G. Friedlander and M. Joshi Introduction to the Theory of ...

25
Haim Grebnev Last saved: October 18, 2021 1 G. Friedlander and M. Joshi Introduction to the Theory of Distributions Notes Table of Contents Notations and Conventions .......................................................................................................... 1 Chapter 1 ....................................................................................................................................... 3 Principal Value Distribution โˆ’ (Problem 1.3) (9/25/2020) ................................................. 3 A Distribution โˆˆ โ€ฒ(โ„) such that = / on (, โˆž) and = on (โˆ’โˆž, ) (Problem 1.4) (9/25/2020)........................................................................................................................... 4 An Interesting Example of a Non-Extendible Distribution (Problem 1.5) [2/26/2021]. ...... 5 Chapter 5 ....................................................................................................................................... 7 Convolution Equations on Forward Cones (Problem 5.5) (1/2/2021) .................................. 7 Chapter 6 ....................................................................................................................................... 9 Schwartz Kernel Theorem [Maintenance planned] (11/4/2020) ........................................... 9 Chapter 8 ..................................................................................................................................... 15 Structure Theorem for Tempered Distributions [Theorem 8.3.1] (5/11/2021) .................. 15 Poissonโ€™s Summation Formula [Theorem 8.5.1] (5/18/2021) .............................................. 21 Notations and Conventions Notation: For any point โˆˆโ„ , we will denote its Euclidean length by ||: || = โˆš 1 2 +โ‹ฏ+ 2 . Notation: For any โˆˆโ„ and any >0, we let () denote the open ball of radius centered at with respect to the Euclidean distance: () = { โˆˆ โ„ โˆถ | โˆ’ | < }. Notation: Suppose that โŠ†โŠ†โ„ are open sets. For any function โˆˆ โˆž (), we let โˆˆ โˆž () denote the smooth extension of to obtained by setting โ‰ก0 on โˆ–. Itโ€™s trivial to see then that supp = supp and hence is indeed compactly supported as well. Notation: We let โ„ค + stand for the positive integers: โ„ค + = {1,2,3, โ€ฆ }. Notation: For any โˆˆโ„ค + , let โ„() denote the set of multi-indices of length : โ„() = {( 1 ,โ€ฆ, )โˆˆโ„ค โˆถ each โ‰ฅ 0}.

Transcript of G. Friedlander and M. Joshi Introduction to the Theory of ...

Page 1: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

1

G. Friedlander and M. Joshi Introduction to the Theory of

Distributions Notes

Table of Contents

Notations and Conventions .......................................................................................................... 1

Chapter 1 ....................................................................................................................................... 3

Principal Value Distribution ๐’™โˆ’๐Ÿ (Problem 1.3) (9/25/2020) ................................................. 3

A Distribution ๐’– โˆˆ ๐““โ€ฒ(โ„) such that ๐’– = ๐Ÿ/๐’™ on (๐ŸŽ,โˆž) and ๐’– = ๐ŸŽ on (โˆ’โˆž, ๐ŸŽ) (Problem

1.4) (9/25/2020) ........................................................................................................................... 4

An Interesting Example of a Non-Extendible Distribution (Problem 1.5) [2/26/2021]. ...... 5

Chapter 5 ....................................................................................................................................... 7

Convolution Equations on Forward Cones (Problem 5.5) (1/2/2021) .................................. 7

Chapter 6 ....................................................................................................................................... 9

Schwartz Kernel Theorem [Maintenance planned] (11/4/2020) ........................................... 9

Chapter 8 ..................................................................................................................................... 15

Structure Theorem for Tempered Distributions [Theorem 8.3.1] (5/11/2021) .................. 15

Poissonโ€™s Summation Formula [Theorem 8.5.1] (5/18/2021) .............................................. 21

Notations and Conventions

Notation: For any point ๐‘ฅ โˆˆ โ„๐‘›, we will denote its Euclidean length by |๐‘ฅ|:

|๐‘ฅ| = โˆš๐‘ฅ12 + โ‹ฏ+ ๐‘ฅ๐‘›

2.

Notation: For any ๐‘ฅ โˆˆ โ„๐‘› and any ๐‘Ÿ > 0, we let ๐ต๐‘Ÿ(๐‘ฅ) denote the open ball of radius ๐‘Ÿ centered

at ๐‘ฅ with respect to the Euclidean distance:

๐ต๐‘Ÿ(๐‘ฅ) = {๐‘ฆ โˆˆ โ„๐‘› โˆถ |๐‘ฆ โˆ’ ๐‘ฅ| < ๐‘Ÿ}.

Notation: Suppose that ๐‘‹ โŠ† ๐‘Œ โŠ† โ„๐‘› are open sets. For any function ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐‘‹), we let ๐œ™๐‘Œ โˆˆ

๐ถ๐‘โˆž(๐‘Œ) denote the smooth extension of ๐œ™ to ๐‘Œ obtained by setting ๐œ™ โ‰ก 0 on ๐‘Œ โˆ– ๐‘‹. Itโ€™s trivial to

see then that supp๐œ™ = supp๐œ™๐‘Œ and hence ๐œ™๐‘Œ is indeed compactly supported as well.

Notation: We let โ„ค+ stand for the positive integers: โ„ค+ = {1,2,3, โ€ฆ }.

Notation: For any ๐‘› โˆˆ โ„ค+, let โ„(๐‘›) denote the set of multi-indices of length ๐‘›:

โ„(๐‘›) = {(๐›ผ1, โ€ฆ , ๐›ผ๐‘›) โˆˆ โ„ค๐‘› โˆถ each ๐›ผ๐‘˜ โ‰ฅ 0}.

Page 2: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

2

Notation: Let ๐›ผ, ๐›ฝ โˆˆ ๐ผ(๐‘›). Then

1.) ๐›ผ โ‰ค ๐›ฝ (resp. ๐›ผ < ๐›ฝ) means that each ๐›ผ๐‘˜ โ‰ค ๐›ฝ๐‘˜ (resp. ๐›ผ๐‘˜ < ๐›ฝ๐‘˜).

2.) ๐›ผ! denotes ๐›ผ1! โ‹… โ€ฆ โ‹… ๐›ผ๐‘›!.

3.) |๐›ผ| denotes ๐›ผ1 + โ‹ฏ+ ๐›ผ๐‘›.

4.) For any ๐‘ฅ โˆˆ โ„๐‘›, ๐‘ฅ๐›ผ denotes ๐‘ฅ1๐›ผ1 โ‹… โ€ฆ โ‹… ๐‘ฅ๐‘›

๐›ผ๐‘› .

5.) For any sufficiently differentiable function or distribution ๐‘“, ๐œ•๐›ผ๐‘“ denotes ๐œ•๐›ผ1 โ€ฆ๐œ•๐›ผ๐‘›๐‘“.

Notation: Let ฮฉ โŠ† โ„๐‘› be an open subset. We let the following denote the following spaces of

complex-valued functions:

1.) ๐ถ๐‘š(ฮฉ) denotes the space of ๐‘˜-times continuously differentiable functions over ฮฉ. In

particular, ๐ถโˆž(ฮฉ) denotes the space of smooth functions.

2.) ๐ถ๐‘๐‘š(ฮฉ) denotes the space of ๐‘˜-times continuously differentiable functions over ฮฉ with

compact support. Sometimes ๐ถ๐‘โˆž(ฮฉ) is also denoted by ๐’Ÿ(ฮฉ).

3.) We let ๐’ฎ(โ„๐‘›) denotes the space of rapidly decreasing functions:

๐’ฎ(โ„๐‘›) = {๐œ™ โˆˆ ๐ถโˆž(โ„๐‘›) โˆถ |๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™(๐‘ฅ)| < โˆž โˆ€๐›ผ, ๐›ฝ โˆˆ โ„(๐‘›)}.

This space is called the Schwartz space.

Notation: Let ฮฉ โŠ† โ„๐‘› be an open subset. We let the following denote the following space of

distributions:

1.) ๐’Ÿโ€ฒ(ฮฉ) denotes the space of distributions over ฮฉ.

2.) โ„ฐโ€ฒ(ฮฉ) denotes the space of distributions over ฮฉ with compact support.

3.) ๐’ฎโ€ฒ(โ„๐‘›) denotes the space of tempered distributions over โ„๐‘›.

Definition: A function ๐‘“ โˆˆ โ„๐‘› โ†’ โ„‚ is said to be of polynomial growth if there exist ๐ถ,๐‘€ โ‰ฅ 0

such that

|๐‘“(๐‘ฅ)| โ‰ค ๐ถ(1 + |๐‘ฅ|)๐‘€ โˆ€๐‘ฅ โˆˆ โ„๐‘›.

Notation: If ๐‘“ is a function or distribution over โ„๐‘› and โ„Ž โˆˆ โ„๐‘›, then ๐œโ„Ž๐‘“ stands for ๐‘“ shifted in

the direction โ„Ž:

๐œโ„Ž๐‘“ = ๐‘“(๐‘ฅ โˆ’ โ„Ž)

(in the case ๐‘“ is a distribution, this means that ๐œโ„Ž๐‘“ is the distribution ๐œ™ โ†ฆ โŸจ๐‘“, ๐œ™(๐‘ฅ + โ„Ž)โŸฉ).

Page 3: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

3

Chapter 1

Principal Value Distribution ๐’™โˆ’๐Ÿ (Problem 1.3) (9/25/2020)

The principle value distribution ๐‘ฅโˆ’1 in ๐’Ÿโ€ฒ(โ„) is defined by:

โŸจ๐‘ฅโˆ’1, ๐œ™โŸฉ = p.v. โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ = lim

๐œ€โ†’0+( โˆซ

๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆ’๐œ€

โˆ’โˆž

+ โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐œ€

).

To see that this is indeed a distribution, take any compact subset ๐พ โŠ† โ„. Let ๐‘ > 0 be such that

๐พ โŠ† [โˆ’๐‘, ๐‘]. For any ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ), we have that:

lim๐œ€โ†’0+

( โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆ’๐œ€

โˆ’โˆž

+ โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐œ€

) = lim๐œ€โ†’0+

( โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆ’๐œ€

โˆ’๐‘

+ โˆซ๐œ™(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐œ€

)

= lim๐œ€โ†’0+

(โˆซ๐œ™(๐‘ฅ) โˆ’ ๐œ™(โˆ’๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐œ€

).

Using the fact that:

๐œ™(๐‘ฅ) = ๐œ™(0) + โˆซ๐œ™โ€ฒ(๐‘ )๐‘‘๐‘ 

๐‘ฅ

0

= ๐œ™(0) + ๐‘ฅ โˆซ๐œ™โ€ฒ(๐‘ฅ๐‘ก)๐‘‘๐‘ก

1

0

(the rightmost expression is in fact just the 1st order Taylor expression for ๐œ™ based at 0), we can

rewrite the previous expression as:

= lim๐œ€โ†’0+

(โˆซ(๐œ™(0) + ๐‘ฅ โˆซ ๐œ™โ€ฒ(๐‘ฅ๐‘ก)๐‘‘๐‘ก

1

0) โˆ’ (๐œ™(0) โˆ’ ๐‘ฅ โˆซ ๐œ™โ€ฒ(โˆ’๐‘ฅ๐‘ก)๐‘‘๐‘ก

1

0)

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐œ€

)

lim๐œ€โ†’0+

(โˆซ๐‘ฅ โˆซ (๐œ™โ€ฒ(๐‘ฅ๐‘ก) + ๐œ™โ€ฒ(โˆ’๐‘ฅ๐‘ก))๐‘‘๐‘ก

1

0

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐œ€

) = lim๐œ€โ†’0+

(โˆซโˆซ(๐œ™โ€ฒ(๐‘ฅ๐‘ก) + ๐œ™โ€ฒ(โˆ’๐‘ฅ๐‘ก))๐‘‘๐‘ก

1

0

๐‘‘๐‘ฅ

๐‘

๐œ€

)

= โˆซโˆซ(๐œ™โ€ฒ(๐‘ฅ๐‘ก) + ๐œ™โ€ฒ(โˆ’๐‘ฅ๐‘ก))๐‘‘๐‘ก

1

0

๐‘‘๐‘ฅ

๐‘

0

.

Where in the last equality Iโ€™ve used the Dominated Convergence Theorem with the observation

that the integrand of the outside integral is bounded by 2 sup๐œ™โ€ฒ < โˆž and that its integration

domain is bounded (itโ€™s overkill to cite DCT here though). Thus, for any ๐œ™ โˆˆ ๐ถ๐‘โˆž(โ„) we have

the estimate:

|โŸจ๐‘ฅโˆ’1, ๐œ™โŸฉ| โ‰ค 2๐‘ sup๐œ™โ€ฒ

Page 4: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

4

and so ๐‘ฅโˆ’1 is indeed a distribution.

Now, what is this distributionโ€™s order? It turns out to be one. To prove this, first letโ€™s observe that

because of the above inequality we know that its order is less than or equal to one. So if we

prove that itโ€™s not equal to zero, then weโ€™ll be done. To do this, for any positive numbers ๐‘Ž, ๐‘, ๐‘ โˆˆ

โ„ โˆถ ๐‘Ž, ๐‘, ๐‘ > 0 let ๐œ“๐‘Ž,๐‘,๐‘ โˆถ โ„ โ†’ โ„ be a compactly supported smooth bump function that satisfies:

1. supp๐œ“ โŠ† [0,โˆž),

2. ๐œ“ โ‰ก ๐‘ on the interval [๐‘Ž, ๐‘],

3. 0 โ‰ค ๐œ“ โ‰ค ๐‘ everywhere.

