From The Classical Beta Distribution To Generalized Beta ...

271
Supervisor: Prof. J.A.M Ottieno FROM THE CLASSICAL BETA DISTRIBUTION TO GENERALIZED BETA DISTRIBUTIONS Title A project submitted to the School of Mathematics, University of Nairobi in partial fulfillment of the requirements for the degree of Master of Science in Statistics. By Otieno Jacob I56/72137/2008 School of Mathematics University of Nairobi July, 2013

Transcript of From The Classical Beta Distribution To Generalized Beta ...

Page 1: From The Classical Beta Distribution To Generalized Beta ...

Supervisor: Prof. J.A.M Ottieno

FROM THE CLASSICAL BETA DISTRIBUTION

TO GENERALIZED BETA DISTRIBUTIONS

Title

A project submitted to the School of Mathematics, University of Nairobi in partial fulfillment of

the requirements for the degree of Master of Science in Statistics. By

Otieno Jacob

I56/72137/2008

School of Mathematics

University of Nairobi

July, 2013

Page 2: From The Classical Beta Distribution To Generalized Beta ...

ii

FROM THE CLASSICAL BETA DISTRIBUTION

TO GENERALIZED BETA DISTRIBUTIONS

Half Title

Page 3: From The Classical Beta Distribution To Generalized Beta ...

iii

Declaration

This project is my original work and has not been presented for a degree in any other University

Signature ________________________

Otieno Jacob

This project has been submitted for examination with my approval as the University Supervisor

Signature ________________________

Prof. J.A.M Ottieno

Page 4: From The Classical Beta Distribution To Generalized Beta ...

iv

Dedication

I dedicate this project to my wife Lilian; sons Benjamin, Vincent, John; daughter Joy and friends.

A special feeling of gratitude to my loving Parents, Justus and Margaret, my aunt Wilkista, my

Grandmother Nereah, and my late Uncle Edwin for their support and encouragement.

Page 5: From The Classical Beta Distribution To Generalized Beta ...

v

Acknowledgement

I would like to thank my family members, colleagues, friends and all those who helped and

supported me in writing this project. My sincere appreciation goes to my supervisor, Prof. J.A.M

Ottieno. I would not have made it this far without his tremendous guidance and support. I would

like to thank him for his valuable advice concerning the presentation of this work before the

Master of Science Project Committee of the School of Mathematics at the University of Nairobi

and for his encouragement and guidance throughout. I would also like to thank Dr. Kipchirchir

for his questions and comments which were beneficial for finalizing the project.

I would like to recognize the financial support from the Higher Education Loans Board (HELB)

without which this study might not have been accomplished. Most of all, I would like to thank

the Almighty God for always being there for me.

Page 6: From The Classical Beta Distribution To Generalized Beta ...

Table of Contents

Title.......................................................................................................................................................... i

Half Title ................................................................................................................................................. ii

Declaration ........................................................................................................................................... iii

Dedication ............................................................................................................................................. iv

Acknowledgement ................................................................................................................................. v

Table of Contents .................................................................................................................................. 1

Executive Summary............................................................................................................................. 16

1 Chapter I: General Introduction ................................................................................................. 18

1.1 Introduction ........................................................................................................................... 18

1.2 Problem Statement ................................................................................................................ 19

1.3 Objective................................................................................................................................ 19

1.4 Literature Review ................................................................................................................... 20

2 Chapter II: The Classical Beta Distribution and its Special Cases ........................................... 27

2.1 Beta and Gamma Functions.................................................................................................... 27

2.2 Construction of the Classical Beta Distribution ....................................................................... 31

2.2.1 From the beta function ................................................................................................... 31

2.2.2 From stochastic processes .............................................................................................. 32

2.2.3 From ratio transformation of two independent gamma variables ................................... 32

2.2.4 From the rth order statistic of the Uniform distribution ................................................... 33

2.3 Properties of the Classical Beta Distribution ........................................................................... 34

2.3.1 rth-order moments .......................................................................................................... 34

2.3.2 The first four moments ................................................................................................... 34

2.3.3 Mode ............................................................................................................................. 36

Page 7: From The Classical Beta Distribution To Generalized Beta ...

2

2.3.4 Variance ......................................................................................................................... 37

2.3.5 Skewness ........................................................................................................................ 37

2.3.6 Kurtosis .......................................................................................................................... 39

2.4 Shapes of Classical Beta Distribution ...................................................................................... 41

2.5 Applications of the Classical Beta Distribution ........................................................................ 45

2.6 Special Cases of the Classical Beta Distribution ....................................................................... 45

2.6.1 Power Distribution Function ........................................................................................... 45

2.6.2 Properties of power distribution ..................................................................................... 46

2.6.3 Shape of Power distribution ........................................................................................... 47

2.6.4 Uniform Distribution Function ........................................................................................ 48

2.6.5 Properties of the Uniform distribution ............................................................................ 48

2.6.6 Shape of Uniform distribution ........................................................................................ 50

2.6.7 Arcsine Distribution Function.......................................................................................... 51

2.6.8 Properties of the arcsine distribution .............................................................................. 51

2.6.9 Shape of Arcsine distribution .......................................................................................... 54

2.6.10 Triangular shaped distributions (a=1, b=2) ...................................................................... 54

2.6.11 Properties of the Triangular shaped distribution (a=1, b=2) ............................................ 54

2.6.12 Shape of triangular distribution (a=1, b=2) ...................................................................... 57

2.6.13 Triangular shaped distributions (a=2, b=1) ...................................................................... 57

2.6.14 Properties of the Triangular shaped distribution (a=2, b=1) ............................................ 57

2.6.15 Shape of triangular distribution (a=2, b=1) ...................................................................... 59

2.6.16 Parabolic shaped distribution ......................................................................................... 60

2.6.17 Properties of parabolic shaped distribution .................................................................... 60

2.6.18 Shape of Parabolic distribution ....................................................................................... 62

2.7 Transformation of Special Case of the Classical Beta Distribution ........................................... 62

2.7.1 Wigner Semicircle Distribution Function ......................................................................... 62

Page 8: From The Classical Beta Distribution To Generalized Beta ...

3

2.7.2 Properties of Wigner Semicircle ...................................................................................... 63

2.7.3 Shape of Wigner semicircle distribution .......................................................................... 65

3 Chapter III: Type II Two Parameter Inverted Beta Distribution .............................................. 66

3.1 Construction of Beta Distribution of the Second Kind ............................................................. 66

3.2 Properties of Beta Distribution of the Second Kind ................................................................. 67

3.2.1 rth-order moments .......................................................................................................... 67

3.2.2 Mean .............................................................................................................................. 69

3.2.3 Mode ............................................................................................................................. 70

3.2.4 Variance ......................................................................................................................... 71

3.2.5 Skewness ........................................................................................................................ 72

3.2.6 Kurtosis .......................................................................................................................... 73

3.2.7 Shapes of Beta distribution of the second kind ............................................................... 75

3.3 Application of Beta Distribution of the Second Kind ............................................................... 75

3.4 Special Cases of Beta Distribution of the Second Kind............................................................. 75

3.4.1 Lomax (Pareto II) distribution function ........................................................................... 75

3.4.2 Properties of Lomax distribution..................................................................................... 76

3.4.3 Shape of Lomax distribution ........................................................................................... 77

3.4.4 Log-Logistic (Fisk) distribution function ........................................................................... 77

3.4.5 Properties of Log-logistic distribution ............................................................................. 78

3.4.6 Shape of Log-logistic distribution .................................................................................... 79

3.5 Limiting Distribution ............................................................................................................... 79

4 Chapter IV: The Three Parameter Beta Distributions ............................................................... 80

4.1 Introduction ........................................................................................................................... 80

4.2 Case I: Libby and Novick Three Parameter Beta Distribution ................................................... 80

4.3 Case II: McDonaldโ€™s Three Parameter Beta I Distribution ........................................................ 83

4.4 Gamma Distribution as a Limiting Distribution ....................................................................... 84

Page 9: From The Classical Beta Distribution To Generalized Beta ...

