From the Institute of Experimental and Clinical ... · From the Institute of Experimental and...

99
From the Institute of Experimental and Clinical Pharmacology and Toxi- cology of the University of Lübeck Director: Prof. Dr. Markus Schwaninger Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state Running title: hippocampal memory consolidation and corticosterone Inaugural dissertation to graduate a doctorate at the University of Lübeck - from the section of medicine - Submitted by Marie Karoline Gessert From Siegen Lübeck 2018

Transcript of From the Institute of Experimental and Clinical ... · From the Institute of Experimental and...

Page 1: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

From the Institute of Experimental and Clinical Pharmacology and Toxi-

cology of the University of Lübeck

Director: Prof. Dr. Markus Schwaninger

Hippocampal corticosterone impairs memory consolidation during sleep

but improves consolidation in the wake state

Running title: hippocampal memory consolidation and corticosterone

Inaugural dissertation

to graduate a doctorate

at the University of Lübeck

- from the section of medicine -

Submitted by

Marie Karoline Gessert

From Siegen

Lübeck 2018

Page 2: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

This work is supported by the “Deutsche Forschungsgemeinschaft” (SFB 654).

For my parents.

Page 3: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

First reporter: Prof. Dr. rer. medic. Lisa Marshall

Second reporter: Prof. Dr. med. Christoph Helmchen

Day of the oral examination: 23 August 2019

Approved for print, Lübeck, 23 August 2019

Ph.D. board of the section of medicine

Page 4: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

Table of contents

1 List of abbreviations ......................................................................................... 1

2 Introduction ...................................................................................................... 2

2.1 Background ............................................................................................... 2

2.2 Problem statement .................................................................................... 7

Methods .............................................................................................. 8

Hypotheses ......................................................................................... 9

2.3 Structure .................................................................................................... 9

3 Material and methods .................................................................................... 10

3.1 Animals and general procedure .............................................................. 10

3.2 Preparation of home cages ..................................................................... 11

3.3 Handling .................................................................................................. 12

3.4 Surgery and recovery .............................................................................. 12

3.5 Open field habituation ............................................................................. 14

3.6 Tasks ....................................................................................................... 14

Elevated plus maze test .................................................................... 14

Novel-object recognition and object-place recognition test ............... 16

Preparation, administration of substances and assessment of sleep 18

3.7 Brain removal and histological examination ............................................ 19

3.8 Data analysis ........................................................................................... 20

Testing for difference between conditions through variance analysis 20

Testing for difference between specific conditions............................ 22

Testing that performance is different from chance ............................ 23

4 Results ........................................................................................................... 24

4.1 Tasks ....................................................................................................... 24

Elevated plus maze .......................................................................... 24

Sample trials ..................................................................................... 24

Retention intervals ............................................................................ 24

Page 5: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

Test trials .......................................................................................... 25

4.2 Histological examination .......................................................................... 27

5 Discussion ..................................................................................................... 29

5.1 Key findings ............................................................................................. 29

Hippocampus-dependent memory .................................................... 29

Hippocampus-independent memory ................................................. 29

Where and when do glucocorticoids affect consolidation? ............... 30

5.2 Related work ........................................................................................... 31

Dose-dependent effects of glucocorticoids ....................................... 31

Arousal-dependent effects of glucocorticoids ................................... 32

Connection between dose- und arousal-dependent effects of

glucocorticoids ............................................................................................... 33

5.3 Limitations ............................................................................................... 35

Improvements to the implants ........................................................... 35

Improvements to the apparatus for drug delivery.............................. 35

Improvements to the study design .................................................... 36

Improvements to the preparation of drugs ........................................ 38

Remarks by reviewers ...................................................................... 40

5.4 Future work ............................................................................................. 41

Sleep-stage dependent differences in memory consolidation ........... 41

Effects of glucocorticoids on sleep-stage dependent EEG-rhythms . 42

6 Summary ....................................................................................................... 45

7 Summary in German ...................................................................................... 47

7.1 Einleitung ................................................................................................ 47

7.2 Material und Methoden ............................................................................ 51

7.3 Daten-Analyse ......................................................................................... 53

7.4 Ergebnisteil ............................................................................................. 54

“elevated-plus-maze” Test ................................................................ 54

Sample trial ....................................................................................... 55

Page 6: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

Behaltensintervall ............................................................................. 55

Test trial ............................................................................................ 55

Histologische Untersuchung ............................................................. 57

7.5 Diskussion ............................................................................................... 57

Einschränkungen .............................................................................. 60

Ausblick ............................................................................................ 63

7.6 Zusammenfassung .................................................................................. 64

8 Own contributions to the doctoral thesis ........................................................ 66

9 List of references ........................................................................................... 67

9.1 Journals and magazines ......................................................................... 67

9.2 Books ...................................................................................................... 75

9.3 Web pages .............................................................................................. 76

10 Appendix ........................................................................................................... I

10.1 List of tables ............................................................................................... I

10.2 List of figures .............................................................................................. I

10.3 Exemplary protocols .................................................................................. II

Handling .......................................................................................... II

Postoperative control ...................................................................... III

Habituation ..................................................................................... IV

Memory tasks .................................................................................. V

10.4 Histological results ................................................................................... VI

10.5 Stereotaxic coordinates of the rat brain ................................................... VII

10.6 Photos of the experimental room ........................................................... VIII

10.7 Poster for the „6. Lübecker Doktorandentag 2013“ .................................. XI

10.8 Further attachments ................................................................................ XII

11 Acknowledgment .......................................................................................... XIII

12 Curriculum vitae ............................................................................................ XIV

13 List of own publications .................................................................................. XV

Page 7: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

14 Honesty declaration ...................................................................................... XVI

Page 8: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

1

1 List of abbreviations

abbreviation meaning

ANOVA ANalysis Of VAriance

CA cornu ammonis

CORT corticosterone

dSub dorsal subiculum

EC entorhinal cortex

EEG electroencephalogram

EMG electromyography

FOS FBJ murine osteosarcoma viral onco-

gene

GABA gamma-aminobutyric acid

GC glucocorticoid(s)

GR glucocorticoid receptor

HBC hydroxypropyl-beta-cyclodextrine

LTD long-term depression

LTP long-term potentiation

MB mammillary body

MR mineralocorticoid receptor

NGFI-A nerve growth factor induced clone A

NMDA n-methyl-d-aspartic acid

PBS phosphate buffered saline

PGO ponto-geniculo-occipital

REM rapid eye movement (sleep)

SWS slow-wave sleep

VEH vehicle

Page 9: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

2

2 Introduction

2.1 Background

With John O’Keefe, May-Britt and Edvard I. Moser winning the Nobel Prize in phys-

iology or medicine in 2014 for defining a spatial navigation system within the rat

brain (Burgess, 2014), cognitive neuroscience has become increasingly popular.

The key figure in this field of research is a structure lying deep within the medial

temporal lobe: the so-called “hippocampal formation” – named after its resemblance

to the seahorse. It consists of a group of neighboring regions including the dentate

gyrus, the subiculum, the presubiculum, the parasubiculum, the entorhinal cortex

and the hippocampus itself1. During the last 400 years it was associated with many

different functions, amongst others the sense of smell as being part of the evolution-

ary “rhinencephalon” and the orchestration of emotional expression via the “Papez

circuit” (Andersen et al., 2006).

Figure 1. Anatomy of the limbic system2.

1 The hippocampus again contains the fields CA1-CA3 as identified by Rafael Lorente de Nó, with CA standing for “cornu ammonis” after the Egyptian god Amun Kneph, who was carrying a ram with him; see Figure 1. 2 Adapted from: http://tayloredge.com/reference/Science/BiologySlides/LimbicSystem.gif, 27.10.2016.

Page 10: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

3

Today its role in the formation of memory has been narrowed down to the encoding

and retrieval of long-term memory for facts or events, also referred to as declarative

or explicit memory. Roy et al., 2017, proposed distict neural circuits in the temporal

lobe system for these processes (see Figure 2): the encoding of episodic memories

in the hippocampus takes place in the CA1 → EC5 circuit, while for the retrieval the

dorsal subiculum (dSub) is interposed. The connection of the latter to the

mammillary bodies (MB) is thought to regulate memory-retrieval-based emotions,

while the connection to the entorhinal cortex (EC5) shall control the retrieval-based

instinctive fear responses. In combination, these circuits will allow the animals to act

more flexibly and to survive evolutionary change.

CA1 EC5

dSub

MB

Hippocampal Memory

Formation

Hippocampal Memory

Retrieval

Stress Hormone

Responses

Context-Dependent

Updating

Figure 2. Distinct neural circuits3. CA1 = cornu ammonis 1; dSub = dorsal subiculum; EC5 = medial entorhinal cortex 5; MB = mammillary body.

Nondeclarative or implicit memory such as the procedural memory, priming,

classical conditioning and non-associative learning, on the other hand, is

represented by other areas of the brain like the striatum, the motor- or neocortex,

the cerebellum, the amygdala or reflex pathways. The declarative memory as de-

scribed within the “declarative memory theory” by Squire (Squire et al., 1984; Squire

and Zola-Morgan, 1991; Squire, 1992; Squire, 2004) is furthermore divided into ep-

isodic and semantic memory (Andersen et al., 2006; see Figure 3). The term epi-

sodic memory stands for the recall of a certain event (what), which took place at a

3 Adapted from Roy et al. (2017): Distinct neural circuits for the formation and retrieval of episodic memories. Cell, 170(5), 1000-1012.

Page 11: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

4

certain time (when) and a certain place (where). Because its discoverer Tulving

(Schacter and Tulving, 1994; Tulving, 1972; Tulving, 1983; Tulving et al., 2005)

declared that the individual in question must have a particular “autonoetic

consciousness” (Tulving, 1983), i.e., being able to identify his role in the event,

Griffiths et al. (1999) termed this memory type “episodic-like” for animals (Andersen

et al., 2006).

Human Memory

Sensory

Memory

(< 1 s)

Long-term

Memory

(life-time)

Short-term

Memory

(< 1 min)

Consolidation

(Hippocampus)Encoding

Explicit

Memory

(conscious)

Implicit

Memory

(unconscious)

Procedural

Memory

(skills, tasks)

Declarative

Memory

(facts, events)

Episodic

Memory(events, experiences)

Semantic

Memory

(facts, concepts)

Recall

Figure 3. Memory types, steps of memory formation and role of the hippocampus4.

Facing the process of memory formation itself, the scientific community agreed upon

three different steps that have to be passed to embed information permanently.

During the encoding phase, new information is collected in working memory (short-

term memory); during the consolidation phase, the collected information is

transferred from short-term- to long-term memory; during the recall phase,

information from long-term memory is recollected (Andersen et al., 2006; see Figure

3).

4 Based on http://www.human-memory.net/images/memory_types.jpg, 27.10.2016.

Page 12: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

5

At the cellular level, these processes are said to be promoted by so-called “synaptic

plasticity”, a term first characterized by Martin et al. in 2000. His “synaptic plasticity

and memory” hypothesis implies that “activity-dependent synaptic plasticity is

induced at appropriate synapses during memory formation, and is both necessary

and sufficient for information storage underlying the type of memory mediated by

the brain area in which that plasticity is observed” (Andersen et al., 2006, p. 427).

LTP (“long-term potentiation”) and LTD (“long-term depression”) are models for two

kinds of synaptic change. As indicated by the name, LTP is a process in which an

increase in synaptic efficacy occurs, whereas in LTD a decrease is caused. Alt-

hough LTP cannot be equated with memory, there are analogies to be found. For

instance, both processes can be affected by sleep and stress.

While asleep, the individual repeatedly runs through two different stages of activity:

the non-REM sleep which is predominant in the first half of the night and

characterized by slow high-voltage EEG-waves (i.e., slow oscillations, spindles and

sharp wave ripples), muscular activity and dreamlessness – and the rapid-eye-

movement (REM) sleep which is predominant in the second half of the night and

characterized by rapid low-voltage EEG-waves (i.e., ponto-geniculo-occipital waves

and theta activity), muscular atonia and the occurrence of dreams.

Research investigating the effect of sleep on the consolidation of memories as-

signed specific functions to the aforenamed conditions. While slow-wave sleep

(which is part of the non-REM sleep) might support the reactivation and

redistribution of memories from temporary stores to long-term memory, REM sleep

is said to promote the synaptic consolidation of memories by disconnecting long-

term- from short-term memory storage (rev. in Diekelmann and Born, 2010 and

Ribeiro et al., 2004). Transferred to a more general model concerning creative prob-

lem solving proposed by Lewis et al., 2018 (“BiOtA” model: broader form of the in-

formation overlap to abstract framework), non-REM sleep serves the so called

“schema” learning by abstracting rules from corpuses of learned information. REM

sleep, on the other hand, supports the formation of novel, unexpected connections.

According to them, only the iterative interleaving of both sleep stages enables the

formation of complex knowledge frameworks and thus facilitates creative thought.

The link between the hippocampus and stress (first referred to as “stress-

hippocampus link” by Lupien and Lepage in 2001) is based on several observations,

starting by the discovery of abundant mineralocorticoid and glucocorticoid receptors

Page 13: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

6

in the animal and human hippocampus by McEwen et al. in 1986 and confirmed

later by many other scientists (Joëls, 2008; McEwen and Sapolsky, 1995; Reul and

de Kloet, 1985).

Behavioral studies furthermore attested an “inverted U-shaped function between the

level of acute stress and memory” summarized in the so-called “Yerkes-Dodson law”

(Robert and John, 1908). It implies that mild to moderate glucocorticoid levels im-

prove the effects of learning by facilitating the induction of long-term potentiation.

High levels, however, decline the effect below baseline by promoting the induction

of long-term depression in the CA1 region of the hippocampus (Andersen et al.,

2006; sample studies: Okuda et al., 2004; Roozendaal, 2000; Roozendaal et al.,

2002; Sandi and Rose, 1994). The cytological explanation for this activity-depend-

ent synaptic plasticity is based on the different affinities of the receptors mentioned

above. Mineralocorticoid receptors have a high affinity to bind glucocorticoids and

thus become first and predominantly occupied during low levels of stress hormones.

Glucocorticoid receptors, however, have a lower affinity to bind glucocorticoids and

become increasingly occupied during rising levels of stress hormones, when miner-

alocorticoid receptors are starting to get saturated. Through cytological mechanisms

still unknown, the combination of fully saturated mineralocorticoid receptors and par-

tially occupied glucocorticoid receptors leads to a stable or even enhanced receptor

transmission (equal to long-term potentiation), whereas fully saturated glucocorti-

coid receptors cause attenuated excitatory input (equal to long-term depression;

Andersen et al., 2006). This theory is also referred to as “binary hormone response”

(Evans and Arriza, 1989) or “MR/GR balance” (Oitzl et al., 1995) theory.

In addition to these neurobiological effects, both receptors are said to interfere with

distinct steps of information processing. While the activation of mineralocorticoid

receptors modulates “selective attention”, causing appropriate behavioral re-

sponses to external stimuli (Oitzl and de Kloet, 1992; Sandi and Rose, 1994), glu-

cocorticoid receptors regulate the encoding and consolidation of memories (Conrad

et al., 1999; Oitzl and de Kloet, 1992). In the long run, chronic exposure to high

levels of stress eventually leads to structural changes in the hippocampus with

atrophy of CA1 and CA3 neurons in rats and primates (Kerr at al., 1991; Mizoguchi

et al., 1992; Sapolsky et al., 1985) and even affects the neurogenesis by inhibiting

postnatal and adult granule cell proliferation (Cameron and Gould, 1994; Gould et

al., 1997).

Page 14: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

7

Besides the total amount of glucocorticoids during the consolidation process, also

their time of administration seems to be essential for the recall of memories. De

Quervain et al. (1998, 2009) found out that the more time between the encoding

phase and the administration of glucocorticoids, the worse the recall – especially if

the effects of the glucocorticoids last on during the recall process. More recent stud-

ies (Sazma et al., 2018) confirmed these observations – but only for rodents that

were habituated to the learning context. Those that did not get to know the test

setting before the encoding showed unchanged or even improved memories. The

authors assumed a so called “contextual binding”, propagating that the stressor itself

would serve as memorable event to enhance memories for other events that share

the same context.

When combining the two factors sleep and stress, studies revealed vigilance de-

pendent differences in the effect of glucocorticoids on the consolidation of memo-

ries. While the administration of glucocorticoids during sleep after the encoding pro-

cess seems to impair the recall of hippocampus-dependent memories, the admin-

istration during wakefulness enhances it (Plihal and Born, 1999; Plihal et al., 1999;

Wilhelm et al., 2011). This may be due to qualitatively distinct reactivation processes

during sleep and wakefulness. While “neuronal replay” of the information during

sleep leads to its stabilization (consolidation), “neuronal replay” during wakefulness

causes destabilization (Debiec et al., 2002; Diekelmann et al., 2011; Gupta et al.,

2010; Jezek et al., 2002; Nader and Hardt, 2009). An example for that is the different

replay of spike sequences in the two conditions. While it only occurs in forward order

during sleep (Lee and Wilson, 2002), forward and backward order is recorded during

wakefulness (Davidson et al., 2009; Foster and Wilson, 2006). More recent studies

(Chen and Wilson, 2017) refuted these observations and also reported neuronal

replay in forward and backward order during sleep. However, they described sleep

stage dependent differences concerning the dynamics of the replay (“normal” in time

during REM, “compressed” in time during SWS), indicating specific functions in

sleep yet to be discovered.

2.2 Problem statement

In the present study I attempt to put all these pieces together:

1. The leading role of the hippocampus in the consolidation process of declar-

ative memory.

Page 15: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

8

2. The wake-sleep-dependent differences in the consolidation processes.

3. The modulation of the wake-sleep-dependent differences by glucocorticoids.

I aim to investigate the impact of glucocorticoids in the hippocampus on the consol-

idation process of declarative memory (Where do the glucocorticoids affect the

memory process?) and their onset of action (When do the glucocorticoids affect the

memory process – during wakefulness or sleep?). To prevent side-effects of gluco-

corticoids binding to receptors apart from the hippocampus (as it would be inevitable

for a systemic application in human studies) I use an animal model in which I implant

cannulas directly into the dorsal hippocampus. What makes my approach so unique

is that, up to now, comparable studies only focused on one type of memory (mostly

hippocampus-independent5) and only used systemically administered stress

hormones. Therefore, they were not able to differentiate between direct effects of

the glucocorticoids on specific brain structures and indirect effects caused by, for

example, a change in the neuromodulator concentration.

Methods

To be able to differentiate between the effects of the intrahippocampal infusion of

corticosterone and the consolidation during sleep on hippocampus-dependent and

–independent memories the rats had to undergo two different tests: the hippocam-

pus-dependent “object-place recognition test” and the hippocampus-independent

“novel-object recognition test”. In both tests, animals were confronted with two iden-

tical objects which were arranged at two of nine positions in a square box during the

sample trial. While one of the objects was exchanged for a new one during the test

trial in the hippocampus-independent “novel-object recognition test”, both objects

remained the same in the hippocampus-dependent “object-place recognition test”.

Here, however, one of the two identical objects was shifted to another place during

the test trial. Each memory test was executed under four conditions: intracerebral

application of corticosterone or vehicle (i.e., 0.9 % saline solution) during an 80

minutes retention interval in which the rats were allowed to sleep or were sleep-

deprived.

5 Okuda et al., 2004.

Page 16: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

9

Hypotheses

Based on previous studies (Binder et al., 2012; Inostroza et al., 2013; Wilhelm et

al., 2011) and the facts mentioned above I postulate the following hypotheses:

2.2.2.1 Hippocampus-independent “novel-object recognition test”:

No differences in the test performances throughout all four conditions will occur.

2.2.2.2 Hippocampus-dependent “object-place recognition test”:

The following substance and sleep-state dependent differences in the test perfor-

mance will occur:

1. Administration of corticosterone:

a. Corticosterone administered during a waking period after the encoding

process will improve the consolidation (and hence the recall) of hippo-

campus-dependent memory.

b. Corticosterone administered during a sleeping period after the encod-

ing process will impair the consolidation (and hence the recall) of hip-

pocampus-dependent memory.

2. Administration of vehicle:

a. Sleeping vehicle-infused animals will perform better than sleep-de-

prived vehicle-infused and sleeping corticosterone-infused animals.

b. Sleep-deprived corticosterone-infused animals will perform better than

sleep-deprived vehicle-infused animals.

The test results are presented in chapter 4 and were published 2014 in the journal

Hippocampus (Kelemen et al., 2014).

2.3 Structure

The thesis consists of 14 chapters: following the introduction is the “Material and

methods” part in which the setup, the progress of the study and the analysis of the

data is explained. In chapter 4, the results of the different tasks and the histological

examination are presented. Chapter 5 contains a critical analysis of the test results

against the backdrop of competitive studies and points out limitations and future

work. After that, the work is summarized shortly in English (chapter 6) and exten-

sively in German (chapter 7). The last seven chapters are reserved for formalities

like, for example, references (chapter 9), lists of tables and figures (chapter 10) and

own publications (chapter 13).

Page 17: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

10

3 Material and methods

3.1 Animals and general procedure

For the experiments, I used 24 adult male Long-Evans rats (Janvier, Le Genest-

Saint-Isle, France, 250-300 g). The number of animals was based on previous ex-

periments (Binder et al., 2012; Inostroza et al., 2013) and reflected the minimum

number of animals needed to prove significant effects. The experiments were

approved by the Schleswig-Holstein state authority6 and performed in accordance

with the NIH guidelines and the directive of the European Community Council

(86/609/ECC).

date activity

24.08. – 28.08.2011 preparation of home boxes, arrival, and

adaptation

29.08. – 04.09.2011 handling

31.08.2011 pilot surgery

01.09. – 07.09.2011 surgery, recovery

08.09. – 13.09.2011 habituation to the experimental room

14.09.2011 elevated plus maze (13.09.2011:

transport to the elevated plus maze

room and back)

16.09. – 03.10.2011 novel-object recognition and object-

place recognition tasks

20.09. – 12.10.2011 killing

November/December 2011 histology

Table 1. Timeline of the experiment.