Jack Leeโ€™s Smooth Manifolds book shows how to construct such a smooth bump function. A

typical example looks like:

Notice that with these functions:

โŸจ๐‘ฅโˆ’1, ๐œ“๐‘Ž,๐‘,๐‘โŸฉ = lim๐œ€โ†’0+

โˆซ๐œ“๐‘Ž,๐‘,๐‘(๐‘ฅ)

๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐œ€

โ‰ฅ โˆซ๐‘

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐‘Ž

= ๐‘ ln (๐‘

๐‘Ž).

Now, consider the sequence of functions {๐œ“๐‘Ž๐‘˜,๐‘๐‘˜,๐‘๐‘˜}๐‘˜=1

โˆž with ๐‘Ž๐‘˜ = 1 ๐‘˜โ„ , ๐‘๐‘˜ = 1, and ๐‘๐‘˜ = ๐‘’โˆ’๐‘˜2

.

Then:

โŸจ๐‘ฅโˆ’1, ๐œ“๐‘Ž๐‘˜,๐‘๐‘˜,๐‘๐‘˜โŸฉ =

1

๐‘˜ln (

1

๐‘’โˆ’๐‘˜2) = ๐‘˜ โ†’ โˆž as ๐‘˜ โ†’ โˆž.

But if ๐‘ฅโˆ’1 was an order 0 distribution, then the distribution โ€œseminorm estimateโ€ would tell us

that โŸจ๐‘ฅโˆ’1, ๐œ“๐‘Ž๐‘˜,๐‘๐‘˜,๐‘๐‘˜โŸฉ โ†’ 0 as ๐‘˜ โ†’ โˆž since:

sup|๐œ“๐‘Ž๐‘˜,๐‘๐‘˜,๐‘๐‘˜| =

1

๐‘˜โ†’ 0 as ๐‘˜ โ†’ โˆž.

So ๐‘ฅโˆ’1 must indeed be an order 1 distribution.

A Distribution ๐’– โˆˆ ๐““โ€ฒ(โ„) such that ๐’– = ๐Ÿ/๐’™ on (๐ŸŽ,โˆž) and ๐’– = ๐ŸŽ on (โˆ’โˆž, ๐ŸŽ) (Problem 1.4)

(9/25/2020)

An example of a distribution ๐‘ข โˆˆ ๐’Ÿโ€ฒ(โ„) such that ๐‘ข = 1 ๐‘ฅโ„ on (0,โˆž) and ๐‘ข = 0 on (โˆ’โˆž, 0) is:

Page 5: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

5

โŸจ๐‘ข, ๐œ™โŸฉ = lim๐œ€โ†’0+

โˆซ๐œ™(๐‘ฅ) โˆ’ ๐œ™(0)

๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐œ€

.

It obviously has the desired properties and itโ€™s obvious that the limit here exists (since the

integrand tends to ๐œ™โ€ฒ(0) as ๐‘ฅ โ†’ 0+). To see that itโ€™s a distribution, take any compact ๐พ โŠ† โ„ and

any ๐‘ > 0 such that ๐พ โŠ† [โˆ’๐‘, ๐‘]. Then taking any ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ) and using the equation ๐œ™(๐‘ฅ) =

๐œ™(0) + ๐‘ฅ โˆซ ๐œ™โ€ฒ(๐‘ก๐‘ฅ)๐‘‘๐‘ก1

0, we can rewrite the above quantity as:

lim๐œ€โ†’0+

โˆซ๐œ™(๐‘ฅ) โˆ’ ๐œ™(0)

๐‘ฅ๐‘‘๐‘ฅ

๐‘

๐œ€

= lim๐œ€โ†’0+

โˆซโˆซ๐œ™โ€ฒ(๐‘ก๐‘ฅ)

1

0

๐‘‘๐‘ฅ

๐‘

๐œ€

= โˆซโˆซ๐œ™โ€ฒ(๐‘ก๐‘ฅ)

1

0

๐‘‘๐‘ฅ

๐‘

0

,

and so we get the distribution โ€œseminorm estimateโ€ |โŸจ๐‘ข, ๐œ™โŸฉ| โ‰ค ๐‘ sup|๐œ™โ€ฒ|. Itโ€™s interesting to note

that by the mathematics in the section discussing the principle value distribution ๐‘ฅโˆ’1, itโ€™s easy to

see that this distribution has order 1. Gunther Uhlmann also observed that if we want to solve the

same problem but instead require that ๐‘ข = 1 ๐‘ฅ๐‘›โ„ on (0,โˆž), then we can use:

โŸจ๐‘ข, ๐œ™โŸฉ = lim๐œ€โ†’0+

โˆซ๐œ™(๐‘ฅ) โˆ’ โˆ‘ (๐œ™(๐‘˜)(0) ๐‘˜!โ„ )๐‘ฅ๐‘˜๐‘›โˆ’1

๐‘˜=0

๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐œ€

.

The inner sum is of course just the (๐‘› โˆ’ 1)th Taylor polynomial of ๐œ™ based at 0. I wonder what

the order of this distribution is?

An Interesting Example of a Non-Extendible Distribution (Problem 1.5) [2/26/2021].

Consider the linear form ๐‘ข โˆถ ๐ถ๐‘โˆž(0,โˆž) โ†’ โ„‚ given by

โŸจ๐‘ข, ๐œ™โŸฉ = โˆ‘ ๐œ•๐‘˜๐œ™(1 ๐‘˜โ„ )

โˆž

๐‘˜=1

.

The claim is that this is a distribution and that it cannot be extended to all of โ„ (i.e. there does

not exist a ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„) such that the restriction of ๐‘ฃ to (0,โˆž) is ๐‘ข). First letโ€™s show that itโ€™s a

distribution. Take any compact subset ๐พ โŠ† (0,โˆž) of (0,โˆž). Since ๐พ is compact we have that

the sequence 1 ๐‘˜โ„ for ๐‘˜ โˆˆ โ„ค+ escapes ๐พ eventually. More precisely this means that there exists

an ๐‘š โˆˆ โ„ค+ such that for any integer ๐‘˜ > ๐‘š, 1 ๐‘˜โ„ โˆ‰ ๐พ. Thus over ๐พ we have that ๐‘ข is given by

the finite sum

โŸจ๐‘ข, ๐œ™โŸฉ = โˆ‘ ๐œ•๐‘˜๐œ™(1 ๐‘˜โ„ )

๐‘š

๐‘˜=1

โˆ€๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ).

Thus ๐‘ข satisfies the following distribution โ€œsemi-normโ€ estimate over ๐พ:

|โŸจ๐‘ข, ๐œ™โŸฉ| โ‰ค โˆ‘ sup|๐œ•๐‘˜๐œ™|

๐‘š

๐‘˜=1

โˆ€๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ).

Page 6: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

6

So ๐‘ข is indeed a distribution. Next letโ€™s prove that ๐‘ข cannot be extended to all of โ„. Letโ€™s prove

this by contradiction. Suppose not. Then there exists a distribution ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„) such that

๐‘ฃ|(0,โˆž) = ๐‘ข. Take the compact subset ๐พ = [โˆ’1, 1] of โ„ and let ๐ถ,๐‘ > 0 be such that

|โŸจ๐‘ฃ, ๐œ™โŸฉ| โ‰ค ๐ถ โˆ‘ sup|๐œ•๐‘˜๐œ™|

๐‘

๐‘˜=0

โˆ€๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ).

Let ๐œ“ โˆˆ ๐ถ๐‘โˆž(โ„) be a smooth bump function thatโ€™s identically one on a neighborhood of zero and

whose support is contained in ๐พ = [โˆ’1, 1]. For any ๐‘š โˆˆ โ„ค+ โˆถ ๐‘š โ‰ฅ 2, let ๐œ™๐‘š โˆˆ ๐ถ๐‘โˆž(โ„) be the

test function

๐œ™๐‘š(๐‘ฅ) = ๐œ“(2๐‘š(๐‘š + 1)๐‘ฅ) โ‹… ๐‘ฅ๐‘š .

(the condition ๐‘š โ‰ฅ 2 is for convenience so that as explained below supp๐œ™๐‘š โŠ† ๐พ). Graphically

speaking, this test function is equal to ๐‘ฅ๐‘š in a neighborhood of 1 ๐‘šโ„ and whose compact support

is contained in an interval thatโ€™s situated between 1 (๐‘š + 1)โ„ and 1 (๐‘š โˆ’ 1)โ„ (not including

these two points):

For those interested for the more precise statement, the support of ๐œ™๐‘š is contained in the closed

interval centered at 1 ๐‘šโ„ with radius half the distance from 1 (๐‘š + 1)โ„ and 1 ๐‘šโ„ . On one hand

we have that (in the last inequality here I bound ๐‘ฅ by 1 (๐‘š โˆ’ 1)โ„ since the ๐œ™๐‘š โ‰ก 0 past ๐‘ฅ >1 (๐‘š โˆ’ 1)โ„ )

|โŸจ๐‘ฃ, ๐œ™๐‘šโŸฉ| โ‰ค ๐ถ โˆ‘ sup|๐œ•๐‘˜๐œ™๐‘š|

๐‘

๐‘˜=0

โ‰ค ๐ถ โˆ‘ โˆ‘(๐‘˜๐‘—) sup|๐œ•๐‘—[๐œ“(2๐‘š(๐‘š + 1)๐‘ฅ)]| โ‹… sup|๐œ•๐‘˜โˆ’๐‘—(๐‘ฅ๐‘š)|

๐‘˜

๐‘—=0

๐‘

๐‘˜=0

โ‰ค ๐ถ โˆ‘ โˆ‘(๐‘˜๐‘—) sup|๐œ•๐‘—๐œ“| (2๐‘š(๐‘š + 1))

๐‘—๐‘š โ‹… โ€ฆ โ‹… (๐‘š โˆ’ ๐‘— + 1) (

1

๐‘š โˆ’ 1)๐‘šโˆ’๐‘—๐‘˜

๐‘—=0

๐‘

๐‘˜=0

.

By choosing a big enough constant ๐ท > 0, we can estimate this bound further by

|โŸจ๐‘ฃ, ๐œ™๐‘šโŸฉ| โ‰ค ๐ท๐‘š๐‘(๐‘š + 1)๐‘๐‘š๐‘โˆ’1

(๐‘š โˆ’ 1)๐‘šโˆ’๐‘.

On the other hand, since supp๐œ™๐‘š โŠ† (0,โˆž) we have that:

โŸจ๐‘ฃ, ๐œ™๐‘šโŸฉ = โŸจ๐‘ข, ๐œ™๐‘š|(0,โˆž)โŸฉ = ๐œ•๐‘š๐œ™๐‘š(1 ๐‘šโ„ ) = ๐‘š!

Page 7: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

7

But we then have a contradiction since the previous inequality implies that โŸจ๐‘ฃ, ๐œ™๐‘šโŸฉ โ†’ 0 as ๐‘š โ†’

โˆž while the above equation implies that โŸจ๐‘ฃ, ๐œ™๐‘šโŸฉ โ†’ โˆž as ๐‘š โ†’ โˆž. So indeed no such extension of

๐‘ข can exist.

Chapter 5

Convolution Equations on Forward Cones (Problem 5.5) (1/2/2021)

Note: Here I will write the components of my points/vectors as superscripts. For example, a

point ๐‘ฅ โˆˆ โ„๐‘› will be explicitly written out as ๐‘ฅ = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›).

Here I discuss the following result which appears as a problem in the book.

Theorem: Let ๐‘› โ‰ฅ 2 be an integer and for any point ๐‘ฅ โˆˆ โ„๐‘› let ๏ฟฝฬƒ๏ฟฝ denote the point obtained by

projecting it down to its first ๐‘› โˆ’ 1 components: ๏ฟฝฬƒ๏ฟฝ = (๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›โˆ’1). In addition, let ๐›ค be the

forward cone:

๐›ค = {๐‘ฅ โˆˆ โ„๐‘› โˆถ ๐‘ฅ๐‘› โ‰ฅ ๐‘|๏ฟฝฬƒ๏ฟฝ|}

where ๐‘ > 0 is some fixed positive constant. Let ๐’Ÿ๐›คโ€ฒ (โ„๐‘›) denote the set of all distributions over

โ„๐‘› whose support is contained in ๐›ค:

๐’Ÿ๐›คโ€ฒ (โ„๐‘›) = {๐‘ข โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) โˆถ ๐‘ ๐‘ข๐‘๐‘ ๐‘ข โŠ† ๐›ค}.

Then the following are true:

a) If ๐‘ข1, โ€ฆ , ๐‘ข๐‘š โˆˆ ๐’Ÿ๐›คโ€ฒ (โ„๐‘›), then the convolution ๐‘ข1 โˆ— โ€ฆ โˆ— ๐‘ข๐‘š is well defined.

b) If ๐‘ข1, โ€ฆ , ๐‘ข๐‘š โˆˆ ๐’Ÿ๐›คโ€ฒ (โ„๐‘›) and ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) is such that ๐‘ ๐‘ข๐‘๐‘ ๐‘ฃ โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž} for some fixed

๐‘Ž โˆˆ โ„, then the convolution ๐‘ข1 โˆ— โ€ฆ โˆ— ๐‘ข๐‘š โˆ— ๐‘ฃ is also well defined.

c) Suppose that ๐‘˜ โˆˆ ๐’Ÿ๐›คโ€ฒ (โ„๐‘›) is a convolution operator that has a fundamental solution ๐ธ โˆˆ

๐’Ÿ๐›คโ€ฒ (โ„๐‘›). Then for any ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) such that ๐‘ ๐‘ข๐‘๐‘ ๐‘ฃ โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž}, there exists a unique

solution ๐‘ข to the equation ๐‘˜ โˆ— ๐‘ข = ๐‘ฃ such that ๐‘ ๐‘ข๐‘๐‘ ๐‘ข โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž} as well. Furthermore,

for any such solution ๐‘ข, ๐‘ ๐‘ข๐‘๐‘(๐‘ข) โŠ† ๐‘ ๐‘ข๐‘๐‘ ๐ธ + ๐‘ ๐‘ข๐‘๐‘ ๐‘ฃ.