4

4.5 Case III ................................................................................................................................... 85

4.5.1 3 Parameter Beta Distribution Derived from the Beta Distribution of the Second Kind .... 85

4.5.2 Case IV ........................................................................................................................... 86

4.5.3 Case V ............................................................................................................................ 86

4.5.4 Case VI ........................................................................................................................... 87

5 Chapter V: The Four Parameter Beta Distributions .................................................................. 88

5.1 Introduction ........................................................................................................................... 88

5.2 Generalized Four Parameter Beta Distribution of the First Kind .............................................. 88

5.2.1 Properties of generalized beta distribution of the first kind ............................................ 90

5.3 Applications of Generalized Beta Distribution of the First Kind ............................................... 93

5.4 Special Cases of Generalized Beta Distribution of the First Kind .............................................. 93

5.4.1 Pareto type 1 distribution function ................................................................................. 94

5.4.2 Properties of Pareto type 1 distribution .......................................................................... 94

5.4.3 Stoppa (generalized Pareto type 1) distribution function ................................................ 97

5.4.4 Properties of Stoppa distribution .................................................................................... 98

5.4.5 Kumaraswamy distributions ......................................................................................... 100

5.4.6 Properties of Kumaraswamy distribution ...................................................................... 101

5.4.7 Generalized Power distribution Function ...................................................................... 103

5.4.8 Properties of power distribution ................................................................................... 103

5.4.9 Generalized Gamma Distribution Function ................................................................... 105

5.4.10 Unit Gamma Distribution Function ............................................................................... 106

5.5 Generalized Four Parameter Beta Distribution of the Second Kind ....................................... 107

5.5.1 Properties of generalized beta distribution of the second kind ..................................... 108

5.6 Special Case of the Generalized Beta Distribution of the Second Kind................................... 113

5.6.1 Singh-Maddala (Burr 12) Distribution ........................................................................... 113

5.6.2 Properties of Singh-Maddala distribution ..................................................................... 114

Page 10: From The Classical Beta Distribution To Generalized Beta ...

5

5.6.3 Shapes of Singh-Maddala distribution........................................................................... 117

5.6.4 Generalized Lomax (Pareto type II) Distribution ............................................................ 118

5.6.5 Properties of Generalized Lomax distribution ............................................................... 118

5.6.6 Inverse Lomax Distribution ........................................................................................... 121

5.6.7 Properties of Inverse Lomax distribution ...................................................................... 122

5.6.8 Dagum (Burr type 3) Distribution .................................................................................. 123

5.6.9 Properties of Dagum distribution .................................................................................. 123

5.6.10 Para-logistic distribution ............................................................................................... 125

5.6.11 General Fisk (Log-Logistic) Distribution Function ........................................................... 125

5.6.12 Properties of Fisk (log-logistic) distribution ................................................................... 126

5.6.13 Fisher (F) Distribution Function ..................................................................................... 127

5.6.14 Properties of F distribution ........................................................................................... 127

5.6.15 Half Studentโ€™s t distribution .......................................................................................... 129

5.6.16 Logistic Distribution Function ....................................................................................... 130

5.6.17 Generalized Gamma Distribution Function ................................................................... 130

5.6.18 Properties of Generalized Gamma distribution ............................................................. 131

5.6.19 Gamma Distribution Function ....................................................................................... 134

5.6.20 Properties of Gamma distribution................................................................................. 134

5.6.21 Inverse Gamma distribution ......................................................................................... 136

5.6.22 Properties of Inverse Gamma distribution .................................................................... 137

5.6.23 Weibull Distribution Function ....................................................................................... 140

5.6.24 Properties of Weibull distribution ................................................................................. 140

5.6.25 Exponential distribution Function ................................................................................. 141

5.6.26 Properties of exponential distribution .......................................................................... 142

5.6.27 Chi-Squared distribution function ................................................................................. 143

5.6.28 Properties of Chi-squared distribution .......................................................................... 143

Page 11: From The Classical Beta Distribution To Generalized Beta ...

6

5.6.29 Rayleigh distribution function ....................................................................................... 145

5.6.30 Properties of Rayleigh distribution ................................................................................ 145

5.6.31 Maxwell distribution function ....................................................................................... 146

5.6.32 Properties of Maxwell distribution................................................................................ 147

5.6.33 Half Standard normal function ...................................................................................... 149

5.6.34 Properties of Half Standard normal distribution............................................................ 149

5.6.35 Half-normal distribution function ................................................................................. 150

5.6.36 Properties of Half-normal distribution .......................................................................... 151

5.6.37 Half Log-normal distribution function ........................................................................... 152

5.6.38 Properties of Half Log-normal distribution .................................................................... 152

5.7 Four Parameter Generalized Beta Distribution Function ....................................................... 153

5.7.1 Properties of the four parameter generalized beta distribution .................................... 154

6 Chapter VI: The Generalized Beta Distribution Based on Transformation Technique .......... 155

6.1 Introduction ......................................................................................................................... 155

6.2 Five Parameter Generalized Beta Distribution Function Due to McDonald ............................ 155

6.3 Properties of the Five Parameter Generalized Beta Distribution ........................................... 157

6.3.1 rthโ€“order moments ....................................................................................................... 157

6.3.2 Mean ............................................................................................................................ 158

6.3.3 Variance ....................................................................................................................... 158

6.4 Special Cases of the Five Parameter Generalized Beta Distribution Function ........................ 158

6.4.1 The four parameter generalized beta distribution of the first kind ................................ 158

6.4.2 The four parameter generalized beta distribution of the second kind ........................... 159

6.4.3 The four parameter generalized beta distribution......................................................... 159

6.4.4 The four parameter generalized Logistic distribution function ...................................... 159

6.4.5 The three parameter Inverse Beta distribution of the first kind ..................................... 160

6.4.6 The three parameter Stoppa (generalized pareto type I) distribution function .............. 160

Page 12: From The Classical Beta Distribution To Generalized Beta ...

7

6.4.7 The three parameter Singh-Maddala (Burr12) distribution function .............................. 160

6.4.8 The three parameter Dagum (Burr3) distribution function ............................................ 161

6.4.9 The two parameter Classical Beta distribution .............................................................. 161

6.4.10 The two parameter Pareto type I distribution function ................................................. 161

6.4.11 The two parameter Kumaraswamy distribution function .............................................. 162

6.4.12 The two parameter generalized Power distribution function ........................................ 162

6.4.13 The two parameter Beta distribution of the second kind .............................................. 162

6.4.14 The two parameter Inverse Lomax distribution function ............................................... 163

6.4.15 The two parameter General Fisk (Log-Logistic) distribution function ............................. 163

6.4.16 The two parameter Fisher (F) distribution function ....................................................... 163

6.4.17 The one parameter Power distribution function ........................................................... 164

6.4.18 The one parameter Wigner semicircle distribution function ......................................... 164

6.4.19 The one parameter Lomax (pareto type II) distribution function ................................... 165

6.4.20 The one parameter half studentโ€™s (t) distribution function............................................ 165

6.4.21 Uniform distribution function ....................................................................................... 165

6.4.22 Arcsine distribution function ........................................................................................ 166

6.4.23 Triangular shaped distribution functions....................................................................... 166

6.4.24 Parabolic shaped distribution functions ........................................................................ 166

6.4.25 Log-Logistic (Fisk) distribution function ......................................................................... 167

6.4.26 Logistic distribution function ........................................................................................ 167

6.5 Construction of the Five Parameter Weighted Generalized Beta Distribution Function.......... 169

6.6 Properties of Five Parameter Weighted Generalized Beta Distribution ................................. 170

6.6.1 rth-order moments ........................................................................................................ 170

6.6.2 Mean ............................................................................................................................ 170

6.6.3 Variance ....................................................................................................................... 170

6.6.4 Skewness ...................................................................................................................... 171

Page 13: From The Classical Beta Distribution To Generalized Beta ...