Table 1 summarizes the timeline of the experiment. When the animals arrived, they

were put into the previously prepared home cages and left undisturbed for the next

five days to adapt to their surroundings (except for feeding and exchanging water

every two days). Afterward, they were handled twice a day for three consecutive

days to get accustomed to the experimenters and to facilitate the process of plug-

ging and unplugging for corticosterone application later on. Subsequently, two can-

nulas were implanted into the dorsal hippocampi of each animal under general an-

esthesia. The rats were given seven days of recovery before they were habituated

6 See “10.8 Further attachments” in the appendix, p. XII.

Page 18: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

11

to the experimental room. To check each animal’s level of anxiety, they had to un-

dergo the so-called “elevated plus maze test” two days before the actual testing

started, as the effects of corticosterone interact with anxiety (Inostroza et al., 2011;

Pinheiro et al., 2007).

The experiments consisted of two different memory tasks (the hippocampus-

independent “novel-object recognition test” and the hippocampus-dependent

“object-place recognition test”), each of which was executed under four conditions:

an 80 minutes interval of sleep or sleep deprivation in between the sample and test

sessions, during which the animals received an intrahippocampal infusion

containing a solution of 10 ng corticosterone in 0.5 µl saline (0.9 %) or solely 0.5 µl

saline (0.9 %; “vehicle”), as soon as they showed first signs of sleep. In the wake

conditions, the timing of the infusion was matched to that of the sleep conditions.

The original procedure was to have each animal run through all of the eight experi-

mental conditions in a pseudorandom order, with at least three days in between

subsequent testing. The complete procedure was, however, only applied to those

rats whose implants stayed intact throughout the whole experiment. The ones where

a displacement of the cannulas could not be safely excluded were dropped out in

advance. After completing the experiments or when having lost their implants, the

animals were killed, and their brains were histologically examined to verify the cor-

rect position of the cannulas.

3.2 Preparation of home cages

Each animal was kept in a plastic cage filled with bedding and nesting material and

covered with a grid containing a hole for the water bottles. The cages were resting

on racks with visual contact with the neighboring rats. After the surgeries, the lids of

the cages were wrapped in plastic foil, so that the animals could not damage their

implants. The nibbled foliage was replaced. Each day after the experiments the rats

were fed, and every week the water bottles were refilled.

The lights in the home cage room were adjusted in a way that the luminosity in each

cage was about 50 lux (measured once at the beginning of the experiment). They

were connected to a timer, which turned them on at 6 a.m. and off at 6 p.m. each

day, subjecting animals to a constant sleep-wake cycle. To guarantee a maximum

percentage of SWS and a minimum concentration of corticosterone the tasks took

Page 19: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

12

place between 8 a.m. and 1 p.m., with nobody entering the home cage room be-

tween 6 p.m. and 6 a.m.

3.3 Handling

Each animal was handled for three days before the surgery. The handling took place

twice a day (in the morning and the afternoon) for four minutes per animal. At first,

they were left untouched on the experimenter’s lap. Then, the contact was slowly

increased. The rats were touched on the bodies and heads and lifted with the fore-

limbs crossed in front of their chest to get them accustomed to the infusion proce-

dure. The activities and observations were written down in protocols7.

3.4 Surgery and recovery

Before being carried to the surgery room, the animals were weighed to calculate the

correct dose of drugs. Then, they received intraperitoneal infusions of atropine (par-

asympatholytic, 0.1 mg/kg) and medetomidine (sedative, 0.6 mg/kg). To implant the

cannulas8 the rats were anesthetized with isoflurane (induction: 1-2 % in 0.35l/min

O2, maintenance: 0.8-1.2 % in 0.35l/min O2), applied at first to an airtight plastic box.

When unconscious and immobile, they were retracted, placed on a heating pad to

maintain normal body temperature and connected to a mask providing the

anesthesia for the rest of the surgery. Their head was shaved and disinfected with

ethanol. Afterward, the head was fixed in a stereotactic frame. Then, the scalp was

cut along the midline with a scalpel and held aside with clips. After removing

overlaying tissues, the positions for the two cannulas (coordinates relative to

bregma: - 3.8 mm antero-posterior, ± 2.8 mm lateral, - 1.8 mm dorso-ventral) were

marked and the burr holes were drilled (see Figure 4). At the dorso-ventral coordi-

nates, the cannulas were implanted laterally tilted by 22 degrees respective to the

vertical axis with the help of a stereotactic guide9. After that, the four fixing screws

were screwed in manually and - together with the cannulas - covered with cold pol-

ymerizing dental resin10. In the end, the cannulas were capped with stylets (lengths:

11 mm) and the animals got 1 ml sodium chloride and atipamezole (antagonizes

medetomidine, 0.6 mg/kg) injected subcutaneously. Surgeries took about 60 to 90

minutes per animal and were conducted by Dr. Marion Inostroza.

7 See exemplary protocol in the appendix, p. II. 8 Stainless-steel guide cannula, Plastics One, USA, length: 11 mm, gauge: 23. 9 Cannula holder, Plastics One, USA. 10 Palapress, Heraeus Kulzer GmbH, Germany.

Page 20: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

13

A pilot surgery was performed with animal T11, using blue ink to mark the position

of the cannulas.

Ventral

Hippocampus

Dorsal

Hippocampus

Fixing ScrewsHoles for

Cannulas

Incisor Bar Nose Bar

Ear Bar

Figure 4. The cannulas’ position in a stereotactic and anatomic model11.

The animals were observed after the surgery and kept warm with an infrared lamp

for the next few hours. They got softened crackers to eat and their weight was

checked daily for the next week. The wounds were treated with powder (azithromy-

cin) and ointment (betaisodona). To prevent the cannulas from becoming stuck and

to accustom the rats to the infusion process, the stylets were removed every day12.

11 Based on http://media.wiley.com/mrw_images/cp/cpns/articles/ns0901/image_n/ nns090102.gif, 27.10.2016 and http://kaylab.uchicago.edu/images/rat_brain.png, 27.10.2016. 12 See exemplary protocol in the appendix, p. III.

Page 21: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

14

3.5 Open field habituation

Three batches of four animals per day ran through the experimental protocol de-

scribed below (i.e., each rat was allowed to explore the open field for five minutes

in the first and three minutes in the second run), except that there were no objects

presented and no substances injected. As the direction in which they were put into

the open field during the tasks was changed during the experimental testing to favor

the development of an allocentric strategy, it was done here, too. In the first session,

they were brought in from the south, in the second from the north and in the third

from the east. The activity in the open field and the boxes was recorded with video

cameras and written down in protocols13.

3.6 Tasks

Elevated plus maze test

The elevated plus maze is a widely used behavioral assay to measure the anxiety

behavior of rodents (Walf and Frye, 2007). Its setting consists of a “+”-shaped ap-

paratus with two opposing enclosed (45 x 10 cm, 40 cm high) and two opposing

open arms (45 x 10 cm) branching off at right angles from an equally open center

platform (10 x 10 cm). As the name already indicates, the construction itself is ele-

vated 50 cm above the floor (see Figure 5).

The model is based on the rats’ general aversion of open spaces, which is reflected

in a special behavior called “thigmotaxis”: the animals restrict their movements to

the enclosed area or the edges of adjacent spaces and avoid entering the open

arms. A low level of anxiety is therefore indicated by a high proportion of time spent

in the open arms (time in the open arms/total time in the open or enclosed arms)

and a high proportion of entries into the open arms (entries in the open arms/total

entries in the open or enclosed arms; Walf and Frye, 2007).

As the elevated plus maze is a test to check each animal’s level of anxiety and took

place in a different room, the animals were transported there in three groups one

day before the proper testing to get accustomed to the room and the transportation

process. After having spent fifteen minutes in the experimental room, they were

brought back to their home cages.

13 See exemplary protocol in the appendix, p. IV.

Page 22: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

15

For the task, each animal was placed on the central platform facing an enclosed

wall. Subsequently, the rats were given five minutes to explore the maze, as Mont-

gomery revealed in 1955 that during this time, the most robust avoidance takes

place. Their activity was again recorded with video cameras and observations were

written down in protocols. Analyzing the individual behavior, an entry into one arm

was scored, when all four paws of the animal were inside.

Figure 5. Setting and proportions of the elevated plus maze test14.

14 Based on http://en.wikipedia.org/w/index.php?title=File:ElevatedPlusMaze.svg& page=1, 27.10.2016.

Page 23: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

16

Novel-object recognition and object-place recognition test

Both memory tests were constructed in the same way: in a sample trial (encoding

phase) two identical objects were presented in a square arena composed of gray

PVC (80 x 80 cm wide, with 40 cm high walls). The animals were left to “actively

explore” the objects for two to five minutes. Their behavior (criteria: being within two

cm of an object, directing the nose towards the object and engaging in active ex-

ploratory behavior such as sniffing and licking, but no climbing) was scored with a

stopwatch. After having revealed fifteen seconds of exploratory behavior per object

after a minimum of two minutes or having passed the maximum of five minutes, the

rats were removed and put back into their retention boxes (35 x 35 cm wide, with 45

cm high walls). There they were allowed to sleep or kept awake by so-called “gentle

handling” (i.e., putting objects into the boxes, knocking at the walls, disturbing the

sleeping nests etc.) for an interval of 80 minutes (starting from the point of time,

when the last animal of the group had accomplished the sample trial). During this

period (also referred to as retention period or consolidation phase), the rats received

intracerebral infusions of corticosterone or vehicle. Therefore, they were connected

to a tubing system right after being removed from the test field. The infusion time

was either determined as the point of time at which the rat had fallen asleep in the

sleeping condition, or the meantime of the average sleep onset time of the animals

examined the days before in the awake condition. After 80 minutes the animals were

put back into the open field for the test trial (retrieval phase). Again, there were two

objects present in the arena, but this time their arrangement differed between the

two memory tests. In the hippocampus-independent “novel-object recognition test”

one of the objects was exchanged for a new one, while their position remained the

same as in the sample trial. In the hippocampus-dependent “object-place recogni-

tion test”, however, both objects remained the same, but the position of one of the

objects was changed compared to the sample trial (see Figure 6).

As opposed to the sample trial, all rats were allowed to explore the objects for three

minutes - irrespective of the total amount of time in which they were engaging in

“active behavior”. When all animals of the group had accomplished the second part

of the task, they were brought back to their home cages, the objects, the open field

and the retention boxes were cleaned with a 1:1 ethanol solution (a procedure which

was also done before the first task of the day and between each following task), the

Page 24: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

17

tubing was refilled with corticosterone or vehicle and the second group of the day

was brought in.

All the sample and test trials and the retention intervals, during which the animals

were left alone to sleep, were recorded by a video camera and analyzed offline using

the ANY-maze tracking system15. Furthermore, general observations made during

the experiments were written down in protocols16.

sample trial test trial

test trialsample trial

Novel-object

recognition

Object-place

recognition

Injection of

corticosterone

Injection of

vehicleSleep Sleep-

deprivation

retention

interval

retention

interval

consolidation

consolidation

Figure 6. Experimental setup17.

The objects being used differed in height (10 - 15 cm), base diameter (8 - 10 cm),

color and shape. They were composed of glass to enable cleaning with ethanol and

heavy enough to prevent being moved by the rats. For each task, different sets of

objects were applied and each one was trial-unique. Pilot studies ensured that the

animals could discriminate between the various objects and did not show any pref-

erence.

To insulate the rats from acoustic stimuli from outside the room during the tasks, the

experimental room was prepared with a noise generator producing masking noise.

15 ANY-Maze, Stoelting Europe, Dublin, Ireland. 16 See exemplary protocol in the appendix, p. V. 17 Based on Dere et al. (2007): The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neuroscience and Biobehavioral Reviews 31, 673-704.

Page 25: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

18

Additional to that, there were visual distal cues fixed to the walls (two rectangles at

the northern wall, two other rectangles at the eastern wall and a square at the

western wall), which stayed at the same place during the whole experiment and

could be used as orientational marks for the animals in the open field. This fact may

be especially important, as the direction in which the animals were placed into the

open field was changed for every task to make them allocentric and therefore hip-

pocampus-dependent (Langston and Wood, 2010).

Preparation, administration of substances and assessment of sleep

Each experimental day started with the preparation of corticosterone or vehicle and

the filling of the tubing.

For the solution, 5 mg of corticosterone18 were measured with a fine-scale, solved

in 16.6 ml of 0.9 % saline solution and mixed for two minutes with a vortex.

Calculation: As 1 g of powder contains 66.7 mg of corticosterone, 5 mg of

powder in 16.6 ml of 0.9 % saline solution corresponds to a ratio of 10 ng of

corticosterone in 0.5 µl of 0.9 % saline solution.

The amount of corticosterone used in the experiment (10 ng) is based on similar

studies using glucocorticoids for intrahippocampal infusions as well as infusions in

other comparable brain areas (Medina et al., 2007; Micheau et al., 1985; Lozano et

al., 2013). From the aforenamed works, the one of Medina et al. (2007) is the most

important. There they used doses from 5 to 60 ng (5, 10, 20, 30 and 60 ng), of which

a dose of 10 ng injected directly into the striatum caused the best results in the

inhibitory avoidance task. As I intended to examine the effects of glucocorticoids on

a small part of the brain, I chose to induce a strong supraphysiological increase of

the local corticosterone concentration rather than to mimic the effects of widespread

amounts seen under natural conditions.

After rinsing the tubing with 0.9 % saline solution, 10 ng of corticosterone in 0.5 µl

of saline or solely 0.5 µl of saline solution (0.9 %; “vehicle”) was sucked in manually,

leaving a bubble as space-holder and mark in between the substance to be applied

and the 0.9 % saline solution filling the rest of the tubing.

18 C174 SIGMA – Corticosterone: HBC complex, Sigma Aldrich, St. Louis, MO, USA; http://www.sigmaaldrich.com/catalog/product/sigma/C174?lang=de&region=DE, 27.10.2016.

Page 26: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

19

The substances were administered during the retention period, when the rats had

fallen asleep or after a given period of wakefulness (average sleep onset time by

the animals examined the days before). As rats do not always close their eyes when

falling asleep, the criterion to administer corticosterone or vehicle in the sleeping

condition was an absence of movement for at least 30 seconds (notably, when hav-

ing snuggled in a corner with the tail wrapped around the body). For bilateral sub-

stance administration, animals were connected to two infusion needles (30 gauge)

protruding 1.5 mm beyond the tip of the cannula, sticking on 1-m polyethylene tubing

(PE-20) and ending in two 10 µl microsyringes19 containing corticosterone or vehicle

right after being retracted from the open field. The syringes, in turn, were inserted in

an electric pump20 which administered 0.5 µl of infusion volume per hemisphere

over a period of 35 seconds21. To maximize diffusion and to prevent a backflow of

the drug into the cannulas, the syringes were removed 20 seconds after the appli-

cation and – together with the tubing – hung back over the boxes. To prevent them

from banging, they were wrapped in cellulose after checking their contents.

The total amount of time the rats slept during the retention period after the last ani-

mal was infused and the experimenters had left the room was scored by standard

visual procedures validated in previous studies (Inostroza et al., 2013; Pack et al.,

2007; Van Twyver et al., 1973). Comparisons with EEG-/EMG-based scoring pro-

vided an agreement of 92 %. Referring to the description given above, sleep was

assumed, when the animal displayed a specific sleep posture. However, instead of

waiting for the animals to be immobile for at least 30 seconds, it was scored already

after five seconds of motionlessness.

3.7 Brain removal and histological examination

After having run through all eight experiments or having lost their implants, animals

were killed and their brains were examined histologically. For the killing, they were

put under deep ketamine/xylazine anesthesia (initial dosage of 0.75 mg/kg ketamine

and 5 mg/kg xylazine injected intraperitoneally). Surgical preparation for perfusion

was conducted in the style of Gage et al. (2012) introducing a butterfly in the right

ventricle of the heart. Subsequent to using 30 ml of phosphate buffered saline (PBS:

0.1 M, pH = 7.3) mixed with 0.2 % of heparin, the animal was perfused with 200 ml

19 Hamilton, Reno, NV. 20 Sage Instruments, Boston, MA. 21 See “10.6 Photos of the experimental room” in the appendix, pp. VIII - X.

Page 27: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

20

of PBS mixed with 4 % of paraformaldehyde. After removal, the brain was immersed

for at least five days in a 4 % formaldehyde solution and kept in the refrigerator.

For histology, it was cut into coronal sections of 50 µm by a vibratome, stained with

toluidine blue and examined under a light microscope to determine the location of

the infusion needle tips.

Perfusions were conducted by Dr. Sonja Binder, histology was performed by Dr.

Marion Inostroza.

3.8 Data analysis

In this section, I describe the statistical tests employed for the critical evaluation of

the hypotheses based on the experimental data. To compare the performance of

each rat in the two memory tasks in the four conditions, a discrimination ratio is

introduced. It is based on the assumption that the rats prefer to explore the new or

displaced objects rather than the old stationary ones. Therefore, the total time of

exploration for each object in the test trial is converted into a discrimination ratio.

For the novel-object recognition test, the discrimination ratio 𝑑𝑛 is:

𝑑𝑛 = (time spent exploring the novel object – time spent exploring the familiar object)

/ (time spent exploring the novel object + time spent exploring the familiar object).

And for the object-place recognition test:

𝑑𝑜 = (time spent exploring the displaced object – time spent exploring the non-dis-

placed object) / (time spent exploring the displaced object + time spent exploring

the non-displaced object).

To leverage the statistical tests described in the following, I follow the common prac-

tical assumption that measurements are normally distributed and variances be-

tween groups are equal (homoscedasticity).

Testing for difference between conditions through variance analysis

For analyses of the discrimination ratio, a two-way ANOVA with the factors SLEEP

𝐴 and STRESS 𝐵 was applied. Both factors have two levels: sleep deprivation vs.

normal sleep and corticosterone infusion vs. vehicle infusion. For each combination

of factor levels, the experiment is repeated 𝑘 times, resulting in four distinct average

discrimination ratios 𝑑𝑎𝑏 , 𝑎 ∈ {1,2}, 𝑏 ∈ {1,2}. The null hypothesis to be tested by

Page 28: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

21

ANOVA is that the dependent variable 𝑑𝑟, resp. 𝑑𝑜, is not influenced by the two

factors. The hypotheses in particular are:

Factor A (influence of SLEEP):

- Null hypothesis H0 A : ∀ (p, q) αp = αq; with αp = effect of sleep on the memory

recall and αq = effect of sleep deprivation on the memory recall.

- Alternative hypothesis: H1A: ∃ (p, q) αp ≠ αq

→ A rejection of the null hypothesis would indicate an influence of SLEEP (i.e., the

conditions of sleep or sleep deprivation) on the memory recall.

Factor B (influence of STRESS):

- Null hypothesis: H0B: ∀ (p, q) βp = βq; with βp = effect of corticosterone on

the memory recall and βq = effect of vehicle on the memory recall.

- Alternative hypothesis: H1B: ∃ (p, q): βp ≠ βq

→ A rejection of the null hypothesis would indicate an influence of STRESS (i.e.,

the conditions of corticosterone or vehicle infusion) on the memory recall.

Interaction of the factors A and B (influence of SLEEP and STRESS):

- Null hypothesis: H0AB: ∀ (p, q, r, s) γpq = γrs; with γpq = effect of sleep and cor-

ticosterone on the memory recall γrs = effect of sleep deprivation and vehicle

on the memory recall.

- Alternative hypothesis: H1AB: ∃ (p, q, r, s): γpq ≠ γrs

→ A rejection of the null hypothesis would indicate an interaction between SLEEP

and STRESS on the memory recall.

The results of the two-way ANOVA follow an F-distribution. By comparing the F-

statistic 𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 of each factor and their combination with the quantile 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 of the

F-distribution at the respective significance level, the three null hypotheses can be

rejected if:

𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙22.

22 A comprehensive description of the two-way ANOVA test as employed in this work is given in Köhler et al., 2012.

Page 29: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

22

Testing for difference between specific conditions

Unfortunately, the two-way ANOVA test does have one major problem: positive re-

sults are difficult to interpret. A rejection of the null hypothesis means that there must

be at least one group among the k groups with a mean that differs significantly from

the other groups’ means at the chosen significance levels. However, the test gives

no indication, which group(s) this might be.

To solve this problem, different “a posteriori” or “post-hoc” multiple comparison tests

have been developed, of which the Student-Newman-Keuls test is the most powerful

because it applies subsequent testing. Its disadvantage is that neither the exact

value of probability of making a type I error nor the confidence intervals around the

differences between means can be computed (Abdi and Williams, 2010).

The Newman-Keuls test performs a pairwise comparison of group means 𝑑𝑔𝑟𝑜𝑢𝑝 to

determine, if they are different. Group means are ranked in ascending order and the

largest and smallest are compared for as long, as there are significant differences

between them. When the null hypothesis for a pair of means cannot be rejected –

i.e., the two means are not significantly different –, the test stops immediately and

for all other means of a smaller difference, the null hypothesis cannot be rejected

either.

The test for two specific means 𝑑𝑥 and 𝑑𝑦

is based on the studentized range distri-

bution and its 𝑞 statistic:

𝑞 =𝑑𝑥 −𝑑𝑦

√𝑀𝑆𝐸

2∗(

1

𝑛𝑥+

1

𝑛𝑦) ; with MSE = mean square error similar to ANOVA and nx, ny =

sample/group sizes.

The 𝑞 value is compared to the quantile 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 of the q-distribution. If 𝑞 > 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,

the null hypothesis is rejected and the two groups’ means are considered signifi-

cantly different.

The original Student-Newman-Keuls test is intended for the analysis of balanced

design groups. The above variant of this scheme is suited for unequal sample sizes

and implemented in the software program SPSS23.

23 http://de.wikipedia.org/wiki/Post-hoc-Test#Student-Newman-Keuls-Test, 27.10.2016.

Page 30: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

23

Testing that performance is different from chance

Finally, each group’s performance in the test trial is compared to the chance level.

For this purpose, the one-sample t-test for unpaired sample sizes24 is used. It com-

pares the experimentally collected mean of a group sample 𝑑𝑔𝑟𝑜𝑢𝑝 with the mean

over all groups ��.

The test statistic is calculated according to the following formula25:

𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = |𝑑𝑔𝑟𝑜𝑢𝑝 −��|

𝑠∗ √𝑛; with n = sample/group size, d = arithmetic mean over all

groups, s = empirical standard deviation, dgroup = group mean.