Proof: Letโ€™s start with (a). Take any ๐‘ข1, โ€ฆ , ๐‘ข๐‘š โˆˆ ๐’Ÿฮ“โ€ฒ (โ„๐‘›). We need to show that the addition

function is proper over supp๐‘ข1 ร— โ€ฆร— supp๐‘ข๐‘š. We will do this by using the criterion for such

properness described in Definition 5.3.1 in the book. Take any ๐›ฟ > 0 and suppose that

๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘š โˆˆ โ„๐‘› are such that each ๐‘ฅ๐‘– โˆˆ supp๐‘ข๐‘– and |๐‘ฅ1 + โ‹ฏ+ ๐‘ฅ๐‘š| โ‰ค ๐›ฟ. Since each supp๐‘ข๐‘– โŠ†

ฮ“, we have that each ๐‘ฅ๐‘–๐‘› โ‰ฅ 0 and so the previous inequality implies that each ๐‘ฅ๐‘–

๐‘› โ‰ค ๐›ฟ. By

definition of ฮ“ we then get that each |๏ฟฝฬƒ๏ฟฝ๐‘–| โ‰ค ๐›ฟ ๐‘โ„ and so each:

|๐‘ฅ๐‘–| โ‰ค โˆš(๐›ฟ ๐‘โ„ )2 + ๐›ฟ2 = ๐›ฟโˆš(1 ๐‘โ„ )2 + 1.

Setting ๐›ฟโ€ฒ = ๐›ฟโˆš(1 ๐‘โ„ )2 + 1 in Definition 5.3.1 then proves the desired properness. This proves

(a).

Page 8: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

8

Onwards to (b)! This is proved similarly: take any ๐‘ข1, โ€ฆ , ๐‘ข๐‘š โˆˆ ๐’Ÿฮ“โ€ฒ (โ„๐‘›) and any ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›)

such that supp ๐‘ฃ โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž} for some fixed ๐‘Ž โˆˆ โ„. Take any ๐›ฟ > 0 and suppose that ๐‘ฅ๐‘– โˆˆ

supp๐‘ข๐‘– and ๐‘ฆ โˆˆ supp ๐‘ฃ are such that |๐‘ฅ1 + โ‹ฏ+ ๐‘ฅ๐‘š + ๐‘ฆ| โ‰ค ๐›ฟ. The last inequality implies that

both |๏ฟฝฬƒ๏ฟฝ1 + โ‹ฏ+ ๏ฟฝฬƒ๏ฟฝ๐‘š + ๏ฟฝฬƒ๏ฟฝ| โ‰ค ๐›ฟ and |๐‘ฅ1๐‘› + โ‹ฏ+ ๐‘ฅ๐‘š

๐‘› + ๐‘ฆ๐‘›| โ‰ค ๐›ฟ. The latter coupled with the facts

that each ๐‘ฅ๐‘–๐‘› โ‰ฅ 0 and ๐‘ฆ๐‘› โ‰ฅ ๐‘Ž gives:

|๐‘ฅ๐‘–๐‘›| โ‰ค ๐‘ฅ1

๐‘› + โ‹ฏ+ ๐‘ฅ๐‘š๐‘› + ๐‘Ž โˆ’ ๐‘Ž โ‰ค ๐‘ฅ1

๐‘› + โ‹ฏ+ ๐‘ฅ๐‘š๐‘› + ๐‘ฆ๐‘› โˆ’ ๐‘Ž โ‰ค ๐›ฟ โˆ’ ๐‘Ž,

|๐‘ฆ๐‘›| โ‰ค |๐‘ฅ1๐‘› + โ‹ฏ+ ๐‘ฅ๐‘š

๐‘› + ๐‘ฆ๐‘›| + |๐‘ฅ1๐‘› + โ‹ฏ+ ๐‘ฅ๐‘š

๐‘› | โ‰ค ๐›ฟ + ๐‘š(๐›ฟ โˆ’ ๐‘Ž).

By the definition of ฮ“ we have that each |๏ฟฝฬƒ๏ฟฝ๐‘–| โ‰ค (๐›ฟ โˆ’ ๐‘Ž) ๐‘โ„ . The inequality |๏ฟฝฬƒ๏ฟฝ1 + โ‹ฏ+ ๏ฟฝฬƒ๏ฟฝ๐‘š + ๏ฟฝฬƒ๏ฟฝ| โ‰ค

๐›ฟ then gives us that:

|๏ฟฝฬƒ๏ฟฝ| โ‰ค |๏ฟฝฬƒ๏ฟฝ1 + โ‹ฏ+ ๏ฟฝฬƒ๏ฟฝ๐‘š + ๏ฟฝฬƒ๏ฟฝ| + |๏ฟฝฬƒ๏ฟฝ1 + โ‹ฏ+ ๏ฟฝฬƒ๏ฟฝ๐‘š| โ‰ค ๐›ฟ + ๐‘š(๐›ฟ โˆ’ ๐‘Ž) ๐‘โ„ .

In total we get the results:

|๐‘ฅ๐‘–| โ‰ค โˆš[(๐›ฟ โˆ’ ๐‘Ž) ๐‘โ„ ]2 + (๐›ฟ โˆ’ ๐‘Ž)2,

|๐‘ฆ| โ‰ค โˆš[๐›ฟ + ๐‘š(๐›ฟ โˆ’ ๐‘Ž) ๐‘โ„ ]2 + [๐›ฟ + ๐‘š(๐›ฟ โˆ’ ๐‘Ž)]2.

Setting ๐›ฟโ€ฒ > 0 in Definition 5.3.1 to be any constant bigger than the two constants on the right-

hand sides above then proves (b).

Finally we come to (c). Take any ๐‘ฃ โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) such that supp ๐‘ฃ โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž} for some fixed ๐‘Ž โˆˆ

โ„. Obviously ๐‘ข = ๐ธ โˆ— ๐‘ฃ is a desired solution since by Theorem 5.3.2 (iii) in the book,

supp๐‘ข โŠ† supp๐ธ + supp ๐‘ฃ โŠ† {๐‘ฅ๐‘› โ‰ฅ ๐‘Ž}

and

๐‘˜ โˆ— ๐‘ข = ๐‘˜ โˆ— ๐ธ โˆ— ๐‘ฃ = ๐›ฟ โˆ— ๐‘ฃ = ๐‘ฃ

(all of these convolutions make sense by part (b)). To prove that this is the unique desired

solution, suppose that ๏ฟฝฬƒ๏ฟฝ is another such solution. Convoluting both sides of the equation ๐‘˜ โˆ— ๏ฟฝฬƒ๏ฟฝ =

๐‘ฃ by ๐ธ from the left gives:

๐ธ โˆ— ๐‘˜ โˆ— ๏ฟฝฬƒ๏ฟฝ = ๐ธ โˆ— ๐‘ฃ.

The left-hand side here is equal to:

๐ธ โˆ— ๐‘˜ โˆ— ๏ฟฝฬƒ๏ฟฝ = ๐‘˜ โˆ— ๐ธ โˆ— ๏ฟฝฬƒ๏ฟฝ = ๐›ฟ โˆ— ๏ฟฝฬƒ๏ฟฝ = ๏ฟฝฬƒ๏ฟฝ.

Plugging this into the previous equation recovers our previous solution: ๏ฟฝฬƒ๏ฟฝ = ๐ธ โˆ— ๐‘ฃ. So indeed the

desired solution to our equation is unique.

โˆŽ

Page 9: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

9

Chapter 6

Schwartz Kernel Theorem [Maintenance planned] (11/4/2020)

Note: I plan to do much needed maintenance on this entry. In particular, I want to make it a lot

more concise.

Note: This entry is hard.

Here I give my version of a proof to the Schwartz Kernel Theorem. Itโ€™s exactly the same as the

proof in this book except that I fill in all of the details. Since this proof involves a lot of steps, I

think the best approach for any reader would be to first read Friedlanderโ€™s shorter proof in order

to get the main idea, and then read this proof if they want to see the details filled in.

Before we prove the theorem, letโ€™s first observe a lemma:

Lemma: Suppose that ๐‘“ โˆˆ ๐ถโˆž(โ„๐‘›) is a smooth function such that it and all of its partials are ๐‘‡-

periodic where ๐‘‡ > 0. Then its Fourier series converges uniformly to ๐‘“:

๐‘“(๐‘ฅ) = โˆ‘ ๐‘“๐‘”๐‘”โˆˆโ„ค

๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) ๐‘‡โ„

where each

๐‘“๐‘” =1

๐‘‡๐‘›โˆซ๐‘“(๐‘ )๐‘’โˆ’2๐œ‹๐‘–(๐‘ โ‹…๐‘”) ๐‘‡โ„ ๐‘‘๐‘ 

๐‘…๐‘‡

,

where ๐‘…๐‘‡ is any ๐‘‡-periodic box (for example: ๐‘…๐‘‡ = [0, ๐‘‡]๐‘›). Furthermore, for any ๐›ผ โˆˆ โ„(๐‘›) (see

โ€œnotations and conventionsโ€), the ๐œ•๐›ผ partial of the Fourier seriesโ€™ partial sums converge

uniformly to ๐œ•๐›ผ๐‘“.

Proof: Iโ€™d say that this is a rather standard fact from the theory of Fourier series.

โˆŽ

Now for the Schwartz Kernel Theorem:

Schwartz Kernel Theorem: Suppose that ๐‘‹ โŠ† โ„๐‘š and ๐‘Œ โŠ† โ„๐‘› are open subsets. A linear map

๐œ‡ โˆถ ๐ถ๐‘โˆž(๐‘Œ) โ†’ ๐’Ÿโ€ฒ(๐‘‹) is sequentially continuous if and only if itโ€™s generated by a Schwartz Kernel

๐‘˜ โˆˆ ๐’Ÿโ€ฒ(๐‘‹ ร— ๐‘Œ):

โŸจ๐œ‡๐œ“, ๐œ™โŸฉ = โŸจ๐‘˜, ๐œ™ โŠ— ๐œ“โŸฉ.

Furthermore, ๐‘˜ here is uniquely determined by ๐œ‡.

Proof: We already proved in the book that if such a map ๐œ‡ is generated by a Schwartz kernel ๐‘˜ โˆˆ

๐’Ÿโ€ฒ(๐‘‹ ร— ๐‘Œ), then itโ€™s sequentially continuous. So letโ€™s prove the forward implication. The fact

that ๐‘˜ is uniquely determined by ๐œ‡ is obvious since the above equation determines what ๐‘˜ is

equal to on a dense subset of ๐ถ๐‘โˆž(๐‘‹ ร— ๐‘Œ) (dense with respect to convergence in ๐ถ๐‘

โˆž(๐‘‹ ร— ๐‘Œ) of

course). So letโ€™s prove the existence of such a ๐‘˜ โˆˆ ๐’Ÿโ€ฒ(๐‘‹ ร— ๐‘Œ).

Page 10: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

10

Let {๐พ๐‘—}๐‘—=1

โˆž and {๐‘„๐‘—}๐‘—=1

โˆž be compact exhaustions of ๐‘‹ and ๐‘Œ respectively (we will need that fact

that each ๐พ๐‘— โŠ† ๐พ๐‘—+1int and ๐‘„๐‘— โŠ† ๐‘„๐‘—+1

int later). Consider the bilinear form ๐ต โˆถ ๐ถ๐‘โˆž(๐‘‹) ร— ๐ถ๐‘

โˆž(๐‘Œ) โ†’ โ„‚

given by:

๐ต(๐œ™, ๐œ“) = โŸจ๐œ‡๐œ“, ๐œ™โŸฉ.

Now, fix any ๐‘—0 โˆˆ โ„ค+. Take any ๐œ“ โˆˆ ๐ถ๐‘โˆž(๐‘„๐‘—0). Since ๐œ‡๐œ“ โˆˆ ๐’Ÿโ€ฒ(๐‘‹), we have that there exist

๐ถ๐œ“, ๐‘€๐œ“ > 0 such that

|๐ต(๐œ™, ๐œ“)| = |โŸจ๐œ‡๐œ“, ๐œ™โŸฉ| โ‰ค ๐ถ๐œ“ โˆ‘ sup|๐œ•๐›ผ๐œ™|

|๐›ผ|โ‰ค๐‘€๐œ“

โˆ€๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0).

Now take any ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0). The map ๐œ“ โ†ฆ ๐œ‡๐œ“ being sequentially continuous implies that the

map ๐œ“ โ†ฆ โŸจ๐œ‡๐œ“, ๐œ™โŸฉ is also sequentially continuous. Thus the latter map is a distribution in ๐ทโ€ฒ(๐‘Œ)

and so there exist ๐ถ๐œ™, ๐‘๐œ™ > 0 such that:

|๐ต(๐œ™, ๐œ“)| = |โŸจ๐œ‡๐œ“, ๐œ™โŸฉ| โ‰ค ๐ถ๐œ™ โˆ‘ sup|๐œ•๐›ฝ๐œ“||๐›ฝ|โ‰ค๐‘๐œ™

โˆ€๐œ“ โˆˆ ๐ถ๐‘โˆž(๐‘„๐‘—0).