8

6.6.5 Kurtosis ........................................................................................................................ 171

6.7 Special Cases of the Five Parameter Weighted Generalized Beta Distribution Function ........ 172

6.7.1 Weighted beta of the second distribution function ....................................................... 172

6.7.2 Weighted Singh-Maddala (Burr12) distribution function ............................................... 172

6.7.3 Weighted Dagum (Burr3) distribution function ............................................................. 172

6.7.4 Weighted Generalized Fisk (Log-Logistic) distribution function ..................................... 173

6.8 Construction of the Five Parameter Exponential Generalized Beta Distribution Function ...... 175

6.9 Properties of Five Parameter Exponential Generalized Beta Distribution .............................. 176

6.9.1 Moment-generating function ....................................................................................... 176

6.9.2 Mean of the exponential generalized beta distribution ................................................. 177

6.10 Special Cases of Exponential Generalized Beta Distribution .................................................. 177

6.10.1 Exponential generalized beta of the first kind ............................................................... 178

6.10.2 Exponential generalized beta of the second kind .......................................................... 178

6.10.3 Exponential generalized gamma ................................................................................... 179

6.10.4 Generalized Gumbell distribution ................................................................................. 179

6.10.5 Exponential Burr 12 ...................................................................................................... 179

6.10.6 Exponential power distribution function ....................................................................... 180

6.10.7 Two parameter exponential distribution function ......................................................... 180

6.10.8 One parameter exponential distribution function ......................................................... 180

6.10.9 Exponential Fisk (logistic) distribution ........................................................................... 181

6.10.10 Standard logistic distribution .................................................................................... 181

6.10.11 Exponential weibull distribution ............................................................................... 181

7 Chapter VII: Generalized Beta Distributions Based on Generated Distributions ................... 184

7.1 Introduction ......................................................................................................................... 184

7.2 Beta Generator Approach .................................................................................................... 184

7.3 Various Beta Generated Distributions ................................................................................... 185

Page 14: From The Classical Beta Distribution To Generalized Beta ...

9

7.3.1 Beta-Normal Distribution - (Eugene et. al (2002)) ......................................................... 185

7.3.2 Beta-Exponential distribution โ€“ (Nadarajah and Kotz (2006)) ........................................ 186

7.3.3 Beta-Weibull Distribution โ€“ (Famoye et al. (2005)) ....................................................... 188

7.3.4 Beta-Hyperbolic Secant Distribution โ€“ (Fischer and Vaughan. (2007)) ........................... 189

7.3.5 Beta-Gamma โ€“ (Kong et al. (2007)) ............................................................................... 189

7.3.6 Beta-Gumbel Distribution โ€“ (Nadarajah and Kotz (2004)) .............................................. 190

7.3.7 Beta-Frรจchet Distribution (Nadarajah and Gupta (2004)) .............................................. 191

7.3.8 Beta-Maxwell Distribution (Amusan (2010)) ................................................................. 192

7.3.9 Beta-Pareto Distribution (Akinsete et.al (2008))............................................................ 193

7.3.10 Beta-Rayleigh Distribution (Akinsete and Lowe (2009)) ................................................. 194

7.3.11 Beta-generalized-logistic of type IV distribution (Morais (2009)) ................................... 195

7.3.12 Beta-generalized-logistic of type I distribution (Morais (2009)) ..................................... 196

7.3.13 Beta-generalized-logistic of type II distribution (Morais (2009)) .................................... 196

7.3.14 Beta-generalized-logistic of type III distribution (Morais (2009)) ................................... 197

7.3.15 Beta-beta prime distribution (Morais (2009))................................................................ 197

7.3.16 Beta-F distribution (Morais (2009)) ............................................................................... 198

7.3.17 Beta-Burr XII distribution (Paranaรญba et.al (2010)) ......................................................... 198

7.3.18 Beta-Dagum distribution (Condino and Domma (2010)) ............................................... 200

7.3.19 Beta-(fisk) log logistic distribution ................................................................................. 201

7.3.20 Beta-generalized half normal Distribution (Pescim, R.R, et.al (2009)) ............................ 201

7.4 Beta Exponentiated Generated Distributions........................................................................ 203

7.4.1 Exponentiated generated distribution .......................................................................... 203

7.4.2 Exponentiated exponential distribution (Gupta and Kundu (1999)) ............................... 204

7.4.3 Exponentiated Weibull distribution (Mudholkar et.al. (1995)) ...................................... 204

7.4.4 Exponentiated Pareto distribution (Gupta et.al (1998))................................................. 205

7.4.5 Beta exponentiated generated distribution .................................................................. 205

Page 15: From The Classical Beta Distribution To Generalized Beta ...

10

7.4.6 Generalized beta generated distributions ..................................................................... 205

7.4.7 Generalized beta exponential distribution (Barreto-Souza et al. (2010)) ....................... 206

7.4.8 Generalized beta-Weibull distribution .......................................................................... 207

7.4.9 Generalized beta-hyperbolic secant distribution ........................................................... 208

7.4.10 Generalized beta-normal distribution ........................................................................... 208

7.4.11 Generalized beta-log normal distribution ..................................................................... 209

7.4.12 Generalized beta-Gamma distribution .......................................................................... 210

7.4.13 Generalized beta-Frรจchet distribution .......................................................................... 210

8 Chapter VIII: Generalized Beta Distributions Based on Special Functions ............................ 212

8.1 Introduction ......................................................................................................................... 212

8.2 Confluent Hypergeometric Function ..................................................................................... 212

8.3 The Differential Equations ................................................................................................... 213

8.4 Gauss Hypergeometric Function. .......................................................................................... 217

8.5 The Differential Equations ................................................................................................... 217

8.6 Appell Function .................................................................................................................... 220

8.7 Nadarajah and Kotzโ€™s Power Beta Distribution ..................................................................... 221

8.8 Compound Confluent Hypergeometric Function ................................................................... 221

8.9 Beta-Bessel Distribution (A.K Gupta and S.Nadarajah (2006)) ............................................... 222

9 Chapter IX: Summary and Conclusion .................................................................................... 224

9.1 Summary.............................................................................................................................. 224

9.2 Conclusion ........................................................................................................................... 225

10 Appendix ................................................................................................................................ 226

A.1 Classical Beta Distribution .................................................................................................... 226

A.2 Power Distribution (b=1 in table A.1) .................................................................................... 226

A.3 Uniform Distribution (a=b=1 in table A.1) ............................................................................. 227

A.4 Arcsine Distribution .............................................................................................................. 227

Page 16: From The Classical Beta Distribution To Generalized Beta ...

