Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison...

50
1 Fundamentals of medical imaging registration I - II Olivier Clatz Ph.D. [email protected]

Transcript of Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison...

Page 1: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

1

Fundamentals of medical imagingregistration I - II

Olivier Clatz Ph.D.

[email protected]

Page 2: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

2

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 3: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

3

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 4: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

4

Why doing registration ?

Analysis of temporal evolution

Fusion of multimodal images

Inter-patients comparison

Atlas superposition

Reconstruction of a 3D volume

Page 5: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

5

Temporal Evolution

Time 1

axialsagittal

coronal coronal

axialsagittal

Time 2

David Rey, Gérard Subsol, Hervé Delingette, and Nicholas Ayache. Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis. Medical Image Analysis, 6(2):163-179, June 2002.

Page 6: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

6

Temporal Evolution

Preoperative MRI Intraoperative MRI

Olivier Clatz, Hervé Delingette, Ion-Florin Talos, Alexandra J. Golby, Ron Kikinis, Ferenc A. Jolesz, Nicholas Ayache, and Simon K. Warfield. Robust Non-Rigid Registration to Capture Brain Shift from Intra-Operative MRI. IEEE Transactions on Medical Imaging, 24(11):1417-1427, Nov. 2005.

Page 7: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

7

Fusion of multimodal images

MRI PET (Positron emission

tomography)

CAT

USVisible Man

anatomical

Page 8: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

8

Inter-patients comparaison

Statistics on Ti

Compute brain variability

• Alzheimer's

• HIV/AIDS

• Schizophrenia

• Drug Abuse

• Development

Paul M. Thompson, Christine N. Vidal, Jay N. Giedd, Peter Gochman, Jonathan Blumenthal, Rob Nicolson, Arthur W. Toga, Judith L. Rapoport (2001). Mapping Adolescent Brain Change Reveals Dynamic Wave of Accelerated Gray Matter Loss in Very Early-OnsetSchizophrenia, Proceedings of the National Academy of Sciences of the USA, vol. 98, no. 20:11650-11655, September 25, 2001.

nT

M

nni DD

NW

rr

∑=

=1

1

Vincent Arsigny, Pierre Fillard, Xavier Pennec, andNicholas Ayache. Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors. Magnetic Resonance in Medicine, 56(2):411-421, August 2006.

Page 9: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

9

Atlas Superposition

MRI Label

Pierre-Yves Bondiau, Gregoire Malandain, Stephane Chanalet, Pierre-Yves Marcy, Jean-Louis Habrand, Francois Fauchon, Philippe Paquis, Adel Courdi, Olivier Commowick, Isabelle Rutten, and Nicholas Ayache. Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys, 61(1):289-98, January 2005.

Page 10: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

10

Reconstruction of a 3D volume

• Series of contiguous 2D slices (thickness ~60nm) from Electron Microscopy camera

• The aim: to build a 3D volume

Orthogonal views of the reconstructed volume using affine transformations

Series of successive 2D slices

J. Dauguet, A. Dubois, A.-S. Herard, L. Besret, G. Bonvento, P. Hantraye and T. Delzescaux. Towards a Routine Analysis of Anatomical and Functional Post Mortem Slices in 3 Dimensions. XXIInd International Symposium on Cerebral Blood Flow, Metabolism, and Function, Amsterdam, 2005.

Page 11: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

11

Different Classes of Problems

• Images: Mono or Multimodalities

• Intra- or Inter-subjects registration

• Transformation : Rigid or Non Rigid

Page 12: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

12

Temporal Evolution

Time 1

axialsagittal

coronal coronal

axialsagittal

Time 2

Intra Patient | Mono modality | Rigid & Non Rigid

Page 13: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

13

Temporal Evolution

Preoperative MRI Intraoperative MRI

Intra Patient | Monomodal | Non Rigid

Page 14: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

14

Fusion of multimodal images

MRI PET (Positron emission

tomography)

CAT

USVisible Man

anatomical

Intra Patient | Multi modal | Rigid

Page 15: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

15

Inter-patients comparaison

Compute brain variability

• Alzheimer's

• HIV/AIDS

• Schizophrenia

• Drug Abuse

• Development

Paul M. Thompson, Christine N. Vidal, Jay N. Giedd, Peter Gochman, Jonathan Blumenthal, Rob Nicolson, Arthur W. Toga, Judith L. Rapoport (2001). Mapping Adolescent Brain Change Reveals Dynamic Wave of Accelerated Gray Matter Loss in Very Early-OnsetSchizophrenia, Proceedings of the National Academy of Sciences of the USA, vol. 98, no. 20:11650-11655, September 25, 2001.