These two inequalities show that the restriction ๐ต๐‘—0 โˆถ ๐ถ๐‘โˆž(๐พ๐‘—0) ร— ๐ถ๐‘

โˆž(๐‘„๐‘—0) โ†’ โ„‚ of ๐ต is a

separately continuous bilinear form over the Frรฉchet spaces ๐ถ๐‘โˆž(๐พ๐‘—0) and ๐ถ๐‘

โˆž(๐‘„๐‘—0). Now, noting

that Frรฉchet spaces are also Banach spaces we have by a quick corollary of the uniform

boundedness principle that ๐ต๐‘—0 is continuous with respect to the product topology. I prove this

corollary in my electronic diary about Follandโ€™s โ€œReal Analysisโ€ book. In the that same

electronic diary, I also prove an equivalent condition for a bilinear map between Frรฉchet spaces

being continuous which in our case gives that there exist ๐ถ๐‘—0 , ๐‘๐‘—0 > 0 such that:

|๐ต(๐œ™, ๐œ“)| = |๐ต๐‘—0(๐œ™, ๐œ“)| โ‰ค ๐ถ๐‘—0 ( โˆ‘ sup|๐œ•๐›ผ๐œ™|

|๐›ผ|โ‰ค๐‘๐‘—0

)( โˆ‘ sup|๐œ•๐›ฝ๐œ“||๐›ฝ|โ‰ค๐‘๐‘—0

)

โˆ€๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0) and โˆ€๐œ“ โˆˆ ๐ถ๐‘

โˆž(๐‘„๐‘—0).

Ok, with this in hand we are now ready to begin constructing the ๐‘˜ โˆˆ ๐’Ÿโ€ฒ(๐‘‹ ร— ๐‘Œ ) that we want.

We will do this by defining continuous linear forms ๐‘˜๐‘— โˆถ ๐ถ๐‘โˆž(๐พ๐‘— ร— ๐‘„๐‘—) โ†’ โ„‚ for ๐‘— โˆˆ โ„ค+ and then

use their values to define ๐‘˜. Fix any ๐‘—0 โˆˆ โ„ค+. Let ๐œŒ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0+1) and ๐œŽ โˆˆ ๐ถ๐‘

โˆž(๐‘„๐‘—0+1) be such

that ๐œŒ โ‰ก 1 and ๐œŽ โ‰ก 1 on neighborhoods of ๐พ๐‘—0 and ๐‘„๐‘—0 respectively. Let ๐‘ > 0 be such that

๐พ๐‘—0+1 ร— ๐‘„๐‘—0+1 โŠ† [โˆ’๐‘, ๐‘]๐‘š+๐‘›. Now, take any ๐œ’ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0 ร— ๐‘„๐‘—0). Define the value of ๐‘˜๐‘—0 at ๐œ’ to

be:

โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ = โˆ‘ ๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

where ๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž) are the Fourier coefficients of ๐œ’:

Page 11: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

11

๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž) =1

(2๐‘)๐‘š+๐‘›โˆซ ๐œ’(๐‘ฅ, ๐‘ฆ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”+๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

[โˆ’๐‘,๐‘]๐‘š+๐‘›

.

Technically I should be writing ๐œ’โ„๐‘šร—โ„๐‘› (see notations and conventions) rather than ๐œ’ inside the

above integral since ๐œ’ is not necessarily defined over [โˆ’๐‘, ๐‘]. Ok, in order for the previous

expression to make sense letโ€™s prove that the sum on the right-hand side converges uniformly.

Before we do that though, Iโ€™d like to point out that once we prove that the above sum makes

sense and is finite, then it will be clear that ๐‘˜๐‘—0 is a linear form since the equation for the Fourier

coefficient is linear in ๐œ’ and ๐ต is linear in its first argument.

Ok, letโ€™s prove that that sum is absolutely convergent. First letโ€™s create a bound to estimate how

large the above Fourier coefficients of ๐œ’ can get. Fix any index (๐‘”, โ„Ž) โˆˆ โ„ค๐‘š ร— โ„ค๐‘›. First a piece

of notation: for an any multi-index ๐›ผ โˆˆ โ„(๐‘Ÿ), let โ„‹(๐›ผ) be the multi-index whose ๐‘ th component

is equal to 1 if ๐›ผ๐‘  > 0 and is equal to 0 if ๐›ผ๐‘  = 0. Let ๐‘ = ๐‘๐‘—0+1. Notice that since

supp๐œ’ โŠ† ๐พ๐‘—0 ร— ๐‘„๐‘—0 โŠ† ๐พ๐‘—0+1int ร— ๐‘„๐‘—0+1

int โŠ† [โˆ’๐‘, ๐‘]๐‘š+๐‘›,

we have that ๐œ’ and all of its partials are zero on the boundary of the box [โˆ’๐‘, ๐‘]๐‘š+๐‘›. So for any

(๐‘”, โ„Ž) โˆˆ โ„ค๐‘š ร— โ„ค๐‘› we have by many integrations by parts that

๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž) =1

(2๐‘)๐‘š+๐‘›(

2๐‘

โˆ’2๐œ‹๐‘–)

(๐‘+2)|โ„‹(๐‘”,โ„Ž)|1

โˆ ๐‘”๐‘Ÿ๐‘+2๐‘š

๐‘Ÿ=1,๐‘”๐‘Ÿโ‰ 0 โˆ โ„Ž๐‘ ๐‘+2๐‘›

๐‘ =1,โ„Ž๐‘ โ‰ 0

โ‹… โˆซ ๐œ•(๐‘+2)โ„‹(๐‘”,โ„Ž)[๐œ’(๐‘ฅ, ๐‘ฆ)]๐‘’โˆ’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”+๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

[โˆ’๐‘,๐‘]๐‘š+๐‘›

.

Let ๐ธ1 > 0 be a constant such that:

|1

(2๐‘)๐‘š+๐‘›(

2๐‘

โˆ’2๐œ‹๐‘–)

(๐‘+2)|โ„‹(๐‘”,โ„Ž)|

| โ‰ค ๐ธ1.

Furthermore, notice that we can remove the unpleasant ๐‘”๐‘Ÿ โ‰  0 and โ„Ž๐‘  โ‰  0 indexing rules above

by writing the estimate (here I use the fact that 1 ๐‘Ÿโ„ โ‰ค 2 (1 + ๐‘Ÿ)โ„ if ๐‘Ÿ > 0 is an integer):

|1

โˆ ๐‘”๐‘Ÿ๐‘+2๐‘š

๐‘Ÿ=1,๐‘”๐‘Ÿโ‰ 0 โˆ โ„Ž๐‘ ๐‘+2๐‘›

๐‘ =1,โ„Ž๐‘ โ‰ 0

| โ‰ค2๐‘š+๐‘›

โˆ (1 + |๐‘”๐‘Ÿ|๐‘+2)๐‘š๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |๐‘+2)๐‘›

๐‘ =1

Setting ๐ธ2 = 2๐‘š+๐‘›๐ธ1, we get the following estimate on our Fourier coefficient:

|๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)| โ‰ค ๐ธ2

1

โˆ (1 + |๐‘”๐‘Ÿ|๐‘+2)๐‘š๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |๐‘+2)๐‘›

๐‘ =1

Vol([โˆ’๐‘, ๐‘]๐‘š+๐‘›) sup|๐œ•(๐‘+2)โ„‹(๐‘”,โ„Ž)๐œ’|

Setting ๐ธ3 = ๐ธ2 Vol([โˆ’๐‘, ๐‘]๐‘š+๐‘›), notice that we can furthermore estimate our Fourier

coefficient as:

Page 12: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

12

|๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)| โ‰ค ๐ธ3 ( โˆ‘ sup|๐œ•๐›พ๐œ’|

|๐›พ|โ‰ค๐‘+2

)1

โˆ (1 + |๐‘”๐‘Ÿ|๐‘+2)๐‘š๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |๐‘+2)๐‘›

๐‘ =1

,

which is written in a bit more familiar terms. Great! Weโ€™re going to use this estimate below.

Meanwhile, going back to our definition of โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ, notice that we can bound each summand

term on the right by:

|๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…โ„Ž) (2๐‘)โ„ )|

โ‰ค ๐ถ๐‘—0 ( โˆ‘ sup|๐œ•๐›ผ[๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ ]||๐›ผ|โ‰ค๐‘

)( โˆ‘ sup|๐œ•๐›ฝ[๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ]||๐›ฝ|โ‰ค๐‘

)

Now apply the product rule on each ๐œ•๐›ผ and ๐œ•๐›ฝpartials (recall that by convention 00 = 1 when

raising something to a multi-index):

|๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…โ„Ž) (2๐‘)โ„ )|

โ‰ค ๐ถ๐‘—0|๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)| ( โˆ‘ โˆ‘ sup |๐›ผ!

๐œ‚! (๐›ผ โˆ’ ๐œ‚)!(2๐œ‹๐‘–

2๐‘)|๐œ‚|

๐‘”๐œ‚๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ ๐œ•๐›ผโˆ’๐œ‚๐œŒ|

๐œ‚โ‰ค๐›ผ|๐›ผ|โ‰ค๐‘

)

โ‹… ( โˆ‘ โˆ‘ sup |๐›ฝ!

๐œˆ! (๐›ฝ โˆ’ ๐œˆ)!(2๐œ‹๐‘–

2๐‘)|๐œˆ|

โ„Ž๐œˆ๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐œ•๐›ฝโˆ’๐œˆ๐œŽ|

๐œˆโ‰ค๐›ฝ|๐›ฝ|โ‰ค๐‘

)

If we distribute above sum, we merely get a big linear combination of terms of the form ๐‘”๐œ‚โ„Ž๐œˆ.

So for some collection of coefficients ๐ด(๐œ‚,๐œˆ),

|๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…โ„Ž) (2๐‘)โ„ )| โ‰ค ๐ถ๐‘—0|๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)| โˆ‘ ๐ด(๐œ‚,๐œˆ)๐‘”๐œ‚โ„Ž๐œˆ

|๐œ‚|โ‰ค๐‘|๐œˆ|โ‰ค๐‘

.

Now, if we plug in the above estimate for |๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)| into this inequality we get that for some

constant ๐ธ4 > 0,

|๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…โ„Ž) (2๐‘)โ„ )|

โ‰ค ๐ธ4 โˆ‘๐‘”๐œ‚โ„Ž๐œˆ

โˆ (1 + |๐‘”๐‘Ÿ|๐‘+2)๐‘š๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |๐‘+2)๐‘›

๐‘ =1|๐œ‚|โ‰ค๐‘|๐œˆ|โ‰ค๐‘

โˆ‘ sup|๐œ•๐›พ๐œ’|

|๐›พ|โ‰ค๐‘+2

Ok, since each |๐œ‚| โ‰ค ๐‘ in the first sum, we have that

๐‘”๐œ‚

โˆ (1 + |๐‘”๐‘Ÿ|๐‘+2)๐‘š๐‘Ÿ=1

โ‰ค๐‘”๐œ‚

โˆ ๐‘”๐‘Ÿ๐‘+2๐‘š

๐‘Ÿ=1,๐‘”๐‘Ÿโ‰ 0

โ‰ค1

โˆ ๐‘”๐‘Ÿ2๐‘š

๐‘Ÿ=1,๐‘”๐‘Ÿโ‰ 0

โ‰ค2๐‘š

โˆ (1 + |๐‘”๐‘Ÿ|2)๐‘š๐‘Ÿ=1

.

Page 13: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

13

By a similar calculation we have that

โ„Ž๐œˆ

โˆ (1 + |โ„Ž๐‘ |๐‘+2)๐‘›๐‘ =1

โ‰ค2๐‘›

โˆ (1 + |โ„Ž๐‘ |2)๐‘›๐‘ =1

.

So we get that for some constant ๐ธ5 > 0,

|๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…โ„Ž) (2๐‘)โ„ )|

โ‰ค ๐ธ5

1

โˆ (1 + |๐‘”๐‘Ÿ|2)๐‘š

๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |2)๐‘›

๐‘ =1

โˆ‘ sup|๐œ•๐›พ๐œ’|

|๐›พ|โ‰ค๐‘+2

.

Tracing the above calculation again, notice that the value of the constant ๐ธ5 is independent of

(๐‘”, โ„Ž) (and even ๐œ’). So the above estimate holds for all (๐‘”, โ„Ž) โˆˆ โ„ค๐‘š ร— โ„ค๐‘› (and all ๐œ’). Thus the

above inequality shows that that the sum in the definition of โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ decays like ๐‘”๐‘Ÿ2 and โ„Ž๐‘ 

2 in all

direction. Hence that sum is indeed absolutely convergent and thus makes sense. The above

inequality shows more: it gives us the estimate:

|โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ| โ‰ค ๐ธ5 ( โˆ‘1

โˆ (1 + |๐‘”๐‘Ÿ|2)๐‘š๐‘Ÿ=1 โˆ (1 + |โ„Ž๐‘ |2)

๐‘›๐‘ =1(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

) โˆ‘ sup|๐œ•๐›พ๐œ’|

|๐›พ|โ‰ค๐‘+2

.