11

A.5 Triangular Shaped (a=1, b=2 in table A.1) ............................................................................. 228

A.6 Triangular Shaped (a=2, b=1 in table A.1) ............................................................................. 228

A.7 Parabolic Shaped.................................................................................................................. 228

A.8 Wigner Semicircle ................................................................................................................ 229

A.9 Beta Distribution of the Second Kind .................................................................................... 229

A.10 Lomax (Pareto II) (a=1 in table A.9)....................................................................................... 230

A.11 Log Logistic (Fisk) (a=b=1 in table A.9) .................................................................................. 230

A.12 Libby and Novick (1982) Beta Distribution ............................................................................ 231

A.13 McDonaldโ€™s (1995) beta distribution of the first kind............................................................ 231

A.14 Three Parameter Beta Distribution ....................................................................................... 231

A.15 Chotikapanich et.al (2010) Beta of the Second Kind Distribution .......................................... 231

A.16 General Three Parameter Beta Distribution .......................................................................... 231

A.17 Three Parameter Beta Distribution ....................................................................................... 232

A.18 Generalized Four Parameter Beta Distribution of the First Kind ............................................ 232

A.19 Pareto Type I (b=1, p=-1 in table A.1) ................................................................................... 233

A.20 Stoppa (Generalized Pareto Type I) (a=1, p=-p in table A.1) .................................................. 234

A.21 Kumaraswamy (a=1, q=1 in table A.1) .................................................................................. 235

A.22 Generalized Power (b=1, p=1 in table A.1) ............................................................................ 236

A.23 Generalized Four Parameter Beta Distribution of the Second Kind ....................................... 237

A.24 Singh Maddala (Burr 12) ....................................................................................................... 238

A.25 Generalized Lomax (Pareto II) .............................................................................................. 239

A.26 Inverse Lomax (b=1, p=1 in table A.23) ................................................................................. 240

A.27 Dagum (Burr 3) (b=1 in table A.23) ....................................................................................... 240

A.28 Para-Logistic (a=1, b = p in table A.23) .................................................................................. 241

A.29 General Fisk (Log โ€“Logistic) .................................................................................................. 241

A.30 Fisher (F) .............................................................................................................................. 241

Page 17: From The Classical Beta Distribution To Generalized Beta ...

12

A.31 Half Studentโ€™s t .................................................................................................................... 242

A.32 Logistic ................................................................................................................................. 242

A.33 Generalized Gamma ............................................................................................................. 242

A.34 Gamma ................................................................................................................................ 243

A.35 Inverse Gamma .................................................................................................................... 243

A.36 Weibull ................................................................................................................................ 244

A.37 Exponential .......................................................................................................................... 244

A.38 Chi-Squared ......................................................................................................................... 244

A.39 Rayleigh ............................................................................................................................... 245

A.40 Maxwell ............................................................................................................................... 245

A.41 Half Standard Normal ........................................................................................................... 245

A.42 Half Normal .......................................................................................................................... 246

A.43 Half Log Normal ................................................................................................................... 246

A.44 Four Parameter Generalized Beta Distribution ..................................................................... 246

A.45 Five Parameter Generalized Beta Distribution ...................................................................... 247

A.46 Five Parameter Weighted Generalized Beta Distribution ...................................................... 248

A.47 Weighted Beta of the Second Kind ....................................................................................... 248

A.48 Weighted Singh-Maddala (Burr12) ....................................................................................... 248

A.49 Weighted Dagum (Burr3) ..................................................................................................... 248

A.50 Weighted Generalized Fisk (Log-Logistic) .............................................................................. 249

A.51 Five Parameter Exponential Generalized Beta Distribution ................................................... 249

A.52 Exponential Generalized Beta Distribution of the First Kind .................................................. 249

A.53 Exponential Generalized Beta Distribution of the Second Kind ............................................. 249

A.54 Exponential Generalized Gamma (Generalized Gompertz) ................................................... 250

A.55 Generalized Gumbell ............................................................................................................ 250

A.56 Exponential Power ............................................................................................................... 250

Page 18: From The Classical Beta Distribution To Generalized Beta ...

13

A.57 Exponential (Two Parameter) ............................................................................................... 250

A.58 Exponential (One Parameter) ............................................................................................... 251

A.59 Exponential Fisk (Logistic)..................................................................................................... 251

A.60 Standard Logistic .................................................................................................................. 251

A.61 Exponential Weibull ............................................................................................................. 251

A.62 Beta Generator .................................................................................................................... 251

A.63 ith Order Statistics (a=i, b=n-i+1 in table A.62) ....................................................................... 252

A.64 Beta-Normal (Substituting G(X) and g(X) in table A.62) ......................................................... 252

A.65 Beta-Exponential (Substituting G(X) and g(X) in table A.62) .................................................. 252

A.66 Beta-Weibull (Substituting G(X) and g(X) in table A.62) ........................................................ 252

A.67 Beta-Hyperbolic Secant (Substituting G(X) and g(X) in table A.62) ........................................ 253

A.68 Beta-Gamma (Substituting G(X) and g(X) in table A.62) ........................................................ 253

A.69 Beta-Gumbel (Substituting G(X) and g(X) in table A.62) ........................................................ 253

A.70 Beta-Frรจchet (Substituting G(X) and g(X) in table A.62) ......................................................... 254

A.71 Beta-Maxwell (Substituting G(X) and g(X) in table A.62) ....................................................... 254

A.72 Beta-Pareto (Substituting G(X) and g(X) in table A.62) .......................................................... 254

A.73 Beta-Rayleigh (Substituting G(X) and g(X) in table A.62) ....................................................... 255

A.74 Beta-Generalized-Logistic of Type IV (Substituting G(X) and g(X) in table A.62) ..................... 255

A.75 Beta-Generalized-Logistic of Type I (Substituting q=1 in table A.74) ...................................... 255

A.76 Beta-Generalized-Logistic of Type II (Substituting q=1 in table A.74) ..................................... 255

A.77 Beta-Generalized-Logistic of Type III (Substituting q=1 in table A.74) .................................... 255

A.78 Beta-Beta Prime ................................................................................................................... 256

A.79 Beta-F (Substituting G(X) and g(X) in table A.62) ................................................................... 256

A.80 Beta-Burr XII (Substituting G(X) and g(X) in table A.62) ......................................................... 256

A.81 Beta-Dagum (Substituting G(X) and g(X) in table A.62) ......................................................... 256

A.82 Beta-Fisk (Log-Logistic) (Substituting G(X) and g(X) in table A.62) ......................................... 257

Page 19: From The Classical Beta Distribution To Generalized Beta ...

14

A.83 Beta-Generalized Half Normal (Substituting G(X) and g(X) in table A.62) .............................. 257

A.84 Generalized Beta Generator ................................................................................................. 257

A.85 Exponentiated Exponential (Substituting G(X) and g(X) in table A.84) ................................... 257

A.86 Exponentiated Weibull (Substituting G(X) and g(X) in table A.84) ......................................... 258

A.87 Exponentiated Pareto (Substituting G(X) and g(X) in table A.84) ........................................... 258

A.88 Generalized Beta Exponential (Substituting G(X) and g(X) in table A.84) ............................... 258

A.89 Generalized Beta Weibull (Substituting G(X) and g(X) in table A.84) ..................................... 258

A.90 Generalized Beta Hyperbolic Secant (Substituting G(X) and g(X) in table A.84) ..................... 259

A.91 Generalized Beta Normal (Substituting G(X) and g(X) in table A.84) ...................................... 259

A.92 Generalized Beta Log Normal (Substituting G(X) and g(X) in table A.84) ............................... 259

A.93 Generalized Beta Gamma (Substituting G(X) and g(X) in table A.84) ..................................... 259

A.94 Generalized Beta Frรจchet (Substituting G(X) and g(X) in table A.84) ..................................... 260

A.95 Confluent Hypergeometric ................................................................................................... 260

A.96 Gauss Hypergeometric ......................................................................................................... 260

A.97 Appell .................................................................................................................................. 260

11 References .............................................................................................................................. 262

List of Figures

Fig.1. 1: General Framework based on transformation ........................................................................... 21

Fig.1. 2: Beta Generated Distributions ................................................................................................... 24

Fig.1. 3: Generalized Beta Distributions Based on Special Functions ..................................................... 26

Fig.2. 1 : Left Skewedness ..................................................................................................................... 42

Fig.2. 2: Case of beta unimodal distribution with ๐‘Ž > 0 ......................................................................... 43

Fig.2. 3: Case of beta unimodal distribution with ๐‘ > 0 ......................................................................... 43

Fig.2. 4: j-Shaped beta distribution ....................................................................................................... 44

Fig.2. 5: inverted j-Shaped beta distribution ........................................................................................... 44

Page 20: From The Classical Beta Distribution To Generalized Beta ...

