Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 –...

49
Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion AFOSR MURI Kick off meeting The Ohio State University Nov 4, 2009

Transcript of Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 –...

Page 1: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Fundamental Mechanisms, Predictive Modeling,

and Novel Aerospace Applications of Plasma Assisted Combustion

AFOSRMURI Kick off meeting

The Ohio State UniversityNov 4, 2009

Page 2: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Drexel Group: Main TasksThrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.5-5 atm), and equivalence ratiosTask 4: Moderate-to-high (T=800 – 1800 K) temperature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures up to 10 barTask 5: PAC oxidation and combustion initiation at high pressure, high temperature conditions

Thrust 2. Kinetic model development and validationTask 8: Development and validation of a predictive kinetic model of non-equilibrium plasma fuel oxidation and ignitionTask 9: Mechanism Reduction and Dynamic Multi-time Scale Modeling of Detailed Plasma-Flame Chemistry

Thrust 3. Experimental and modeling studies of fundamental nonequilibriumdischarge processesTask 10: Characterization and Modeling of Nsec Pulsed Plasma Discharges

Thrust 4. Studies of diffusion and transport of active species in representative two-dimensional reacting flow geometries Task 13: Ignition and flameholding in high-speed non-premixed flowsTask 14: High Fidelity Modeling of Plasma Assisted Combustion in Complex Flow Environments

Page 3: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Drexel Group: International Collaboration

International Collaborators

Svetlana Starikovskaya (Ecole Pol) – Thrust 1 Alexander Rakitin (NEQLab) – Thrust 1Boris Potapkin (KIAE) – Thrust 2Alexander Konnov (VUB) – Thrust 2Nickolay Aleksandrov (MIPT) – Thrust 3Sergey Pancheshnyi (Univ Toulouse) – Thrust 3Sergey Leonov (IVTAN) – Thrust 4

Page 4: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Range of Parameters – Combustion Kinetics

P, atm

0.02 1 40

T, K

250 K

2500 K

S/I

φ

0.1

3.0

1

Page 5: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Problems of Plasma-Chemical Models

Availability and accuracy of data on electron collision cross sections

+ H2 CH4 C2H6 C3H8? C4H10 C5H12 …

Availability and accuracy of chemical models below self-ignition point

+ H2? CH4 C2H6 C3H8 C4H10 C5H12 …

Availability and accuracy of physical and chemical models for non-equilibrium conditions

+ Radical’s mechanism ? Ionic chain mechanism? Energy chain mechanism

Page 6: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Models for Low-Temperature Plasma Assisted Combustion

Starikovskii et al.,

Plasma Physics Reports, 2000 (26) 701

O2 + e- + M → O2- + M

H2 + O2- → OH- + OH

OH + H2 → H2O + HOH- + H → H2O + e-

H + O2 + M → HO2 + MOH- + HO2 → H2O + O2 + e-

Starikovskii,Chemical Physics Reports, 2003 (11) 1

N2O* + H → N2* + OHCO + OH → CO2* + HCO2* + N2O → N2O* + CO2N2* + N2O → N2O* + N2

Page 7: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

PAC: Where we are

P, atm

0.02 1 40

T, K

250 K

2500 K

S/I

φ

0.1

3.0

E/n, Td

1000

B/S

1

1

300

Page 8: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Mechanisms of Plasma Influence

1. Heating

2. Turbulization

3. Momentum Transfer

4. Electrons/Ions Diffusion/Drift

5. Dissociation, Ionization

Page 9: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Shock Wave - Nonequilibrium Plasma Interaction

Page 10: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Relaxation of Nonequilibrium Plasma. Air. P1 ~ 20 Torr

0 50 100 150 200 250 300 350 400 450 5000.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14V/

V 0

Pre-trigger Time, μs

V, Base 3-4 Ms=3.0 Ms=2.3 Ms=2.2 Ms=2.2 Ms=1.8 Ms=1.56

τE

Page 11: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Relaxation of Nonequilibrium Plasma. Air. P1 ~ 20 Torr

Page 12: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Mechanism of fast heating in discharge plasmas (low E/N)