Again, since the ฮฃ(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘› sum here is finite and the value of the constant ๐ธ5 is independent

of ๐œ’, this shows that ๐‘˜๐‘—0 is in fact a continuous linear form over ๐ถ๐‘โˆž(๐พ๐‘—0 ร— ๐‘„๐‘—0).

Great, letโ€™s show one last property of ๐‘˜๐‘—0 . Letโ€™s show that for any ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0) and any ๐œ“ โˆˆ

๐ถ๐‘โˆž(๐‘„๐‘—0),

โŸจ๐‘˜๐‘—0 , ๐œ™ โŠ— ๐œ“โŸฉ = ๐ต(๐œ™,๐œ“) = โŸจ๐œ‡๐œ“, ๐œ™โŸฉ.

The Fourier coefficients of (๐œ™ โŠ— ๐œ“)โ„๐‘šร—โ„๐‘› are given by:

(๐œ™ โŠ— ๐œ“)ฬ‚(๐‘”,โ„Ž) =

1

(2๐‘)๐‘š+๐‘›โˆซ ๐œ™(๐‘ฅ)๐œ“(๐‘ฆ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”+๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

[โˆ’๐‘,๐‘]๐‘š+๐‘›

=1

(2๐‘)๐‘šโˆซ ๐œ™(๐‘ฅ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ ๐‘‘๐‘ฅ

[โˆ’๐‘,๐‘]๐‘š

โ‹…1

(2๐‘)๐‘›โˆซ ๐œ“(๐‘ฆ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐‘‘๐‘ฆ

[โˆ’๐‘,๐‘]๐‘›

.

Setting ๏ฟฝฬ‚๏ฟฝ๐‘” and ๏ฟฝฬ‚๏ฟฝโ„Ž to be the Fourier coefficients of ๐œ™โ„๐‘š and ๐œ“โ„๐‘›

respectively:

๏ฟฝฬ‚๏ฟฝ๐‘” =1

(2๐‘)๐‘šโˆซ ๐œ™(๐‘ฅ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ ๐‘‘๐‘ฅ

[โˆ’๐‘,๐‘]๐‘š

,

Page 14: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

14

๏ฟฝฬ‚๏ฟฝโ„Ž =1

(2๐‘)๐‘›โˆซ ๐œ“(๐‘ฅ)๐‘’โˆ’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ ๐‘‘๐‘ฆ

[โˆ’๐‘,๐‘]๐‘›

,

we then get the trivial tensor Fourier coefficient relation:

(๐œ™ โŠ— ๐œ“)ฬ‚(๐‘”,โ„Ž) = ๏ฟฝฬ‚๏ฟฝ๐‘” โ‹… ๏ฟฝฬ‚๏ฟฝโ„Ž.

Using this in the definition of โŸจ๐‘˜๐‘—0 , ๐œ™ โŠ— ๐œ“โŸฉ then gives us that

โŸจ๐‘˜๐‘—0 , ๐œ™ โŠ— ๐œ“โŸฉ = โˆ‘ ๐ต(๏ฟฝฬ‚๏ฟฝ๐‘”๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๏ฟฝฬ‚๏ฟฝโ„Ž๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

.

Now, itโ€™s easy to see by the lemma stated before this theorem that the series

โˆ‘ ๏ฟฝฬ‚๏ฟฝ๐‘”๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„

๐‘”โˆˆโ„ค๐‘š

= ๐œŒ(๐‘ฅ) โˆ‘ ๏ฟฝฬ‚๏ฟฝ๐‘”๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„

๐‘”โˆˆโ„ค๐‘š

.

converges to ๐œŒ โ‹… ๐œ™ in ๐ถ๐‘โˆž(โ„๐‘š). So this series converges to ๐œ™ in ๐ถ๐‘

โˆž(๐พ๐‘—0+1) since ๐œŒ โ‹… ๐œ™ = ๐œ™ on

๐พ๐‘—0+1 (recall that supp๐œ™ โŠ† ๐พ๐‘—0 and ๐œŒ โ‰ก 1 on ๐พ๐‘—0). For the same reason, we have that the series

โˆ‘ ๏ฟฝฬ‚๏ฟฝโ„Ž๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„

โ„Žโˆˆโ„ค๐‘›

converges to ๐œ“ in ๐ถ๐‘โˆž(๐‘„๐‘—0+1) as well. Using the fact that ๐ต๐‘—0+1 โˆถ ๐ถ๐‘

โˆž(๐พ๐‘—0+1) ร— ๐ถ๐‘โˆž(๐‘„๐‘—0+1) โ†’ โ„‚

is separately continuous we then have that

โŸจ๐‘˜๐‘—0 , ๐œ™ โŠ— ๐œ“โŸฉ = โˆ‘ โˆ‘ ๐ต๐‘—0+1(๏ฟฝฬ‚๏ฟฝ๐‘”๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๏ฟฝฬ‚๏ฟฝโ„Ž๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )

โ„Žโˆˆโ„ค๐‘›๐‘”โˆˆโ„ค๐‘š

= โˆ‘ ๐ต๐‘—0+1(๏ฟฝฬ‚๏ฟฝ๐‘”๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œ“)

๐‘”โˆˆโ„ค๐‘š

= ๐ต๐‘—0(๐œ™, ๐œ“) = ๐ต(๐œ™,๐œ“) = โŸจ๐œ‡๐œ“, ๐œ™โŸฉ.

We are now finally ready for the last step in the proof of this theorem. Define the function ๐‘˜ โˆถ

๐ถ๐‘โˆž(๐‘‹ ร— ๐‘Œ) โ†’ โ„‚ as follows. Take any test function ๐œ’ โˆˆ ๐ถ๐‘

โˆž(๐‘‹ ร— ๐‘Œ) and let ๐‘—0 โˆˆ โ„ค+ be such that

supp๐œ’ โŠ† ๐พ๐‘—0 ร— ๐‘„๐‘—0. Then set:

โŸจ๐‘˜, ๐œ’โŸฉ = โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ.

Letโ€™s prove that this is well defined by showing that this is independent of the ๐‘—0 that we chose

that satisfies the above property. Let ๐‘Ÿ0 โˆˆ โ„ค+ be any other such index and letโ€™s suppose without

loss of generality that ๐‘—0 โ‰ค ๐‘Ÿ0. As before, let ๐œŒ โˆˆ ๐ถ๐‘โˆž(๐พ๐‘—0+1) and ๐œŽ โˆˆ ๐ถ๐‘

โˆž(๐‘„๐‘—0+1) be such that

๐œŒ โ‰ก 1 and ๐œŽ โ‰ก 1 on neighborhoods of ๐พ๐‘—0 and ๐‘„๐‘—0 respectively. Letting ๐‘ > 0 be such that

๐พ๐‘—0+1 ร— ๐‘„๐‘—0+1 โŠ† [โˆ’๐‘, ๐‘]๐‘š+๐‘› we have by a similar discussion as above that the series

โˆ‘ ๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„

(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

Page 15: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

15

converges to ๐œ’ in ๐ถ๐‘โˆž(๐พ๐‘—0+1 ร— ๐‘„๐‘—0+1) and thus in ๐ถ๐‘

โˆž(๐พ๐‘Ÿ0+1 ร— ๐‘„๐‘Ÿ0+1) (since ๐พ๐‘—0+1 ร— ๐‘„๐‘—0+1 โŠ†

๐พ๐‘Ÿ0+1 ร— ๐‘„๐‘Ÿ0+1). The continuity and linearity of both ๐‘˜๐‘—0 and ๐‘˜๐‘Ÿ0 implies that their values at ๐œ’ are

given by:

โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ = โˆ‘ ๐‘˜๐‘—0(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ โŠ— ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

,

โŸจ๐‘˜๐‘Ÿ0 , ๐œ’โŸฉ = โˆ‘ ๐‘˜๐‘Ÿ0(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ โŠ— ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

,

both of which are equal to

โˆ‘ ๐ต(๏ฟฝฬ‚๏ฟฝ(๐‘”,โ„Ž)๐œŒ(๐‘ฅ)๐‘’2๐œ‹๐‘–(๐‘ฅโ‹…๐‘”) (2๐‘)โ„ , ๐œŽ(๐‘ฆ)๐‘’2๐œ‹๐‘–(๐‘ฆโ‹…โ„Ž) (2๐‘)โ„ )(๐‘”,โ„Ž)โˆˆโ„ค๐‘šร—โ„ค๐‘›

.

So โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ = โŸจ๐‘˜๐‘Ÿ0 , ๐œ’โŸฉ, and thus ๐‘˜ is indeed well defined. Itโ€™s easy to see from the definition of ๐‘˜

that itโ€™s linear. To see that itโ€™s a distribution, we also have to show that it satisfies the distribution

โ€œseminormโ€ like inequalities. Take any compact set ๐‘… โŠ† ๐‘‹ ร— ๐‘Œ. Let ๐‘—0 โˆˆ โ„ค+ be such that ๐‘… โŠ†๐พ๐‘—0 ร— ๐‘„๐‘—0. Then since ๐‘˜๐‘—0 is continuous we have that there exist ๐ถ, ๐‘ > 0 such that for any ๐œ’ โˆˆ

๐ถ๐‘โˆž(๐‘…) โŠ† ๐ถ๐‘

โˆž(๐พ๐‘—0 ร— ๐‘„๐‘—0),

|โŸจ๐‘˜, ๐œ’โŸฉ| = |โŸจ๐‘˜๐‘—0 , ๐œ’โŸฉ| โ‰ค ๐ถ โˆ‘ sup|๐œ•๐›พ๐œ’|

|๐›พ|โ‰ค๐‘

.

So ๐‘˜ is indeed a distribution over ๐‘‹ ร— ๐‘Œ (i.e. ๐‘˜ โˆˆ ๐’Ÿโ€ฒ(๐‘‹ ร— ๐‘Œ)). The last thing to show is that it

satisfies the property that we desire. Take any ๐œ™ โˆˆ ๐ถ๐‘โˆž(๐‘‹) and any ๐œ“ โˆˆ ๐ถ๐‘

โˆž(๐‘Œ). Let ๐‘—0 โˆˆ โ„ค+ be

such that supp๐œ™ ร— supp๐œ“ โŠ† ๐พ๐‘—0 ร— ๐‘„๐‘—0. Then we have that:

โŸจ๐‘˜, ๐œ™ โŠ— ๐œ“โŸฉ = โŸจ๐‘˜๐‘—0 , ๐œ™ โŠ— ๐œ“โŸฉ = โŸจ๐œ‡๐œ“, ๐œ™โŸฉ.

So ๐‘˜ is the Schwartz kernel of our map ๐œ‡. With this weโ€™ve proven the theorem.

โˆŽ

Chapter 8

Structure Theorem for Tempered Distributions [Theorem 8.3.1] (5/11/2021)

In this entry I work through the proof of the structure theorem for tempered distributions

(Theorem 8.3.1 in the book) by putting it into my own words and filling in the details.

Theorem: A distribution is a tempered distribution if and only if it is the derivative of a

continuous function of polynomial growth.

Proof: First suppose that a distribution ๐‘ข โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) is the derivative of a continuous function

๐‘“ โˆˆ ๐ถ0(โ„๐‘›) of polynomial growth:

Page 16: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

16

๐‘ข = ๐œ•๐›ผ๐‘“,

where ๐›ผ โˆˆ โ„(๐‘›) of course. We want to show that ๐‘ข is a tempered distribution. Since ๐‘“ is of

polynomial growth, there exist ๐ถ > 0 and ๐‘€ โˆˆ โ„ค+ such that |๐‘“(๐‘ฅ)| โ‰ค ๐ถ(1 + |๐‘ฅ|)๐‘€. Now, I

claim that the linear functional ๐’ฎ(โ„๐‘›) โ†’ โ„‚ given by

(Eq 1) ๐œ™ โŸผ (โˆ’1)|๐›ผ| โˆซ๐‘“๐œ•๐›ผ๐œ™

is a well-defined continuous extension of the distribution ๐œ•๐›ผ๐‘“ โˆถ ๐ถ๐‘โˆž(โ„๐‘›) โ†’ โ„‚ to ๐’ฎ(โ„๐‘›). If we

prove this, then this will show that ๐‘ข is indeed a tempered distribution. Take any ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›).

First letโ€™s show that the above integral even exists. We estimate (here ๐‘š is the Lebesgue

measure)

โˆซ|๐‘“๐œ•๐›ผ๐œ™| โ‰ค ๐ถ โˆซ(1 + |๐‘ฅ|)๐‘€|๐œ•๐›ผ๐œ™| = ๐ถ [ โˆซ (1 + |๐‘ฅ|)๐‘€|๐œ•๐›ผ๐œ™|

๐ต1(0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ…

+ โˆซ(1 + |๐‘ฅ|)๐‘€|๐‘ฅ|2๐‘›|๐œ•๐›ผ๐œ™|

|๐‘ฅ|2๐‘›

[๐ต1(0)]๐‘

]

โ‰ค ๐ถ [๐‘š(๐ต1(0)) sup{(1 + |๐‘ฅ|)๐‘€|๐œ•๐›ผ๐œ™|} + โˆซ1

|๐‘ฅ|2๐‘›๐‘‘๐‘ฅ

[๐ต1(0)]๐‘

โ‹… sup{(1 + |๐‘ฅ|)๐‘€|๐‘ฅ|2๐‘›|๐œ•๐›ผ๐œ™|}].

The last quantity is finite since ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›) and thus the integral in (Eq 1) is indeed well defined.