15

Fig.2. 6: Power distribution ................................................................................................................... 48

Fig.2. 7: Uniform distribution on the interval (0,1) ................................................................................. 50

Fig.2. 8: Arcsine distribution ................................................................................................................. 54

Fig.2. 9: Triangular shaped distribution.................................................................................................. 57

Fig.2. 10: Trangular shaped distribution ................................................................................................. 59

Fig.2. 11: Parabolic distribution ............................................................................................................. 62

Fig.2. 12: Wigner semicircle distribution ............................................................................................... 65

Fig.3. 1: Beta distribution of the second kind ......................................................................................... 75

Fig.3. 2: Lomax distribution .................................................................................................................. 77

Fig.3. 3: Log-logistic distribution........................................................................................................... 79

Page 21: From The Classical Beta Distribution To Generalized Beta ...

16

Executive Summary

This Masterโ€˜s project considers on one hand, the construction of the two parameter classical beta

distribution on the domain (0,1) and its generalization and on the other hand, the construction of

the extended two parameter beta distribution on the domain (0,โˆž) and its generalization. It

provides a comprehensive mathematical treatment of these two parameter beta distributions, their

constructions, properties, shapes and special cases.

There are various ways of constructing distributions in general. Four ways of constructing the

classical beta distribution considered in this work are constructions from,

i. The definition of the beta function;

ii. A Poisson process;

iii. The transformation of a ratio of two independent gamma variables; and

iv. Order statistic.

Properties derived include the expressions of the rth

moments, first four moments, mode,

coefficient of skewness and coefficient of kurtosis. Special cases such as Power, Uniform,

Arcsine, Triangular shaped, Parabolic shaped and Wigner Semicircle distributions are given. By

the transformation technique a two parameter inverted beta distribution was obtained and its

special cases such as Lomax (Pareto II) and Log-logistic (Fisk) distributions were constructed.

The work also looked at three methods of generalizing the classical beta distribution i.e. through:

1. Transformation technique

2. Generator Approach

3. Use of Special functions

The transformation technique resulted into the following:

i. Three parameter beta distributions of both first and second kinds. In particular, the Libby-

Novick and McDonaldโ€˜s distributions.

ii. Generalized four parameter beta distributions of the first and second kinds. Particular

cases are the McDonald four parameter beta distribution of the first kind with its special

Page 22: From The Classical Beta Distribution To Generalized Beta ...

17

cases, the McDonald four parameter beta distribution of the second kind with its special

cases and the four parameter generalized beta distribution.

iii. The five parameter generalized beta distribution due to McDonald and Xu (1995).

Generalized distributions based on generator approach due to the work of Eugene et al. (2002)

are classified into:

Beta generated distributions

Exponentiated generated distributions

Generalized beta generated distributions

The generalized beta distributions based on the use of special functions considered includes the

Confluent hypergeometric distribution and the Gauss Hypergeometric distribution from the

Confluent hypergeometric function and the Gauss Hypergeometric function respectively. Other

distributions are based on the Appell function and the Bessel function.

Tables showing special cases of beta distributions and their generalizations are given in the

appendix.

Page 23: From The Classical Beta Distribution To Generalized Beta ...

18

1 Chapter I: General Introduction

1.1 Introduction

In statistical distributions, a vast activity has been observed in generalizing classical

distributions by adding more parameters to make them more flexible in analyzing

empirical data. Various methods have been developed to achieve this purpose. Among

such methods are the transformation technique, generator approach, mixture

(compounding) and use of special functions. In this work we examine the case of

classical beta distribution. The term generalized used in this work has the notion of

adding more parameters to the existing distribution in order to give a more universal

distribution as opposed to the well known existing generalized distributions.

Historically, the work on beta distributions started as early as 1676 when Sir Isaac

Newton wrote a letter to Henry Oldenberg as given by Dutka, J., (1981). In his letter

dated 24th October, 1676, Newton evaluated ๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

0 as a series. The particular case of the

result was applicable to the evaluation of the classical beta distribution. The two

parameter classical beta distributions are among the celebrated Pearson system of

statistical distributions derived by Karl Pearson in the 1890s in connection with his work

on evolution.

A handbook of beta distribution and its applications was published in 2004 edited by

Gupta and Nadarajah. The book enumerates the properties of beta distributions and

related mathematical notions. It demonstrates the applications in the fields of economics,

quality control, soil science and biomedicine. It further discusses the centrality of beta

distributions in Bayesian inference, the beta-binomial model and applications of the beta-

binomial distribution. However, immediately after that publication, further work has been

done in that area. There is therefore a need to re-examine the works on beta distribution.

Page 24: From The Classical Beta Distribution To Generalized Beta ...

19

1.2 Problem Statement

Recent developments focus on new techniques for building meaningful distributions, a

remarkable development has been observed in generalizing the classical beta distribution.

There has been a growing interest in the applications of these distributions in the analysis

of empirical data and for many statistical procedures. However, their applications are

limited in important ways as they could not fit data very well. The main trend is therefore

to add more parameters to make them more flexible in order to fit the existing empirical

data.

1.3 Objective

The objective of this project is to review various methods that have been used to

construct the beta distribution from the classical to generalized beta distributions. The

specific objectives are:

to study the classical two parameter beta distribution within (0,1) domain and

(0,โˆž) domain

to generalize the two parameter beta distributions using

i. transformation technique

ii. generator approach

iii. some special functions

Page 25: From The Classical Beta Distribution To Generalized Beta ...

20

1.4 Literature Review

This section reviews various methods that have been used in constructing beta

distributions. There are three classes of generalized beta distributions:

i. Those based on transformations

The generalized beta distributions based on transformation has largely been contributed

by McDonald (1984). McDonald and his associates contributed in the development of the

generalized beta distributions as an income distribution and in unifying the various

research activities in closely related fields.

McDonald and Xu (1995) introduced a five parameter beta distribution which nest the

generalized beta and gamma distributions and include more than thirty distributions as

limiting or special cases.

McDonald and Richards (1987a, b) presented a four parameter generalized beta

distribution which includes as special cases three and two parameter beta, generalized

gamma, Weibull, power function, Pareto, lognormal, half-normal, uniform and others.

Libby and Novick (1982) proposed a three parameter generalized beta distribution for

utility fitting.

The figure 1.1 below illustrates the transformation from the two parameter classical beta

distribution to the five parameters generalized beta distribution where the transformations

are given as follows:

T1: is the transformation changing a beta type I (classical) distribution to a two

parameter beta type II (Inverted Beta) distribution

T2: transforms a 2 parameter to 3 parameter beta distributions

T3: transforms a 3 parameter to a 4 parameter beta distributions

T4: transforms a 4 parameter to 5 parameter beta distributions

Tiโ€˜s are defined in the coming chapters

Page 26: From The Classical Beta Distribution To Generalized Beta ...

21

Fig.1. 1: General Framework based on transformation

Beta Type I

2 Parameters

Beta Type II

2 Parameters

Generalized beta II

3 Parameters

Generalized beta I

3 Parameters

Generalized beta I

4 Parameters

Generalized beta II

4 Parameters

Generalized beta

5 Parameters

T1

T2 T2

T3 T3

T4 T4

Page 27: From The Classical Beta Distribution To Generalized Beta ...

22

ii. Generator approach based on CDF

The latest work involving the class of generalized beta distributions was introduced by

Eugene et.al (2002) that defined the beta-normal distribution and studied some of its

properties. Since then, several authors have been studying particular cases of this class of

distributions. An advantage of the beta-normal distribution over the normal distribution is

that the beta normal can be unimodal and bimodal.

The bimodal region for the beta-normal distribution was studied by Famoye et. al (2003).

Gupta and Nadarajah (2004) later derived a more general expression for the nth

moment

of the beta-normal distribution.

Nadarajah and Kotz (2004) defined the beta-Gumbel distribution, which has greater tail

flexibility than the Gumbel distribution.

Nadarajah and Gupta (2004) defined the beta-Frรจchet distribution and Barreto-Souza

et.al. (2008) presented some additional mathematical properties.

