Further Developments of the Runge-Kutta Time Integration Scheme

44
Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 1 urther Developments of the Runge-Kutta Time Integration Schem Investigation of Convergence (task 5) Gabriella Ceci, Pier Luigi Vitagliano [email protected] , [email protected]

description

Further Developments of the Runge-Kutta Time Integration Scheme Investigation of Convergence (task 5). Gabriella Ceci, Pier Luigi Vitagliano [email protected] , [email protected]. OUTLINE. OBJECTIVES AND MOTIVATIONS WORK PLAN TEST CASES DESCRIPTION - PowerPoint PPT Presentation

Transcript of Further Developments of the Runge-Kutta Time Integration Scheme

Page 1: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 1

Further Developments of the Runge-Kutta Time Integration Scheme

Investigation of Convergence (task 5)

Gabriella Ceci, Pier Luigi Vitagliano

[email protected], [email protected]

Page 2: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 2

OUTLINE

• OBJECTIVES AND MOTIVATIONS

• WORK PLAN

• TEST CASES DESCRIPTION

• NEW RESULTS 2D: CONSTANT TIME STEP, NON-TVD RK3

• 3D TEST CASE: effect of different spatial scheme (3th vs 5th order)

• 3D HYDROSTATIC AND NON HYDROSTATIC MOUNTAIN FLOW

• EFFECT OF MOISTURE ON MOUNTAIN FLOW

• CONCLUSIONS

Page 3: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 3

OBJECTIVES AND MOTIVATIONS

MOTIVATIONS

• ALLOWS LARGER TIME STEPS

• MORE ACCURATE

• FASTER

• CONVERGENCE PROPERTIES IN PRACTICAL APPLICATIONS UNKNOWN

OBJECTIVES

• TEST OF 3 STAGES RUNGE KUTTA TVD SCHEME WITH 5th ORDER UPWIND ADVECTION

• TEST OF NEW DYNAMICS with P' and T'

Page 4: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 4

TEST CASES:

2D MOUNTAIN FLOWS WITHOUT PHYSICS

3D MOUNTAIN FLOWS WITHOUT PHYSICS

3D MOUNTAIN FLOW WITH MOISTURE

WORK PLAN

Page 5: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 5

TEST CASES DESCRIPTION

• Gaussian ridge h(r)=H 2-(r/a)2

• HYDROSTATIC FLOW (aN/U) >> 1

• NON HYDROSTATIC FLOW (aN/U) ~ 1

• NON LINEAR FLOW (HN/U) ~ 1

-40 -30 -20 -10 0 10 20 30 400

1

2 Gaussian ridge - a=10 km h=500 m

• Basic flow velocity U = 10 m/s

• Brunt Väisälä frequency N = 0.01 s-1

• Rayleigh damping layer above 11 km

• Vertical resolution 100 m (195 levels)

r = (x2 + y2)½

Page 6: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 6

TEST CASES DESCRIPTION

HYDROSTATIC LINEAR / NON LINEARa = 10 kmH = 10 m / 500 mTime = 60 h / 100 hdt = 2.5”Domain size 500x19.5 km2

Horizontal resolution = 4km, 2km, 1km, 500m, 250m, 125m

NON HYDROSTATICa = 500 mH = 10 mTime = 10 hdt = 2.5”Domain size 250x19.5 km2

Horizontal resolution = 1km, 500m, 250m, 125m, 62.5m

Page 7: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 7

Comparison with analytical solutionlinear hydrostatic

Left: solution with a damping layer of 85 levels and nRΔt=200.Right: analytical solution following Klemp-Lilly (J.Atmos.Sc. 35, 78-107, 1978)

Page 8: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 8

ISSUES WITH LATERAL BOUNDARIES

Disturbances at the side boundaries due to p’ T’ (left), removed by initialization ofreference atmosphere p0 T0 with constant Brunt-Väisälä frequency N (right)

Page 9: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 9

ISSUES WITH UPPER DAMPING LAYER

Fine tuning of damping layer (both thichness and amount of damping) required to minimize wave reflection and distorsion.

Page 10: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 10

NON HYDROSTATIC FLOW: w AND u

Page 11: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 11

NON LINEAR HYDROSTATIC FLOW

VERY DEEP RAYLEIGH DAMPING LAYER IS REQUIRED TO OBTAIN REASONABLE SOLUTIONS

FOR HIGHER RIDGES (LEFT: 1.35 WAVE LENGTHS, RIGHT: 2 W.L.)