Low (< 20 Td) E/N:

e + N2 , O2

- elastic scattering

- rotational excitation

100 101 102 1030

50

100

O2(ion)O2(rot)

O2(el)

N2(ion)

N2(el)

O2(vib)

N2(rot)

N2(vib)

Frac

tiona

l ene

rgy

depo

sitio

n, %

E/n, Td

Air

Page 13: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Mechanism of fast heating in discharges (moderate E/N)

Moderate (20 - 200 Td) E/N:

Popov (2001) heating → 28 % of power spent on N2* + O2

*

e + O2 → e + 2O + ΔE

e + N2 → e + N2*(A, B, C, a’, ...)

N2*(A, B, C, a’, ...) + O2 → N2 + 2O + ΔE

O(1D) + N2 → O + N2 + ΔE k ~ 10-10 cm3/s

Page 14: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Mechanism of fast heating in discharge plasmas (high E/N)

High (> 200 Td) E/N:

electron-ion and ion-ion recombinationkinetics

100 1000

10

20

30

40

50

28% of energy spent on N2(el) + O2(el)(Popov (2001))

Hea

ting

perc

enta

ge, %

E/N, Td

ne0=1014 cm-3; dry air ne0=1015 cm-3; dry air ne0=1014 cm-3; 1 % H2O ne0=1015 cm-3; 1 % H2O

e + O2+ → O + O* + ΔE

O2- + O2

+ + M→ 2O2 + M + ΔE

Aleksandrov et al. (2009)

Page 15: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Heat Release and Shock Waves Formation by “Nonequilibrium” Plasma

50 ns, ΔT = 420 K

7 ns, ΔT = 240 K

Page 16: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Energy Distribution in Gas Discharge

100 101 102 1030

50

100

O2(ion)O2(rot)

O2(el)

N2(ion)

N2(el)

O2(vib)

N2(rot)

N2(vib)

Frac

tiona

l ene

rgy

depo

sitio

n, %

E/n, Td

Air

Page 17: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Molecular Oxygen ExcitationTo directly observe the influence of SDO on the combustion of H2-O2 mixture

Delivering sufficient amount of SDOMinimizing the effect of O atomLower the inlet temperature

V V Smirnov, O M Stelmakh, V I Fabelinsky, D N Kozlov, A M Starik and N S Titova,J. Phys. D: Appl. Phys. 41 (2008)

Page 18: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

SDO kinetic analysis

The ignition time as a function of SDO mole fraction in oxygen.T=775 K and P=10 Torr in the H2:O2=5:2 mixture

0% 1.2% 4% 6%

-2,0

-1,5

Experiment Calculations Calculations with

laminar boundary layerlg(t,s)

SDO mole fraction

Page 19: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

SDO kinetic analysis

Auto-ignition

6% SDO

The evolution in time of the mole fractions of the main component for autoignition (a) and ignition with 6% singlet delta oxygen. The gas temperature

evolution is represented by the thick red line.

1E-6 1E-5 1E-4 1E-3 0.01 0.11E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

H2 O2 SDO O H OH HO2 H2O H2O2 O(1D) O2(1S) O3 Temp

800

1200

1600

2000

2400

Temeprature, K

1E-6 1E-5 1E-4 1E-3 0.01 0.11E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

H2 O2 SDO H O OH HO2 H2O H2O2 O(1D) O2(1S) O3 Temp

Time s

800

1200

1600

2000

2400

Temperature, K

Page 20: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Possible reasons

Radical generation efficiency

Auto SDOO2+M=O+O+M (slow)

H2+O=OH+HO2+H=OH+O

OH+OH=H2O+O……

O2(a1 Δg)+H2=OH+OH (fast)OH+H2=H2O+H

O2(a1 Δg)+H=OH+OO2+H=OH+O

OH+OH=H2O+O…

O2(a1 Δg)+H2=OH+OH O2(a1 Δg)+H=OH+O

200% 100%~80 μs

SDO kinetic analysis

Page 21: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Energy Distribution in O2-Ar (15%:85%) Mixture

74% energy in excitation of singlet oxygen at E/n= 5 TdApproximately 53% in singlet delta state