Nadarajah and Kotz (2006) defined the beta-exponential distribution and gave a detailed

presentation.

Famoye et.al (2005) defined the beta-Weibull and Lee et.al (2007) made some

applications to censored data.

Kong et.al (2007) proposed the beta-gamma distribution.

The four parameter beta-pareto distribution was defined and studied by Akinsete et al

(2008).

Akinsete and Lowe (2009) proposed the beta-Rayleigh distribution.

Amusan (2010) defined the beta-Maxwell distribution and studied some of its properties.

The figure 1.2 below illustrates how the generator approach has been applied in the two

parameters classical beta distribution to derive other generalized beta distributions.

iii. Generalized beta generated

Barreto-Souza et al. (2010) proposed the generalized beta exponential distribution and

discussed maximum likelihood estimation of its parameters.

Page 28: From The Classical Beta Distribution To Generalized Beta ...

23

iv. Beta-exponentiated distributions

Since 1995, the exponentiated distributions have been widely studied in statistics with the

development of various classes of these distributions. Mudholkar et.al. (1995) proposed

the exponentiated Weibull distribution.

Gupta et al. (1998) introduced the exponentiated Pareto distribution.

Gupta and Kundu (1999) introduced the exponentiated exponential distribution as a

generalization of the standard exponential distribution.

Page 29: From The Classical Beta Distribution To Generalized Beta ...

24

Fig.1. 2: Beta Generated Distributions

Classical beta distribution

Beta Normal

Eugene et al. (2002)

Beta Rayleigh

Akinsete and Lowe (2009)

Beta Maxwell

Amusan (2010)

Beta Pareto

Akinsete et.al (2008)

Beta Gamma

Kong et.al (2007)

Properties of Beta Frรจchet

Barreto-Souza et.al (2008)

Beta Frรจchet

Nadarajah and Gupta (2004)

Application on Beta Weibull

Lee et al. (2007

Beta Weibull

Famoye & Olumolade (2005)

Beta Gumbel

Kotz and Nadarajah (2004)

nth

moment of beta normal

Gupta and Nadarajah (2004)

Bimodal beta normal

Famoye et al (2003)

Beta exponential

Kotz and Nadarajah (2006)

Generalized Order Statistics

Jones (2004)

Original Original

Beta Hyperbolic Secant

Fischer and Vaughan (2007)

Beta Generalized Half Normal

Pescim R.R et.al (2009)

Beta Dagum

Condino and Domma (2010)

Beta Burr XII

Paranaiba et.al (2010)

Beta (Fisk) Log Logistic

Paranaiba et.al (2010)

Beta Generalized Logistic of Type IV

Morais (2009)

Beta Generalized Logistic of Type I

Morais (2009)

Beta Beta Prime

Morais (2009)

Beta F

Morais (2009)

Page 30: From The Classical Beta Distribution To Generalized Beta ...

25

v. Based on special functions

Beta function is a special function. Other special functions have been used to generalize

the beta distribution.

Armero and Bayarri (1994) suggested Gauss hypergeometric function distribution in

connection with marginal prior/posterior distribution. They obtained the generalized beta

distribution by dividing the classical beta distribution by certain algebraic function.

Nadarajah and Kotz (2004) also studied the beta distribution based on the Gauss

hypergeometric function.

Gordy (1988a) introduced confluent hypergeometric distribution and applied it to auction

theory. He (Gordy (1988b)) also introduced the compound confluent hypergeometric

distribution which contains McDonald and Xuโ€˜s generalized beta, Gauss hypergeometric

and confluent hypergeometric as special cases. Gordy generalized the classical beta

distribution using the confluent hypergeometric function in the way Armero and Bayarri

(1994) used Gauss hypergeometric function to generalize the beta to the Gauss

hypergeometric distribution.

Nadarajah and Kotz (2006) introduced ๐น1 beta distribution based on Appell function of

the first kind. The distribution is very flexible and contains several of the known

generalization of the classical beta distribution as particular cases.

The figure 1.3 below illustrates the relationship between the two parameters classical beta

distribution and some of the special functions.

Page 31: From The Classical Beta Distribution To Generalized Beta ...

26

Fig.1. 3: Generalized Beta Distributions Based on Special Functions

Classical beta

distribution

Gauss hypergeometric

Armero/Bayarri (1994)

Confluent

hypergeometric function

Gordy (1988a)

Compound confluent

hypergeometric function

Gordy (1988b)

Appell Function, ๐น1

Nadarajah/Kotz (2006)

Generalized beta

McDonald/Xu (1995)

Gauss

hypergeometric

Confluent

hypergeometric

Beta Bessel

Gupta and Nadarajah (2006)

Page 32: From The Classical Beta Distribution To Generalized Beta ...

27

2 Chapter II: The Classical Beta Distribution

and its Special Cases

2.1 Beta and Gamma Functions

Beta distributions are based on gamma functions. A brief description of these two

functions is therefore in order.

i. Beta Function

The beta function is a special function denoted by ๐ต ๐‘Ž, ๐‘ and defined as

๐ต ๐‘Ž, ๐‘ = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1๐‘‘๐‘ฅ

๐Ÿ

๐ŸŽ

, ๐‘Ž > 0, ๐‘ > 0

ii. Gamma Function

The gamma function is a special function denoted by ฮ“ and defined as

๐›ค ๐‘Ž = ๐‘ก๐‘Žโˆ’1๐‘’โˆ’๐‘ก๐‘‘๐‘กโˆž

0

iii. Relationship between the Beta function and the Gamma function

There are two different methods for deriving the relationship between the beta function

and the gamma function:

i. The formula of the beta function can be derived as a definite integral whose

integrand depends on two variables ๐‘Ž and ๐‘ by reversing the order of integration of a

double integral as follows:

ฮ“(๐‘Ž) ฮ“(๐‘) = ๐‘ก๐‘Žโˆ’1๐‘’โˆ’๐‘ก๐‘‘๐‘ก

โˆž

๐ŸŽ

๐‘ข๐‘โˆ’1๐‘’โˆ’๐‘ข๐‘‘๐‘ข

โˆž

๐ŸŽ

Page 33: From The Classical Beta Distribution To Generalized Beta ...

28

= ๐‘ก๐‘Žโˆ’1๐‘ข๐‘โˆ’1๐‘’โˆ’(๐‘ก+๐‘ข)๐‘‘๐‘ก๐‘‘๐‘ข

โˆž

๐ŸŽ

โˆž

๐ŸŽ

Using the transformation ๐‘ข = ๐‘ก๐‘ฃ we obtain

ฮ“ ๐‘Ž ฮ“ ๐‘ = ๐‘ก๐‘Žโˆ’1(๐‘ก๐‘ฃ)๐‘โˆ’1๐‘’โˆ’(๐‘ก+๐‘ก๐‘ฃ)๐‘ก๐‘‘๐‘ก๐‘‘๐‘ฃ

โˆž

๐ŸŽ

โˆž

๐ŸŽ

= ๐‘ก๐‘Žโˆ’1๐‘ก๐‘๐‘ฃ๐‘โˆ’1๐‘’โˆ’(๐‘ก+๐‘ก๐‘ฃ)๐‘‘๐‘ก๐‘‘๐‘ฃ

โˆž

๐ŸŽ

โˆž

๐ŸŽ

= ๐‘ก๐‘Ž+๐‘โˆ’1๐‘ฃ๐‘โˆ’1๐‘’โˆ’๐‘ก(1+๐‘ฃ)๐‘‘๐‘ก๐‘‘๐‘ฃ

โˆž

๐ŸŽ

โˆž

๐ŸŽ

Using the transformation ๐‘ค = ๐‘ก ๐‘ฃ + 1 again gives

= ๐‘ค

๐‘ฃ + 1

๐‘Ž+๐‘โˆ’1

๐‘ฃ๐‘โˆ’1๐‘’โˆ’๐‘ค (๐‘ฃ + 1)โˆ’1๐‘‘๐‘ค๐‘‘๐‘ฃ

โˆž

๐ŸŽ

โˆž

๐ŸŽ

= ๐‘ฃ๐‘โˆ’1๐‘‘๐‘ฃ ๐‘ค๐‘Ž+๐‘โˆ’1๐‘’โˆ’๐‘ค

(๐‘ฃ + 1)๐‘Ž+๐‘๐‘‘๐‘ค

โˆž

๐ŸŽ

โˆž

๐ŸŽ

= ๐‘ฃ๐‘โˆ’1

(๐‘ฃ + 1)๐‘Ž+๐‘๐‘‘๐‘ฃ

โˆž

๐ŸŽ

๐‘ค๐‘Ž+๐‘โˆ’1๐‘’โˆ’๐‘ค๐‘‘๐‘ค

โˆž

๐ŸŽ

= ๐‘ฃ๐‘โˆ’1

๐‘ฃ + 1 ๐‘Ž+๐‘๐‘‘๐‘ฃ

โˆž

๐ŸŽ

ฮ“(a + b)