The value for tobserved is then compared to the corresponding quantile tcritical of the t-

distribution. The null hypothesis is rejected, if 𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 > 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, which means that

the group’s mean of the test performance is different from the population’s mean of

the test performance, i.e., above chance level.

The software packages Statistica26 and SPSS IBM27 are employed for the statistical

evaluation.

24 http://de.wikipedia.org/wiki/Einstichproben-t-Test, 27.10.2016. 25 adapted from Köhler et al., 2012. 26 StatSoft Inc, OK, USA. 27 Armonk, NY, USA.

Page 31: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

24

4 Results

4.1 Tasks

Elevated plus maze

All animals except number 11 (which was used for pilot surgery) were tested in the

elevated plus maze before the memory test.

With an average proportion of 45.0 ± 3.1 % of time spent in the open arms and 24.0

± 2.1 % of entrances into the open vs. closed arms, the rats showed normal levels

of anxiety compared to prior studies (Hogg, 1996). Also, there was no correlation

between the individual results of the elevated plus maze test and the performance

in any of the memory tests.

Sample trials

The duration and exploration time of the sample trials were comparable for both

tests in all four conditions (one sample t-test with a p value > 0.24 for all compari-

sons).

Retention intervals

Neither sleep onset nor sleep duration differed between the corticosterone- and ve-

hicle-injected sleeping conditions for either task (here, also the one sample t-test

was used). In the novel-object recognition task, sleep onset of the vehicle-injected

animals was 40.67 ± 4.99 min vs. 35.50 ± 3.87 min for the corticosterone-injected

animals (p = 0.42). The first group slept for 24.76 ± 3.12 min, while the latter slept

29.32 ± 3.53 min (p = 0.34). In the object-place recognition task, the vehicle-injected

animals fell asleep after 39.29 ± 6.19 min and the corticosterone-injected after 38.27

± 3.51 min (p = 0.89). Sleep duration in the first group was 28.13 ± 3.12 min vs.

24.12 ± 4.12 min in the second group (p = 0.50). The findings were comparable with

results from previous studies using similar procedures (Inostroza et al., 2013).

The infusion of corticosterone occurred on average at 38.80 ± 2.16 min in the sleep

conditions and 40.35 ± 1.33 min into the retention interval in the wake conditions (p

= 0.42).

Page 32: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

25

The animals mostly remained asleep during the infusion. In only six cases transient

arousal occurred during the infusion procedure (three rats in the object-place-recog-

nition/corticosterone condition; one rat in the object-place recognition/vehicle condi-

tion and two rats in the novel-object recognition/vehicle condition).

Test trials

4.1.4.1 Novel-object recognition

The novel-object recognition test was passed through for 39 times in total28. Two-

way ANOVA test showed that neither the factor SLEEP (F (1,35) = 0.61, p = 0.44;

sleep/sleep-deprivation) nor the factor STRESS (F (1,35) = 0.09, p = 0.77; corti-

costerone/vehicle) affected the animals’ performance in the novel-object recognition

test in a significant way and that there was no significant interaction between the

factors (F (1,35) = 0.08, p = 0.78; SLEEP x STRESS). Furthermore, according to

the one sample t-test, the performance of all groups was above chance level (every

p < 0.01) (see Figure 7).

4.1.4.2 Object-place recognition

The object-place recognition test was passed through for 33 times in total29. Two-

way ANOVA test also indicated no significant effect of the factor SLEEP (F (1,29) =

0.07, p = 0.80; sleep/sleep-deprivation) or the factor STRESS (F (1,29) = 0.01, p =

0.92; corticosterone/vehicle) on the animals’ performance in the object-place recog-

nition test, when considered reclusively. However, a significant interaction was re-

vealed (F (1,29) = 11.09, p = 0.002; SLEEP x STRESS). The post-hoc analysis of

the results by the Student-Newman-Keuls test related the four conditions as follows.

In the sleeping conditions, the administration of corticosterone led to impaired test

performances in the object-place recognition task compared to the infusion of

vehicle (t(15) = 2.32, p = 0.035; sleep + corticosterone/sleep + vehicle), with the

vehicle-infused animals showing significant memory for the task (p = 0.007), while

the performance of the corticosterone-infused animals did not differ from chance (p

= 0.10).

28 With the minimum number of animals in the vehicle-and-sleep-deprivation condition (7), followed by the vehicle-and-sleep (9) and the corticosterone-and-sleep condition (10). The maximum number of rats was found in the corticosterone-and-sleep-deprivation condition (13). 29 With the minimum number of animals in the vehicle-and-sleep condition (6), followed by the vehi-cle-and-sleep-deprivation (7) and the corticosterone-and-sleep-deprivation condition (9) and ending up with the corticosterone-and-sleep condition (11).

Page 33: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

26

Concerning the sleep-deprived conditions, the results were reversed. Here, the in-

fusion of corticosterone caused an increase in test performance in the object-place

recognition task compared to the infusion of vehicle (t(14) = 2.39, p = 0.032; sleep-

deprivation + corticosterone/sleep-deprivation + vehicle) with the vehicle-infused

animals not performing above chance (p = 0.18) and the corticosterone-infused an-

imals showing significant memory (p = 0.001).

In summary, the highest performances in the object-place-recognition test were

registered for the vehicle-and-sleep condition and the corticosterone-and-sleep-

deprivation condition, while the animals in the vehicle-and-sleep-deprivation condi-

tion and the corticosterone-and-sleep condition performed poorest (see Figure 7).

Figure 7. Results of the test trials30. The numbers associated with the bars indicate the number of ani-mals, which underwent the test. The star (*) marks the groups, that were significantly different from the other groups by Newman-Keuls posthoc test and t-test (each with p < 0.05). The (+) indicates that the test performances were above chance level (p < 0.05). The error bars indicate standard deviations. Sleep/Vehicle = infusion of vehicle during sleep; Wake/Depri = infusion of vehicle during sleep-depriva-tion; Sleep/Cort = infusion of corticosterone during sleep; Wake/Cort = infusion of corticosterone during sleep-deprivation.

30 Adapted from Kelemen, E., Bahrendt, M., Born, J., & Inostroza, M. (2014): Hippocampal corti-costerone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus, 24(5), 510-515.

Page 34: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

27

4.2 Histological examination

From the total number of 24 animals, 20 underwent histological examination.

The excluded ones were either used for the pilot-surgery (number 11) or lost their

implants before the first test trial (number 9, 13, 22).

Among the included animals, the position of two cannulas could not be determined

at all (number 10 and 2) and the position of two other animals’ cannulas was only

detectable on one side (number 14 and 19) because of problems with the perfusion

of the rats’ brains. The cannulas of the remaining sixteen animals all hit parts of the

hippocampus with the following distribution31.

Most of the cannulas lay in the lacunosum moleculare of the hippocampus (fourteen

cannulas ~ 41,2 %), followed by the equally frequented oriens layer and radiatum

layer (each with five cannulas ~14,7 %) and the likewise balanced pyramidal cell

layer and molecular layer of the dentate gyrus (each with four cannulas ~ 11,8 %).

Only two cannulas were found in the field CA1/CA3 of the hippocampus (~ 5,9 %).

The partition of the positions reflects the arrangement of the structures in the hippo-

campus32, with the lacunosum moleculare in its center and the other layers grouped

around.

Figure 8. Results of the histological examination.

31 See Figures 8 and 9 and “10.4 Histological results” in the appendix, p. VI. 32 See “10.5 Stereotaxic coordinates of the rat brain” in the appendix, p. VII.

lacunosum moleculare

oriens layer

radiatum layer

pyramidal cell layer

molecular layer of dentategyrus

field CA1/CA3

Page 35: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

28

Figure 9. Example photomicrograph illustrating the placement of the needle tips in one rat. The large arrows point to the cannula tips, the small ones to the infusion needle tips.

Page 36: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

29

5 Discussion

5.1 Key findings

When comparing the results of the test trials with the hypotheses I raised at the

beginning of the experiment, I find all my assumptions confirmed.

Hippocampus-dependent memory

- Administration of corticosterone: The animals in the sleep-deprived corticosterone-

condition performed significantly better than the sleeping ones, whose results, in

turn, did not differ from chance.

- Administration of vehicle: The animals in the sleeping vehicle-condition performed

significantly better than the sleep-deprived ones, whose results, in turn, did not differ

from chance.

- Combination of SLEEP and STRESS factor: The sleeping vehicle-infused animals

performed significantly better than the sleep-deprived corticosterone-infused ones.

The sleep-deprived corticosterone-infused animals, on the other hand, performed

significantly better than the sleep-deprived vehicle-infused ones. Regarding the

question, if the animals in the corticosterone and sleep-deprivation condition per-

formed better than the rats in the vehicle and sleep condition, I could neither deter-

mine a significant effect of the SLEEP nor of the STRESS factor alone. The same

goes for the question if the animals in the corticosterone and sleep condition per-

formed worse than the rats in the vehicle and sleep-deprivation condition. It is only

their interaction which caused significant differences.

Hippocampus-independent memory

Concerning the influence of glucocorticoids and sleep on the consolidation and re-

call of hippocampus-independent memory as tested in the “novel-object recognition

test”, I also observed neither a significant effect of the SLEEP nor the STRESS fac-

tor alone. However, in contrast to the “object-place recognition test”, there was no

significant interaction between the two factors and no significant difference between

the performances of the four conditions (Bussey et al., 2000; Mumby et al., 2002).

Nevertheless, all animals performed above chance level, indicating that the test is

based on a learning process which however does not rely on different corticosterone

levels or sleeping conditions.

Page 37: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

30

Where and when do glucocorticoids affect consolidation?

By applying these results to the question where and when glucocorticoids interfere

with the consolidation process of memories initially asked, the following theses can

now be stated:

1. The hippocampus with its many glucocorticoid receptors (Joëls, 2008;

McEwen et al., 1986; McEwen and Sapolsky, 1995; Reul and de Kloet, 1985)

plays a leading role in the consolidation of declarative memory (Carr et al.,

2011; Eichenbaum, 1993). This thesis is emphasized by the fact that we can

take direct influence in the consolidation process of hippocampus-dependent

memory via the administration of glucocorticoids through cannulas implanted

selectively into the dorsal hippocampus33. Furthermore, the administration of

vehicle - regardless of the test - does not influence the test performance when

considered alone, indicating that there has to be a selective binding site for

corticosterone in the hippocampus (Lupien and Lepage, 2001).

2. The consolidation of hippocampus-dependent memories differs dependent

upon vigilance-state34. This thesis is emphasized by the fact that the animals

in the vehicle-injected conditions that could sleep performed significantly bet-

ter than those which were sleep-deprived. At the same time, there was no

difference in the results of the test trials between the sleeping and the sleep-

deprived animals in the hippocampus-independent “novel-object recognition

test”.

3. The consolidation of hippocampus-dependent memories is modulated by

glucocorticoids. Similar to the conclusions to which Plihal and Born (1999),

Plihal et al. (1999) and Wilhelm et al. (2011) came, when studying the effects

of a systemic administration of glucocorticoids on the memory recall in

humans, I assess that the administration of corticosterone during

wakefulness enhances the consolidation and recall of hippocampus-

dependent memories, while its administration during sleep impairs it. How-

ever, the intrahippocampal infusion of corticosterone did not have any effect

on the animals’ performance in the hippocampus-independent “novel-object

33 The post-hoc histological examination shows that only three cannulas are not in the right position: one is not detectable at all and two are only detectable for one side. 34 While the reactivation of memories during wakefulness destabilizes them due to additional pro-cessing of external stimuli, they are stabilized by the reactivation during sleep (Debiec et al., 2002; Diekelmann et al., 2011; Gupta et al., 2010; Jezek et al., 2002; Nader and Hardt, 2009).

Page 38: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

31

recognition test”. Evidence suggests that the converse effects of the gluco-

corticoids may be due to the diminution of sharp wave and ripple events

usually accompanying hippocampal memory reactivation by high levels of

stress hormones (Weiss et al., 2008). Along with the wake-sleep-dependent

differences in the consolidation of hippocampus-dependent memories,

reduced memory reactivation during a waking period would help to diminish

the labilization of respective memory traces (thus making them less

vulnerable to non-specific interference), while reduced memory reactivation

during a sleeping period would help to diminish their stabilization (Wilhelm et

al., 2011). Concerning the initially mentioned “contextual binding” theory

(Sazma et al., 2018), another possible explanation for the vigilance-

dependent effects of corticosterone could be a change of context during

sleep. While the administration of stress hormones during a wake state

occurs in a similar context as the learning materials, the mental context

during sleep conditions is notably different. Therefore, a rise in stress

hormones during sleep strengthens the consolidation of events that occur in

the new context, but not for events that occurred before the context shift and

the resulting network reset. Sazma et al. deduce that a coordinated activity

of the hippocampus and HPA-axis is needed for glucocorticoids to enhance

the consolidation of memories.

5.2 Related work

Dose-dependent effects of glucocorticoids

Concerning the dose-dependency of the glucocorticoids’ effects as reported by

Okuda et al. (2004), Roozendaal et al. (2000; 2002) and Sandi and Rose (1994),

the present study was not able to differentiate between the absolute levels of the

drug in the corticosterone conditions (all animals received the same amount of

corticosterone). The four conditions of each test can, however, be arranged

according to the wake-sleep-dependent changes of the natural corticosterone

concentration (Penalva et al., 2003). Because rats are night-active animals, the

lowest levels of corticosterone are found at the beginning of the light period

(sleeping period); there is an abrupt rise in the corticosterone concentration towards

the end of the light period, reaching a peak level at the beginning of the dark period

(waking period).

Page 39: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

32

Regarding the influence of sleep deprivation on the natural corticosterone levels,

there are inconsistent reports. Zant et al. (2011) describe no increase in the corti-

costerone concentration during the first three hours of sleep deprivation, whereas

Penalva et al. (2003) depict a marked increase after one hour and Meerlo et al.

(2002) after six hours. Transferring these observations to the four test conditions

(and keeping in mind that the experiments were executed during the first half of the

animals’ night), the following order can be set up: the lowest concentration of

corticosterone is present in the sleeping vehicle condition, a medium concentration

can be found in the sleep-deprived vehicle- and the sleeping corticosterone

condition, while the sleep-deprived corticosterone condition must have had the

highest levels of corticosterone. The graphical account of the relationships produces

a U-shaped curve (see Figure 7) similar to the one Okuda et al. (2004) achieve in

their studies.

They used an “object-recognition task” comparable to the one used in this study, but

examined the effects of corticosterone and vehicle injected systemically three

minutes after the sample trial on the performance of a test trial one hour and 24

hours later in two different conditions: the animals in the first condition were not

habituated to the training apparatus, while the ones in the second condition got to

explore it twice a day for one week prior to the experiments. Thus, they expected

different levels of arousal to be present in the two conditions35. The results regarding

performance after a retention interval of one hour revealed the already mentioned

U-shaped curve for the condition without habituation to the training apparatus36,

while there was no difference in performance of the animals that were habituated to

the experimental setup before the tasks. Okuda et al. (2004) deduce that arousal is

necessary for the modulating effect of glucocorticoids on the consolidation of hippo-

campus-dependent memories.

Arousal-dependent effects of glucocorticoids

Okuda’s thesis is further supported by the observation that stress hormones do not

uniformly modulate the consolidation of all kinds of information, but rather selectively

affect the memory of emotionally laden information (de Quervain et al., 2009). The

35 That is, a high level in the condition without habituation to the experimental setup and a low level in the condition with habituation to the experimental setup. 36 The highest discrimination index was found in the vehicle-injected condition, decreasing indexes in the conditions that received infusions with 0.3 and 1.0 mg/kg of corticosterone and an increasing index in the condition which got 3.0 mg/kg of corticosterone.

Page 40: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

33

explanation for the forenamed phenomenon is given by neuroanatomical studies

analyzing the amygdala as the center of threat detection and triggered conditioned

and unconditioned fear responses. They revealed that emotionally arousing

experiences induce a release of norepinephrine in the basolateral amygdala (Galvez

et al., 1996; McIntyre et al., 2002; Quirarte et al., 1998), while lesions or

pharmacological inactivation of the amygdala (as through a blockade of β-

adrenoreceptors) prevent glucocorticoid effects on memory consolidation as well as

on memory recall (Quirarte et al., 1997; Roozendaal et al., 1999; Roozendaal et al.,

2002).

Connection between dose- und arousal-dependent effects of glucocor-

ticoids

But where is now the link between Okuda’s results concerning different levels of

arousal (i.e., different levels of norepinephrine) and the present results regarding

different wake-sleep-states?

Note, that I tried to avoid emotional arousal in the study design by habituating the

animals to the transport, the experimental room and its setup, to be able to investi-

gate the effect of corticosterone apart from influences by other hormones such as

norepinephrine.

Nevertheless, there are circadian changes in the natural norepinephrine concentra-

tion similar to the changes described for corticosterone which cannot be controlled

(Kalén et al., 1989). While there are high levels of norepinephrine present during

wakefulness, its concentration drops during sleep. Concordantly, Tononi et al.

(1994) found that wakefulness – whether spontaneous or induced – leads to an

increased expression of immediate early gene products such as FOS and NGFI-A

as markers of functional activity in noradrenergic neurons of the locus coeruleus.

Transferring this information to the present model, the lowest levels of norepineph-

rine would be present in the sleeping vehicle and the sleeping corticosterone condi-

tion, whereas the highest levels would occur in the sleep-deprived animals. These

natural changes of the norepinephrine concentration could explain the differences

in the modulating effect of corticosterone on the consolidation of hippocampus-

dependent memory despite the absence of artificially induced emotional arousal.

Because the concentration of norepinephrine is low during sleep (low emotional

arousal) and a high concentration (high emotional arousal) is needed for

Page 41: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

34

glucocorticoids to take influence on re-encoding processes (McReynolds et al.,

2010; Roozendaal et al., 2006a; Roozendaal et al., 2006b), the infusion of

corticosterone had no effect on the sleeping animals. In sleep-deprived animals,

where the level of norepinephrine is naturally higher, the performance in the object-

place recognition test was, however, enhanced.

This hypothesis is further backed up by the recently introduced “tagging” theorem:

it implies that high levels of cortisol and norepinephrine during the encoding process

promote the effective “tagging” of memories that had elicited responses in the hip-

pocampus and amygdala. By initiating molecular cascades that upscale the protein

synthesis they promote long-term plasticity and therefore serve as a “mnemonic fil-

ter” (de Jesús and Fishbein, 2018; Payne and Kensinger, 2018; Ritchey et al., 2017;

Sazma et al., 2018).

In the present study, I did not focus on different effects of corticosterone as a

function of a varying time of administration. While in the sleeping conditions the

infusions were given one minute after the animals had fallen asleep (at 38.80 ± 2.16

min), they were administered after 40.35 ± 1.33 min in the sleep-deprived conditions

(the individual times differ from 16 to 58 minutes depending on the mean time of

sleep onset of the animals examined the days before). Nevertheless, de Quervain’s

and his team’s discovery (1998, 2009) that the more time between the encoding

phase and the administration of corticosterone the worse the recall could also be

interpreted based on different levels of norepinephrine. Granted that running

through an experiment always causes some kind of arousal and that the latter itself

leads to an increase of the norepinephrine concentration in the body as well as in

the brain, one would expect the following constellation: high levels of norepinephrine

for the time directly after the experiment, decreasing during the interval where there

was no task to be attended. Glucocorticoids administered shortly after a sample trial

would, therefore, meet up with high concentrations of norepinephrine and enhance

the consolidation of hippocampus-dependent memory, whereas an infusion after

some time of stress-recovery would coincide with low levels of norepinephrine pre-

venting the glucocorticoids’ positive impact.

Page 42: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

35

5.3 Limitations

A limitation of the study certainly is the loss of animals with intact implants resulting

in unbalanced treatment conditions with small numbers. To verify the effects and to

improve the validity of the statistics, a rerun of the experiments with at least 24 ani-

mals as claimed by Ennaceur et al. (1997) should be conducted.

The aim to prevent the rats from losing their cannulas before completing the exper-

iment requires improvements to the implants, on the one hand, and to the apparatus

for the drug delivery, on the other hand. Suggestions are given in the following sub-

sections.

Improvements to the implants

Concerning the implants, I used four fixing screws (two above and two below the

holes for the cannulas) to provide additional attachment for the dental resin. An aug-

mentation of the number and/or of the size and a shift of their position to the corners

of the skull could perhaps enhance the adhesion. Furthermore, there may be other

kinds of fixing material (like cement for example) which stick better to the bone sur-

face than dental resin (which has a very smooth surface and therefore a low fric-

tional resistance) and are lighter. The latter feature would possibly avoid the decli-

nation of the animal’s head due to the “extra” weight of the implant which itself in-

creases the tension of the connected tubing. Finally, I observed liquorrhea with

some animals after the implantation of the cannulas indicating a puncture of the

ventricles. The fluid formed cavities between the skull’s surface and the lower side

of the implants in some animals causing further instability. The problem could be

solved by separately sealing the holes of the cannulas after the implantation or by

changing their positions to prevent penetration of the lateral cerebral ventricles.

Improvements to the apparatus for drug delivery

Regarding the apparatus for drug delivery, the weight of the tubing could also be

decreased similarly to the fixing material. I tried to achieve a reduction by stripping

the tubing off their metal coats during the experiment37. Unfortunately, some animals

started to nibble through the exposed polyethylene causing its contents to spread

uncontrollably in the boxes as well as in the brains. The best solution would hence

be tubing with reinforcements against gnawing. However, they should be lightweight

37 See photo 3 in “10.6 Photos of the experimental room” in the appendix, p. X.

Page 43: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

36

(i.e., titanium or carbon covers). Additionally, their suspension could be improved by

using a rotating disk to which the tubing leading to the cannulas is connected on the

lower side and the tubing leading to the syringes and the pump on the upper side.

This set-up would serve three purposes:

1. It would decrease the weight on the animals’ heads (as the tubing is fixed to

the platform).

2. It would prevent the entangling of the suspending cords (contributing to the

pull on the implants by shortening their total length).

3. It would reduce the transfer of the animals’ individual movements to the

neighboring rats via the clothesline and the adjacent cords (preventing them

from being stirred up in the sleep conditions).

Finally, the sleep environment could be improved by allocating a separate pump to

each retention box (avoiding the replugging of the syringes after the administration

of drugs for the following animals), by muting its operating noise and by operating it

by remote control.