About 21% in singlet sigma state

1 10 100 10000

10

20

30

40

50

60

70

80

Ene

rgy

depo

sitio

n, %

Reduced Electric Field, Td

Ar(elastic) Ar(11.6eV) Ar(11.3eV) Ar(Ionization) O2(v=1) O2(v=2) O2(v=3) O2(1Δ) O2(1Σ) O2(4.5eV) O2(6.0eV) O2(8.4eV) O2(Ionization)

H + O2(1Δ) = OH + O

Page 22: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

0,8 1 2 4 6 8 10 20 400,0

0,5

1,0

1,5

2,0

2,5

SDO

Exc

itatio

n Ef

ficie

ncy,

%

E/n, Td

E/n = 6 Td (=10−17 Vcm2)

N2 Elastique 1.8 % N2(ROT) 4 %

N2 (V=1) 49 % N2 (V=2) 7.3 % N2 (V=3) 1.4 % N2 (V=4) 0.2 %

O2 Elastique 0.3 % O2 (ROT) 0.2 % O2 (V=1) 17 % O2 (V=2) 11 %O2 (V=3) 4.1 %O2 (V=4) 1.4 %O2 (a1Δg) 2.2 %O2 (b1Σ) 0.1%

SDO Excitation efficiency in air plasma

Air Plasma

Page 23: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Shock Tube with Discharge Section.U ≤ 0.3 MV, M ≤ 3

Test Section of the Shock Tube

Starikovskaya et al

Page 24: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Main Processes During Discharge Phase

0 20 40 60 80 100

20000

40000

60000

80000

2

76

48

13 5

4

Rea

ctio

n R

ate

Time, ns

1 Ar + e- ⇒ Ar+ + e- + e-

2 O2 + e- ⇒ O + O + e-

3 CH4 + e- ⇒ CH3 + H + e-

4 Ar + e- ⇒ Ar* + e-

5 Ar* + O2 ⇒ Ar + O + O

6 Ar* + CH4 ⇒ Ar + CH2 + H + H

7 O2 + e- ⇒ O2* + e-

8 O2* + CH4 ⇒ O2 + CH3 + H

1

Page 25: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Radicals Production in DischargeCH4-containing mixture

Page 26: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Ignition Delay Time: Methane-Containing Mixture

0.5 0.6 0.7 0.8

100

101

102

103

104

105

I

II

III

autoignition

autoignition, experimentautoignition, calculations

PAI, calculationsPAI, calculations

PAI, experimentsPAI, experiments

PAIPAI

Igni

tion

dela

y tim

e, μ

s

1000/T5, K

CH4

Page 27: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

90 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.901

10

100

1000In

duc

tion

tim

e, μs

1000/T, K-1

Auto Exp Auto Calc FIW Exp FIW Calc

(C5H12:O2) + 90% Ar

b)

C H5 12

RAMEC (for C1) + Westbrook (C2-C7) + High Pressure Adjustment

Page 28: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Experiment and Calculations in H2-Air Mixture

Page 29: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Modeling of Radicals Formation vs E/n (W=14 mJ/cm3)

10 1000.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

3.0x10-3

3.5x10-3

4.0x10-3

4.5x10-3

5.0x10-3

Den

sity

, cm

-3

E/N, Td

O H Sum

100 10000.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

3.0x10-3

3.5x10-3

4.0x10-3

Den

sity

, cm

-3E/N, Td

O H SumH2:O2:Ar=29.5:14.75:55.75

H2:O2:N2=29.5:14.75:55.75

Page 30: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Delay time for autoignition and plasma assisted ignition in CH4-containing mixture

CH4:O2:N2:Ar = 1:4:15:80

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90101

102

103

104

PAI with E(t)/N

PAIauto

auto0.5 atm

~0.5 atm

~2 atm

Igni

tion

dela

y tim

e, μ

s

1000/T, K-1

Aleksandrov et al. (2009)

Page 31: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Plasma Recombination at High Pressures and Temperatures