From which it follows that

๐ต ๐‘Ž, ๐‘ = ฮ“(๐‘Ž) ฮ“(๐‘)

ฮ“(๐‘Ž + ๐‘)=

๐‘ฃ๐‘โˆ’1

๐‘ฃ + 1 ๐‘Ž+๐‘๐‘‘๐‘ฃ

โˆž

๐ŸŽ

Finally, using the transformation ๐‘ฃ =๐‘ฅ

1 โˆ’ ๐‘ฅ we get the alternative formulation

Page 34: From The Classical Beta Distribution To Generalized Beta ...

29

๐ต ๐‘Ž, ๐‘ =

๐‘ฅ1 โˆ’ ๐‘ฅ

๐‘โˆ’1

๐‘ฅ

1 โˆ’ ๐‘ฅ + 1 ๐‘Ž+๐‘

1

(1 โˆ’ ๐‘ฅ)2๐‘‘๐‘ฅ

โˆž

๐ŸŽ

= (

๐‘ฅ1 โˆ’ ๐‘ฅ)๐‘โˆ’1

1

1 โˆ’ ๐‘ฅ ๐‘Ž+๐‘

1

(1 โˆ’ ๐‘ฅ)2๐‘‘๐‘ฅ

โˆž

๐ŸŽ

= ๐‘ฅ๐‘โˆ’1(1 โˆ’ ๐‘ฅ)โˆ’๐‘+1+๐‘Ž+๐‘โˆ’2 ๐‘‘๐‘ฅ

โˆž

๐ŸŽ

= ๐‘ฅ๐‘โˆ’1(1 โˆ’ ๐‘ฅ)๐‘Žโˆ’1 ๐‘‘๐‘ฅ

1

๐ŸŽ

which is the beta function.

ii. Another method for deriving the relationship between beta function and gamma

function is by using the polar co-ordinates as shown below.

ฮ“(๐‘Ž) ฮ“(๐‘) = ๐‘ฅ๐‘Žโˆ’1๐‘’โˆ’๐‘ฅ๐‘‘๐‘ฅ

โˆž

๐ŸŽ

๐‘ฆ๐‘โˆ’1๐‘’โˆ’๐‘ฆ๐‘‘๐‘ฆ

โˆž

๐ŸŽ

= ๐‘’โˆ’(๐‘ฅ+๐‘ฆ)๐‘ฅ๐‘Žโˆ’1

โˆž

๐ŸŽ

๐‘ฆ๐‘โˆ’1๐‘‘๐‘ฅ๐‘‘๐‘ฆ

โˆž

๐ŸŽ

let ๐‘ฅ = s2 and ๐‘ฆ = t2

therefore d๐‘ฅ = 2๐‘ ๐‘‘๐‘  and ๐‘‘๐‘ฆ = 2๐‘ก๐‘‘๐‘ก

now

ฮ“(a)ฮ“(๐‘) = ๐‘’โˆ’(๐‘ 2+t2)s2(aโˆ’1)

โˆž

๐ŸŽ

๐‘ก2(๐‘โˆ’1). 2๐‘ ๐‘‘๐‘ 2๐‘ก๐‘‘๐‘ก

โˆž

๐ŸŽ

= 4 ๐‘’โˆ’(๐‘ 2+t2)s2aโˆ’1

โˆž

๐ŸŽ

๐‘ก2๐‘โˆ’1๐‘‘๐‘  ๐‘‘๐‘ก

โˆž

๐ŸŽ

Next, let ๐‘  = ๐‘Ÿ๐‘ ๐‘–๐‘›๐œƒ ๐‘Ž๐‘›๐‘‘ ๐‘ก = ๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ

Therefore ๐‘‘๐‘  = ๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ ๐‘‘๐œƒ ๐‘Ž๐‘›๐‘‘ ๐‘‘๐‘ก = โˆ’๐‘Ÿ๐‘ ๐‘–๐‘›๐œƒ๐‘‘๐œƒ

Page 35: From The Classical Beta Distribution To Generalized Beta ...

30

๐ฝ =

๐‘‘๐‘ 

๐‘‘๐œƒ

๐‘‘๐‘ก

๐‘‘๐œƒ๐‘‘๐‘ 

๐‘‘๐‘Ÿ

๐‘‘๐‘ก

๐‘‘๐‘Ÿ

= ๐‘Ÿ๐ถ๐‘œ๐‘ ๐œƒ โˆ’๐‘Ÿ๐‘†๐‘–๐‘›๐œƒ๐‘†๐‘–๐‘›๐œƒ ๐ถ๐‘œ๐‘ ๐œƒ

= ๐‘Ÿ๐ถ๐‘œ๐‘ 2๐œƒ + ๐‘Ÿ๐‘†๐‘–๐‘›2๐œƒ = ๐‘Ÿ

โˆด ๐›ค(๐‘Ž)๐›ค(๐‘) = 4 ๐‘’โˆ’๐‘Ÿ2

๐œ‹/2

๐ŸŽ

(๐‘Ÿ๐‘†๐‘–๐‘›๐œƒ)2๐‘Žโˆ’1(๐‘Ÿ๐ถ๐‘œ๐‘ ๐œƒ)2๐‘โˆ’1

โˆž

๐ŸŽ

๐ฝ ๐‘‘๐œƒ๐‘‘๐‘Ÿ

= 4 ๐‘’โˆ’๐‘Ÿ2

๐œ‹/2

๐ŸŽ

๐‘Ÿ2๐‘Žโˆ’1+2๐‘โˆ’1(๐‘†๐‘–๐‘›๐œƒ)2๐‘Žโˆ’1(๐ถ๐‘œ๐‘ ๐œƒ)2๐‘โˆ’1

โˆž

๐ŸŽ

๐‘Ÿ๐‘‘๐œƒ๐‘‘๐‘Ÿ

= 2 2 (๐‘†๐‘–๐‘›๐œƒ)2๐‘Žโˆ’1

๐œ‹/2

๐ŸŽ

๐ถ๐‘œ๐‘ ๐œƒ 2๐‘โˆ’1๐‘‘๐œƒ ๐‘’โˆ’๐‘Ÿ2๐‘Ÿ2(๐‘Ž+๐‘โˆ’1)

โˆž

๐ŸŽ

๐‘Ÿ๐‘‘๐‘Ÿ

Recall that ๐ต(๐‘Ž, ๐‘) = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’11

0๐‘‘๐‘ฅ

Let ๐‘ฅ = ๐‘†๐‘–๐‘›2๐œƒ โŸน ๐‘‘๐‘ฅ = 2๐‘†๐‘–๐‘›๐œƒ๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œƒ