Improvements to the study design

In addition to the technical improvements of an experimental rerun, also modifica-

tions to the future study design itself should be made. First, a fixed time for the

administration of corticosterone or vehicle in the sleep-deprived conditions should

be determined before starting with the tasks. That would ameliorate the

comparability of the drugs’ effects on the performances in these conditions and

contribute to the observation that the time of the infusion interferes with the

experimental outcome (the more time between the encoding phase and the

administration of glucocorticoids the worse the recall; de Quervain et al., 1998,

2009).

Then, it would be desirable to have a simultaneous recording of EEG- and EMG-

waves to be able to identify the exact time of sleep-onset and the percentage of the

different sleep states in the sleeping conditions. The forenamed combination would

also help to differentiate between relaxed wakefulness and sleep in the sleep-de-

prived animals. That, in turn, should reduce the liberation of additional stress

hormones due to external stimulation and thus account for stabilization of the inde-

pendent variables.

Page 44: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

37

The third improvement concerns the observation made by Sazma et al., 2018 that

post-encoding stress has different effects on memory consolidation depending on

whether the animals are habituated to the learning context prior to enconding, or

not. If they are habituated, post-encoding stress leads to an impairment of memory,

if not, the results of the animals do not differ from chance or are even improved. The

authors conclude a so called “contextual binding” meaning that the stressor itself

serves as a memorable event enhancing memories for other events that share the

same context. It would be interesting to see, if I were able to reproduce the results

of my study even in groups that were not habituated to the learning context and

which role sleep played (Sazma et al. suggest a “change of context” in sleep, leading

to opposing effects of stress hormones during wakefulness and sleep).

Furthermore, Oyanedel et al. showed in 2018 that the effects of sleep on the con-

solidation of episodic memory are stronger in a slightly different task paradigm, the

so called “what-where-which” test. It consists of two sample phases and one test

phase. In sample phase one, the animals are confronted with two different objects

in context A. In sample phase two, the same two objects with swapped locations are

presented in a new context B. For the test phase, two identical copies of one of the

objects from the sample phases are presented either in context A or B. At that time,

one of the objects is located at the same spot as during the sample phase, while the

other one is presented in a new location and context. Here, binding in episodic

memory is expressed by an enhanced exploration of the displaced object in the

novel context. The authors compared both test forms, the “what-where-when” test

which we used, too, and the “what-where-which” test with regard to different effects

of sleep on the consolidation of episodic memory. Their explanation for the better

results of the “what-where-which” task paradigm is that the latter neglects the tem-

poral aspect which seems to be covered separately from the visuospatial context

and therefore emerges later on in the test phase. A rerun of my study with the “what-

where-which” test could perhaps produce even clearer data.

Last but not least, recent studies (Sawangjit et al., 2018) suggest that common hip-

pocampal mechanisms enhance consolidation in both hippocampus-dependent and

-independent memory systems through reactivation of contextual features. The au-

thors deduce that all memories have to be encoded within a spatiotemporal context

- that is, as episodic memories. Therefore, the hippocampus-dependent episodic

memory system is designated a super-ordinate position to organize long-term

Page 45: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

38

memory in general and the classification into hippocampus-dependent and -inde-

pent memories is brought into question.

Improvements to the preparation of drugs

One last suggestion concerns the preparation of the drugs. Because corticosterone

is insoluble in water, I used a preformed water-soluble complex of corticosterone

and 2-hydroxypropyl-β-cyclodextrin38. However, I did not include the cyclodextrin in

the vehicle. Studies investigating the utility of cyclodextrin as a vehicle for the central

nervous administration of drugs (Yaksh et al., 1991) though describe no effect upon

the nociceptive or motor function after intrathecal infusion or on EEG and general

behavior after intracerebral infusion in concentrations as high as 20-40 % w/v (the

present product contains 7 % w/v of corticosterone in 2-hydroxypropyl-beta-

cyclodextrin according to the certificate of analysis39). However, they observe an

increase in the respective durations of the effects regarding the intrathecally deliv-

ered drugs. The authors speculate that cyclodextrin could alter the rate of appear-

ance of free drug and, thereby, its clearance. Furthermore, they hypothesize that

the agent may have reduced the rate at which the peptides were metabolized in the

spinal space (as the incorporated drug may be at least partially sheltered from en-

zymatic hydrolysis). Nevertheless, the effect cannot be reported for the intracerebral

administration of drugs – probably also because Yaksh et al. did not apply quantita-

tive testing like the hotplate and the tail flick test to the second group. Note, that the

intracerebrally delivered drugs did not have direct contact to the hippocampus

(Yaksh et al. used a ventricular cannula (24 ga SS TW) placed 0.5 mm lateral to the

bregma and 3 mm from the dura) and that the scientists did not utilize hormones but

capsaicin and opioids to be solved in cyclodextrin.

It would, therefore, be important to know whether the intracerebral administration of

cyclodextrin has an effect of its own on brain cells in general and hippocampal cells

in particular and whether the combination with corticosterone changes the clearance

of the hormone and thus enhances its effect compared to naturally circulating stress

hormones. I contacted the producer Sigma Aldrich for further information about the

38 C174 SIGMA – Corticosterone: HBC complex, Sigma Aldrich, St. Louis, MO, USA; http://www.sigmaaldrich.com/catalog/product/sigma/C174?lang=de&region=DE, 27.10.2016. 39 http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/COFA/C1/C174/C174-BULK _________041M4606V_.pdf, 27.10.2016.

Page 46: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

39

substances’ implications on rat brains but was instructed that they did not conduct

studies with their products.

Despite the disadvantages mentioned above, there are not many other possibilities

to dissolve corticosterone. Yaksh et al. compared the characteristics of cyclodextrin

as a vehicle to dimethylsulfoxide and ethanol. In contrast to cyclodextrin, the in-

trathecal administration of dimethylsulfoxide directly influences the cell function by

reducing the levels of substance P and calcitonin gene-related peptide as well as

the micturition reflex and the resting blood pressure. Moreover, dimethylsulfoxide

solutions are typically prone to precipitation of the drug when diluted with saline.

Ethanol, on the other hand, is known to impair memory both after acute and chronic

administration by stimulating hippocampal gamma-aminobutyric-acid (GABA)-A-re-

ceptors and thus inhibiting N-methyl-D-aspartate (NMDA)-receptor-dependent

synaptic long-term potentiation and long-term depression in the hippocampus (Dere

at al., 2007). While long-term potentiation seems to promote spatial learning

(Hölscher, 1999), long-term depression is suggested to be critical for one trial object

recognition (Kemp and Manahan-Vaughan, 2004). Although infusions of ethanol in

a dose of 2.4 g/kg after the sample trial did not impair one-trial object recognition in

C75BL/6J mice after a 24-h retention interval (Ryabinin et al., 2002), there are no

studies that examine the effect on performances after an 80 minutes retention

interval (when the ethanol concentration in the brain presumably is still above zero).

Additionally, ethanol does have a sedative effect which could mingle with the wake-

sleep-dependent effects of glucocorticoids I aim to examine.

Furthermore, there are suggestions to dissolve corticosterone in oil-based vehicles

(i.e., sesame oil). These also drop out for the present study design because their

adhesive power deters them from being delivered through cannulas with a diameter

of 0.5 mm. Additionally, there is no research at all concerning the effect of

intracerebrally administered oil neither on the function of the brain in general nor the

encoding and consolidation of hippocampus-dependent memories.

Finally, the C174 SIGMA – Corticosterone: HBC complex I used was prepared as

free-flowing powder in a package of 100 mg. I had to measure 5 mg manually each

day with a fine-scale which turned out to be somewhat tricky because of the pow-

der’s susceptibility to humidity (note, that the experiments were conducted during

midsummer) and the inaccuracy of the scale. Thus, I cannot exclude differences in

the concentration of the solution. The preparation process would have been made

Page 47: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

40

easier by employing a more accurate fine-scale or using readily packed-up doses

of 5 mg Corticosterone: HBC complex. Furthermore, I could have prepared a stock

solution for all corticosterone-days with the 100 mg package (I did not do so because

I did not know, if the corticosterone would precipitate or the solution would change

in other ways during the course of the experiment) or asked the manufacturer of the

powder to do so for me, too.

Remarks by reviewers

When my work was accepted for publication in the journal Hippocampus, reviewers

remarked that I did no control infusions of corticosterone in other brain regions and

though could not prove that the described effects were due to an interaction with

glucocorticoid receptors in the hippocampus itself. Furthermore, I neither measured

the local spreading of the substance in the brain nor the distribution via the blood

circulation. To be able to certify a single interaction of stress hormones in the hip-

pocampus it would, therefore, be necessary to identify and exclude other brain areas

also containing glucocorticoid receptors and to prevent the dispersion of the sub-

stance throughout the brain. The latter will probably be almost impossible, as there

is no way to isolate the hippocampus from the rest of the brain in a living organism.

A solution for the problem could, for example, be an adaption of the corticosterone

dose to a portion which still is sufficient to occupy enough local hippocampal recep-

tors to cause significant effects in memory testing, but does not produce any inter-

fering side-effects of adjacent brain structures. Additionally, one could try to connect

it to bigger or hippocampus-specific (i.e., antibodies) molecules or to block the glu-

cocorticoid receptors of the other brain areas. With regard to corticosterone levels

in the blood, one should bear in mind that the substance has to be absorbed into

the blood and to cross the blood-brain-barrier before entering the systemic blood

circulation in a quantifiable concentration. Andersen et al. (2006) describes in his

book the use of osmotic minipumps to enable a steady concentration of drugs in

specific brain areas and the use of autoradiography to mark the local spread of a

radiolabeled drug (Attwell et al., 2001; Steele and Morris, 1999).

Page 48: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

41

5.4 Future work

Sleep-stage dependent differences in memory consolidation

Apart from the improvements named above, it would be desirable to have a

simultaneous recording of EEG- and EMG during the retention interval, as evidence

suggests differences concerning the functions and the type of information being

encoded between the various sleep stages resulting in converse effects of circulat-

ing transmitters. The dual-process hypothesis promoted by Maquet (2001) accredits

facilitation of declarative, hippocampus-dependent memory to slow-wave sleep

(SWS) and facilitation of non-declarative, hippocampus-independent memory to

rapid-eye-movement (REM) sleep. The sequential hypothesis, on the other hand,

states that the optimum benefits of sleep on the consolidation of declarative and

non-declarative memory occurs, when SWS is followed by REM sleep (Gais et al.,

2000; Giuditta et al., 1995). Diekelmann and Born, who compared both theses in a

paper in 2010 and favored the second one, explained the process as follows. The

active system consolidation, which takes place during the SWS and integrates newly

encoded memories with pre-existing long-term memories inducing conformational

changes in the respective representations, is complemented by synaptic

consolidation stabilizing the transformed memories during REM sleep. Different

levels of neuronal activity accompany both processes. While there is a widespread

synchronization of neuronal activity induced by slow oscillations during SWS, REM

sleep is characterized by de-synchronization possibly reflecting a disengagement of

memory systems sheltering the synapses from external stimuli. The authors’ prefer-

ence is supported by more recent studies in which only the iterative interleaving of

non-REM and REM sleep is said to boost the formation of complex knowledge

framework and thus allow creative thought (Lewis et al., 2018). Lewis et al. connect

non-REM sleep with the encoding of new memories and the abstraction of rules (so

called “schema” learning), while REM sleep is associated with the replay of memo-

ries already encoded and the formation of novel, unexpected connections.

Consistent with the study design, performance of the animals in the hippocampus-

dependent object-place recognition test should increase with the total amount of

sleep, the percentage of SWS and the cycles of SWS followed by REM sleep. Dur-

ing the hippocampus-independent novel-object recognition test, however, it should

be enhanced with the percentage of REM sleep (in addition to the total amount of

sleep and the cycles of SWS followed by REM sleep). It would be interesting to see,

Page 49: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

42

whether a deprivation of SWS or REM sleep, respectively, affects the consolidation

of hippocampus-dependent or rather hippocampus-independent memories as

stated by the dual-process hypothesis, or if there is an improvement in performance

the more sleep-cycles the subjects complete as to be deduced from the sequential

hypothesis.

Effects of glucocorticoids on sleep-stage dependent EEG-rhythms

A concomitant EEG-recording could further illuminate the function of glucocorticoids

in the consolidation process of hippocampus-dependent memories. As already

indicated above, SWS and REM sleep are characterized by specific rhythms in brain

electric activity. SWS, for example, is dominated by so-called slow oscillations which

have their origin in the neocortex and regulate the dialogue between the cortex and

subcortical structures by inducing up- and down-states of neuronal activity (i.e.,

depolarization and hyperpolarization; Destexhe et al., 2007; Luczak et al., 2007;

Steriade, 2006). Thalamocortical spindles and hippocampal sharp-wave ripples typ-

ically occur with a specific temporal relationship to each other and the slow oscilla-

tion (Isomura et al., 2006; Mölle et al., 2002; Mölle et al., 2006; Sirota et al., 2003;

Steriade et al., 2006). The spindles themselves seem to prime cortical networks for

the long-term storage of memory representations (Diekelmann and Born, 2010),

while the sharp-wave ripples accompany the neuronal replay of the previously

encoded information (Buzsáki, 1989; Nádasdy et al., 1999; Peyrache et al., 2009;

Wilson and McNaughton, 1994).

During REM sleep, on the other hand, ponto-geniculo-occipital (PGO) waves origi-

nated in the pontine brain stem and theta activity predominating the hippocampus

are found (Diekelmann and Born, 2010). Their function is somewhat unclear – PGO-

waves have been associated with increased activity of plasticity-related immediate

early genes and brain-derived neurotrophic factor in the dorsal hippocampus (Datta,

2006), whereas theta oscillations similar to sharp-wave ripples seem to play a role

in neuronal replay (Louie and Wilson, 2001; Poe et al., 200040).

Evidence suggests that neuromodulators such as acetylcholine and glucocorticoids

act in parallel and serve as a switch between the sleep-stage-dependent processes

40 Hippocampal place cells encoding a familiar route are reactivated preferentially during the throughs of theta oscillations, while place cells encoding novel routes are reactivated during the peaks.

Page 50: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

43

of memory reactivation and redistribution to the neocortex (during SWS) and syn-

aptic consolidation (during REM sleep). While low concentrations during SWS are

suggested to enable a flow of information from the hippocampus to the neocortex

by reducing the tonic inhibition of hippocampal CA3 and CA1 feedback cells

(Hasselmo, 1999; Hasselmo and McGaughy, 2004; Lewis et al., 2018; Marshall and

Born, 2007), high concentrations during REM sleep might isolate the neocortical

synapses from further information which could interact with the synaptic

consolidation. One might speculate that an intrahippocampal infusion of

corticosterone during sleep would, therefore, cause a decrease of the hippocampal

sharp-wave ripples during SWS and an increase of hippocampal theta oscillations

during REM sleep. This could be investigated by administrating corticosterone sep-

arately during SWS and REM sleep.

Furthermore, it remains to be ascertained whether externally delivered corti-

costerone also affects neocortical rhythms such as spindle and slow oscillatory ac-

tivity. Previous studies provide evidence that the latter seem to play a significant

role in the consolidation of hippocampus-dependent memory (Oyanedel et al.,

2014), but there is a lack of knowledge whether glucocorticoids affect these rhythms

in any way. The proposal that high cholinergic activity during REM sleep might

promote synaptic consolidation by supporting plasticity-related immediate early

gene activity (Teber et al., 2004) and the maintenance of long-term potentiation

(Lopes Aguiar et al., 2008) suggests a possible interaction with the downscaling

function of slow oscillations as promoted by the synaptic homeostasis hypothesis.

By eliminating weak connections and preserving the relative strength of the remain-

ing connections, the signal-to-noise ratio is improved, and synapses can be reused

for future encoding (Dash et al., 2009; Vyazovskiy et al., 2008).

On the other hand, studies assert that although there is a global decrease in the

expression of markers indicating synaptic potentiation after a period of sleep, they

are increasingly expressed in specific regions at the same time (Ribeiro et al., 1999,

2004, 2007).

Additionally, behavioral experiments indicate a more significant benefit from sleep

for weakly than for strongly encoded memories (Drosopoulos et al., 2007; Kuriyama

et al., 2004). Diekelmann and Born (2010) therefore conclude that synaptic

downscaling is only one feature of sleep-dependent consolidation facilitating the en-

coding of new information through clearing saturated synapses for reuse. Further

Page 51: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

44

research has to be done to uncover the synaptic processes behind the encoding

and consolidation of memory.

Page 52: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

45

6 Summary

The present study examines the effect of sleep and stress on the consolidation of

episodic, i.e., hippocampus-dependent memory.

It originates from the bias that glucocorticoids, on the one hand, seem to consistently

enhance the encoding of memories, while their effects on memory consolidation

remain inconsistent41. Possible explanations involve vigilance42 and, in particular,

sleep-stage43 dependent effects. The critical preliminary study was conducted by

Wilhelm et al. in 2011. They were able to show facilitatory effects of glucocorticoids

on memory consolidation when administered during wakefulness and inhibitory

effects, when administered during sleep. However, they employed a human model

in which corticosterone was administered systemically, so they could neither deter-

mine the exact time at which the hormone crossed the blood-brain-barrier nor its

specific intracerebral concentration nor the region of its effect.

To determine where and when glucocorticoids would interfere with the memory con-

solidation, I used an animal model with rats that got intracerebral infusions of corti-

costerone via cannulas in their dorsal hippocampi44 at a predetermined point in time.

In a so-called “within-subject design”, the animals had to undergo two tasks (hippo-

campus-independent novel-object recognition task and hippocampus-dependent

object-place recognition task) under four conditions (infusion of corticosterone or

vehicle during an 80 minutes retention interval, while the rats were allowed to sleep

or were sleep-deprived).

I hypothesized that the performance of the rats in the hippocampus-dependent task

would differ dependent upon the substance and vigilance state, while there would

be no effects on the hippocampus-independent task. The results proved the hypoth-

esis as correct. While the retrieval of memories in the hippocampus-independent

novel-object recognition task was neither affected by the factor SLEEP (F (1,35) =

0.61, p = 0.44) nor by the factor STRESS (F (1,35) = 0.09, p = 0.77) nor by their

interaction (F (1,35) = 0.08, p = 0.78), a significant interaction in the hippocampus-

dependent object-place recognition task was found (F (1,29) = 11.09, p = 0.002).

41 de Quervain et al., 1998; de Quervain et al., 2009; Kirschbaum et al., 1996; Maheu et al., 2004; Rimmele et al., 2012; Wolf, 2009. 42 de Kloet et al., 1999; de Quervain et al., 2009; McIntyre et al., 2012; Schwabe et al., 2012. 43 Born and Wagner, 2004; Plihal and Born, 1999; Plihal et al., 1999. 44 As the hippocampus has abundant glucocorticoid receptors (Joёls, 2008) and hippocampus-de-pendent memories seem to be very sensitive to stress hormones (Lupien and Lepage, 2001).

Page 53: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

46

The administration of corticosterone during a sleeping interval impaired consolida-

tion compared to vehicle-infused condition (t (15) = 2.32, p = 0.035), whereas corti-

costerone enhanced performance, when applied during a sleep-deprived interval

compared to the vehicle-infused condition (t (14) = 2.39, p = 0.032).

In conclusion, this study supports the concept that (1.) the hippocampus with its

abundant glucocorticoid receptors (Carr et al., 2011; Eichenbaum 1993) plays a key

role in the consolidation of hippocampus-dependent memories; and (2.) the effects

of corticosterone differ vigilance- and stress-dependently (see Figure 10).

This work hence poses the new research question which mechanisms account for

the opposing effects of stress hormones on the consolidation of hippocampus-de-

pendent memories.

sample trial test trialretention

interval

consolidation

Direct interaction of

corticosterone with

glucocorticoid-receptors in

the hippocampus

Result

sleep-deprivation

+ corticosterone

= memory

sample trial test trialretention

interval

consolidation Result

sleep

+ corticosterone

= memory

Figure 10. Summary of the results.

Page 54: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

47

7 Summary in German

7.1 Einleitung

Während der letzten vierhundert Jahre wurde der Hippocampus in Verbindung mit

vielen unterschiedlichen Funktionen gebracht, u.a. sagte man ihm eine Mitwirkung

am Geruchssinn als Teil der Riechhirnformation sowie der Verarbeitung und des

Ausdrucks von Emotionen über den Papez’schen Neuronenkreis nach (Andersen

et al., 2006).

Heutzutage sehen Forscher die Hauptaufgabe des Hippocampus in der Abspeiche-

rung und Abfrage der Langzeitgedächtnisinhalte für Fakten und Ereignisse, auch

als deklaratives oder explizites Gedächtnis bezeichnet. Demgegenüber sind für das

nicht-deklarative oder implizite Gedächtnis (z.B. prozedurales Gedächtnis, Priming,

klassische Konditionierung und nicht-assoziatives Lernen) vor allem Strukturen wie

das Striatum, der Motor- oder Neokortex, das Kleinhirn, die Amygdala oder Re-

flexwege zuständig.

Das deklarative Gedächtnis wird wiederum in das episodische und das semantische

Gedächtnis aufgeteilt (Squire et al., 1984; Squire und Zola-Morgan, 1991; Squire,

1992; Squire, 2004; Andersen et al., 2006; siehe Abbildung 3). Der Begriff episo-

disch steht dabei für die Verknüpfung eines bestimmten Ereignisses (was) mit ei-

nem bestimmten Zeitpunkt (wann) und einem bestimmten Ort (wo).

Aber wie läuft der Prozess der Gedächtnisbildung nun ab? Es werden mindestens

drei verschieden Stufen, die zur Verankerung einer Information im Gehirn notwen-

dig sind, unterschieden. In der ersten Stufe, dem Enkodierungsprozess, werden

neue Daten in das Arbeitsgedächtnis (Kurzzeitgedächtnis) aufgenommen und ge-

speichert. In der zweiten Stufe, dem Konsolidierungsprozess, werden die neuen In-

formationen vom Kurz- in das Langzeitgedächtnis überführt. In der dritten Stufe,

dem Abrufungsprozess, werden die Daten dann aus dem Langzeitgedächtnis ab-

gerufen (Andersen et al., 2006; siehe Abbildung 3).