Page 12: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 12

TIME CONVERGENCE

STEADY FLOW IS NOT OBTAINED WHEN THE RIDGE IS HIGHER THAN 500m

Page 13: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 13

POST PROCESSING

• DRAG COEFFICIENT CD=∑ p'(x,0) dh/dx ∆x / PR

• MOMENTUM FLUX Mx(z)=- ρ(z) ∑ u(x,z) w(x,z) ∆x / PR

• KINETIC ENERGY= (u'(x,z)2 + w'(x,z)2)

• ABSOLUTE ERROR |-exact|

• RELATIVE ERROR |-finest mesh|

• ERROR NORM L0max |-finest mesh|

• ERROR NORM L11/N ∑ |-finest mesh|

• ERROR NORM L2[1/N ∑ (-finest mesh)2]½

Page 14: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 14

OLD RESULTS: CD

DX [km]

CD

10-2 10-1 100 101 10210-3

10-2

10-1

100

|CD-CDref|2nd order

HYDROSTATIC FLOW

DX [km]

CD

10-2 10-1 100 101 10210-3

10-2

10-1

100

101

2nd order|MX-MXref||CD-CDref|

NON HYDROSTATIC FLOW

DX [km]

CD

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

2nd order|CD-CDref|

NON LINEAR HYDROSTATIC FLOW

Page 15: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 15

OLD RESULTS: KINETIC ENERGY

DX

10-2 10-1 100 101 10210-5

10-4

10-3

10-2

10-1

Kinetic Energy2nd order

HYDROSTATIC FLOW

DX

10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

Kinetic Energy2nd order

NON HYDROSTATIC FLOW

DX

10-2 10-1 100 101 10210-2

10-1

100

101

102

Kinetic Energy2nd order

NON LINEAR HYDROSTATIC FLOWTime=2 h

Page 16: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 16

OLD RESULTS: MOMENTUM FLUX

CD

Z[m

]

0 0.1 0.2 0.3 0.4 0.5 0.60

2000

4000

6000

8000

10000

12000

DX = 4 kmDX = 2 kmDX = 1 kmDX = 0.50 kmDX = 0.25 km

NON LINEAR HYDROSTATIC FLOW

CD

Z[m

]

0.6 0.7 0.8 0.9 1 1.10

2000

4000

6000

8000

10000

12000

DX = 4 kmDX = 2 kmDX = 1 kmDX = 0.50 kmDX = 0.25 km

HYDROSTATIC MOUNTAIN CASE

CD

Alti

tud

e[m

]

-0.8 -0.6 -0.4 -0.2 00

1000

2000

3000

4000NON HYDROSTATIC FLOW

Smaller DX

Page 17: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 17

NEW RESULTS

• ALL TEST CASES RUNNED AGAIN WITH CONSTANT TIME STEP = 2.5”

• TEST CASES REPEATED WITH NON-TVD 3 STAGES RUNGE KUTTA

Page 18: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 18

CONVERGENCE OF VERTICAL VELOCITY w

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

L2L1L02nd order

HYDROSTATIC TESTRK3 TVD

VERTICAL VELOCITY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

L2L1L02nd order

HYDROSTATIC TESTRK3

VERTICAL VELOCITY

Page 19: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 19

CONVERGENCE OF VERTICAL VELOCITY w

DX [km]

Err

or

No

rm

10-3 10-2 10-1 100 10110-5

10-4

10-3

10-2

10-1

L2L1L02nd order

NON-HYDROSTATIC TESTRK3 TVD

VERTICAL VELOCITY

DX [km]

Err

or

No

rm

10-3 10-2 10-1 100 10110-5

10-4

10-3

10-2

10-1

L2L1L02nd order

NON-HYDROSTATIC TESTRK3

VERTICAL VELOCITY

Page 20: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 20

CONVERGENCE OF VERTICAL VELOCITY w

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

L2L1L02nd order

NON-LINEAR HYDROSTATIC TESTRK3

VERTICAL VELOCITY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

L2L1L02nd order

NON-LINEAR HYDROSTATIC TESTRK3 TVD

VERTICAL VELOCITY

Page 21: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 21

CONVERGENCE OF KINETIC ENERGY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

L2L1L02nd order

HYDROSTATIC TESTRK3 TVD

KINETIC ENERGY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

L2L1L02nd order

HYDROSTATIC TESTRK3

KINETIC ENERGY

Page 22: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 22

CONVERGENCE OF KINETIC ENERGY

DX [km]

Err

or

No

rm

10-3 10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

L2L1L02nd order

NON-HYDROSTATIC TESTRK3 TVD

KINETIC ENERGY

DX [km]