Inter Patient | Mono modal | Non Rigid

Page 16: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

16

Atlas Superposition

MRI Label

Inter Patient | Multi modal | Non Rigid

Page 17: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

17

Reconstruction of a 3D volume

• Series of contiguous 2D slices (thickness ~60nm) from Electron Microscopy camera

• The aim: to build a 3D volume

Orthogonal views of the reconstructed volume using affine transformations

Series of successive 2D slices

Intra Patient | Mono modality | Rigid & Non Rigid

Page 18: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

18

Two Classes of solution

• Geometric Registration (or feature-based)– Extract feature points

– Compute displacement of similar points

– Fit a transformation with or without regularization

• Iconic Registration (or intensity-based)– Fit the transformation that optimizes similarity

Need:

• Define Transformation

• Define Similarity

• Define regularization

Page 19: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

19

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 20: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

20

Resampling

Reference Ir Floating If

Displacement

Field: X’=T(X)

To resample: need for displacement

field T-1(X)

Resampled If’

I f’(X)=I f(T-1(X))

Page 21: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

21

How to resample the image ?

x’=int(x) y’=int(y)

• Nearest neighbor

I(x,y)=I(round(x), round(y))

• Bilinear interpolation

a=x-x’ b=y-y’

I(x,y)=a(1-b)I(x’+1,y’)

+(1-a)(1-b)I(x’,y’)

+abI(x’+1,y’+1)

+b(1-a)I(x’,y’+1)

• Bicubic, splines ….b

a

x

y

I(x’,y’) I(x’+1,y’)

I(x’,y’+1) I(x’+1,y’+1)Value I(x,y) ?

I(x’,y’) I(x’+1,y’)

I(x’,y’+1) I(x’+1,y’+1)

I(x,y)

Page 22: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

22

Resampling Vectors and Tensors

• Resampling of a vector field:– X’=T(X) or U=F(X)

– Compute local affine transformation (Jacobian):

J=∇T

–Update Vector:

V f’(X)=J(T-1(X))V f(T-1(X))

( )X

X

zzz

yyy

xxx

T

z

T

y

T

x

Tz

T

y

T

x

Tz

T

y

T

x

T

∇=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂∂∂

• Tensors:

Recall: a tensor can be written:

Theoretically:

But … what does the tensor and the transformation mean ?

TXVXVXW )()()(3

1

rr

∑=

Tff XTJXTWXTJXW ))(())(())(()(' 111 −−−=

Page 23: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

23

Resampling

• Don’t forget the Nyquist–Shannon theorem !

To downsample the image by a factor N (each dimension)

– Remove the high frequency of the image:

• Fast Fourier Transform (FFT) ⇒ high freq =0 ⇒ FFT-1

• Or Gaussian filter σ~N

FFT

FFT-1

High freq = 0

Downsample

Page 24: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

24

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 25: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

25

Transformations Class T

• Rigid (displacement)

• Similitude

• Affine

• Polynomial

• Mesh-based

• Splines

• Free

Page 26: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

26

Transformations Class T

• Rigid: – Rotation (R) and translation (t)

– 6 parameters : (R : 3; t : 3)

– invariants: distances (isometric), orientation, curvature, angles, lines

• Similitude: – Adds a scaling factor

– 7 parameters

– invariants: distance ratio, orientation, angles, line

tRxxT +=)(

tRxsxT += .)(

Page 27: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

27

Transformations Class T

• Affine : – B 3x3 matrix

– 12 parameters: (B : 9; t : 3)

– invariants: lines, parallelism

• Polynomial:

– Parameters:

D = dimension, O = order (or degree)

– Example, D=2, O=2

)()( xPxT =

tBxxT +=)(

∑∑Γ=

−+=

=N

O

O

OD

N

O

O

D CDD1

11

yyfxyexxdycxbayxPx 111111),( +++++=

yyfxyexxdycxbayxPy 222222),( +++++=

Page 28: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

28

Transformations Class T

• Mesh-based (piecewise affine):

For X T (P1,P2,P3)

∑=

=3

1

)(i

ii PhXT P1

P2

P3

=

1111

1

321

321

3

2

1

y

x

PPP

PPP

h

h

hyyy

xxx

Page 29: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

29

• Splines: – Local polynomials d, with global continuity of

order C(d-1).

– Number of parameters : depends on the number of nodes

– Locally affine transformations

• Free Transformation: – One displacement per voxel

– Parameters: 3 times number of voxels

– Need for regularization to ensure diffeomorphism

Transformations Class T

)()( xuxxT +=)(xu

Page 30: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

30

Transformations Class T

• More Transformations …– Cosine (SPM)J. Ashburner and K. J. Friston. Spatial normalization. In A.W. Toga, editor, Brain Warping, pages 27-44. Academic Press, 1999.

J. Ashburner and K. J. Friston. The role of registration and spatial normalization in detecting activations in functional imaging. Clinical MRI/Developments in MR, 7(1):26-28, 1997.

– Multi-affineAlain Pitiot, Eric Bardinet, Paul M. Thompson, and Grégoire Malandain. Piecewise Affine Registration of Biological Images for Volume Reconstruction. MedicalImage Analysis, 10(3):465-483, June 2006.