Hierbei auftretende synaptische Umbauprozesse werden unter dem Begriff “synap-

tische Plastizität” bzw. „zelluläre Plastizität“ zusammengefasst (Martin et al., 2000).

Die Verbindung zwischen Zellen kann hierbei gestärkt (long-term potentiation) oder

geschwächt (long-term depression) werden. Diese Vorgänge werden durch unter-

schiedliche Umweltfaktoren beeinflusst. Zwei davon sind Schlaf und Stress.

Page 55: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

48

Jüngste Forschungsergebnisse belegen, dass Schlaf die Konsolidierung und damit

den Abruf von Langzeitgedächtnisinhalten fördert. Dabei werden den verschiede-

nen Schlafstadien REM (rapid-eye-movement) und SWS (slow-wave sleep) unter-

schiedliche Funktionen nachgesagt. Während des REM-Schlafes soll die synapti-

sche Konsolidierung von Gedächtnisinhalten durch die Trennung von Langzeit- und

Kurzzeitgedächtnisspeichern gefördert werden. SWS wiederum unterstützt die Re-

aktivierung und Neuverteilung von Daten des Kurzzeitgedächtnisses auf das Lang-

zeitgedächtnis (Diekelmann und Born, 2010). Neuste Studien (Lewis et al., 2018)

belegen diese Theorie. In ihrem so genannten „BiOtA“-Modell (broader form of the

information overlap to abstract framework, zu deutsch: breitere Form der Informa-

tionsüberschneidung in einem abstrakten Netzwerk) assoziieren die Autoren mit

dem non-REM-Schlaf sogenanntes „Schemalernen“, d.h. Abstrahieren von Informa-

tionen aus vorher Gelerntem. Während des REM-Schlafes soll dann die Neuver-

knüpfung von Informationen stattfinden. Lewis et al. postulieren, dass nur durch das

Zusammenspiel beider Schlafformen die Bildung von komplexen Gedächtnisstruk-

turen und damit kreativem Denken ermöglicht wird.

Die Annahme, dass Stress ebenfalls die Gedächtnisbildung beeinflusst, stützt sich

auf mehrere Beobachtungen. Zunächst beschrieben verschiedene Wissenschaftler

unabhängig voneinander eine Vielzahl von Mineralo- und Glukokortikoidrezeptoren

in der Hippocampusformation der Ratte und des Menschen (Joëls, 2008; McEwen

et al., 1986; McEwen und Sapolsky, 1995; Reul und de Kloet, 1985). Bei oben ge-

nannten Stoffen handelt es sich um Hormone, die von der Nebenniere während

Stresssituationen ausgeschüttet werden. Später wurde in Verhaltensstudien ein

vom jeweiligen Stresshormonspiegel abhängiger Lerneffekt belegt, der in der soge-

nannten “Yerkes-Dodgsen-Regel” Einzug erhielt (Robert und John, 1908). Diese

besagt, dass niedrige bis normale Glukokortikoid-Spiegel die Lerneffekte durch För-

derung der Bildung von “long-term potentiation” unterstützen, hohe bis sehr hohe

Stresshormonspiegel jedoch das Gegenteil (“long-term depression”) bewirken (An-

dersen et al., 2006; Beispielstudien: Okuda et al., 2004; Roozendaal, 2000; Roo-

zendaal et al., 2002; Sandi und Rose, 1994).

Studien, die beide Umweltfaktoren (Schlaf und Stress) kombinieren, belegen Vi-

gilanz abhängige Effekte der Stresshormone auf die Gedächtniskonsolidierung:

Während die Applikation von Glukokortikoiden im Schlaf nach der Enkodierung den

Page 56: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

49

Abruf Hippocampus abhängiger Gedächtnisinhalte verschlechtert, scheint die Ap-

plikation während eines Wachintervalls nach der Enkodierung diesen zu verbessern

(Plihal und Born, 1999; Plihal et al., 1999; Wilhelm et al., 2011).

In der vorliegenden Studie wurde versucht, alle o.g. Fakten – die Vigilanz abhängi-

gen Unterschiede des Konsolidierungsprozesses und deren Modulation durch

Stresshormone – bei der Hippocampus abhängigen Gedächtniskonsolidierung zu

verknüpfen. Es galt herausfinden, an welchem Ort und zu welchem Zeitpunkt die

Glukokortikoide mit dem Konsolidierungsprozess der Gedächtnisinhalte interferie-

ren. Um systemische Nebeneffekte zu vermeiden, wurde hierfür ein Tiermodell ge-

nutzt, bei dem das Glukokortikoidderivat Corticosteron direkt über vorher dort ste-

reotaktisch implantierte Kanülen in den dorsalen Hippocampus injiziert wurde.

Basierend auf vorangegangen Studien der Arbeitsgruppe (Binder et al., 2012; Ino-

stroza et al., 2013; Wilhelm et al., 2011) lautete die Hypothese, dass Glukokor-

tikoide, die in einem Wachintervall nach der Enkodierung appliziert werden, die Kon-

solidierung Hippocampus abhängiger Gedächtnisinhalte verbessern würden, wäh-

rend die Gabe im Schlaf nach der Enkodierung diesen Prozess verschlechtern

würde.

Dazu wurde ein Studienmodell entwickelt, in dem der Effekt von Schlaf bzw. Wach-

heit nach der Applikation von Corticosteron bzw. Placebo auf Hippocampus abhän-

gige und –unabhängige Gedächtnisprozesse untersucht werden konnte. Zur Ver-

wendung kamen hierbei zwei unterschiedliche Gedächtnistests: der Hippocampus

abhängige “object-place recognition” Test (zu deutsch: Objekt-Ort-Erkennung) und

der Hippocampus unabhängige “novel-object recognition” Test (zu deutsch: Neue-

Objekt-Erkennung).

Beide Tests bestanden jeweils aus zwei Versuchsteilen, dem “sample trial” und dem

“test trial”. Ersterer war für beide Versuche gleich: Den Ratten wurden zwei identi-

sche Objekte (Glasgegenstände, die mit unterschiedlich gefärbten Materialien ge-

füllt waren und sich in Höhe, Durchmesser, Farbe und Form unterschieden; vorab

durchgeführte Testdurchläufe hatten ergeben, dass die Ratten keine Präferenz für

bestimmte Objekte aufbauten) auf zwei von neun unterschiedlichen Positionen ge-

zeigt. Diese durften die Tiere für jeweils zwei bis fünf Minuten untersuchen und wur-

den währenddessen mit der Videokamera gefilmt. Sobald sie sich 15 Sekunden mit

jedem der zwei Objekte beschäftigt (Kriterium: sich in Reichweite von 2 cm zum

Page 57: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

50

Objekt befinden, die Nase zum Objekt richten, sich aktiv mit dem Objekt beschäfti-

gen, z.B. schnüffeln, lecken, aber nicht klettern) und mindestens zwei Minuten oder

die vollen fünf Minuten im Experimentalfeld verbracht hatten, wurden die Ratten

vom Testfeld entfernt und in die Schlafboxen im Experimentalraum gesetzt.

Anschließend folgte ein 80-minütiges Behaltensintervall, in dem die Ratten entwe-

der schlafen durften oder durch sogenanntes “gentle handling” (zu deutsch: vorsich-

tiger Umgang; Einbringen von Objekten in die Schlafboxen, Klopfen an die Wände

der Boxen, Durcheinanderbringung der Schlafnester) wach gehalten wurden und 10

ng Corticosteron in 0.5 µl 0.9 %iger Kochsalzlösung oder nur 0.5 µl 0.9%ige Koch-

salzlösung (Placebo) nach einem definierten Zeitabschnitt per Pumpe appliziert be-

kamen. Auch dieser Schritt wurde mit der Kamera festgehalten, ebenso wie der “test

trial”, der sich zwischen den beiden Versuchen unterschied.

Während in dem Hippocampus unabhängigen “novel-object recognition” Test einer

der beiden Gegenstände gegen einen neuen ausgetauscht wurde, ohne dass sich

deren Positionen änderte, wurde im Hippocampus abhängigen “object-place recog-

nition” Test die Position eines der beiden Gegenstände verändert, ohne dass einer

der beiden Gegenstände ausgetauscht wurde. Die Ratten durften diesmal unabhän-

gig von ihrem Verhalten den Gegenständen gegenüber drei Minuten das Testfeld

erkunden. Zur Verifizierung, ob die vor der Durchführung der Versuche implantier-

ten Kanülen auch wirklich im dorsalen Hippocampus lagen, wurden die Gehirne der

Versuchstiere anschließend fixiert und histologisch untersucht.

Meine Hypothesen bezüglich der Ergebnisse der Versuchsreihen lauteten wie folgt:

Im Hippocampus unabhängigen “novel-object recognition” Test wird weder eine Be-

einflussung der Performanz durch den Vigilanz-, noch durch den Susbtanzfaktor

allein, noch durch deren Kombination erwartet. Alle Tiere sollten unter allen Kondi-

tionen in etwa gleich abschneiden. Im Hippocampus abhängigen “object-place

recognition” Test wird hingegen eine Staffelung der Gruppen nach ihrem Testab-

schneiden wie folgt angenommen: Wenn die Ratten während des Schlafintervalls

Placebo erhalten, sollten sie besser abschneiden, als wenn sie während des

Wachintervalls Placebo oder während des Schlafintervalls Corticosteron erhalten.

Andererseits sollten die Tiere, die während des Wachintervalls Corticosteron erhal-

ten, besser abschneiden, als die, die während des Wachintervalls Placebo erhalten.

Page 58: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

51

7.2 Material und Methoden

Für die Experimente wurden 24 männliche Ratten der Rasse “Long Evans” (Janvier,

Le Genest-Saint-Isle, Frankreich, 250-300 g) verwendet, deren Anzahl auf den Er-

gebnissen früherer Studien beruhte und das Minimum der benötigten Tiere zur Ge-

währleistung signifikanter Testergebnisse darstellte (Binder et al., 2012; Inostroza

et al., 2013). Die Studie wurde vorab vom Ministerium für Natur und Umwelt des

Landes Schleswig-Holstein gebilligt45 und im Einklang mit den NIH Richtlinien und

der Direktive 86/609/ECC des europäischen Gerichtshofs durchgeführt.

Nach Ankunft der Ratten im Labor wurden sie zunächst für fünf Tage ohne Men-

schenkontakt (außer Auffüllen der Futtertröge und Wasserflaschen) in ihren Schlaf-

boxen im Schlafsaal belassen, um sich an die Umgebung zu gewöhnen. In eben

diesem Raum wurde vorab eine Zeitschaltuhr installiert, die jeweils um 6 Uhr mor-

gens das Licht an- und um 18 Uhr abends das Licht ausschaltete. Die Experimente

wurden später zwischen 8 und 13 Uhr durchgeführt, um ein Maximum an SWS und

ein Minimum an Stresshormonen zu garantieren.

Im Anschluss an die räumliche Eingewöhnungsphase fand eine menschliche Ein-

gewöhnungsphase an die Experimentatoren, das sogenannte “handling”, statt. Da-

für wurden die Ratten jeweils zweimal am Tag für vier Minuten zunächst nur gestrei-

chelt, später auch hochgehoben und in die Position gebracht, die für das Einstecken

der Kanülen zur Applikation des Corticosteron eingenommen werden musste. Das

Verhalten jedes einzelnen Tieres wurde dabei in Protokollen festgehalten46.

Auf das “handling” folgte die Operation der Ratten. Dabei wurde jedem Tier stere-

otaktisch in Narkose eine Kanüle in die dorsalen Hippocampi implantiert und an-

schließend mit Zusatzschrauben in der Schädeldecke und Zahnzement auf dem

Kopf fixiert. Mit einem Versuchstier wurde vorab einen Probelauf inklusive histolo-

gischer Aufbereitung des Gehirnes und Verifizierung der richtigen Positionierung

der Kanülen durchgeführt.

Jedes Tier durfte sich nach der Operation mindestens eine Woche lang erholen,

bevor es sich zusammen mit den anderen dem “elevated plus maze”-Test unterzie-

hen musste. Dieses Verfahren dient der Feststellung der Ängstlichkeit eines Ver-

suchstieres. Dabei wird jede Ratte in die Mitte eines kreuzförmigen Labyrinths mit

45 Siehe Anhang, S. XII. 46 Siehe Anhang, S. II.

Page 59: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

52

jeweils vier gleich langen Armen, von denen jeweils zwei geschlossen und zwei

geöffnet sind, gesetzt und darf dieses für fünf Minuten erkunden. Mittels Videoana-

lyse wird anschließend die Länge der Zeit, die das Tier in den geschlossenen und

den offenen Armen verbringt, bestimmt. Die jeweilige Gesamtverweildauer im ge-

schlossenen und offenen System gibt später Aufschluss darüber, ob es sich bei

dem Versuchstier eher um ein Ängstliches oder ein Neugieriges handelt und ermög-

licht je nach Studiendesign ein mögliches Ausschließen von ungeeigneten Tieren

vor dem eigentlichen Experiment. Um die Testergebnisse nicht zusätzlich durch die

Ausschüttung von Stresshormonen während des Transportprozesses und des Um-

gebungswechsels zu verfälschen, wurden alle Experimentaltiere bereits einen Tag

vorher in den Untersuchungsraum gebracht und dort für 15 Minuten allein gelassen.

Als letzten Schritt vor der eigentlichen Durchführung der Studie fand die Gewöh-

nung der Ratten an den Experimentalraum, die sogenannte “open field habituation”

statt. Dafür wurde jeweils drei Gruppen von vier Tieren pro Tag die Möglichkeit ge-

geben, die Schlafboxen im Experimentalraum und das Experimentalfeld kennen zu

lernen. Die Zeit, die die Ratten auf dem Experimentalfeld verbringen durften, orien-

tierte sich dabei an der Länge der später während der eigentlichen Studie gewählten

Zeitabschnitte (jeweils fünf und drei Minuten entsprechend den Zeiten des “sample

trial” und “test trail”). Im Unterschied zu den Experimenten wurden den Tieren zu

diesem Zeitpunkt jedoch keine Objekte präsentiert und sie bekamen auch keine

Substanzen injiziert47. Zur Vorbeugung der Entwicklung von Erkundungsmustern,

die eine potentielle Objektpräferenz begünstigen könnten, wurden die Ratten genau

wie in der eigentlichen Studie von drei unterschiedlichen Seiten auf das Experimen-

talfeld gesetzt. Des Weiteren wurde der Raum mittels eines Geräuschgenerators

von externen akustischen Reizen abgeschirmt und Orientierungshilfen an den Wän-

den des Experimentalraums befestigt.

Die Experimentaltage starteten jeweils mit der Vorbereitung der Infusionslösung.

Dafür wurden 5 mg Corticosteron mit einer Feinwaage abgewogen und mit 16.6 ml

0.9 %iger Kochsalzlösung in einem Vortex gemischt. Anschließend wurden die

Schläuche, die später mit den Kanülen der Ratten verbunden werden sollten, mit

0.9 %iger Kochsalzlösung gespült und mit einer kleinen Luftblase am zum Ver-

suchstier offenen Ende versehen. Hinter die Luftblase wurde dann 0.5 µl 0.9 %iger

Kochsalzlösung mit 10 ng Corticosteron oder pur (Placebo) eingesaugt und die

47 Siehe Anhang, S. IV.

Page 60: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

53

Schläuche bis zur Applikation beiseite gehängt48. Die Infusion von Corticosteron

bzw. Placebo fand – wie bereits oben beschrieben – während des 80-minütigen

Behaltensintervalls zwischen dem “sample trial” und dem “test trial” statt. In der

Schlafbedingung wurde dafür der Zeitpunkt gewählt, in der das jeweilige Tier für

mindestens 30 Sekunden keine Aktivität gezeigt hatte. Um die Ratten nicht durch

das Einstecken der Schläuche wieder zu wecken, wurden die Tiere direkt nach dem

“sample trial” bereits mit der Pumpe verbunden und 20 Sekunden nach der Infusion

wieder abgekabelt. Bei der Schlafentzugsbedingung wurde als Applikationszeit-

punkt jeweils der Mittelwert aus den Zeiten, die die Ratten der Vortage bis zum Ein-

schlafen in der Experimentalbox gebraucht hatten, verwendet. Das Verhalten der

Ratten auf dem Testfeld und in den Experimentalboxen wurde wieder per Video für

die spätere Auswertung aufgezeichnet und handschriftlich protokolliert49.

Nachdem alle Tiere alle Experimente durchlaufen hatten (oder vorzeitig durch Dis-

konnektion der Kanülen ausgeschieden waren), fand die Vorbereitung für die histo-

logische Aufarbeitung statt. Dazu wurden die Ratten in Narkose gelegt und mittels

Formalininfusion in das schlagende Herz eine Fixierung aller Organe – inklusive des

Gehirns – herbeigeführt (Gage et al., 2012). Letzteres wurde für die Untersuchung

in 4 %iger Formalinlösung im Kühlschrank aufbewahrt und anschließend mittels

Vibratom in 50 µm große Scheiben geschnitten, mit Toluidine-Blau gefärbt und unter

dem Lichtmikroskop untersucht.

7.3 Daten-Analyse

Für die Datenanalyse wurde ein Vergleichswert (zu englisch: discrimination ratio)

entwickelt, mit dem das Abschneiden der einzelnen Ratten in den unterschiedlichen

Settings miteinander verglichen werden konnte. Dieser basierte auf der Annahme,

dass die Versuchstiere das neue bzw. verschobene Objekt jeweils bevorzugt be-

handeln würden und berechnet sich für die zwei Tests wie folgt:

“Novel-object recognition” Test:

Discrimination ratio = (Explorationszeit für das unbekannte Objekt – Explora-

tionszeit für das bekannte Objekt) / (Explorationszeit für das unbekannte Ob-

jekt + Explorationszeit für das bekannte Objekt).

48 Zur Durchführung der Experimente siehe Einleitung und Anhang, S. V. 49 Siehe Anhang, S. V.

Page 61: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

54

“Object-place recognition” Test:

Discrimination ratio = (Explorationszeit für das verschobene Objekt – Explo-

rationszeit für das stationäre Objekt) / (Explorationszeit für das verschobene

Objekt + Explorationszeit für das stationäre Objekt).

Die Werte der “discrimination ratio” wurden dann für eine zweifache Varianzanalyse

(zu englisch: two-way ANOVA - ANalysis Of VAriance) verwendet. Diese vergleicht

die Effekte zweier unabhängiger Faktoren (SCHLAF und STRESS) auf eine abhän-

gige Variable (Testperformanz). Dabei wird sowohl der Einfluss jedes Faktors für

sich allein genommen, als auch deren Wechselwirkung auf das Outcome der Tests

berechnet.

Bei der Interpretation der Zahlen ist allerdings Vorsicht geboten, denn der Test kann

bei positive Ergebnissen (also einer Ablehnung der Nullhypothese) nicht unterschei-

den, welche Untergruppe im Einzelnen dazu geführt hat. Um dieses Problem zu

lösen, wurden verschiedene “a posteriori”- oder “posthoc”-Tests erfunden, von de-

nen der Student-Newman-Keuls-Test wohl der bekannteste ist. In Letzterem wer-

den die Mittelwerte jeder Testgruppe paarweise miteinander verglichen und dann

sequentiell der vom Namensgeber entwickelten “Studentischen Variationsbreite q”

gegenüber gestellt.

Schließlich wurde der Einstichproben t-Test verwendet, um feststellen zu können,

ob es sich bei einer Testperformanz einer der Untergruppen um ein zufälliges Er-

eignis handelt. Der Test prüft dabei anhand des Mittelwerts einer Stichprobe, ob der

Mittelwert einer Grundgesamtheit sich von einem vorgegebenen Sollwert unter-

scheidet.

7.4 Ergebnisteil

“elevated-plus-maze” Test

Dieser Test wurde von allen Ratten bis auf diejenige, die für den Testlauf des Ope-

rationsverfahrens verwendet wurde, durchlaufen. Die Ergebnisse belegten für jedes

Tier ein durchschnittliches Level an Ängstlichkeit, sodass keines von den Experi-

menten ausgeschlossen werden musste (45.0 ± 3.1 % Aufenthalt in den offenen

Armen und 24.0 ± 2.1 % Betreten der offenen Arme; Hogg, 1996). Des Weiteren

schien kein Zusammenhang zwischen dem individuellen Abschneiden im “elevated-

Page 62: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

55

plus-maze” Test und der späteren Performanz einer jeden Ratte im Gedächtnistests

zu bestehen (die Bonferroni-Methode ergab keine signifikanten Unterschiede).

Sample trial

Die Dauer und Erkundungszeit der “sample trials” war für beide Tests in allen vier

Bedingungen in etwa vergleichbar (p-Wert mittels Einstichproben t-Test > 0.24 für

alle Vergleiche).

Behaltensintervall

Bezüglich des Einschlafzeitpunkts und der Schlafdauer in den einzelnen Bedingun-

gen der zwei Gedächtnistests bestanden ebenfalls keine nennenswerten Unter-

schiede: Im “novel-object recognition” Test schliefen die Tiere in der Placebo-Be-

dingung nach 40.67 ± 4.99 min ein, die mit Corticosteron Versehenen nach 35.50 ±

3,87 min (p-Wert mittels Einstichproben t-Test = 0.42). Erstere Gruppe schlief an-

schließend insgesamt für 24.76 ± 3.12 min, letztere für 29.32 ± 3,53 min (p = 0.34).

Im “object-place recognition” Test verhielt es sich ähnlich: Die mit Placebo versehe-

nen Ratten schliefen nach 39.29 ± 6.19 min ein, die mit Corticosteron versehenen

nach 38.27 ± 4.12 min (p = 0.89). In der Placebo-Bedingung schliefen die Tiere

dann für 28.13 ± 3.12 min, in der Corticosteron-Bedingung für 24.12 ± 4.12 min (p

= 0.5). Diese Ergebnisse sind vergleichbar mit Werten aus vorangegangenen Stu-

dien (Inostroza et al., 2013). Der Zeitpunkt der Corticosteron-Infusion in den Bedin-

gungen Wachheit und Schlaf unterschied sich auch nicht signifikant voneinander:

Während die Applikation in der Schlaf-Bedingung nach 38.80 ± 2.16 min stattfand,

lag sie in der Wach-Bedingung bei 40.35 ± 1.33 min (p = 0.42).