Err

or

No

rm

10-3 10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

L2L1L02nd order

NON-HYDROSTATIC TESTRK3

KINETIC ENERGY

Page 23: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 23

CONVERGENCE OF KINETIC ENERGY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-2

10-1

100

101

102

L2L1L02nd order

NON-LINEAR HYDROSTATIC TESTRK3 TVD

KINETIC ENERGY

DX [km]

Err

or

No

rm

10-2 10-1 100 101 10210-2

10-1

100

101

102

L2L1L02nd order

NON-LINEAR HYDROSTATIC TESTRK3

KINETIC ENERGY

Page 24: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 24

CONVERGENCE OF WAVE DRAG

DX [km]

CD

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

|CD-CDref|2nd order

HYDROSTATIC FLOWRK3 TVD

DX [km]

CD

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

|CD-CDref|2nd order

HYDROSTATIC FLOWRK3

Page 25: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 25

CONVERGENCE OF WAVE DRAG

DX [km]

CD

10-2 10-1 100 101 10210-3

10-2

10-1

100

101

|CD-CDref|2nd order

NON HYDROSTATIC FLOWRK3 TVD

DX [km]

CD

10-2 10-1 100 101 10210-3

10-2

10-1

100

101

|CD-CDref|2nd order

NON HYDROSTATIC FLOWRK3

Page 26: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 26

CONVERGENCE OF WAVE DRAG

DX [km]

CD

10-2 10-1 100 101 10210-3

10-2

10-1

100

101

|CD-CDref|2nd order

NON LINEAR HYDROSTATIC FLOWRK3

DX [km]

CD

10-2 10-1 100 101 10210-4

10-3

10-2

10-1

100

|CD-CDref|2nd order

NON LINEAR HYDROSTATIC FLOWRK3 TVD

Page 27: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 27

COMPARISON WITH ANALYTICAL SOLUTIONS

Page 28: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 28

CONVERGENCE: CONCLUSIONS AFTER 2D TESTS

• 2nd ORDER SPATIAL CONVENGENCE (FAST WAVE SCHEME DOMINATES)

• TVD AND NON-TVD 3 STAGES RUNGE KUTTA SHOW SIMILAR BEHAVIOUR

• TIME STEP HAS MINOR EFFECT (IF ANY) ON SPATIAL CONVERGENCE

• IMPORTANT ISSUES WITH UPPER BOUNDARY CONDITION

• ISSUE IN LATERAL BOUNDARY CONDITIONS FOR p’ T’

• DIFFICOULT TO COMPARE WITH ANALYTICAL SOLUTIONS, DUE TO B.C.

Page 29: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 29

3D TEST CASES

Gaussian mountain, hydrostatic flow, dry atmosphere

effect of different spatial scheme (3th vs 5th order) and grid size

Domain size: 256x128x19.5 km3

195 vertical levels

Rayleigh damping above 11 km

Basic flow velocity U = 10 m/s

Brunt Väisälä frequency N = 0.01 s-1

Page 30: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 30

3D TEST CASES

0.240.200.160.120.080.040.00

-0.04-0.08-0.12-0.16-0.20-0.24

Gaussian Mountainh=300[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=1km z=100mVertical velocity w at level Z=1.5km

Page 31: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 31

3D TEST CASES

11.6011.3011.0010.7010.4010.10

9.809.509.208.908.608.30

Gaussian Mountainh=300[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=1km z=100mHorizontal velocity U at level Z=1.5km

11.6011.3011.0010.7010.4010.10

9.809.509.208.908.60

Gaussian Mountainh=300[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=1km z=100mHorizontal velocity U at level Z=0.5km

Page 32: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 32

3D TEST CASES

0.100.060.02

-0.02-0.06-0.10-0.14-0.18-0.22

Gaussian Mountainh=300[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=1km z=100mPressure perturbation at level Z=1.5km

0.200.00

-0.20-0.40-0.60-0.80-1.00-1.20-1.40-1.60-1.80-2.00-2.20-2.40

Gaussian Mountainh=300[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=1km z=100mTemperature perturbation at level Z=1.5km

Page 33: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 33

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=16km z=100mSolution at Y=0 symmetry plane - RK3 UP3

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=16km z=100mSolution at Y=0 symmetry plane - RK3 UP5

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 16 km

3th order upwind 5th order upwind

Page 34: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 34

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 8 km

3th order upwind 5th order upwind

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=8km z=100mSolution at Y=0 symmetry plane - RK3 UP3

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=8km z=100mSolution at Y=0 symmetry plane - RK3 UP5