Itโ€™s clear that (Eq 1) extends ๐œ•๐›ผ๐‘“ โˆถ ๐ถ๐‘โˆž(โ„๐‘›) โ†’ โ„‚ to ๐’ฎ(โ„๐‘›). So all thatโ€™s left to prove is that the

linear functional defined by (Eq 1) is also continuous. By exactly the same computation as

above, for some constant ๐ถ2 > 0 we obtain the estimate:

|(โˆ’1)|๐›ผ| โˆซ๐‘“๐œ•๐›ผ๐œ™| โ‰ค ๐ถ2[sup{(1 + |๐‘ฅ|)๐‘€|๐œ•๐›ผ๐œ™|} + sup{(1 + |๐‘ฅ|)๐‘€|๐‘ฅ|2๐‘›|๐œ•๐›ผ๐œ™|}].

By expanding the (1 + |๐‘ฅ|)๐‘€ via the binomial theorem and then doing some further estimates,

we see that the above inequality implies that there exist ๐ถ3 > 0 and ๐‘ โˆˆ โ„ค+ such that

|(โˆ’1)|๐›ผ| โˆซ๐‘“๐œ•๐›ผ๐œ™| โ‰ค ๐ถ3 โˆ‘ sup|๐‘ฅ๐›ฝ๐œ•๐›ผ๐œ™|

|๐›ฝ|โ‰ค๐‘

.

Thus the linear functional defined by (Eq 1) is indeed continuous. As discussed above, this

proves that ๐‘ข is a tempered distribution.

Now letโ€™s prove the other direction. Suppose that ๐‘ข โˆˆ ๐’Ÿโ€ฒ(โ„๐‘›) is a tempered distribution. We will

assume that the support of ๐‘ข is contained in โ„+๐‘› = {๐‘ฅ โˆˆ โ„๐‘› โˆถ each ๐‘ฅ๐‘˜ > 0}. The general case will

then follow from the easy-to-see fact that any tempered distribution can be represented as a finite

sum of translations and reflections of such tempered distributions and that reflections and

translations of functions of polynomial growth are still of polynomial growth.

Alright, since ๐‘ข is a tempered distribution we have that there exist ๐ถ > 0 and ๐‘ โˆˆ โ„ค+ such that

Page 17: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

17

|โŸจ๐‘ข, ๐œ™โŸฉ| โ‰ค ๐ถ โˆ‘ sup|๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™||๐›ผ|,|๐›ฝ|โ‰ค๐‘

โˆ€๐œ™ โˆˆ ๐’ฎ(โ„๐‘›).

Let ๐ธ๐‘+2 โˆถ โ„๐‘› โ†’ โ„‚ denote the function

๐ธ๐‘+2(๐‘ฅ) = {(๐‘ฅ1)

๐‘+1 โ‹… โ€ฆ โ‹… (๐‘ฅ๐‘›)๐‘+1

[(๐‘ + 1)!]๐‘› if each ๐‘ฅ๐‘˜ โ‰ฅ 0

0 otherwise

Observe that ๐ธ๐‘+2 is in ๐ถ๐‘(โ„๐‘›) and that

๐œ•(๐‘+2)1โƒ‘โƒ‘ ๐ธ๐‘+2 = ๐›ฟ

in the sense of distributions (here 1โƒ‘ โˆˆ โ„(๐‘›) denotes the multi-index with all ones). Let ๐œŒ โˆˆ

๐ถ๐‘โˆž(โ„๐‘›) be a smooth function such that

1.) ๐œŒ โ‰ฅ 0

2.) โˆซ๐œŒ = 1

3.) supp ๐œŒ โŠ† ๐ต1(0).

For each ๐‘— โˆˆ โ„ค+, let ๐œŒ๐‘— โˆˆ ๐ถ๐‘โˆž(โ„๐‘›) denote the functions ๐œŒ๐‘— = ๐‘—๐‘›๐œŒ(๐‘—๐‘ฅ). Observe that ๐œŒ๐‘— โ†’ ๐›ฟ in

๐’Ÿโ€ฒ(โ„๐‘›). Now, we will prove that ๐ธ๐‘+2 โˆ— ๐‘ข is a well-defined continuous function of polynomial

growth such that

๐œ•(๐‘+2)1โƒ‘โƒ‘ (๐ธ๐‘+2 โˆ— ๐‘ข) = ๐‘ข.

The fact that ๐ธ๐‘+2 โˆ— ๐‘ข is well defined comes from the fact that the addition function โ„๐‘› ร— โ„๐‘› โ†’

โ„๐‘› given by (๐‘ฅ, ๐‘ฆ) โ†ฆ ๐‘ฅ + ๐‘ฆ is clearly proper on โ„+๐‘›ฬ…ฬ… ฬ…ฬ… ร— โ„+

๐‘›ฬ…ฬ… ฬ…ฬ… and hence proper on

supp๐ธ๐‘+2 ร— supp๐‘ข (recall that supp๐ธ๐‘+2 and supp๐‘ข are both contained in โ„+๐‘›ฬ…ฬ… ฬ…ฬ… ). The fact that

the above equation holds follows immediately from

๐œ•(๐‘+2)1โƒ‘โƒ‘ (๐ธ๐‘+2 โˆ— ๐‘ข) = ๐œ•(๐‘+2)1โƒ‘โƒ‘ (๐ธ๐‘+2) โˆ— ๐‘ข = ๐›ฟ โˆ— ๐‘ข = ๐‘ข.

Next letโ€™s show that ๐ธ๐‘+2 โˆ— ๐‘ข is a continuous function. We will do this by showing that itโ€™s the

uniform limit over compact sets of the continuous functions described in the following claim.

Claim: For any ๐‘— โˆˆ โ„ค+, the following is a well-defined smooth function over โ„๐‘›:

๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข.

Furthermore, if ๐œŽ โˆˆ ๐ถโˆž(โ„๐‘›) is such that ๐œŽ โ‰ก 1 on a neighborhood of ๐‘ ๐‘ข๐‘๐‘(๐‘ข) and ๐‘ ๐‘ข๐‘๐‘ ๐œŽ โŠ†

โ„+๐‘› , then this function is explicitly given by

(Eq 2) ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ) = โŸจ๐‘ข(๐‘ฆ), ๐œŽ(๐‘ฆ)(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—)(๐‘ฅ โˆ’ ๐‘ฆ)โŸฉ.

Proof: Fix any ๐‘— โˆˆ โ„ค+. The fact that the convolution ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข is well defined follows from

the not-hard-to-prove fact that the restriction of the addition function โ„๐‘› ร— โ„๐‘› ร— โ„๐‘› โ†’ โ„๐‘› given

Page 18: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

18

by (๐‘ฅ, ๐‘ฆ, ๐‘ง) โ†ฆ ๐‘ฅ + ๐‘ฆ + ๐‘ง to โ„+๐‘›ฬ…ฬ… ฬ…ฬ… ร— ๐ต1 ๐‘—โ„ (0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ร— โ„+

๐‘›ฬ…ฬ… ฬ…ฬ… is proper (recall that supp ๐œŒ๐‘— โŠ† ๐ต1 ๐‘—โ„ (0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ). Now,

letโ€™s see why the right-hand side of the above equation even makes sense. Specifically we have

to show that argument of ๐‘ข on the right-hand side (i.e. ๐œŽ(๐‘ฆ)(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—)(๐‘ฅ โˆ’ ๐‘ฆ)) is smooth and

of compact support. The compactness of its support follows from:

๐œŽ(๐‘ฆ)(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—)(๐‘ฅ โˆ’ ๐‘ฆ) โ‰  0 โŸน ๐‘ฆ โˆˆ supp๐œŽ and (๐‘ฅ โˆ’ ๐‘ฆ) โˆˆ supp๐ธ๐‘›+2 + supp๐œŒ๐‘—

โŸน ๐‘ฆ โˆˆ โ„+๐‘› and (๐‘ฅ โˆ’ ๐‘ฆ) โˆˆ โ„+

๐‘› + ๐ต1 ๐‘—โ„ (0) โŸน ๐‘ฆ โˆˆ โ„+๐‘› and ๐‘ฆ โˆˆ ๐‘ฅ โˆ’ โ„+

๐‘› โˆ’ ๐ต1 ๐‘—โ„ (0)

โŸน |๐‘ฆ| โ‰ค |๐‘ฅ| + 1 ๐‘—โ„ .

The smoothness of the right-hand side of (Eq 2) also follows from this and Theorem 4.1.1 in the

book.

To finish proving the claim, all we have to do now is show that equality holds in (Eq 2). To start,

let ๐‘“ = ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—. Let ๐œŽ๐‘“ , ๐œŽ๐‘ข โˆˆ ๐ถโˆž(โ„๐‘›) be such that

1.) ๐œŽ๐‘“ โ‰ก 1 on a neighborhood of supp(๐‘“) and supp๐œŽ๐‘“ โŠ† supp(๐‘“) + ๐ต1(0),

2.) ๐œŽ๐‘ข โ‰ก 1 on a neighborhood of supp๐‘ข and supp๐œŽ๐‘ข โŠ† supp๐‘ข + ๐ต1(0).

Take any test function ๐œ™ โˆˆ ๐ถ๐‘โˆž(โ„๐‘›). Analogously, let ๐œŽ๐œ™ โˆˆ ๐ถ๐‘

โˆž(โ„๐‘›) be such that ๐œŽ๐œ™ โ‰ก 1 on a

neighborhood of supp๐œ™ (note the requirement for supp๐œŽ๐œ™ to be compact). By definition, we

then have that

โŸจ๐‘“ โˆ— ๐‘ข(๐‘ง), ๐œ™(๐‘ง)โŸฉ = โŸจ๐‘“(๐‘ฅ) โŠ— ๐‘ข(๐‘ฆ), ๐œŽ๐‘“(๐‘ฅ)๐œŽ๐‘ข(๐‘ฆ)๐œ™(๐‘ฅ + ๐‘ฆ)โŸฉ

= โŸจ๐‘ข(๐‘ฆ),โˆซ ๐‘“(๐‘ฅ)๐œŽ๐‘“(๐‘ฅ)๐œŽ๐‘ข(๐‘ฆ)๐œ™(๐‘ฅ + ๐‘ฆ)๐‘‘๐‘ฅโŸฉ = โŸจ๐‘ข(๐‘ฆ),โˆซ๐‘“(๐‘ง โˆ’ ๐‘ฆ)๐œŽ๐‘ข(๐‘ฆ)๐œŽ๐œ™(๐‘ง)๐œ™(๐‘ง)๐‘‘๐‘ฅโŸฉ

= โŸจ๐‘ข(๐‘ฆ), โŸจ๐œ™(๐‘ง), ๐œŽ๐‘ข(๐‘ฆ)๐œŽ๐œ™(๐‘ง)๐‘“(๐‘ง โˆ’ ๐‘ฆ)โŸฉโŸฉ = โŸจ๐‘ข(๐‘ฆ) โŠ— ๐œ™(๐‘ง), ๐œŽ๐‘ข(๐‘ฆ)๐œŽ๐œ™(๐‘ง)๐‘“(๐‘ง โˆ’ ๐‘ฆ)โŸฉ

= โˆซ๐œ™(๐‘ง)โŸจ๐‘ข(๐‘ฆ), ๐œŽ๐‘ข(๐‘ฆ)๐œŽ๐œ™(๐‘ง)๐‘“(๐‘ง โˆ’ ๐‘ฆ)โŸฉ๐‘‘๐‘ง = โŸจโŸจ๐‘ข(๐‘ฆ), ๐œŽ๐‘ข(๐‘ฆ)๐‘“(๐‘ง โˆ’ ๐‘ฆ)โŸฉ, ๐œ™(๐‘ง)โŸฉ.

Since ๐œ™ โˆˆ ๐ถ๐‘โˆž(โ„๐‘›) was chosen arbitrarily, this shows that

๐‘“ โˆ— ๐‘ข(๐‘ง) = โŸจ๐‘ข(๐‘ฆ), ๐œŽ๐‘ข(๐‘ฆ)๐‘“(๐‘ง โˆ’ ๐‘ฆ)โŸฉ.

From here (Eq 2) follows immediately.

End of Proof of Claim.

Let ๐œŽ โˆˆ ๐ถโˆž(โ„๐‘›) be as in the above claim. First letโ€™s show that the sequence of functions ๐ธ๐‘+2 โˆ—

๐œŒ๐‘— โˆ— ๐‘ข is uniformly Cauchy over compact sets and thus converges to some continuous function.

Fix any compact subset ๐พ โŠ† โ„๐‘› and let ๐‘… > 0 be such that ๐พ โŠ† ๐ต๐‘…(0). Then, by the above

claim we have that

(Eq 3) sup๐‘ฅโˆˆ๐พ

|๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜ โˆ— ๐‘ข(๐‘ฅ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ)|

Page 19: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

19

= sup๐‘ฅโˆˆ๐พ

|โŸจ๐‘ข(๐‘ฆ), ๐œŽ(๐‘ฆ)[๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ)]โŸฉ|

โ‰ค ๐ถ โˆ‘ sup๐‘ฅโˆˆ๐พ

sup๐‘ฆโˆˆโ„๐‘›

|๐‘ฆ๐›ผ๐œ•๐‘ฆ๐›ฝ(๐œŽ(๐‘ฆ)[๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ)])|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

.