Test trial

7.4.4.1 “novel-object recognition” Test

Der “novel-object recognition” Test wurde insgesamt 39-mal durchlaufen50. Die Aus-

wertung des zweifaktoriellen ANOVA-Tests ergab dabei weder eine signifikante Be-

einflussung der Testperformanz durch den Faktor SCHLAF (F (1,35) = 0.61, p =

0.44; Schlaf/Wachheit), noch durch den Faktor STRESS (F (1,35) = 0.09, p = 0.77;

Corticosteron/Placebo). Darüber hinaus konnte keine signifikante Interaktion zwi-

50 Davon 7-mal in der Kombination Placebo und Wachheit, 9-mal in der Kombination Placebo und Schlaf, 10-mal in der Kombination Corticosteron und Schlaf und 13-mal in der Kombination Corti-costeron und Wachheit.

Page 63: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

56

schen den vier Bedingungen (F (1,35) = 0.08, p = 0.78; SCHLAF x STRESS) fest-

gestellt werden. Der Einstichproben-t-Test belegte, dass alle Versuchstiere in den

unterschiedlichen Kombinationen besser als zufällig abschnitten (alle p > 0.01;

siehe auch Abbildung 7).

7.4.4.2 “object-place recognition” Test

Der “object-place recognition” Test wurde insgesamt 33-mal durchlaufen51. Genau

wie im “novel-object recognition” Test belegte die Auswertung des zweifaktoriellen

ANOVA-Tests weder eine signifikante Beeinflussung der Testperformanz durch den

Faktor SCHLAF (F (1,29) = 0.07, p = 0.80; Schlaf/Wachheit), noch durch den Faktor

STRESS (F (1,29) = 0.01, p = 0.92; Corticosteron/Placebo). Im Gegensatz zum Hip-

pocampus unabhängigen Test bestand hier jedoch eine signifikante Interaktion zwi-

schen den vier Bedingungen (F (1,29) = 11.09, p = 0.002; SCHLAF x STRESS).

Die Post-hoc-Analyse der Testergebnisse mittels des Student-Newman-Keuls-

Tests staffelte das Testabschneiden in den unterschiedlichen Konditionen wie folgt:

In den Schlaf-Bedingungen führte die Applikation von Corticosteron zu einer Ver-

schlechterung der Testergebnisse verglichen mit der Infusion von Placebo (t (15) =

2.32, p = 0.035; Schlaf + Corticosteron/Schlaf + Placebo). Dabei schien die Appli-

kation von Placebo während des Schlafs die Gedächtnisbildung insgesamt verbes-

sert zu haben (p = 0.007), während die mit Corticosteron während des Schlafs be-

handelten Ratten ein zufälliges Testabschneiden zeigten (p = 0.1). In den Wach-

Bedingungen lagen die Ergebnisse hingegen genau anders herum: Die Applikation

von Corticosteron schien das Testabschneiden verglichen mit der Infusion von Pla-

cebo insgesamt zu verbessern (t (14) = 2.39, p = 0.032; Wachheit + Corticoste-

ron/Wachheit + Placebo).

Dabei wiesen die mit Corticosteron behandelten Ratten eine deutlich verbesserte

Gedächtnisleistung (p = 0.001) auf, als die mit Placebo behandelten, deren Tester-

gebnisse sich nicht von zufälligen unterschieden (p = 0.018). Zusammenfassend

schnitten damit die Kombinationen Placebo und Schlaf sowie Corticosteron und

Wachheit deutlich besser im Hippocampus abhängigen “object-place recognition”

Test ab, als die Kombinationen Placebo und Wachheit und Corticosteron und Schlaf

(siehe auch Abbildung 7).

51 Davon 6-mal in der Kombination Placebo und Schlaf, 7-mal in der Kombination Placebo und Wach-heit, 9-mal in der Kombination Corticosteron und Wachheit und 11-mal in der Kombination Corti-costeron und Schlaf.

Page 64: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

57

Histologische Untersuchung

Von den insgesamt 24 verwendeten Tieren wurden 20 einer histologischen Unter-

suchung unterzogen. Zu den ausgeschlossenen Ratten gehörte die Testratte für

das Operationsverfahren sowie drei weitere Tiere, die ihre Implantate vor Durchfüh-

rung des ersten Testlaufs verloren hatten. Bei den eingeschlossenen Ratten konnte

bei zwei Tieren gar keine Position der Kanülen bestimmt werden, bei zwei weiteren

Ratten war nur die Position auf einer der beiden Seiten zu detektieren. Die Positio-

nen der Implantate der übrigen 16 Versuchstiere verteilten sich wie folgt52: Die

Mehrheit der Implantate (14 = 41.2 %) befand sich im Stratum lacunosum und

moleculare, gefolgt vom Stratum oriens und Stratum radiatum (je 5 = 14.7 %), dem

Stratum pyramidale und Stratum moleculare des Gyrus dentatus (je 4 = 11.8 %) und

schließlich der CA1/CA3-Region des Hippocampus (2 = 5.9 %). Dabei entspricht

das Verteilungsmuster der Kanülen dem anatomischen Aufbau des Hippocampus

mit dem Stratum lacunosum und moleculare in der Mitte.

7.5 Diskussion

Vergleichen wir die in der Einleitung von mir aufgestellten Hypothesen mit den o.g.

Testergebnissen, so finden wir all meine Annahmen durch die Experimente bestä-

tigt: Im Hippocampus unabhängigen “novel-object recognition” Test schnitten alle

Tiere unter allen Bedingungen gleich ab, es war weder eine Beeinflussung der Er-

gebnisse durch den Faktor SCHLAF, noch durch den Faktor STRESS, noch durch

deren Kombination zu beobachten. Im Gegensatz dazu bestand im Hippocampus

abhängigen “object-place recognition” Test eine von der Kombination der Bedingun-

gen abhängige Leistung: Während die Kombinationen aus Placebo und Wachheit

sowie Corticosteron und Schlaf jeweils Ergebnisse lieferten, die sich nicht von zu-

fälligen Testwerten unterschieden, verbesserte die Kombination aus Placebo und

Schlaf und Corticosteron und Wachheit die Testperformanz signifikant (s.o.).

Wenden wir uns der anfangs gestellten Frage, wo und wann Stresshormone mit

dem Konsolidierungsprozess Hippocampus abhängiger Gedächtnisinhalte interfe-

rieren, zu, können eingangs genannte Thesen ebenfalls bestätigt werden: Durch die

direkte Applikation und selektive Interaktion von Glukokortikoiden mit den dortigen

Mineralo- und Glukokortikoidrezeptoren (Joëls, 2008; McEwen et al., 1986; McE-

52 Siehe auch Abbildungen 8 und 9 und Anhang, S. VI und S. VII.

Page 65: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

58

wen and Sapolsky, 1995; Reul and de Kloet, 1985) ist die Führungsrolle des Hippo-

campus in der Verarbeitung deklarativer Gedächtnisinhalte (Carr et al., 2011; Ei-

chenbaum, 1993) sowie die Existenz der Stresshormonbindungsstellen bewiesen.

Wie um das zu unterstreichen, hatte die Infusion von Placebo weder auf die Konso-

lidierung von Hippocampus abhängigem noch von Hippocampus unabhängigem

Gedächtnis einen Effekt (Lupien und Lepage, 2001).

Bezüglich der Vigilanz abhängigen Unterschiede in der Verarbeitung von Hippo-

campus abhängigen Gedächtnisinhalten belegen die Ergebnisse gleichsam die be-

reits in der Fachwelt geäußerte Annahme, dass die Reaktivierung von Informatio-

nen während eines aktiven Wachintervalls deren Speicherung im Langzeitgedächt-

nis stört, während die Reaktivierung im Schlaf sie fördert (Debiec et al., 2002;

Diekelmann et al., 2011; Gupta et al., 2010; Jezek et al., 2002; Nader and Hardt,

2009). Als Beispiel hierfür dient das unterschiedliche Abschneiden der mit Placebo

behandelten Ratten im Hippocampus abhängigen “oject-place recognition” Test:

Die Tiere, die zwischen “sample trial“ und “test trial” schlafen durften, schnitten deut-

lich besser ab, als die Schlaf deprivierten Tiere. Im Gegensatz dazu war im Hippo-

campus unabhängigen “novel-object recognition” Test kein Unterschied im Hinblick

auf die Vigilanz-Bedingung in der Performanz zu beobachten.

Verknüpfen wir nun den letzten Punkt – die Vigilanz abhängigen Unterschiede in

der Konsolidierung von Hippocampus abhängigen Gedächtnisinhalten – mit der Mo-

dulation durch Stresshormone, komme ich zur gleichen Schlussfolgerung, wie Plihal

und Born (1999), Plihal et al. (1999) und Wilhelm et al. (2011) in ihren Gedächtnis-

studien mit Menschen unter systemischer Applikation von Glukokortikoiden: Wäh-

rend die Applikation von Stresshormonen im Laufe eines Wachintervalls die Verar-

beitung von Hippocampus abhängigen Gedächtnisinhalten fördert, wird sie durch

die Infusion während des Schlafs verschlechtert. Hippocampus unabhängige In-

halte sind davon nicht betroffen.

Studien legen nahe, dass für oben genannten Effekt eine Verringerung in der Aus-

prägung bestimmter Hirnwellen durch hohe Stresshormonspiegel verantwortlich zu

machen ist, die die Reaktivierung von Hippocampus abhängigen Gedächtnisinhal-

ten begleiten und während Wachheit zu einer Stabilisierung, im Schlaf jedoch zu

einer Labilisierung der Informationen führt (Weiss et al., 2008; Wilhelm et al., 2011).

Eine andere mögliche Erklärung bietet die von Sazma et al. 2018 geäußerte Theorie

der „kontextuellen Bindung“. In ihrer Studie haben die Forscher festgestellt, dass

Page 66: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

59

die Applikation von Stresshormonen nach der Enkodierung von Gedächtnisinhalten

die Gedächtnisleistung nur verschlechtert hat, wenn die Versuchstiere vorher an die

Versuchsumgebung gewöhnt worden waren. Bei Tieren, die nicht habituiert waren,

hatte die zusätzliche Gabe gar keinen oder sogar einen verbessernden Effekt.

Sazma et al. machen hierfür einen Wechsel des „mentalen“ Kontexts während des

Schlafes verantwortlich. Die zusätzlich applizierten Stresshormone sorgen hierbei

dafür, dass die Verbindung der gelernten Gedächtnisinhalte mit dem ursprünglichen

Kontext gekappt und stattdessen eine Verknüpfung mit dem neuen „mentalen“ Kon-

text hergestellt wird.

Wie bereits in der Einleitung beschrieben, scheint die Modulation durch Stresshor-

mone nicht nur durch deren generelle Verfügbarkeit, sondern auch deren absolute

Konzentration gekennzeichnet zu sein. Gemäß der bereits in der Einleitung zitierten

“Yerkes-Dodgsen-Regel” (Robert und John, 1908) bewirken niedrige bis normale

Glukokortikoid-Spiegel eine Förderung der Bildung von “long-term potentiation”,

während hohe bis sehr hohe Stresshormonspiegel zum Gegenteil führen (Andersen

et al., 2006; Beispielstudien: Okuda et al., 2004; Roozendaal, 2000; Roozendaal et

al., 2002; Sandi und Rose, 1994).

Übertragen auf das vorliegende Studiendesign und unter Berücksichtigung der An-

nahme, dass die Stresshormonspiegel zu Beginn der Ruhezeit des Tieres beson-

ders niedrig sind (Penalva et al., 2003) und durch Schlafdeprivation gesteigert wer-

den (Penalva et al., 2003), lässt sich folgende Staffelung nach Corticosteron-Spie-

geln vornehmen: Die niedrigste Konzentration findet sich in der schlafenden Pla-

cebo-Bedingung; mittlere Konzentrationen kommen in der schlafenden Corticoste-

ron-Bedingung und der wachen Placebo-Bedingung vor; die höchste Konzentration

findet sich in der wachen Corticosteron-Bedingung. Würde man diese Ergebnisse

graphisch auftragen, ergäbe sich eine U-förmige Kurve, ähnlich wie in der Studie

von Okuda et al. (2004). Okuda verwendete 2004 den gleichen “novel-object recog-

nition” Test, wie auch hier, mit dem Unterschied, dass die Versuchstiere drei unter-

schiedliche Konzentrationen von Corticosteron systemisch infundiert bekamen und

eine der beiden Gruppen vorher an den Experimentalraum gewöhnt wurde. Wäh-

rend die Ergebnisse der nicht an den Experimentalraum gewöhnten Tiere o.g. U-

förmige Kurve bezogen auf die Menge des applizierten Stresshormons ergaben,

fand sich kein Unterschied in der Performanz der an den Experimentalraum ge-

Page 67: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

60

wöhnten Tiere. Die Experimentatoren schlossen daraus, dass der Effekt von Corti-

costeron an den durch die Versuchsobjekte hervorgerufenen Erregungszustand ge-

bunden ist.

Diese These belegen auch Beobachtungen von de Quervain et al., 2009, die erga-

ben, dass Stresshormone selektiv die Konsolidierung von emotional geladenen Ge-

dächtnisinhalten beeinflussen. Als mögliche Erklärung dient die Feststellung, dass

emotionale Erfahrungen in der Amygdala die Freisetzung von Norepinephrin bewir-

ken, das wiederum die Konsolidierung von Gedächtnisinhalten fördert (Galvez et

al., 1996; McIntyre et al., 2002; Quirarte et al., 1998). Zerstört man nun die

Amygdala oder blockiert deren Rezeptoren, führt dies zu einer Behinderung der

Überführung von Informationen in das Langzeitgedächtnis (Quirarte et al., 1997;

Roozendaal et al., 1999; Roozendaal et al., 2002).

Die Verbindung zwischen den Ergebnissen der Studie von Okuda und den hier be-

obachteten Vigilanz-abhängigen Effekten der Stresshormone liegt nun in der unter-

schiedlichen Konzentration von Norepinephrin. Analog zum körpereigenen Corti-

costeron-Spiegel ist der Norepinephrin-Spiegel ebenfalls während des Schlafs am

niedrigsten (Kalen et al., 1989; Tononi et al., 1994), während er durch aktive Schlaf-

deprivation künstlich gesteigert wird. Daraus folgt, dass der Effekt von Glukokor-

tikoiden in den schlafenden Bedingungen geringer ausfällt, als in den Schlaf depri-

vierten Bedingungen (analog dem Testergebnis von Okuda et al., 2004, das einen

fehlenden Effekt von Corticosteron auf die Performanz der an den Experimental-

raum gewöhnten Gruppe zeigt).

Einen ähnlichen Erklärungsansatz liefert das sogenannte „tagging“-Theorem, das

besagt, dass hohe Cortisol- und Norepinephrin-Spiegel während der Enkodierung

die Markierung („tagging“) von Gedächtnisinhalten fördern, die besonders ausge-

prägte Reaktionen im Hippocampus und der Amygdala hervorgerufen haben, indem

sie deren Verarbeitung auf neuronaler Ebene unterstützen. Somit dient Stress auch

als „Gedächtnisfilter“ (de Jesús and Fishbein, 2018; Payne and Kensinger, 2018;

Ritchey et al., 2017; Sazma et al., 2018).

Einschränkungen

Der schwerwiegendste Kritikpunkt an der vorliegenden Studie ist sicherlich der vor-

zeitige Verlust an Ratten mit intakten Implantaten und die daraus resultierenden,

Page 68: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

61

unterschiedlichen und teilweise sehr kleinen Gruppengrößen, die spezielle statisti-

sche Testverfahren (Student-Newman-Keuls-Test für unbalancierte Gruppen) zur

Vergleichbarkeit der Ergebnisse nötig machten. Zur Steigerung der Aussagekraft

der Studie wäre eine erneute Durchführung der Experimente mit – wie eingangs

gefordert – mindestens 24 Tieren von Nöten (Ennaceur et al., 1997).

Mögliche Verbesserungsvorschläge zur Verlängerung der Haltbarkeit der Implan-

tate betreffen das Material (leichtere Stoffe mit besserer Haftungsfläche), dessen

Fixierung am Kopf (andere/mehr Fixierungsschrauben, andere Punktionsstelle oder

Versiegelung zur Vermeidung von Liquorrhoe) sowie den Infusionsapparat (leich-

tere Schläuche, drehbare Fixierung der Schläuche, individuelle, leise, ferngesteu-

erte Pumpen für jede Ratte).

Abgesehen von den technischen Verbesserungen wären bei einer Wiederholung

der Studie auch Änderungen im Design zu diskutieren. Beispielsweise würde ein

fester Infusionszeitpunkt für die Substanzen in den Schlaf deprivierten Bedingungen

die Vergleichbarkeit untereinander verbessern und gleichzeitig der Beobachtung

Rechnung tragen, dass die Zeitdauer zwischen “sample trial” und Applikation von

Corticosteron oder Placebo die Abrufung von Informationen im “test trial” beein-

flusst53. Des Weiteren wäre eine simultane EEG- und EMG-Aufzeichnung wün-

schenswert, um den genauen Einschlafzeitpunkt und die Schlaftiefe (es galt schließ-

lich SWS, also das letzte Schlafstadium, zu erreichen) zu bestimmen. Neuere Stu-

dien (Sazma et al., 2018) legen zudem nahe, dass die Auswirkung der Stresshor-

mone auf die Konsolidierung von Gedächtnisinhalten entscheidend davon abhängt,

ob die Versuchstiere vor der Durchführung der Tests an die Lernumgebung gewöhnt

worden waren, oder nicht. Bei den Tieren, die nicht an die Umgebung habituiert

waren, bewirkte die Applikation von Stresshormonen nach dem Test nämlich teil-

weise sogar eine Verbesserung im Testabschneiden. Die Autoren führen dies auf

unterschiedliche Effekte von Cortisol und Norepinephrin in Abhängigkeit von deren

Konzentration zurück. Gerade weil auch ich einen Zusammenhang im Abschneiden

der einzelnen Testgruppen mit dem vorherrschenden Norepinephrin-Level vermute,

wäre es interessant zu sehen, wie die Ergebnisse in einer weiteren, nicht an die

Testumgebung gewöhnten Gruppe, ausfallen würden. Weiterhin wurde kürzlich

eine Studie mit einem etwas abgewandelten „object-place recognition“ Test, dem

53 Je mehr Zeit zwischen Enkodierung und Infusion der Glukokortikoide liegt, desto schlechter das spätere Testergebnis (de Quervain et al., 1998, 2009).

Page 69: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

62

sogenannten „what-where-which“ Test vorgestellt (Oyanedel et al., 2018). In diesem

werden zwei verschiedene Objekte in zwei unterschiedlichen Testumgebungen prä-

sentiert. Dadurch wird statt der im „what-where-when“ Test abgefragten zeitlichen

Reihenfolge ein sogenannter „occasion setter“ etabliert, der laut Autoren im „test

trial“ schneller zum Tragen kommt („when“-Komponente erst nach 3 Minuten im

„test trial“ ausgeprägt). Möglicherweise ließen sich mit o.g. Test – auch im Hinblick

auf die begrenzte Versuchstieranzahl - noch bessere Ergebnisse erzielen. Sa-

wangjit et al. haben 2018 schließlich festgestellt, dass auch bis dato als Hippocam-

pus unabhängig geltende Gedächtnisinhalte hippocampaler Mechanismen zur Ver-

arbeitung bedürfen, weil alle Informationen mit ihrem zeitlichen und örtlichen Kon-

text abgespeichert werden. Somit erfüllen strenggenommen alle Gedächtnisformen

die Eigenschaften für „episodisches“ Gedächtnis und es wird eine neue Einteilung

– auch im Hinblick auf die für die Verarbeitung hauptverantwortlichen Gehirnregio-

nen - benötigt.

Abschließend ist noch die Zusammensetzung der Corticosteron-Lösung zu beden-

ken. Der Komplex54, der hier Verwendung fand, enthält als Lösungsmittel Cyclo-

dextrin, das möglicherweise eigene Effekte auf das Gehirn besitzt und nicht dem

Placebo hinzugegeben wurde. Obwohl vorangegangene Studien keine Auswirkun-

gen bei intracerebraler Anwendung auf die Gehirnaktivität oder das generelle Ver-

halten der Versuchstiere gezeigt haben, scheint Cyclodextrin jedoch die Verfügbar-

keit und den Abbau der in der Lösung enthaltenen Stoffe zu verändern (Yaksh et

al., 1991). Andererseits gibt es kaum andere Möglichkeiten, wasserunlösliches Cor-

ticosteron in Lösung zu bringen. Das von Yaksh et al. ebenfalls getestete Dimethyl-

sulfoxid bewirkt eine Abnahme von Susbtanz P und dem calcitonine-gene-related-

peptide. Des Weiteren beeinflusst es die Miktion und den Blutdruck und fällt im Bei-

sein von Natriumchlorid aus. Ethanol stört über die Stimulation von GABA-Rezep-

toren und die Inhibition von NMDA-Rezeptoren die synaptische Plastizität und be-

einflusst außerdem die Vigilanz. Öl kann wegen seiner hohen Adhäsionskräfte nicht

über 0.5 mm dünne Schläuche gegeben werden.

Abgesehen von den Zusatzstoffen des HBC-Komplexes gab es auch Probleme bei

der Zubereitung der Corticosteron-Lösung. Weil die Zuliefererfirma Sigma-Aldrich

keine kleinen Mengen des HBC-Komplexes verschickt, musste jeden Tag 5 mg des

54 C174 SIGMA – Corticosterone: HBC complex, Sigma Aldrich, St. Louis, MO, USA; http://www.sig-maaldrich.com/catalog/product/sigma/C174?lang=de&region=DE, 27.10.2016.

Page 70: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

63

sehr feuchtigkeitsanfälligen Stoffes mit einer groben Feinwaage abgewogen und

mittels Vortex mit 16.6 ml 0.9% iger Kochsalzlösung in Lösung gebracht werden. In

diesem Zusammenhang ist nicht ganz auszuschließen, dass durch Ungenauigkei-

ten beim Herstellungsprozess Unterschiede in der Konzentration der Glukokor-

tikoid-Lösung zwischen den einzelnen Gruppen aufgetreten sind. Wäre eine

Stammlösung für alle Experimentaltage erstellt oder abgewogene Mengen von der

Firma verwendet worden, wären diese sicherlich kleiner ausgefallen.

