -8=

    3.29KN/m

    Total =10.42KN/m

    e. Axis B-B

    1. Cantilever beam

    Wall load =11.16KN/m

    2. Beam 1-2

    Shear transfer from panel -6=

    18.89KN/m

    Shear transfer from panel -9=

    17.77KN/m

    Total =36.66KN/m

    Wall

    load=(0.1*14+0.04*23)*3=6.96KN/

    m

    3. Beam 2-3

    Shear transfer from panel -7=

    18.65KN/m

    Shear transfer from panel -10=

    20.83KN/m

    Total =39.48KN/m

    f. Axis C-C

    1. Cantilever beam

    Wall load =11.16KN/m

    2. Beam 1-2

    Shear transfer from two panel -9

    slabs = 2*20.83=41.66KN/m

    Wall load =11.16KN/m

    3. Beam 2-3

    Shear transfer from two panel -10

    slabs = 2*17.77=35.54KN/m

    Wall load =11.16KN/m

    c. Load Transfer to Top-tier Beams

    To be constructive and minimize confusion we analyzed the maximum case

    of the wind loading and taken the reaction for analysis

    A uniformly distributed load on top-tie beam on axis 1-1, 2-2, and 3-3 are

    1.4KN, 11.18KN, and 0.02KN per 1.5m (truss spacing) respectively.

  • 8/22/2019 G+4 SolidSlabSystem

    93/182

    A uniformly distributed load on top-tie beams on A-A, B-B, and C-C are

    11.31,1.72, and 2.39KN per 1.5m (truss spacing) respectively.

    =+==>=+==>=+==>

    =+==>=+==>=+==>

    992.04.1*)1

    9.23

    5.1

    9.23(....992.04.1*)1

    9.23

    5.1

    9.23(....086.831.11*)1

    7.20

    5.1

    7.20(

    992.04.1*)1

    9.23

    5.19.23(.....992.04.1*)1

    9.23

    5.19.23(....992.04.1*)1

    9.23

    5.19.23(

    Load transfer on 5th floor Beams

    Type two way slabs Ly/Lx=4.9/2.7=1.815

    Vx,d=0.48+(0.5-0.48)*(1.815-1.75)/(2-

    1.75)=0.4852

    Vy,d=33

    i. Shear transfer to beam AB on axis 3-3

    = vx=0.4852*17.375=8.43KN/m

    ii. Shear transfer to beam 3-3 on axis A

    = vy=0.33*17.375=5.734KN/m

    Ly/Lx Bvx,d1.75 0.481.815 ?

    2 0.5

  • 8/22/2019 G+4 SolidSlabSystem

    94/182

    Axis A-A Loading

    AxisC-C Loading

  • 8/22/2019 G+4 SolidSlabSystem

    95/182

    Axis2-2 Loading

    Axis3-3 Loading

  • 8/22/2019 G+4 SolidSlabSystem

    96/182

    AxisA-A Bending Moment

  • 8/22/2019 G+4 SolidSlabSystem

    97/182

    AxisC-C Shear Force and Bending Moment

    A) Design for flexure

    On Axis 2-2 (for grade beam)

    b = 400mm, D = 400mm, cc=25mm, main=20mm, stirrup

    =8mm ,d= 357mm

    Check depth:

    mmd

    bf

    Md

    wcdsd

    u

    66.164

    400*33.11*295.0

    10*25.36

    **

    6

    = Use d = 357mm

    Beam span AB Msd= 21.86KNm

    !.....295.0038.033.11*357*400

    10*86.212

    6

    2ok

    fbd

    M

    cd

    sd

    sd

  • 8/22/2019 G+4 SolidSlabSystem

    98/182

    Reinforcement2

    6

    5.187.260*357*1

    10*14.0mm

    dfk

    MA

    ydz

    sd

    s ===

    2

    minmin 6.285 mmuseAAAs =

    #42.116 =

    ; provide 2 16 bars

    For support AMsd =0 KN-m

    No Negative reinforcement is required simply provideminimumreinforcement i.e. As=285.6mm2

    # 42.116 = ; Provide 2 16 bars

    For support B Msd=36.25

    !.....295.0063.033.11*357*400

    10*25.362

    6

    2 okfbd

    M

    cd

    sd

    sd

  • 8/22/2019 G+4 SolidSlabSystem

    99/182

    Shear force Max is at a distance of effective depth d from face of

    each support

    By similarity of triangles: design shear

    ( )KNVsd 64.17

    82.1

    357.082.194.211 =

    =

    ( )KNVsd 05.32

    08.3

    357.008.325.362 =

    =

    ( )KNVsd 10.16

    68.1

    357.068.145.203 =

    =

    Resistance shear

    !05.32VsdKN48.404

    357*400*11.33*0.2525.0

    max OkKNVrd

    bdfVrdctd

    =>>=

    ==

    Shear Capacity

    bdkkfv ctdc 2125.0=

    !.....1243.16.12 okdk ==

    For beam section(1)