Itโ€™s not hard to see that there exists a compact subset ๐‘„ โŠ† โ„๐‘› such that for any fixed ๐‘ฅ โˆˆ ๐พ, the

support of the function

๐œŽ(๐‘ฆ)[๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ)]

is contained in ๐‘„ (for instance, ๐‘„ = ๐ต๐‘…+1(0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ… will work). Because of this, we can change the

โ€œ๐‘ฆ โˆˆ โ„๐‘›โ€ to โ€œ๐‘ฆ โˆˆ ๐‘„โ€ in the last supremum above without changing the value of the supremum.

Itโ€™s not hard to see then by the product rule that for some ๏ฟฝฬƒ๏ฟฝ > 0 the last quantity in (Eq 3) is

further bounded by

๏ฟฝฬƒ๏ฟฝ โˆ‘ sup๐‘ฅโˆˆ๐พ

sup๐‘ฆโˆˆ๐‘„

|๐œ•๐‘ฆ๐›พ[๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜(๐‘ฅ โˆ’ ๐‘ฆ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ)]|

|๐›พ|โ‰ค๐‘

โ‰ค ๏ฟฝฬƒ๏ฟฝ โˆ‘ sup๐‘งโˆˆ๐พโˆ’๐‘„

|๐œ•๐‘ฆ๐›พ[๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜(๐‘ง) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ง)]|

|๐›พ|โ‰ค๐‘

.

Since ๐ธ๐‘+2 โˆˆ ๐ถ๐‘(โ„๐‘›), itโ€™s well known that for ๐›พ โˆˆ โ„(๐‘›) such that |๐›พ| โ‰ค ๐‘, ๐œ•๐›พ(๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜)

converges uniformly to ๐œ•๐›พ๐ธ๐‘+2 over compact sets (this is a slight variant of Theorem 1.2.1 in the

book). Thus we see that the above quantity goes to zero as ๐‘˜, ๐‘— โ†’ โˆž. So the first quantity in

(Eq 3) also goes to zero as ๐‘˜, ๐‘— โ†’ โˆž:

sup๐‘ฅโˆˆ๐พ

|๐ธ๐‘+2 โˆ— ๐œŒ๐‘˜ โˆ— ๐‘ข(๐‘ฅ) โˆ’ ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ)| โ†’ 0 as ๐‘˜, ๐‘— โ†’ โˆž.

So indeed ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข are uniformly Cauchy over compact sets and thus converge pointwise to

some continuous function. I claim that that continuous function that they converge to is ๐ธ๐‘+2 โˆ—

๐‘ข. To see this, take any test function ๐œ™ โˆˆ ๐ถ๐‘โˆž(โ„๐‘›) and do (here I interchange โ€œlimโ€ and โ€œโˆซ ,โ€

which I can do because of uniform convergence over compact sets)

โŸจ lim๐‘—โ†’โˆž

(๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข) , ๐œ™โŸฉ = โˆซ lim๐‘—โ†’โˆž

(๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ))๐œ™(๐‘ฅ)๐‘‘๐‘ฅ

= lim๐‘—โ†’โˆž

โˆซ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ)๐œ™(๐‘ฅ)๐‘‘๐‘ฅ = lim๐‘—โ†’โˆž

โŸจ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข, ๐œ™โŸฉ = โŸจ๐ธ๐‘+2 โˆ— ๐›ฟ โˆ— ๐‘ข, ๐œ™โŸฉ

= โŸจ๐ธ๐‘+2 โˆ— ๐‘ข, ๐œ™โŸฉ.

Hence ๐ธ๐‘+2 โˆ— ๐‘ข is indeed equal to the function that is the pointwise limit of ๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข and

thus is a continuous function.

The last thing left to do is to show that ๐ธ๐‘+2 โˆ— ๐‘ข is of polynomial growth. This is again just a

game of bounding things. For any ๐‘ฅ โˆˆ โ„๐‘› we have that

Page 20: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

20

|๐ธ๐‘+2 โˆ— ๐‘ข(๐‘ฅ)| = lim๐‘—โ†’โˆž

|๐ธ๐‘+2 โˆ— ๐œŒ๐‘— โˆ— ๐‘ข(๐‘ฅ)| = lim๐‘—โ†’โˆž

|โŸจ๐‘ข(๐‘ฆ), ๐œŽ(๐‘ฆ) โ‹… ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ)โŸฉ|

โ‰ค ๐ถ โˆ‘ lim๐‘—โ†’โˆž

sup๐‘ฆโˆˆโ„๐‘›

|๐‘ฆ๐›ผ๐œ•๐‘ฆ๐›ฝ(๐œŽ(๐‘ฆ) โ‹… ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ))|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

As before, itโ€™s not hard to see that the support of the function ๐œŽ(๐‘ฆ) โ‹… ๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ) as a

function of ๐‘ฆ is contained in โ„+๐‘›ฬ…ฬ… ฬ…ฬ… โˆฉ ๐ต|๐‘ฅ|+1(0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… . Thus we can change the โ€œ๐‘ฆ โˆˆ โ„๐‘›โ€ to โ€œ๐‘ฆ โˆˆ โ„+

๐‘›ฬ…ฬ… ฬ…ฬ… โˆฉ

๐ต|๐‘ฅ|+1(0)ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… ฬ…ฬ… โ€ in the above supremum without changing its value. By the product rule, itโ€™s then not

hard to see that for some ๐ถ2 > 0 the above quantity can further be bounded by

๐ถ2 โˆ‘ lim๐‘—โ†’โˆž

sup|๐‘ฆ|โ‰ค|๐‘ฅ|+1each ๐‘ฆ๐‘˜โ‰ฅ0

|๐‘ฆ๐›ผ๐œ•๐‘ฆ๐›ฝ(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ))|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

.

Now, we have that |๐‘ฆ๐›ผ| โ‰ค (|๐‘ฅ| + 1)|๐›ผ| for any ๐‘ฆ in the domain of the above supremum. In

addition, as before, for any ๐›ฝ โˆˆ โ„(๐‘›) such that |๐›ฝ| โ‰ค ๐‘ we have that ๐œ•๐›ฝ(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—) converges

to ๐œ•๐›ฝ๐ธ๐‘+2 uniformly over compact sets and so we can interchange the โ€œlimitโ€ and โ€œsupremumโ€

in the above quantity without changing its value. Thus we see that the above quantity is further

bounded by

๐ถ2(|๐‘ฅ| + 1)|๐›ผ| โˆ‘ sup|๐‘ฆ|โ‰ค|๐‘ฅ|+1each ๐‘ฆ๐‘˜โ‰ฅ0

| lim๐‘—โ†’โˆž

๐œ•๐‘ฆ๐›ฝ(๐ธ๐‘+2 โˆ— ๐œŒ๐‘—(๐‘ฅ โˆ’ ๐‘ฆ))|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

= ๐ถ2(|๐‘ฅ| + 1)|๐›ผ| โˆ‘ sup|๐‘ฆ|โ‰ค|๐‘ฅ|+1each ๐‘ฆ๐‘˜โ‰ฅ0

|๐œ•๐‘ฆ๐›ฝ๐ธ๐‘+2(๐‘ฅ โˆ’ ๐‘ฆ)|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

= ๐ถ2(|๐‘ฅ| + 1)|๐›ผ| โˆ‘ sup|๐‘ฆ|โ‰ค|๐‘ฅ|+1each ๐‘ฆ๐‘˜โ‰ฅ0

|๐œ•๐‘ฆ๐›ฝ((๐‘ฅ โˆ’ ๐‘ฆ)(๐‘+1)1โƒ‘โƒ‘

[(๐‘ + 1)!]๐‘›)|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

=๐ถ2

[(๐‘ + 1)!]๐‘›(|๐‘ฅ| + 1)|๐›ผ| โˆ‘ sup

|๐‘ฆ|โ‰ค|๐‘ฅ|+1each ๐‘ฆ๐‘˜โ‰ฅ0

|(๐‘ฅ โˆ’ ๐‘ฆ)(๐‘+1)1โƒ‘โƒ‘ โˆ’๐›ฝ||๐›ผ|,|๐›ฝ|โ‰ค๐‘

๐›ฝโ‰ค(๐‘+1)1โƒ‘โƒ‘

(note the change under the last ฮฃ symbol). Since each

|(๐‘ฅ โˆ’ ๐‘ฆ)|(๐‘+1)1โƒ‘โƒ‘ โˆ’๐›ฝ โ‰ค (2|๐‘ฅ| + 1)|(๐‘+1)1โƒ‘โƒ‘ โˆ’๐›ฝ|

for all ๐‘ฆ in the domain of the above supremum, the last quantity in the previous equation is

further bounded by

๐ถ2

[(๐‘ + 1)!]๐‘›(|๐‘ฅ| + 1)|๐›ผ| โˆ‘ (2|๐‘ฅ| + 1)|(๐‘+1)1โƒ‘โƒ‘ โˆ’๐›ฝ|

|๐›ผ|,|๐›ฝ|โ‰ค๐‘

๐›ฝโ‰ค(๐‘+1)1โƒ‘โƒ‘

.

Page 21: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

21

Since this is a bound on |๐ธ๐‘+2 โˆ— ๐‘ข(๐‘ฅ)|, it is clear from here that ๐ธ๐‘+2 โˆ— ๐‘ข is indeed of

polynomial growth. This finally proves the theorem.

โˆŽ

Poissonโ€™s Summation Formula [Theorem 8.5.1] (5/18/2021)

In this entry I work through the proof of the special case of the Poisson summation formula when

the distribution in question is the Dirac delta function (Theorem 8.5.1 in the book) by putting it

into my own words and filling in the details.

Theorem: The following equality holds in ๐’ฎโ€ฒ(โ„๐‘›):

(Eq 4) โˆ‘ ๐œ๐‘”๐›ฟ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

,

where both sides are interpreted as limits of partial sums in ๐‘†โ€ฒ(โ„๐‘›) that exhaust โ„ค๐‘› in any way.

Remark: The above equation requires a bit of interpretation. The left-hand side of (Eq 4) denotes

the functional ๐’ฎ(โ„๐‘›) โ†’ โ„‚ given by

(Eq 5) ๐œ™ โŸผ โˆ‘ ๐œ™(๐‘”)

๐‘”โˆˆโ„ค๐‘›

while the right-hand side of (Eq 4) denotes the functional ๐’ฎ(โ„๐‘›) โ†’ โ„‚ given by

(Eq 6) ๐œ™ โŸผ โˆ‘ ๏ฟฝฬ‚๏ฟฝ(2๐œ‹๐‘”)

๐‘”โˆˆโ„ค๐‘›

.

The claim of the theorem then is that these are well defined tempered distributions, the partial

sums of โˆ‘ ๐œ๐‘”๐›ฟ๐‘”โˆˆโ„ค๐‘› and โˆ‘ ๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ๐‘”โˆˆโ„ค๐‘› converge to these two distributions in ๐’ฎโ€ฒ(โ„๐‘›) respectively,

and that these two distributions are equal.

Proof: For brevity, let โ€œ๐‘ขโ€ denote the left-hand side of (Eq 4) and let โ€œ๐‘ฃโ€ denote the right-hand

side of (Eq 4). First letโ€™s show that that both ๐‘ข and ๐‘ฃ are well defined tempered distributions and

that the partials sums on both sides of (Eq 4) converge to ๐‘ข and ๐‘ฃ respectively in ๐’ฎโ€ฒ(โ„๐‘›). One

way to do this of course would be to say that this follows from the uniform boundedness

principle and the fact that the limit of their respective partial sumsโ€™ actions on members of

๐’ฎ(โ„๐‘›) exist. But I will take a more elementary approach here by directly showing that both ๐‘ข

and ๐‘ฃ are tempered distributions and that their respective partial sums converge to them in

๐’ฎโ€ฒ(โ„๐‘›).

Letโ€™s start with ๐‘ข. Observe that since any ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›) decays faster than any polynomial, we

have the sum in (Eq 5) is absolutely convergent and thus the action of ๐‘ข on any ๐œ™ โˆˆ ๐’ฎโ€ฒ(โ„๐‘›) is

well defined (and obviously linear). Next letโ€™s show that itโ€™s a tempered distribution. For any

๐œ™ โˆˆ ๐’ฎ(โ„๐‘›) we have that (here |๐‘”| denotes the usual Euclidian length of ๐‘”)

Page 22: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

22

|โŸจ๐‘ข, ๐‘ฃโŸฉ| = |๐œ™(0) + โˆ‘ ๐œ™(๐‘”)

๐‘”โˆˆโ„ค๐‘›โˆ–{0}

| โ‰ค sup|๐œ™| + ( โˆ‘1

|๐‘”|2๐‘›

๐‘”โˆˆโ„ค๐‘›โˆ–{0}

)sup||๐‘ฅ|2๐‘›๐œ™|.

Since โˆ‘ 1 |๐‘”|2๐‘›โ„๐‘”โˆˆโ„ค๐‘›โˆ–{0} is finite, this shows that ๐‘ข โˆถ ๐’ฎ(โ„๐‘›) โ†’ โ„‚ is indeed continuous and hence

a tempered distribution. Finally, letโ€™s show that the partial sums on the left-hand side of (Eq 4)

converge to ๐‘ข in ๐’ฎโ€ฒ(โ„๐‘›). Let {๐‘”๐‘˜}๐‘˜=1โˆž โˆˆ โ„ค๐‘› be any sequence that exhausts โ„ค๐‘› (i.e. the map ๐‘˜ โ†ฆ

๐‘”๐‘˜ is a bijective โ„ค+ โ†’ โ„ค๐‘› map). Then for any ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›) we have that

lim๐‘šโ†’โˆž

โŸจโˆ‘ ๐‘ข๐‘”๐‘˜

๐‘š

๐‘˜=1

, ๐œ™โŸฉ = lim๐‘šโ†’โˆž

โˆ‘ ๐œ™(๐‘”๐‘˜)

๐‘š

๐‘˜=1

= โˆ‘ ๐œ™(๐‘”)

๐‘”โˆˆโ„ค๐‘›

= โŸจ๐‘ข, ๐œ™โŸฉ.