0 5 10 15 20 25 30 35 40 45 50

1012

p=2.56atm,T=2036Kp=2.2atm,T=2036Kp=1.96atm,T=2065Kp=1.9atm,T=2276K

p=1.5atm,T=2598Kp=1.07atm,T=2770K

n e, c

m-3

Время, мкс

p=1.68atm,T=2384K

N2

0.1 1 10

1010

1011

1012

p=2.1атм.,T=1989Kp=2атм.,T=2150Kp=2атм.,T=2100Kp=1.9атм.,T=2270Kp=1.8атм.,T=2558Kp=1.5атм.,T=2680Kp=1.1атм.,T=2990K

N2:O2:CO2=76:19:5

n e, c

m-3

Время, мкс

0.1 1 10

1012

p=2.3атм.,T=2316Кp=2атм.,T=2411Кp=1.7атм.,T=2442Кp=1.3атм.,T=2517Кp=1.1атм.,T=2845К

N2:H2:O2:CO2=67:15:11:7

n e, c

m-3

Время, мкс

N2:H2O:O2:OH:CO:CO2:H:O:H2=67:10:5:4:3.5:3:3:3:2

N2:H2:O2:CO2=67:15:11:7

After 10 μs, at 1atm., 2800К

Page 32: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Evolution in Time of Electron Density During Plasma Decay

500 1000 1500 2000 250010-8

10-7

10-6

p=0.4 atm

0.2

T, K

Effe

ctiv

e re

com

bina

tion

coef

ficie

nt, c

m3 s-1

)

500 1000 1500 2000 250010-8

10-7

10-6

p=0.4 atm0.2

T, K

Effe

ctiv

e re

com

bina

tion

coef

ficie

nt, c

m3 s-1

air

O2:N2:CO2=1:4:5 O2:N2:CO2=5:86:9

Dissociative electron-ion recombinatione + O2

+ → O + O

Electron attachment and detachmente + O2 + M → O2

- + MO2

- + O → e + O3

500 1000 1500 2000 250010-8

10-7

10-6

p=0.4 atm0.2

T, K

Effe

ctiv

e re

com

bina

tion

coef

ficie

nt, c

m3 s-1

)

Page 33: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Discharge Development at Different Overvoltage and Plasma Generation

10 100 1 0001E11

1E12

1E13

1E14

1E15

1E16

Elec

t ron

Den c

ity,c

m-3

Reduced El ectr ic Fi eld, Td

T = 8000 KT = 350 K

T = 400 K

T = 300 K

Arc Discharge: equilibrium plasmaApplications: melting & welding

MW Discharge: partial equilibriumApplications: plasma chemical conversion, chemical vapor deposition (CVD)

Glow Discharge: E/n close to the breakdown thresholdApplications: light sources, surface treatment, CVD

Streamer Discharge: overvoltage up to 200%Applications: surface treatment, flue gases treatment, electrical breakdown, power switches

Nanosecond Pulsed Discharge: overvoltage up to 10 timesApplications:• Plasma supported combustion• Plasma supported aerodynamics• Chemical conversion• CVD

Types of Gas Discharges and Their Applications

T = 4000 K

Types of Gas Discharges and Their Applications

Page 34: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Setup for OH Dynamic Measurements in Streamer Channel Afterglow

Pancheshnyi et al

Page 35: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

LIF Diagnostics Setup: OH Profile Control

NdYAG laserDye laserDoublingsystem

Spectrometer

ICCD - camera

burner

LIF OHOH (X-A):

Excitation: Q1(6) 282.92 nm;Emission:

315nm, δλ=1.8 нм; Registration –

PicoStar LaVision ICCD камера

LIF OH

Page 36: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

LIF Emission of OH at 300 K

1 10 100

0

50

100

150

200

250

Methane lean Ethane lean Propane lean Butane lean

Methane St Ethane St Propane St

Methane Rich

OH

LIF

, 300

K, 1

atm

Time, μs

0.1 1 10 100

1

10

100

Methane lean Ethane lean Propane lean Butane lean

Methane St Ethane St Propane St

Methane Rich

OH

LIF

, 300

K, 1

atm

Time, μs

Page 37: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

LIF Emission of OH at 500 K

Page 38: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Methane

Ethane

300 K Versus 500 K LIF of OH

Page 39: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

High-pressure Conditions:Always Non-Uniform

9 ns

11 ns

Pancheshnyi et al

Page 40: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Rapid Compression Machine:High-Pressure, Low-Temperature