    !.....21.1357*400

    6.2855011 okk =+=

    28.50357*400*243.1*1.1*03.1*25.0 ==cv

    Vsd=17.64Vc>VsdThen provide minimum Design shear

  • 8/22/2019 G+4 SolidSlabSystem

    100/182

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam section(2)

    50.74357*400*243.1*63.1*03.1*25.0 ==cv

    !.....215.1

    357*400

    08.4235011 okk =+=

    56.52357*400*243.1*15.1*03.1*25.0 ==cv

    Vsd=32.05Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (3)

    !.....215.1357*400

    08.4235011 okk =+=

    56.52357*400*243.1*15.1*03.1*25.0 ==cv

    Vsd=16.10Vc>Vsd;Then provide minimum Design shear

  • 8/22/2019 G+4 SolidSlabSystem

    101/182

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (4,5)

    !.....21.1357*400

    6.2855011 okk =+=

    28.50357*400*243.1*1.1*03.1*25.0 ==cv

    Vsd=10.48Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    On Axis 2-2 (for 1st -4th beam)

    b = 400mm, D = 400mm, cc=25mm, main=20mm, stirrup =8mm ,d=

    357mm

    Check depth:

    !61.486

    400*33.11*295.0

    10*57.316

    **

    6

    NotOKmmd

    bf

    Md

    wcdsd

    u

    >=

    ==

    Shear Capacity

    bdkkfv ctdc 2125.0= ; !.....109.16.12 okdk ==

    For beam sections(1)

    !.....273.1507*400

    64.29555011 okk =+=

    47.98507*400*09.1*73.1*03.1*25.0 ==cv

    Vsd=101.82Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (2)

    !.....215.1507*400

    22.6095011 okk =+=

    46.65507*400*09.1*15.1*03.1*25.0 ==cv

    Vsd=66.38Vs=Vsd-Vc=66.38-65.46=0.92KN

  • 8/22/2019 G+4 SolidSlabSystem

    105/182

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    mmv

    fyddavS

    s

    21.1437692.0

    87.260*507*100**===

    S>Smax--------------------------Not OK!

    Provide 8 c/c 175mm

    For beam sections (3)

    !.....215.1507*400

    22.6095011 okk =+=

    46.65507*400*09.1*15.1*03.1*25.0 ==cv

    Vsd=26.86Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (4)

    !.....207.1507*400

    6.2855011 okk =+=

    93.60507*400*09.1*07.1*03.1*25.0 ==cv

    Vsd=22.81Vc>Vsd;Then provide minimum Design shear

  • 8/22/2019 G+4 SolidSlabSystem

    106/182

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (5)

    !.....273.1507*400

    67.29555011 okk =+=

    4.98507*400*09.1*73.1*03.1*25.0

    ==cv

    Vsd=225.04; Vs=Vsd-Vc=225.04-98.4=126.64KN

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    mmv

    fyddavSs

    44.10464.126

    87.260*507*100** ===

    S

    =

    Use d = 357mm

  • 8/22/2019 G+4 SolidSlabSystem

    107/182

    Beam span AB Msd= 22.86KNm

    !.....295.004.0

    33.11*357*400

    10*86.222

    6

    2ok

    fbd

    M

    cd

    sd

    sd

  • 8/22/2019 G+4 SolidSlabSystem

    108/182

    # 7.120 = ; Provide 2 20bars

    For support C,Msd=18.94

    !.....295.003.033.11*357*400

    10*94.182

    6

    2ok

    fbd

    M

    cd

    sd

    sd

  • 8/22/2019 G+4 SolidSlabSystem

    109/182

    ( )KNVsd 64.13

    36.1

    357.036.157.184 =

    =

    ( )KNVsd 31.24

    15.2

    357.015.215.295 =

    =

    Resistance shear

    !04.225VsdN48.404

    357*400*11.33*0.2525.0

    max OkKNKVrd

    bdfVrdcd

    =>>=

    ==

    Shear Capacity

    bdkkfv ctdc 2125.0=

    !.....1243.16.12 okdk ==

    For beam sections(1)

    !.....222.1357*400

    54.3505011 okk =+=

    76.55357*400*243.1*22.1*03.1*25.0 ==cv

    Vsd=17.80Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mm

    b

    avfyk

    S

    300

    5.178357*5.05.0

    5.188

    400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (2)

    !.....218.1357*400

    73.5345011 okk =+=

    26.54357*400*243.1*18.1*03.1*25.0 ==cv

    Vsd=38.96Vc>Vsd;Then provide minimum Design shear

  • 8/22/2019 G+4 SolidSlabSystem

    110/182

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0

    5.188400*4.0

    300*4

    *8*2

    4.0

    2

    max

    Provide 8 c/c 175mm

    For beam sections (3)

    !.....218.1357*400

    73.5345011 okk =+=

    26.54357*400*243.1*18.1*03.1*25.0

    ==cv

    Vsd=16Vc>Vsd;Then provide minimum Design shear

    ==

    ==

    mm

    mmd

    mmb

    avfyk

    S

    300

    5.178357*5.05.0