Schließlich wurde während des Review-Prozesses kritisiert, dass keine Kontrollin-

fusionen in anderen Gehirnregionen vorgenommen wurden und damit nicht ausge-

schlossen werden konnte, dass die beobachteten Effekte auch durch Interaktion der

Stresshormone mit Glukokortikoid-Rezeptoren in anderen Hirnarealen zustande ge-

kommen wären. In eine ähnliche Richtung ging der Vorwurf, dass keine Messungen

der lokalen oder systemischen Corticosteron-Konzentration unternommen wurden

und damit auch nicht bewiesen werden konnte, dass der Stoff nur im Hippocampus

akkumulierte.

Ausblick

Wie bereits unter den Einschränkungen erwähnt, wäre eine gleichzeitige EEG- und

EMG-Aufzeichnung nicht nur zur quantitativen sondern auch zur qualitativen Aus-

wertung der einzelnen Schlafstadien der Versuchstiere wünschenswert. In der Wis-

senschaft bestehen zur Zeit im Wesentlichen zwei unterschiedliche Hypothesen be-

züglich der selektiven Beeinflussung von unterschiedlichen Gedächtnisformen

durch verschiedene Schlafphasen: Die “dual-process hypothesis” von Maquet aus

dem Jahre 2001, die besagt, dass SWS-reicher Schlaf nur die Bildung Hippocam-

pus abhängigen Gedächtnisses fördert, während REM-reicher Schlaf die Bildung

Hippocampus unabhängigen Gedächtnisses unterstützt. Dem gegenüber steht die

“sequential hypothesis” von Gais et al. (2000) und Giuditta et al. (1995), in der die

Wissenschaftler behaupten, dass die Konsolidierung von Gedächtnisinhalten jed-

weder Form allein von der Abfolge von REM-Schlaf auf SWS abhängt. Letztere

These wird auch durch neuere Studien (Lewis et al., 2018) belegt, in denen die

Autoren nur in der Abfolge der beiden Schlafformen aufeinander die Grundlage für

die Bildung komplexer Gedächtnisstrukturen und damit kreativem Denken sehen.

Es wäre interessant herauszufinden, inwiefern Glukokortikoide und andere Neuro-

transmitter in diese Prozesse eingreifen und möglicherweise den einen oder ande-

ren Prozess fördern.

Page 71: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

64

7.6 Zusammenfassung

Während in der Wissenschaftswelt mittlerweile viele Belege dafür existieren, dass

Stresshormone die Aufnahme (Enkodierung) von Gedächtnisinhalten jedweder Art

fördern55, gibt es bei den Auswirkungen auf die Abspeicherung (Konsolidierung)

konträre Ergebnisse. Als mögliche Erklärung dienen Vigilanz-abhängige Unter-

schiede in der Verarbeitung von Glukokortikoiden56.

In Weiterentwicklung der Studien von Born und Wagner (2004), Plihal und Born

(1999) und Plihal et al. (1999) fanden Wilhelm et al. 2011 heraus, dass die Applika-

tion von Cortison während eines Wachintervalls die Gedächtnisbildung fördert, wäh-

rend sie sie bei Applikation im Schlaf stört. Weil es sich bei o.g. Studie um ein Hu-

manexperiment mit systemischer Verabreichung von Cortison handelte, ist der ge-

naue Zeitpunkt und der genaue Wirkort der Stresshormone in der Gedächtnisbil-

dung nicht genau zu bestimmen.

Um dem Abhilfe zu verschaffen, wurde hier ein Tiermodell entwickelt, in dem o.g.

Bedingungen genau festgelegt werden konnten. Dabei wurden 24 Ratten jeweils

zwei Kanülen in den dorsalen Hippocampus implantiert57. Anschließend durchliefen

die Tiere zwei unterschiedliche Gedächtnistests (Hippocampus unabhängiger “no-

vel-object recognition” Test und Hippocampus abhängiger “object-place recogni-

tion” Test) unter vier verschiedenen Bedingungen (Injektion von Corticosteron oder

Placebo während eines 80-minütigen Behaltensintervalls, in dem die Tiere entwe-

der schlafen durften oder wach gehalten wurden).

Wie bereits vermutet, bestanden im Hippocampus unabhängigen “novel-object

recognition” Test weder signifikante Unterschiede in der Testperformanz, wenn man

den Faktor SCHLAF oder den Faktor STRESS allein betrachtete (F (1,35) = 0.61, p

= 0.44 bzw. F (1,35) = 0.09, p = 0.77), noch in deren Kombination (F (1,35) = 0.08,

p = 0.78). Demgegenüber hatte die Interaktion der Faktoren SCHLAF und STRESS

auf die Konsolidierung Hippocampus abhängiger Gedächtnisinhalte (F (1,29) =

11.09, p = 0.002) folgende Auswirkungen: Während die Applikation von Corticoste-

ron im Zuge eines Wachintervalls die Testperformanz der Ratten im Vergleich zur

55 de Quervain et al., 1998; de Quervain et al., 2009; Kirschbaum et al., 1996; Maheu et al., 2004; Rimmele et al., 2012; Wolf, 2009. 56 de Kloet et al., 1999; de Quervain et al., 2009; McIntyre et al., 2012; Schwabe et al., 2012. 57 Studien belegen, dass dort eine besonders hohe Dichte an Mineralo- und Glukokortikoid-Rezep-toren herrscht (Joëls, 2008) und Stresshormone besonders starke Auswirkungen auf Hippocampus abhängige Gedächtnisinhalte haben (Lupien et Lepage, 2001).

Page 72: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

65

Infusion von Placebo verbesserte (t (15) = 2.32, p = 0.035), führte die Infusion wäh-

rend des Schlafs zu einer Verschlechterung der Gedächtnisleistung im Vergleich

zur Placebo-Bedingung (t (14) = 2.39, p = 0.032).

Daraus folgt, dass die Konsolidierung Hippocampus abhängiger Gedächtnisinhalte

während des Schlafs und bei Wachheit auf unterschiedliche Weise stattfinden muss

und Corticosteron diese Vigilanz abhängig beeinflusst.

Page 73: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

66

8 Own contributions to the doctoral thesis

step persons involved

idea Marion Inostroza

study design Marion Inostroza

technical realization Marie Gessert, Marion Inostroza

practical application Marie Gessert, Kimberley Petersen, Ma-

rion Inostroza, Sonja Binder

surgeries Marion Inostroza, Marie Gessert, Kim-

berley Petersen

sacrifice and perfusion of animals Sonja Binder, Marie Gessert

histological examination Marion Inostroza

scoring of videos Marie Gessert, Marion Inostroza

statistical analysis Marie Gessert, Carlos Oyanedel, Ma-

rion Inostroza

Page 74: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

67

9 List of references

9.1 Journals and magazines

Attwell, P.J., Rahman, S., Yeo, C.H., 2001. Acquisition of eyeblink conditioning is

critically dependent on normal function in cerebellar cortical lobule HVI. Journal of

Neuroscience 21, 5715–5722.

Binder, S., Baier, P.C., Mölle, M., Inostroza, M., Born, J., Marshall, L., 2012. Sleep

enhances memory consolidation in the hippocampus-dependent object-place

recognition task in rats. Neurobiology of learning and memory 97, 213–219.

Born, J., Wagner, U., 2004. Memory consolidation during sleep: role of cortisol feed-

back. Annals of the New York Academy of Sciences 1032, 198–201.

Burgess, N., 2014. The 2014 Nobel Prize in Physiology or Medicine: A Spatial Model

for Cognitive Neuroscience. Neuron 84, 1120–1125.

Bussey, T.J., Duck, J., Muir, J.L., Aggleton, J.P., 2000. Distinct patterns of

behavioural impairments resulting from fornix transection or neurotoxic lesions of

the perirhinal and postrhinal cortices in the rat. Behavioural brain research 111,

187–202.

Buzsáki, G., 1989. Two-stage model of memory trace formation: a role for “noisy”

brain states. Neuroscience 31, 551–570.

Cameron, H.A., Gould, E., 1994. Adult neurogenesis is regulated by adrenal

steroids in the dentate gyrus. Neuroscience 61, 203–209.

Carr, M.F., Jadhav, S.P., Frank, L.M., 2011. Hippocampal replay in the awake state:

a potential substrate for memory consolidation and retrieval. Nature neuroscience

14, 147–153.

Chen, Z., Wilson, M. A., 2017. Deciphering neural codes of memory during

sleep. Trends in neurosciences 40(5), 260-275.

Conrad, C.D., Lupien, S.J., McEwen, B.S., 1999. Support for a bimodal role for type

II adrenal steroid receptors in spatial memory. Neurobiology of learning and memory

72, 39–46.

Dash, M.B., Douglas, C.L., Vyazovskiy, V.V., Cirelli, C., Tononi, G., 2009. Long-

term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep

and waking states. The Journal of Neuroscience 29, 620–629.

Datta, S., 2006. Activation of phasic pontine-wave generator: A mechanism for

sleep-dependent memory processing. Sleep and Biological Rhythms 4, 16–26.

Davidson, T.J., Kloosterman, F., Wilson, M.A., 2009. Hippocampal replay of ex-

tended experience. Neuron 63, 497–507.

De Jesús, R., Fishbein, W., 2018. The Influence of Sleep on Emotional Memory

Consolidation Processes. Archives of Psychology 2(5).

Page 75: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

68

de Kloet, E.R., Oitzl, M.S., Joëls, M., 1999. Stress and cognition: are corticosteroids

good or bad guys? Trends in neurosciences 22, 422–426.

de Quervain, D.J., Roozendaal, B., McGaugh, J.L., 1998. Stress and glucocorticoids

impair retrieval of long-term spatial memory. Nature 394, 787–790.

https://doi.org/10.1038/29542

de Quervain, D.J.-F., Aerni, A., Schelling, G., Roozendaal, B., 2009. Glucocorticoids

and the regulation of memory in health and disease. Frontiers in neuroendocrinology

30, 358–370.

Debiec, J., LeDoux, J.E., Nader, K., 2002. Cellular and systems reconsolidation in

the hippocampus. Neuron 36, 527–538.

Dere, E., Huston, J.P., De Souza Silva, M.A., 2007. The pharmacology, neuroana-

tomy and neurogenetics of one-trial object recognition in rodents. Neuroscience &

Biobehavioral Reviews 31, 673–704.

Destexhe, A., Hughes, S.W., Rudolph, M., Crunelli, V., 2007. Are corticothalamic

‘up’states fragments of wakefulness? Trends in neurosciences 30, 334–342.

Diekelmann, S., Born, J., 2010. The memory function of sleep. Nature Reviews Neu-

roscience 11, 114–126.

Diekelmann, S., Büchel, C., Born, J., Rasch, B., 2011. Labile or stable: opposing

consequences for memory when reactivated during waking and sleep. Nature

neuroscience 14, 381–386.

Drosopoulos, S., Schulze, C., Fischer, S., Born, J., 2007. Sleep’s function in the

spontaneous recovery and consolidation of memories. Journal of Experimental Psy-

chology: General 136, 169.

Ennaceur, A., Neave, N., Aggleton, J.P., 1997. Spontaneous object recognition and

object location memory in rats: the effects of lesions in the cingulate cortices, the

medial prefrontal cortex, the cingulum bundle and the fornix. Experimental Brain

Research 113, 509–519.

Evans, R.M., Arriza, J.L., 1989. A molecular framework for the actions of glucocor-

ticoid hormones in the nervous system. Neuron 2, 1105–1112.

Foster, D.J., Wilson, M.A., 2006. Reverse replay of behavioural sequences in hip-

pocampal place cells during the awake state. Nature 440, 680–683.

Gage, G.J., Kipke, D.R., Shain, W., 2012. Whole animal perfusion fixation for ro-

dents. Journal of visualized experiments: JoVE.

Gais, S., Plihal, W., Wagner, U., Born, J., 2000. Early sleep triggers memory for

early visual discrimination skills. Nature neuroscience 3, 1335–1339.

Galvez, R., Mesches, M.H., Mcgaugh, J.L., 1996. Norepinephrine release in the

amygdala in response to footshock stimulation. Neurobiology of learning and me-

mory 66, 253–257.

Page 76: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

69

Giuditta, A., Ambrosini, M.V., Montagnese, P., Mandile, P., Cotugno, M., Zucconi,

G.G., Vescia, S., 1995. The sequential hypothesis of the function of sleep. Behav-

ioural brain research 69, 157–166.

Gould, E., McEwen, B.S., Tanapat, P., Galea, L.A., Fuchs, E., 1997. Neurogenesis

in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and

NMDA receptor activation. The Journal of neuroscience 17, 2492–2498.

Griffiths, D., Dickinson, A., Clayton, N., 1999. Episodic memory: what can animals

remember about their past? Trends in cognitive sciences 3, 74–80.

Gupta, A.S., van der Meer, M.A., Touretzky, D.S., Redish, A.D., 2010. Hippocampal

replay is not a simple function of experience. Neuron 65, 695–705.

Hasselmo, M.E., 1999. Neuromodulation: acetylcholine and memory consolidation.

Trends in cognitive sciences 3, 351–359.

Hasselmo, M.E., McGaughy, J., 2004. High acetylcholine levels set circuit dynamics

for attention and encoding and low acetylcholine levels set dynamics for consolida-

tion. Progress in brain research 145, 207–234.

Hogg, S., 1996. A review of the validity and variability of the elevated plus-maze as

an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30.

Hölscher, C., 1999. Synaptic plasticity and learning and memory: LTP and beyond.

Journal of neuroscience research 58, 62–75.

Inostroza, M., Binder, S., Born, J., 2013. Sleep-dependency of episodic-like memory

consolidation in rats. Behavioural brain research 237, 15–22.

Inostroza, M., Cid, E., Brotons-Mas, J., Gal, B., Aivar, P., Uzcategui, Y.G., Sandi,

C., de la Prida, L.M., 2011. Hippocampal-dependent spatial memory in the water

maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS

One 6, e22372.

Isomura, Y., Sirota, A., Özen, S., Montgomery, S., Mizuseki, K., Henze, D.A.,

Buzsáki, G., 2006. Integration and segregation of activity in entorhinal-hippocampal

subregions by neocortical slow oscillations. Neuron 52, 871–882.

Jezek, K., Wesierska, M., Fenton, A.A., 2002. Hippocampus-dependent retrieval

and hippocampus-independent extinction of place avoidance navigation, and

stress-induced out-of-context activation of a memory revealed by reversible lesion

experiments in rats. Physiological research 51, S35–S48.

Joëls, M., 2008. Functional actions of corticosteroids in the hippocampus. European

journal of pharmacology 583, 312–321.

Kalén, P., Rosegren, E., Lindvall, O., Björklund, A., 1989. Hippocampal Noradrena-

line and Serotonin Release over 24 Hours as Measured by the Dialysis Technique

in Freely Moving Rats: Correlation to Behavioural Activity State, Effect of Handling

and Tail-Pinch. European Journal of Neuroscience 1, 181–188.

Kemp, A., Manahan-Vaughan, D., 2004. Hippocampal long-term depression and

long-term potentiation encode different aspects of novelty acquisition. Proceedings

Page 77: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

70

of the National Academy of Sciences of the United States of America 101, 8192–

8197.

Kerr, D.S., Campbell, L.W., Applegate, M.D., Brodish, A., Landfield, P.W., 1991.

Chronic stress-induced acceleration of electrophysiologic and morphometric bi-

omarkers of hippocampal aging. The Journal of neuroscience 11, 1316–1324.

Kirschbaum, C., Wolf, O.T., May, M., Wippich, W., Hellhammer, D.H., 1996. Stress-

and treatment-induced elevations of cortisol levels associated with impaired declar-

ative memory in healthy adults. Life sciences 58, 1475–1483.

Kuriyama, K., Stickgold, R., Walker, M.P., 2004. Sleep-dependent learning and mo-

tor-skill complexity. Learning & Memory 11, 705–713.

Langston, R.F., Wood, E.R., 2010. Associative recognition and the hippocampus:

Differential effects of hippocampal lesions on object-place, object-context and ob-

ject-place-context memory. Hippocampus 20, 1139–1153.

Lee, A.K., Wilson, M.A., 2002. Memory of sequential experience in the hippocampus

during slow wave sleep. Neuron 36, 1183–1194.

Lewis, P. A., Knoblich, G., Poe, G., 2018. How memory replay in sleep boosts cre-

ative problem-solving. Trends in cognitive sciences 22(6), 491-503.

Lopes Aguiar, C., Romcy-Pereira, R.N., Escorsim Szawka, R., Galvis-Alonso, O.Y.,

Anselmo-Franci, J.A., Pereira Leite, J., 2008. Muscarinic acetylcholine neurotrans-

mission enhances the late-phase of long-term potentiation in the hippocampal–

prefrontal cortex pathway of rats in vivo: A possible involvement of monoaminergic

systems. Neuroscience 153, 1309–1319.

Louie, K., Wilson, M.A., 2001. Temporally structured replay of awake hippocampal

ensemble activity during rapid eye movement sleep. Neuron 29, 145–156.

Lozano, Y.R., Serafín, N., Prado-Alcalá, R.A., Roozendaal, B., Quirarte, G.L., 2013.

Glucocorticoids in the dorsomedial striatum modulate the consolidation of spatial

but not procedural memory. Neurobiology of learning and memory 101, 55–64.

Luczak, A., Barthó, P., Marguet, S.L., Buzsáki, G., Harris, K.D., 2007. Sequential

structure of neocortical spontaneous activity in vivo. Proceedings of the National

Academy of Sciences 104, 347–352.

Lupien, S.J., Lepage, M., 2001. Stress, memory, and the hippocampus: can’t live

with it, can’t live without it. Behavioural brain research 127, 137–158.

Maheu, F.S., Joober, R., Beaulieu, S., Lupien, S.J., 2004. Differential effects of ad-

renergic and corticosteroid hormonal systems on human short-and long-term de-

clarative memory for emotionally arousing material. Behavioral neuroscience 118,

420.

Maquet, P., 2001. The role of sleep in learning and memory. Science 294, 1048–

1052.

Marshall, L., Born, J., 2007. The contribution of sleep to hippocampus-dependent

memory consolidation. Trends in cognitive sciences 11, 442–450.

Page 78: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

71

Martin, S.J., Grimwood, P.D., Morris, R.G.M., 2000. Synaptic plasticity and memory:

an evaluation of the hypothesis. Annual review of neuroscience 23, 649–711.

McEwen, B., De Kloet, E.R., Rostene, W., 1986. Adrenal steroid receptors and ac-

tions in the nervous system. Physiol Rev 66, 1121–1188.

McEwen, B.S., Sapolsky, R.M., 1995. Stress and cognitive function. Current opinion

in neurobiology 5, 205–216.

McIntyre, C.K., Hatfield, T., McGaugh, J.L., 2002. Amygdala norepinephrine levels

after training predict inhibitory avoidance retention performance in rats. European

Journal of Neuroscience 16, 1223–1226.

McIntyre, C.K., McGaugh, J.L., Williams, C.L., 2012. Interacting brain systems mod-

ulate memory consolidation. Neuroscience & Biobehavioral Reviews 36, 1750–

1762.

McReynolds, J.R., Donowho, K., Abdi, A., McGaugh, J.L., Roozendaal, B., McIntyre,

C.K., 2010. Memory-enhancing corticosterone treatment increases amygdala nore-

pinephrine and Arc protein expression in hippocampal synaptic fractions.

Neurobiology of learning and memory 93, 312–321.

Medina, A.C., Charles, J.R., Espinoza-González, V., Sánchez-Resendis, O., Prado-

Alcalá, R.A., Roozendaal, B., Quirarte, G.L., 2007. Glucocorticoid administration

into the dorsal stratium facilitates memory consolidation of inhibitory avoidance

training but not of the context or footshock components. Learning & Memory 14,

673–677.

Meerlo, P., Koehl, M., Van der Borght, K., Turek, F.W., 2002. Sleep restriction alters

the hypothalamic-pituitary-adrenal response to stress. Journal of

neuroendocrinology 14, 397–402.

Micheau, J., Destrade, C., Soumireu-Mourat, B., 1984. Time-dependent effects of

posttraining intrahippocampal injections of corticosterone on retention of appetitive

learning tasks in mice. European journal of pharmacology 106, 39–46.

Mizoguchi, K., Kunishita, T., Chui, D.-H., Tabira, T., 1992. Stress induces neuronal

death in the hippocampus of castrated rats. Neuroscience letters 138, 157–160.

Mölle, M., Marshall, L., Gais, S., Born, J., 2002. Grouping of spindle activity during

slow oscillations in human non-rapid eye movement sleep. The Journal of

neuroscience 22, 10941–10947.

Mölle, M., Yeshenko, O., Marshall, L., Sara, S.J., Born, J., 2006. Hippocampal sharp

wave-ripples linked to slow oscillations in rat slow-wave sleep. Journal of neuro-

physiology 96, 62–70.

Montgomery, K.C., 1955. The relation between fear induced by novel stimulation

and exploratory drive. Journal of comparative and physiological psychology 48, 254.

Mumby, D.G., Gaskin, S., Glenn, M.J., Schramek, T.E., Lehmann, H., 2002. Hippo-

campal damage and exploratory preferences in rats: memory for objects, places,

and contexts. Learning & Memory 9, 49–57.

Page 79: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

72

Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., Buzsáki, G., 1999. Replay and

time compression of recurring spike sequences in the hippocampus. The Journal of

Neuroscience 19, 9497–9507.

Nader, K., Hardt, O., 2009. A single standard for memory: the case for reconsolida-

tion. Nature Reviews Neuroscience 10, 224–234.

Oitzl, M.S., De Kloet, E.R., 1992. Selective corticosteroid antagonists modulate spe-

cific aspects of spatial orientation learning. Behavioral neuroscience 106, 62.

Oitzl, M.S., van Haarst, A.D., Sutanto, W., de Kloet, E.R., 1995. Corticosterone,

brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pitui-

tary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR ca-

pacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 20, 655–675.

Okuda, S., Roozendaal, B., McGaugh, J.L., 2004. Glucocorticoid effects on object

recognition memory require training-associated emotional arousal. Proceedings of

the National Academy of Sciences of the United States of America 101, 853–858.

Oyanedel, C.N., Binder, S., Kelemen, E., Petersen, K., Born, J., Inostroza, M., 2014.

Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like

memory in rats. Behavioural brain research 275, 126–130.