Page 41: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

PAC at High Pressure: ER = 1 (Rakitin et al)

T2 = 713 KP2 = 26.5 bar

Propane,Surface DBD,

< 50mJ

Page 42: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

PAC at High Pressure: ER = 0.4 (Rakitin et al)

T2 = 794 KP2 = 32 bar

Propane,Surface DBD,

< 50mJ

Page 43: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Propane-Butane-Air Lean Mixtures. φ = 0.5 (C3:C4=85:15)

0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,15

10

100

Igni

tion

Del

ay, µ

s

1000/T, K-1

P=500 atm P=210 atm P=66 atm P=20 atm P=4.7 atm Cadman et. al

P=10 atm

Page 44: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Propane-Butane-Air Mixture Ignition. φ = 0.5 (C3:C4=85:15). Calculations

Page 45: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Propane-Butane-Air Mixture Ignition. Experiment vs Calculations.

0,6 0,7 0,8 0,9 1,0 1,1 1,210

20

40

6080

100

200

400Ig

nitio

n De

lay,

µs

1000/T, K-1

, P=500 atm, P=210 atm, P=66 atm, P=20 atm, P=4.7 atm

Page 46: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Channels of Kinetic Scheme Optimization

Reaction T k

C3H8 + HO2 = C`H2C2H5 + H2O2 1200 2.5

C3H8 + HO2 = CH3C`HCH3 + H2O2 1200 2.5

O2C3H7 = HOOCH2C`HCH3 800-1000 0.2

CH3CHO2CH3 = CH3CH(OOH)C`H2 800-1000 0.2

OCHCH(OOH)CH3 = CH3CHO + HCO + OH 800 0.2

OCHCH2CH(OOH)2 = CH2O + CH2CHO + OH 800 0.2

CH3COCH2(OOH) = CH2O + CH3CO + OH 800 0.2

0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,20 1,25

10

100

H2O

2 and HO

2Formation and Decomposition

Fueldecomposition

AlkylHydroperoxidesformation and decomposition

H2O2+M -> OH+OH+M

CH3+CH

3O

2 = CH

3O+CH

3O

Igni

tion

Dela

y (µ

s)

1000/T (K-1)

n-Hexane P = 220 atm n-Pentane P = 250 atm C

3H

8+C

4H

10 P=210 atm

Methane P = 150 atm

Konnov,Potapkin

Page 47: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Mixture C3H8:C4H10:Air = 1.8:0.3:97.9

0,7 0,8 0,9 1,0 1,1 1,2

10

100

C3H8:C4H10:Air=1.8:0.3:97.9Ig

nitio

n De

lay,

µs

1000/T, K-1

, P = 4.7 atm, P = 20 atm, P = 66 atm, P = 210 atm, P = 500 atm

Page 48: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Discharge Formation and Flame Stabilization in High Speed Flow

IVTAN (Sergey Leonov):M = 2Maximal stagnation pressure 1.8 BarStagnation temperature 670 KDischarge Power ~ 1 kW

DPI Shock Tunnel:M = 2-5Static pressure 0.1 - 1 BarStatic temperature 700-1000 KDischarge Power ~ 1 kW

Page 49: Fundamental Mechanisms, Predictive Modeling, and Novel ... · Task 4: Moderate-to-high (T=800 – 1800 K) temper ature PAC oxidation kinetics in Discharge Shock Tube Facility at pressures

Physics of Nonequilibrium Systems Laboratory

Summary

Range of ParametersP = 0.1 – 70 atmT = 300 – 2000 KM = 0 - 5φ = 0.01 – 1E/n = 200-500 Td (Air)Fuels: H2, C1 – C4Acetones, Alcohols, CO

Experiment:Shock TubeShock TunnelRapid Compression MachinePremixed Flow Nozzle

Theory:Discharge ModelsPlasma Models Chemical Kinetic Models