– Poly-affineVincent Arsigny, Olivier Commowick, Xavier Pennec, and Nicholas Ayache. A Fast and Log-EuclideanPolyaffine Framework for Locally Affine Registration. Research Report RR-5865, INRIA Sophia-Antipolis, March 2006.

–Radial Basis FunctionsM. Fornefett, K. Rohr, and H.S. Stiehl. Radial Basis Functions with Compact Support for Elastic Registration of Medical Images. Image and Vision Computing 19:1-2 (2001) 87-96

– WaveletA Wavelet Tour of Signal Processing. Stéphane Mallat. Academic Press, 1999

Page 31: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

31

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 32: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

32

What type of similarity ?

• Depends on the joint histograms:

Image 1

Image 2

Intensity = 80

Intensity = 100

V=V+1

Page 33: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

33

Similarity measures

• Assumption:

Same intensity

• Adapted measure

Sum of squared difference

Sum of absolute differences

∑ ↓−=k

kk jiTS 2)()(

Image J intensity

Imag

e I i

nte

nsi

ty

∑ ↓−=k

kk jiTS )(

))(( kk TJj x≡↓Interpolation:

Page 34: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

34

Correlation coefficient

∑ −−−=

k kk

kkIJ

JIji

JjIiT

))(()(ρ

Similarity measures

• Assumption:

Linear relation

• Adapted measureImage J intensity

Imag

e I i

nte

nsi

ty

Page 35: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

35

• Assumption:

Joint Entropy (Hill, 95; Collignon, 95)Mutual Information (Collignon, 95; Viola, 95)Normalized Mutual Information (Studholme, 98)

Statistical relationship

• Adapted measures

∑ ∑=

−+=

i j jPiP

jiPjiP

JIHJHIHJIMI

)()(

),(log),(

),()()(),(

Similarity measures

Image J intensity

Imag

e I i

nte

nsi

ty

Page 36: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

36

Similarity measures

• More measures:

Roche, Alexis - Malandain, Grégoire - Ayache, Nicholas. Unifying Maximum Likelihood Approaches in MedicalImage Registration. Rapport de recherche de l'INRIA- Sophia Antipolis , Equipe : EPIDAURE 21 pages - Juillet 1999

L . Zöllei: "A Unified Information Theoretic Framework for Pair- and Group-wise Registration of MedicalImages", Ph.D. thesis, MIT; MIT-CSAIL

Page 37: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

37

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 38: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

38

Simple example (1):

Geometric registration

Page 39: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

39

Geometric registration

T. Hartkens, K. Rohr, and H. S. Stiehl "Evaluation of 3D Operators for the Detection of Anatomical Point Landmarks in MR and CT Images"Computer Vision and Image Understanding, Volume 86, Number 2, pp 118-136, 2002

Simple example (1):

• Extract feature points (structure tensor)– T = G * (∇I)(∇I)T

– Select n largest T

Page 40: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

40

Geometric registration

Simple example (1):

• Find local correspondences– Block matching

Page 41: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

41

Find optimal transformation

−∑k

kkT T2

)(minarg yx

Geometric registration

Page 42: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

42

Geometric registration

Simple example (2), Iterative Closest Point:

• Consider 2 sets of points I1={Pi} and I2={Q j}

• Consider an initial estimate of the transformation =T (usually identity)

1. Each point Pi of I1 is paired with the closest point Qj of I2

2. We look for Ti that minimizes the squared distance between impaired points

3. Update the position of Pi+1=Ti (Pi)

• Iteration until convergence

Page 43: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

43

1.Optimization of Pairings

Qj

Pi

Page 44: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

44

2. Optimization of T

Qj

Pi

Page 45: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

45

1-bis Optimization of Pairings

QjPi

Page 46: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

46

2-bis. Optimization of T

QjPi

Page 47: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

47

Geometric registration

• More general case:– Parametric Transformation T, parameters pi

– Regularization energy E(T). • Mechanical energy

• Gradient based

– Minimize the sum of the two:

−+∑k

kkrp TTEi

2)()(minarg yx

TUKU( )TUU ∇∇

Page 48: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

48

Overview

• Why doing registration ?

• What type of transformation ?

• What type of similarity ?

• How to estimate the transformation ?– Geometric registration

– Iconic registration

• How to resample the image ?

Page 49: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

49

Iconic registration

Basic idea: try to find the transformation parameters that directly minimize the similarity between the 2 images

( )),()(minarg TFsrp IIETEi

↓+

∑∑

=

−−−=

−=

i j

k kk

kk

kkk

jPiP

jiPjiP

JIji

JjIi

ji

)()(

),(log),(

))((

)( 2TUKU=

( )TUU ∇∇=

Page 50: Fundamentals of medical imaging registration I - II · 2008-09-24 · 8 Inter-patients comparaison Statistics on T i Compute brain variability • Alzheimer's • HIV/AIDS • Schizophrenia

50

Optimization

• How to optimize the functional ?– Can you compute analytical solution ?

– Can you compute the derivative ?• No: Powell, downhill simplex, genetic algorithms

• Yes: gradient descent

More details: numerical recipes in C