Oyanedel, C. N., Sawangjit, A., Born, J., Inostroza, M., 2018. Sleep-dependent con-

solidation patterns reveal insights into episodic memory structure. Neurobiology of

learning and memory.

Pack, A.I., Galante, R.J., Maislin, G., Cater, J., Metaxas, D., Lu, S., Zhang, L., Von

Smith, R., Kay, T., Lian, J., others, 2007. Novel method for high-throughput pheno-

typing of sleep in mice. Physiological genomics 28, 232–238.

Payne, J. D., Kensinger, E. A., 2018. Stress, sleep, and the selective consolidation

of emotional memories. Current opinion in behavioral sciences 19, 36-43.

Penalva, R.G., Lancel, M., Flachskamm, C., Reul, J.M., Holsboer, F., Linthorst,

A.C., 2003. Effect of sleep and sleep deprivation on serotonergic neurotransmission

in the hippocampus: a combined in vivo microdialysis/EEG study in rats. European

Journal of Neuroscience 17, 1896–1906.

Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S.I., Battaglia, F.P., 2009.

Replay of rule-learning related neural patterns in the prefrontal cortex during sleep.

Nature neuroscience 12, 919–926.

Pinheiro, S.H., Del-Ben, C.M., Graeff, F.G., others, 2007. Elevated mazes as animal

models of anxiety: effects of serotonergic agents. Anais da Academia Brasileira de

Ciências 79, 71–85.

Plihal, W., Born, J., 1999. Memory consolidation in human sleep depends on inhibi-

tion of glucocorticoid release. Neuroreport 10, 2741–2747.

Plihal, W., Pietrowsky, R., Born, J., 1999. Dexamethasone blocks sleep induced

improvement of declarative memory. Psychoneuroendocrinology 24, 313–331.

Page 80: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

73

Poe, G.R., Nitz, D.A., McNaughton, B.L., Barnes, C.A., 2000. Experience-depend-

ent phase-reversal of hippocampal neuron firing during REM sleep. Brain research

855, 176–180.

Quirarte, G.L., Galvez, R., Roozendaal, B., McGaugh, J.L., 1998. Norepinephrine

release in the amygdala in response to footshock and opioid peptidergic drugs.

Brain research 808, 134–140.

Quirarte, G.L., Roozendaal, B., McGaugh, J.L., 1997. Glucocorticoid enhancement

of memory storage involves noradrenergic activation in the basolateral amygdala.

Proceedings of the National Academy of Sciences 94, 14048–14053.

Reul, J.M., de Kloet, E.R., 1985. Two receptor systems for corticosterone in rat

brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511.

https://doi.org/10.1210/endo-117-6-2505

Ribeiro, S., Gervasoni, D., Soares, E.S., Zhou, Y., Lin, S.-C., Pantoja, J., Lavine,

M., Nicolelis, M.A., 2004. Long-lasting novelty-induced neuronal reverberation dur-

ing slow-wave sleep in multiple forebrain areas. PLoS biology 2, e24.

Ribeiro, S., Goyal, V., Mello, C.V., Pavlides, C., 1999. Brain gene expression during

REM sleep depends on prior waking experience. Learning & Memory 6, 500–508.

Ribeiro, S., Shi, X., Engelhard, M., Zhou, Y., Zhang, H., Gervasoni, D., Lin, S.-C.,

Wada, K., Lemos, N.A., Nicolelis, M.A., 2007. Novel experience induces persistent

sleep-dependent plasticity in the cortex but not in the hippocampus. Frontiers in

Neuroscience 1, 43.

Rimmele, U., Besedovsky, L., Lange, T., Born, J., 2012. Blocking mineralocorticoid

receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in

humans. Neuropsychopharmacology 38, 884–894.

Ritchey, M., McCullough, A. M., Ranganath, C., Yonelinas, A. P., 2017. Stress as a

mnemonic filter: Interactions between medial temporal lobe encoding processes

and post‐encoding stress. Hippocampus 27(1), 77-88.

Robert, M.Y., John, D., 1908. The relation of strength of stimulus to rapidity of habit-

formation. Journal of comparative neurology and psychology 18, 459–482.

Roozendaal, B., 2000. Glucocorticoids and the regulation of memory consolidation.

Psychoneuroendocrinology 25, 213–238.

Roozendaal, B., Nguyen, B.T., Power, A.E., McGaugh, J.L., 1999. Basolateral

amygdala noradrenergic influence enables enhancement of memory consolidation

induced by hippocampal glucocorticoid receptor activation. Proceedings of the Na-

tional Academy of Sciences 96, 11642–11647.

Roozendaal, B., Okuda, S., De Quervain, D.-F., McGaugh, J.L., 2006. Glucocorti-

coids interact with emotion-induced noradrenergic activation in influencing different

memory functions. Neuroscience 138, 901–910.

Roozendaal, Benno, Okuda, S., Van der Zee, E.A., McGaugh, J.L., 2006. Glucocor-

ticoid enhancement of memory requires arousal-induced noradrenergic activation in

Page 81: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

74

the basolateral amygdala. Proceedings of the National Academy of Sciences 103,

6741–6746.

Roozendaal, B., Quirarte, G.L., McGaugh, J.L., 2002. Glucocorticoids interact with

the basolateral amygdala β-adrenoceptor–cAMP/cAMP/PKA system in influencing

memory consolidation. European Journal of Neuroscience 15, 553–560.

Roy, D. S., Kitamura, T., Okuyama, T., Ogawa, S. K., Sun, C., Obata, Y., ..., Toneg-

awa, S., 2017. Distinct neural circuits for the formation and retrieval of episodic

memories. Cell 170(5), 1000-1012.

Ryabinin, A.E., Miller, M.N., Durrant, S., 2002. Effects of acute alcohol administra-

tion on object recognition learning in C57BL/6J mice. Pharmacology Biochemistry

and Behavior 71, 307–312.

Sandi, C., Pinelo-Nava, M.T., 2007. Stress and memory: behavioral effects and neu-

robiological mechanisms. Neural plasticity 2007.

Sandi, C., Rose, S.P., 1994. Corticosterone enhances long-term retention in one-

day-old chicks trained in a weak passive avoidance learning paradigm. Brain Re-

search 647, 106–112.

Sapolsky, R.M., Krey, L.C., McEWEN, B.S., 1985. Prolonged glucocorticoid expo-

sure reduces hippocampal neuron number: implications for aging. The Journal of

Neuroscience 5, 1222–1227.

Sawangjit, A., Oyanedel, C. N., Niethard, N., Salazar, C., Born, J., Inostroza, M.,

2018. The hippocampus is crucial for forming non-hippocampal long-term memory

during sleep. Nature, 1.

Sazma, M. A., Shields, G. S., Yonelinas, A. P., 2018. The effects of post-encoding

stress and glucocorticoids on episodic memory in humans and rodents. Brain and

Cognition.

Schwabe, L., Joëls, M., Roozendaal, B., Wolf, O.T., Oitzl, M.S., 2012. Stress effects

on memory: an update and integration. Neuroscience & Biobehavioral Reviews 36,

1740–1749.

Sirota, A., Csicsvari, J., Buhl, D., Buzsáki, G., 2003. Communication between neo-

cortex and hippocampus during sleep in rodents. Proceedings of the National Acad-

emy of Sciences 100, 2065–2069.

Squire, L.R., 2004. Memory systems of the brain: a brief history and current per-

spective. Neurobiology of learning and memory 82, 171–177.

Squire, L.R., 1992. Memory and the hippocampus: a synthesis from findings with

rats, monkeys, and humans. Psychological review 99, 195.

Squire, L.R., Zola-Morgan, S., 1991. The medial temporal lobe memory system.

Science 253, 1380–1386.

Steele, R., Morris, R., 1999. Delay-dependent impairment of a matching-to-place

task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.

Hippocampus 9, 118–136.

Page 82: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

75

Steriade, M., 2006. Grouping of brain rhythms in corticothalamic systems. Neuro-

science 137, 1087–1106.

Teber, I., Köhling, R., Speckmann, E.-J., Barnekow, A., Kremerskothen, J., 2004.

Muscarinic acetylcholine receptor stimulation induces expression of the activity-reg-

ulated cytoskeleton-associated gene (ARC). Molecular brain research 121, 131–

136.

Tononi, G., Pompeiano, M., Cirelli, C., 1994. The locus coeruleus and immediate-

early genes in spontaneous and forced wakefulness. Brain research bulletin 35,

589–596.

Tulving, E., 1972. Episodic and semantic memory 1. Organization of Memory. Lon-

don: Academic 381, 4.

Van Twyver, H., Webb, W.B., Dube, M., Zackheim, M., 1973. Effects of environmen-

tal and strain differences on EEG and behavioral measurement of sleep. Behavioral

biology 9, 105–110.

Vyazovskiy, V.V., Cirelli, C., Pfister-Genskow, M., Faraguna, U., Tononi, G., 2008.

Molecular and electrophysiological evidence for net synaptic potentiation in wake

and depression in sleep. Nature neuroscience 11, 200–208.

Walf, A.A., Frye, C.A., 2007. The use of the elevated plus maze as an assay of

anxiety-related behavior in rodents. Nature protocols 2, 322–328.

Weiss, E.K., Krupka, N., Bähner, F., Both, M., Draguhn, A., 2008. Fast Effects of

Glucocorticoids on Memory-Related Network Oscillations in the Mouse Hippocam-

pus. Journal of neuroendocrinology 20, 549–557.

Wilhelm, I., Wagner, U., Born, J., 2011. Opposite effects of cortisol on consolidation

of temporal sequence memory during waking and sleep. Journal of cognitive neu-

roscience 23, 3703–3712.

Wilson, M.A., McNaughton, B.L., 1994. Reactivation of hippocampal ensemble

memories during sleep. Science 265, 676–679.

Wolf, O.T., 2009. Stress and memory in humans: twelve years of progress? Brain

research 1293, 142–154.

Yaksh, T.L., Jang, J., Nishiuchi, Y., Braun, K.P., Ro, S., Goodman, M., 1991. The

utility of 2-hydroxypropyl-β-cyclodextrin as a vehicle for the intracerebral and in-

trathecal administration of drugs. Life sciences 48, 623–633.

Zant, J.C., Leenaars, C.H.C., Kostin, A., Van Someren, E.J.W., Porkka-Heiskanen,

T., 2011. Increases in extracellular serotonin and dopamine metabolite levels in the

basal forebrain during sleep deprivation. Brain research 1399, 40–48.

9.2 Books

Abdi, H., Williams, L.J., 2010. Newman-Keuls Test and Tukey Test. In: Salkind, N.J., 2010. Encyclopedia of Research Design. SAGE.

Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., 2006. The hippocampus

book. Oxford University Press, USA.

Page 83: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

76

Eichenbaum, H., 1993. Memory, amnesia, and the hippocampal system. MIT press.

Köhler, W., Schachtel, G., Voleske, P., 2012. Biostatistik. Springer DE.

Paxinos, G., Watson, C., 2006. The Rat Brain in Stereotaxic Coordinates: Hard

Cover Edition. Academic Press.

Schacter, D.L., Tulving, E., 1994. Memory systems 1994. Mit Press.

Squire, L.R., Cohen, N.J., Lynch, G., McGaugh, J., Weinberger, N.M., 1984.

Neurobiology of learning and memory. Guilford Press New York, NY.

Tulving, E., n.d. Elements of episodic memory. 1983. Clarendon Press, Oxford.

Tulving, E., Terrace, H., Metcalfe, J., 2005. Episodic memory and autonoesis:

Uniquely human. New York: Oxford University Press.

9.3 Web pages

(listing according to appearance in the text)

1. http://tayloredge.com/reference/Science/BiologySlides/LimbicSystem.gif, 27.10.2016.

2. http://www.human-memory.net/images/memory_types.jpg, 27.10.2016.

3. http://media.wiley.com/mrw_images/cp/cpns/articles/ns0901/image_n/ nns090102.gif, 27.10.2016

4. http://kaylab.uchicago.edu/images/rat_brain.png, 27.10.2016.

5. https://en.wikipedia.org/w/index.php?title=File:ElevatedPlusMaze.svg&page=1, 27.10.2016.

6. http://www.sigmaaldrich.com/catalog/product/sigma/C174?lang=de&region=DE. 27.10.2016.

7. https://de.wikipedia.org/wiki/Post-hoc-Test#Student-Newman-Keuls-Test, 27.10.2016.

8. https://de.wikipedia.org/wiki/Einstichproben-t-Test, 27.10.2016.

9. http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/COFA/C1/ C174/C174-BULK_________041M4606V_.pdf, 27.10.2016.

Page 84: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

I

10 Appendix

10.1 List of tables

Table 1. Timeline of the experiment.

............................................................................................................................. 10

10.2 List of figures

Figure 1. Anatomy of the limbic system. ................................................................. 2

Figure 2. Distinct neural circuits. CA1 = cornu ammonis 1; dSub = dorsal subiculum;

EC5 = medial entorhinal cortex 5; MB = mammillary body. .................................... 3

Figure 3. Memory types, steps of memory formation and role of the hippocampus.

............................................................................................................................... 4

Figure 4. The cannulas’ position in a stereotactic and anatomic model. .............. 13

Figure 5. Setting and proportions of the elevated plus maze test. ........................ 15

Figure 6. Experimental setup. ............................................................................... 17

Figure 7. Results of the test trials. The numbers associated with the bars indicate

the number of animals, which underwent the test. The star (*) marks the groups,

that were significantly different from the other groups by Newman-Keuls posthoc

test and t-test (each with p < 0.05). The (+) indicates that the test performances

were above chance level (p < 0.05). The error bars indicate standard deviations.

Sleep/Vehicle = infusion of vehicle during sleep; Wake/Depri = infusion of vehicle

during sleep-deprivation; Sleep/Cort = infusion of corticosterone during sleep;

Wake/Cort = infusion of corticosterone during sleep-deprivation. ........................ 26

Figure 8. Results of the histological examination. ................................................ 27

Figure 9. Example photomicrograph illustrating the placement of the needle tips in

one rat. The large arrows point to the cannula tips, the small ones to the infusion

needle tips. ........................................................................................................... 28

Figure 10. Summary of the results. ...................................................................... 46

Page 85: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

II

10.3 Exemplary protocols

Handling

Hippocampus, glucocorticoids and sleep

Handling

ID:

Code of experiment: 42/g/11

Experimenter: Dr. Marion Inostroza Parodi

M.D. students: Marie Gessert, Kimberley Petersen

Experiment: Hippocampus, glucocorticoids and sleep

Date of arrival: 24.08.2011

Weight:

date activity oberservations

Page 86: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

III

Postoperative control

Hippocampus, glucocorticoids and sleep

Postoperative control

ID:

Code of experiment: 42/g/11

Experimenter: Dr. Marion Inostroza Parodi

M.D. students: Marie Gessert, Kimberley Petersen

Experiment: Hippocampus, glucocorticoids and sleep

Date of arrival: 24.08.2011

day after surgery weight wound

Page 87: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

IV

Habituation

Hippocampus, glucocorticoids and sleep

Habituation

ID:

Code of experiment: 42/g/11

Experimenter: Dr. Marion Inostroza Parodi

M.D. students: Marie Gessert, Kimberley Petersen

Experiment: Hippocampus, glucocorticoids and sleep

Date of arrival: 24.08.2011

Weight:

date session activity time (begin-

ning)

time (end) observations

Page 88: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

V

Memory tasks

Hippocampus, glucocorticoids and sleep

Memory tasks

date … object one … object two … memory task conditions group …

sample

trial

test trial

ID … 2-5 min 3 min

5 min 80 min

time

start of sample

trial

end of sample

trial infusion

start of test trial

end of test trial

observations

Page 89: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

VI

10.4 Histological results

animal’s

number

position of the right cannula position of the left cannula

1 Rad - radiatum layer of the hippocampus Py - pyramidal cell layer of the hippocam-

pus

2 - -

3 LMol - lacunosum moleculare LMol - lacunosum moleculare

4 LMol - lacunosum moleculare CA1/CA3 - field CA1 and CA3 of the hip-

pocampus

5 LMol - lacunosum moleculare Or - oriens layer of the hippocampus

6 LMol - lacunosum moleculare LMol - lacunosum moleculare

7 Py - pyramidal cell layer of the hippo-

campus

Rad - radiatum layer of the hippocampus

8 Py - pyramidal cell layer of the hippo-

campus

Py - pyramidal cell layer of the hippocam-

pus

9 - -

10 ? ?

11 - -

12 Or - oriens layer of the hippocampus MoDG - molecular layer of the dentate gy-

rus

13 - -

14 Or - oriens layer of the hippocampus? -

15 LMol - lacunosum moleculare Rad - radiatum layer of the hippocampus

16 Rad - radiatum layer of the hippocampus Rad - radiatum layer of the hippocampus

17 CA1/CA3 - field CA1 and CA3 of the hip-

pocampus

LMol - lacunosum moleculare

18 LMol - lacunosum moleculare LMol - lacunosum moleculare

19 - Or - oriens layer of the hippocampus?

20 MoDG - molecular layer of the dentate

gyrus

LMol - lacunosum moleculare

21 LMol - lacunosum moleculare LMol - lacunosum moleculare

22 - -

23 Or - oriens layer of the hippocampus LMol - lacunosum moleculare

24 MoDG - molecular layer of the dentate

gyrus

MoDG - molecular layer of the dentate gy-

rus

Histological results. For their arrangement see “10.5 Stereotaxic coordinates of the rat brain” in the appendix, p. VII.

Page 90: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

VII

10.5 Stereotaxic coordinates of the rat brain

Stereotaxic coordinates of the rat brain – adapted from Paxinos and Watson: The rat brain in stereotaxic coordinates, 6th edition. Elsevier (2007).

Page 91: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

VIII

10.6 Photos of the experimental room

Photo 1. Retention boxes and electric pump for the syringes.

Page 92: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

IX

Photo 2. Tubing connecting the syringes to the cannulas. Because their weight influenced the head’s movement and the implants’ stability of the rats, the metal coat was removed during the experiment.

Page 93: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

X

Photo 3. Rotatable attachment of the tubing to a clothesline stretched in the middle above the reten-tion boxes.

Page 94: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XI

10.7 Poster for the „6. Lübecker Doktorandentag 2013“

Page 95: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XII

10.8 Further attachments

- “Antrag auf Genehmigung eines Tierversuchsvorhabens”

- “Genehmigung zur Durchführung von Versuchen an Wirbeltieren”

Please find these documents attached to the thesis.

Page 96: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XIII

11 Acknowledgment

First and most of all, I have to thank Dr. Marion Inostroza for quickly and

straightforwardly recruiting me for her project, when I was still a greenhorn in her

second clinical semester, for providing me with papers and private lessons, for

assisting me in every step of the experiment and letting me take part in her

publications. Although I will probably not end up in research, I am grateful for having

got practical insight in the scientific mode of operation and hope that I did not confirm

all the prejudices, which are held against medical students.

Then, I am deeply indebted to Kimberley Petersen, a fellow student, work-mate, and

sufferer, with whom I lived through all ups and downs of a doctoral candidate and

who almost never lost her sunny temper.

Furthermore, my sincere thanks go to Dr. Walter Häuser, who naturally advised me

on the application of water insoluble drugs; to Sonja Binder, who assisted us with

sacrificing the animals and employed Kim and me as student assistants in her

projects; to the cardiosurgical lab, whose premises and instruments we were

allowed to use; to their research assistants, who refreshed our skills of the

biochemical course and endured the smell of twenty-four rat cages in the summer;

to Carlos Oyanedel, whom I have never personally met, but who backed up the

statistical analysis; to Prof. Dr. Lisa Marshall, who spontaneously overtook the

position as first reporter and did not only give critical advise to the contents of my

thesis but also to my style.

Last but not least, I am owing to my husband Felix Gessert, who not only solved

every computer problem I confronted him with but also never grew tired of trying to

teach me the basics of statistical analysis and built me up every time I wanted to

quit.

I dedicate this work to my parents and hope that I will not remain the only one to

complete her doctorate.

Page 97: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XIV

12 Curriculum vitae

Personal data:

Name: Marie Karoline Gessert,

née Bahrendt

Date of birth: 07.02.1989

University career:

- student of human medicine at the University of Lübeck from 2008-2014

- pre-clinical elective subject: advanced anatomy (“Anatomische Präparation für

Fortgeschrittene”)

- degree in the preliminary medical examination (summer 2010): 2,5

- clinical elective subjects: neuroradiology, neurology, emergency medicine

- degree in final examination (December 2014): 1,8

- current position: assistant doctor for psychiatry at the “Asklepios Klinik Ochsen-

zoll” in Hamburg (since January 2019), before: assistant doctor for neurology at

“St. Georg`s Hospital” in Hamburg (2015-2019)

Timetable of the doctoral thesis:

- June 2011: „Antrag auf Genehmigung eines Tierversuchsvorhabens“

- 26.04. – 23.08.2011: planning of the experiments

- 07.07.2011: approval of an English dissertation

- 31.08.2011: application for the approval of a dissertation

- 24.08. – 12.10.2011: execution of the experiments

- 21.10. – 01.11.2011: scoring of the sample and the test trails

- 12.09. – 20.09.2012: scoring of the sleep videos

- 19.06.2013: poster presentation at the “13. Lübecker Doktorandentag”

- 17.03.2014: publication of the paper in the journal Hippocampus

- April 2018: submission of the doctoral thesis

- August 2019: oral examination

Page 98: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XV

13 List of own publications

Kelemen, E., Bahrendt, M., Born, J., & Inostroza, M. (2014). Hippocampal corti-

costerone impairs memory consolidation during sleep but improves consolidation in

the wake state. Hippocampus, 24(5), 510-515.

Page 99: From the Institute of Experimental and Clinical ... · From the Institute of Experimental and Clinical Pharmacology and Toxi-cology of the University of Lübeck Director: Prof. Dr.

XVI

14 Honesty declaration

I hereby declare that the work submitted is my own and that all passages and ideas

that are not mine have been fully and properly acknowledged. I did not use other

personnel, technical or material resources than claimed. Furthermore, I did not ap-

ply for approval or submit my dissertation elsewhere during this process nor did I

take part in other dissertational proceedings.

I do neither contradict the use of an anti-plagiarism software on my thesis nor a

public oral examination.

(date, signature)