Thus indeed โˆ‘ ๐‘ข๐‘”๐‘˜

๐‘š๐‘˜=1 โ†’ ๐‘ข in ๐’ฎโ€ฒ(โ„๐‘›).

Now letโ€™s show the same thing for ๐‘ฃ. The proof for showing that itโ€™s well defined and that the

partial sums on the right-hand side of (Eq 4) converge to ๐‘ฃ in ๐’ฎโ€ฒ(โ„๐‘›) is done exactly the same

way as for ๐‘ข by remembering that the Fourier transform maps ๐’ฎ(โ„๐‘›) to itself. So Iโ€™ll omit

repeating those details and instead focus on showing that ๐‘ฃ โˆถ ๐’ฎ(โ„๐‘›) โ†’ โ„‚ is continuous. Since the

Fourier transform โ„ฑ โˆถ ๐’ฎ(โ„๐‘›) โ†’ ๐’ฎ(โ„๐‘›) is continuous, we know that there exist ๐ถ1, ๐ถ2 > 0 and

๐‘1, ๐‘2 โˆˆ โ„ค+ such that

sup|๏ฟฝฬ‚๏ฟฝ| โ‰ค ๐ถ1 โˆ‘ sup|๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™||๐›ผ|,|๐›ฝ|โ‰ค๐‘1

,

sup||๐œ‰|2๐‘›๏ฟฝฬ‚๏ฟฝ| โ‰ค ๐ถ2 โˆ‘ sup|๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™||๐›ผ|,|๐›ฝ|โ‰ค๐‘2

,

for all ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›). Thus, proceeding as with ๐‘ข, we have that for any ๐œ™ โˆˆ ๐’ฎ(โ„๐‘›),

|โŸจ๐‘ฃ, ๐œ™โŸฉ| โ‰ค sup|๏ฟฝฬ‚๏ฟฝ| + ( โˆ‘1

|๐‘”|2๐‘›

๐‘”โˆˆโ„ค๐‘›โˆ–{0}

)sup||๐œ‰|2๐‘›๏ฟฝฬ‚๏ฟฝ|

โ‰ค ๐ถ1 โˆ‘ sup|๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™||๐›ผ|,|๐›ฝ|โ‰ค๐‘1

+ ( โˆ‘1

|๐‘”|2๐‘›

๐‘”โˆˆโ„ค๐‘›โˆ–{0}

)๐ถ2 โˆ‘ sup|๐‘ฅ๐›ผ๐œ•๐›ฝ๐œ™||๐›ผ|,|๐›ฝ|โ‰ค๐‘2

.

Hence indeed ๐‘ฃ โˆถ ๐’ฎ(โ„๐‘›) โ†’ โ„‚ is continuous and thus is a tempered distribution.

Having dealt with these technical setup details, letโ€™s start proving the theorem. I claim that ๐‘ฃ is

periodic over โ„ค๐‘›:

๐‘ฃ = ๐œโ„Ž๐‘ฃ โˆ€โ„Ž โˆˆ โ„ค๐‘›.

To see this, take any โ„Ž โˆˆ โ„ค๐‘› and observe that

Page 23: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

23

๐œโ„Ž๐‘ฃ = โˆ‘ ๐œโ„Ž๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐‘’2๐œ‹๐‘–๐‘”โ‹…โ„Ž๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

= ๐‘ฃ.

Now, let ๐œ“ โˆˆ ๐ถ๐‘โˆž(โ„๐‘›) be such that ๐œ“ โ‰ฅ 0, supp๐œ“ โŠ† (โˆ’1, 1)๐‘› and โˆ‘ ๐œ๐‘”๐œ“๐‘”โˆˆโ„ค๐‘› = 1 (the

existence of such a ๐œ“ is proven in Lemma 8.5.1 in the book). I claim that

(Eq 7) ๐‘ฃ = โˆ‘ (๐œ๐‘”๐œ“)๐‘ฃ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐œ๐‘”(๐œ“๐‘ฃ)

๐‘”โˆˆโ„ค๐‘›

in the sense that the partial sums here converge to ๐‘ฃ in ๐’Ÿโ€ฒ(โ„๐‘›) (with respect to any exhaustion

of โ„ค๐‘›). These partial sums turn out to converge to ๐‘ฃ in ๐’ฎโ€ฒ(โ„๐‘›) as well, but we donโ€™t need that at

the moment. Observe that the second equality here simply holds because of the fact that ๐‘ฃ is

periodic over โ„ค๐‘›. So let me prove the first equality. Take any ๐œ™ โˆˆ ๐ถ๐‘โˆž(โ„๐‘›). As before, let

{๐‘”๐‘˜}๐‘˜=1โˆž โˆˆ โ„ค๐‘› be any sequence that exhausts โ„ค๐‘›. Then we have that

lim๐‘šโ†’โˆž

โˆ‘โŸจ(๐œ๐‘”๐œ“)๐‘ฃ, ๐œ™โŸฉ

๐‘š

๐‘˜=1

= lim๐‘šโ†’โˆž

โŸจ๐‘ฃ, โˆ‘(๐œ๐‘”๐œ“)๐œ™

๐‘š

๐‘˜=1

โŸฉ.

Since ๐œ™ is of compact support, each supp ๐œ๐‘”๐œ“ โŠ† (โˆ’1, 1)๐‘› + ๐‘”, and โˆ‘ ๐œ๐‘”๐œ“๐‘”โˆˆโ„ค๐‘› = 1, we have

that โˆ‘ (๐œ๐‘”๐œ“)๐œ™๐‘š๐‘˜=1 is eventually equal to ๐œ™ as ๐‘š โ†’ โˆž. So the above limit is equal to โŸจ๐‘ฃ, ๐œ™โŸฉ and

thus indeed we have that the partial sums of โˆ‘ (๐œ๐‘”๐œ“)๐‘ฃ๐‘”โˆˆโ„ค๐‘› converge to ๐‘ฃ in ๐’Ÿโ€ฒ(โ„๐‘›).

Now, letโ€™s investigate what ๐œ“๐‘ฃ is equal to. Focusing on ๐‘ฃ first, I claim that for any ๐‘— โˆˆ {1,โ€ฆ , ๐‘›},

(๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1)๐‘ฃ = 0.

To see this, observe that for any ๐‘— โˆˆ {1,โ€ฆ , ๐‘›} we have that (here ๐‘’๐‘— is the standard unit vector

with all zeros except a one in the ๐‘—th position)

๐‘’2๐œ‹๐‘–๐‘ฅ๐‘—๐‘ฃ = โˆ‘ ๐‘’2๐œ‹๐‘–๐‘ฅ๐‘—๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐‘’2๐œ‹๐‘–(๐‘”+๐‘’๐‘—)โ‹…๐‘ฅ

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ ๐‘’2๐œ‹๐‘–โ„Žโ‹…๐‘ฅ

โ„Žโˆˆโ„ค๐‘›

= ๐‘ฃ.

We obviously then have that for any ๐‘— โˆˆ {1,โ€ฆ , ๐‘›},

(Eq 8) (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1)๐œ“๐‘ฃ = 0.

We can in fact write a better version of this equation by linearizing the leading coefficient:

Claim: Our ๐œ“๐‘ฃ above satisfies the following: for any ๐‘— โˆˆ {1,โ€ฆ , ๐‘›},

(Eq 9) ๐‘ฅ๐‘—๐œ“๐‘ฃ = 0.

Proof: Our approach will be to prove the above equality locally at any point. Fix any ๐‘— โˆˆ

{1,โ€ฆ , ๐‘›}. Take any point ๐‘ฆ โˆˆ โ„๐‘›. First suppose that the function (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) does not vanish at

the point ๐‘ฆ (i.e. ๐‘ฆ๐‘— โˆ‰ โ„ค). Choose a small enough neighborhood ๐‘Š of ๐‘ฆ such that (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1)

does not vanish on ๐‘Š. Then equality in (Eq 9) over ๐‘Š follows from (Eq 8) by writing (Eq 8) as

Page 24: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

24

๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1

๐‘ฅ๐‘—๐‘ฅ๐‘—๐œ“๐‘ฃ = 0

and then dividing through by the nonzero (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) ๐‘ฅ๐‘—โ„ . Now suppose that itโ€™s the case that

(๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) does vanish at ๐‘ฆ. If ๐‘ฆ โ‰  0, then we can choose a neighborhood ๐‘Š of ๐‘ฆ such that

0 โˆ‰ ๐‘Š and ๐‘Š is disjoint from ๐œ“. Then (Eq 9) clearly holds on ๐‘Š because of the mere fact that

๐œ“ โ‰ก 0 on ๐‘Š. Lastly, suppose that ๐‘ฆ = 0. Let ๐‘Š be any neighborhood of ๐‘ฆ such that ๐‘Š โŠ†(โˆ’1, 1)๐‘›. Then as before we can rewrite (Eq 8) over ๐‘Š as

๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1

๐‘ฅ๐‘—๐‘ฅ๐‘—๐œ“๐‘ฃ = 0

where (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) ๐‘ฅ๐‘—โ„ is interpreted to be equal to its limit value at ๐‘ฅ = 0, which observe makes

it smooth. Since (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) ๐‘ฅ๐‘—โ„ is nonzero over ๐‘Š, we again get that equality in (Eq 9) over ๐‘Š

follows by dividing trough by (๐‘’2๐œ‹๐‘–๐‘ฅ๐‘— โˆ’ 1) ๐‘ฅ๐‘—โ„ in the above equation. Having proved the equality

in (Eq 9) in a neighborhood of any point ๐‘ฆ in โ„๐‘›, the claim follows.

End of Proof of Claim

Now, take any ๐œ™ โˆˆ ๐ถโˆž(โ„๐‘›). By Taylorโ€™s theorem we know that there exist ๐œŽ๐‘— โˆˆ ๐ถโˆž(โ„๐‘›) for ๐‘— โˆˆ

{1,โ€ฆ , ๐‘›} such that

๐œ™(๐‘ฅ) = ๐œ™(0) + โˆ‘๐‘ฅ๐‘—๐œŽ๐‘—(๐‘ฅ)

๐‘›

๐‘—=1

.

By (Eq 9) we then get that

โŸจ๐œ“๐‘ฃ, ๐œ™โŸฉ = โŸจ๐œ“๐‘ฃ, ๐œ™(0)โŸฉ = โŸจโŸจ๐œ“๐‘ฃ, 1โŸฉ๐›ฟ, ๐œ™โŸฉ.

Thus weโ€™ve obtained that

๐œ“๐‘ฃ = ๐ถ๐›ฟ

for some constant ๐ถ โˆˆ โ„‚. By (Eq 7) we then get that

(Eq 10) ๐‘ฃ = ๐ถ โˆ‘ ๐œ๐‘”๐›ฟ

๐‘”โˆˆโ„ค๐‘›

in ๐’Ÿโ€ฒ(โ„๐‘›). Since we already proved that both ๐‘ฃ and โˆ‘ ๐œ๐‘”๐›ฟ๐‘”โˆˆโ„ค๐‘› are tempered distributions, this

equality in fact holds in ๐’ฎโ€ฒ(โ„๐‘›). Thus, the only task left to do in order to prove the theorem is to

show that ๐ถ = 1. To do this, let ๐œ’ โˆถ โ„๐‘› โ†’ โ„‚ denote the indicator function over (0, 1)๐‘›:

๐œ’(๐‘ฅ) = {1 if ๐‘ฅ โˆˆ (0, 1)๐‘›

0 if ๐‘ฅ โˆ‰ (0, 1)๐‘›.

Now letโ€™s take the convolution of both sides of (Eq 10) with ๐œ’. The left-hand side becomes

Page 25: G. Friedlander and M. Joshi Introduction to the Theory of ...

Haim Grebnev Last saved: October 18, 2021

25

๐‘ฃ โˆ— ๐œ’ = โˆ‘ ๐‘’2๐œ‹๐‘–๐‘”โ‹…๐‘ฅ โˆ— ๐œ’

๐‘”โˆˆโ„ค๐‘›

= โˆ‘ {1 if ๐‘” = 00 if ๐‘” โ‰  0

๐‘”โˆˆโ„ค๐‘›

= 1.

Taking the convolution of the right-hand side of (Eq 10) with ๐œ’ gives

(๐ถ โˆ‘ ๐œ๐‘”๐›ฟ

๐‘”โˆˆโ„ค๐‘›

) โˆ— ๐œ’ = ๐ถ โˆ‘ (๐œ๐‘”(๐›ฟ) โˆ— ๐œ’)

๐‘”โˆˆโ„ค๐‘›

= ๐ถ โˆ‘ (๐›ฟ โˆ— ๐œ๐‘”(๐œ’))

๐‘”โˆˆโ„ค๐‘›

= ๐ถ โˆ‘ ๐œ๐‘”๐œ’

๐‘”โˆˆโ„ค๐‘›

,

which is equal to the constant function ๐ถ almost everywhere (with respect to the Lebesgue

measure). Hence we must have that ๐ถ = 1. As discussed above, this proves the theorem.

โˆŽ