Page 35: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 35

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 4 km

3th order upwind 5th order upwind

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=4km z=100mSolution at Y=0 symmetry plane - RK3 UP3

W

0.700.500.300.10

-0.10-0.30-0.50-0.70

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=4km z=100mSolution at Y=0 symmetry plane - RK3 UP5

Page 36: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 36

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 16 km

3th order upwind 5th order upwind

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=16km z=100mSolution at ground level - RK3 UP3

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=16km z=100mSolution at ground level - RK3 UP5

Page 37: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 37

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 8 km

3th order upwind 5th order upwind

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=8km z=100mSolution at ground level RK3 UP3

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=8km z=100mSolution at ground level RK3 UP5

Page 38: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 38

3D TEST CASES: HYDROSTATIC FLOW

Gaussian mountain height=750 m size=10 km

Horizontal resolution 4 km

3th order upwind 5th order upwind

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=4km z=100mSolution at ground level - RK3 UP3

U

14.0013.0012.0011.0010.00

9.008.007.006.00

Gaussian Mountainh=750[m] a=10[km] N=0.01[1/s] U=10[m/s]

x=y=4km z=100mSolution at ground level - RK3 UP5

Page 39: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 39

3D TEST CASES

SOME CONCLUSIONS

• SMALLER INFLUENCE OF DAMPING LAYER ON 3D MOUNTAIN WAVES AND DRAG

• OPTIMAL DAMPING PARAMETER t*nrdtau INCREASES TO 1000 s

• WITH POOR RESOLUTION DIFFERENT SCHEME CAN GIVE DIFFERENT SOLUTIONS

• WITH POOR RESOLUTION HIGHER ORDER UPWIND CAN IMPROVE RESULTS

Page 40: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 40

3D TEST CASES: NON HYDROSTATIC FLOW

Convergence analysis

Longitude [km]-20 0 20 40

W

0.0060.0050.0040.0030.0020.0010.000

-0.001-0.002-0.003-0.004-0.005-0.006

Gaussian Mountain - Non hydrostatic flowN=0.01 a=0.5 km h=10 m U=10 m/s

x=0.125 km z=100 m t=10 sw velocity component after 4 h

Page 41: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 41

3D TEST CASES: NON HYDROSTATIC FLOW

Convergence analysis

CD (momentum flux)A

ltitu

de

[km

]-1 -0.8 -0.6 -0.4 -0.2 0 0.2

0

2

4

6

8

DX= 125mDX= 250mDX= 500mDX=1000m

NON HYDROSTATIC 3D GAUSSIAN HILL

CD

Alti

tud

e[m

]

-0.8 -0.6 -0.4 -0.2 00

1000

2000

3000

4000NON HYDROSTATIC FLOW

Smaller DX

3 D 2 D

Page 42: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 42

3D TEST CASES: NON HYDROSTATIC FLOW

Convergence analysis

DX

10-2 10-1 100 10110-8

10-7

10-6

10-5

10-4

NON HYDROSTATIC 3D GAUSSIAN HILL

DX [km]

Err

or

No

rm

10-3 10-2 10-1 100 101 10210-6

10-5

10-4

10-3

10-2

10-1

L2L1L02nd order

NON-HYDROSTATIC TESTRK3 TVD

KINETIC ENERGY

2 D 3 D

Page 43: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 43

3D TEST CASES: EFFECT OF MOISTURE

• STEADY SOLUTION NOT ACHIEVED EVEN ON H=10m

• TEST ON H=300m RH=100% SHOWS INSTABLE LOWER LAYER

Y X

Z

QC

0.0060.0050.0040.0030.0020.0010.000

Gaussian mountain H=300 m a=10kmMesh=64x32x195 x=y=4km z=100m

t=40s Time=40hRH=100% Slice Y=0

SIMILAR TEST CASE IN 2D SHOWN BY Durran-Klemp (J.Atmos.Sc. 39, 2490-2506, 1982)

WITH 3D SIMULATION LESS INFLUENCE OF BOUNDARIES

Page 44: Further Developments of the Runge-Kutta Time Integration Scheme

Krakow - September, 15th 2008 COSMO WG 2 - Runge Kutta 44

3D TEST CASES: EFFECT OF MOISTURE

FURTHER WORK (?)

• MOUNTAIN HEIGHT

• TIME STEP

• SPATIAL STEP

• B.C.

Y X

Z

QV

0.0100.0090.0080.0070.0060.0050.0040.0030.0020.001

Gaussian mountain H=300 m a=10kmMesh=64x32x195 x=y=4km z=100m

t=40s Time=40hRH=100% Slice Y=0