โˆด ๐ต ๐‘Ž, ๐‘ = ๐‘†๐‘–๐‘›๐œƒ 2๐‘Žโˆ’2

๐œ‹2

๐ŸŽ

๐ถ๐‘œ๐‘ ๐œƒ 2๐‘โˆ’2 . 2๐‘†๐‘–๐‘›๐œƒ๐ถ๐‘œ๐‘ ๐œƒ๐‘‘๐œƒ

= 2 ๐‘†๐‘–๐‘›๐œƒ 2๐‘Žโˆ’1

๐œ‹2

๐ŸŽ

๐ถ๐‘œ๐‘ ๐œƒ 2๐‘โˆ’1๐‘‘๐œƒ

โˆด ฮ“ a ฮ“(b) = 2 ๐ต ๐‘Ž, ๐‘ ๐‘’โˆ’๐‘Ÿ2๐‘Ÿ2(๐‘Ž+๐‘โˆ’1)

โˆž

๐ŸŽ

๐‘Ÿ๐‘‘๐‘Ÿ

= ๐ต ๐‘Ž, ๐‘ ๐‘’โˆ’๐‘Ÿ2๐‘Ÿ2(๐‘Ž+๐‘โˆ’1)2๐‘Ÿ

โˆž

๐ŸŽ

๐‘‘๐‘Ÿ

Let ๐‘ข = ๐‘Ÿ2 โŸน ๐‘‘๐‘ข = 2๐‘Ÿ๐‘‘๐‘Ÿ

โˆด ฮ“ a ฮ“(b) = ๐ต ๐‘Ž, ๐‘ ๐‘’โˆ’๐‘ข๐‘ข๐‘Ž+๐‘โˆ’1

โˆž

๐ŸŽ

๐‘‘๐‘ข

= ๐ต ๐‘Ž, ๐‘ ฮ“(๐‘Ž + ๐‘)

โˆด ๐ต ๐‘Ž, ๐‘ =ฮ“ a ฮ“ b

ฮ“(๐‘Ž + ๐‘)

Page 36: From The Classical Beta Distribution To Generalized Beta ...

31

2.2 Construction of the Classical Beta Distribution

2.2.1 From the beta function

By definition

๐ต ๐‘Ž, ๐‘ = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1๐‘‘๐‘ฅ

๐Ÿ

๐ŸŽ

, ๐‘Ž > 0, ๐‘ > 0

Normalizing the beta function gives

1 = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1๐‘‘๐‘ฅ

๐ต ๐‘Ž, ๐‘

1

0

Thus the probability density function of the beta distribution with shape parameters a

and b is expressed as

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘ =๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1

๐ต(๐‘Ž, ๐‘) , 0 < ๐‘ฅ < 1, ๐‘Ž > 0, ๐‘ > 0 _______(2.1)

The cumulative distribution function of equation 2.1 is given by

๐น ๐‘ฅ =1

๐ต(๐‘Ž, ๐‘) ๐‘ก๐‘Žโˆ’1(1 โˆ’ ๐‘ก)๐‘โˆ’1

๐‘ฅ

0

๐‘‘๐‘ก, 0 < ๐‘ก < 1, ๐‘Ž > 0, ๐‘ > 0_______(2.2)

Where the parameters ๐‘Ž and ๐‘ are positive real quantities and the variable x satisfies

0 โ‰ค ๐‘ฅ โ‰ค 1.The quantity ๐ต(๐‘Ž, ๐‘) is the beta function. Equation (2.1) is also known as the

standard beta or classical beta distribution.

Page 37: From The Classical Beta Distribution To Generalized Beta ...

32

2.2.2 From stochastic processes

Consider a Poisson process with arrival rate of ๐œ† events per unit time. Let ๐‘ค๐‘˜ denote the

waiting time until the kth

arrival of an event and ๐‘ค๐‘  denote the waiting time until the sth

arrival, ๐‘  > ๐‘˜. then, ๐‘ค๐‘˜ and ๐‘ค๐‘  โˆ’ ๐‘ค๐‘˜ are independent gamma random variables with

๐‘ค๐‘˜~gamma (๐‘˜,1

๐œ†) and ๐‘ค๐‘  โˆ’ ๐‘ค๐‘˜~ gamma (s โˆ’ k, 1/ฮป).

The proportion of the time taken by the first k arrivals in the time needed for the first

arrival is

๐‘ค๐‘˜

๐‘ค๐‘ =

๐‘ค๐‘˜

๐‘ค๐‘˜+(๐‘ค๐‘ โˆ’๐‘ค๐‘˜)~ ๐‘๐‘’๐‘ก๐‘Ž ๐‘˜, ๐‘  โˆ’ ๐‘˜

In simple terms, a continuous beta distribution ๐ต(๐‘Ž, ๐‘) can be derived from a Poisson

process such that if ๐‘Ž + ๐‘ events occur in a time interval, then the fraction of that

interval until the ๐‘Ž๐‘ก๐‘• event occurs has a ๐ต(๐‘Ž, ๐‘) distribution.

2.2.3 From ratio transformation of two independent gamma variables

Let ๐‘‹1 and ๐‘‹2 be independent gamma variables with joint pdf

๐‘• ๐‘ฅ1, ๐‘ฅ2 =1

ฮ“ ฮฑ ฮ“(ฮฒ)๐‘ฅ1

๐›ผโˆ’1๐‘ฅ2๐›ฝโˆ’1๐‘’โˆ’๐‘ฅ1โˆ’๐‘ฅ2 , 0 < ๐‘ฅ1 < โˆž, 0 < ๐‘ฅ2 < โˆž

where ๐›ผ > 0, ๐›ฝ > 0

Let ๐‘Œ1 = ๐‘‹1 + ๐‘‹2 and ๐‘Œ2= ๐‘‹1

๐‘‹1+๐‘‹2

๐‘ฆ1 = ๐‘”1 (๐‘ฅ1, ๐‘ฅ2) = ๐‘ฅ1 + ๐‘ฅ2

๐‘ฆ2 = ๐‘”2 (๐‘ฅ1, ๐‘ฅ2) =๐‘ฅ1/(๐‘ฅ1 + ๐‘ฅ2)

๐‘ฅ1 = ๐‘•1(๐‘ฆ1 , ๐‘ฆ2)= ๐‘ฆ1๐‘ฆ2

๐‘ฅ2 = ๐‘•2(๐‘ฆ1, ๐‘ฆ2)= ๐‘ฆ1(1 โˆ’ ๐‘ฆ2)

๐ฝ = ๐‘ฆ1 ๐‘ฆ2

1 โ€“ ๐‘ฆ2 โˆ’๐‘ฆ1 = โˆ’๐‘ฆ1

The transformation is one-to-one and maps ๐’œ, the first quadrant of the ๐‘ฅ1๐‘ฅ2 plane onto

โ„ฌ = {(๐‘ฆ1 , ๐‘ฆ2): 0 < ๐‘ฆ1 < 1, 0 < ๐‘ฆ2 < 1}.

Page 38: From The Classical Beta Distribution To Generalized Beta ...

33

The joint pdf of ๐‘Œ1, ๐‘Œ2 is

๐‘“(๐‘ฆ1 , ๐‘ฆ2) = ๐‘ฆ1/ฮ“(ฮฑ)ฮ“(ฮฒ) ๐‘ฆ1๐‘ฆ2 ๐›ผโˆ’1[๐‘ฆ1 1 โˆ’ ๐‘ฆ2 ]๐›ฝโˆ’1๐‘’โˆ’๐‘ฆ1

=๐‘ฆ2

๐›ผโˆ’1 1 โˆ’ ๐‘ฆ2 ๐›ฝโˆ’1

ฮ“(ฮฑ)ฮ“(ฮฒ)๐‘ฆ1

๐›ผ+๐›ฝโˆ’1๐‘’โˆ’๐‘ฆ1 , (๐‘ฆ1,๐‘ฆ2) โˆˆ โ„ฌ.

Because โ„ฌ is a rectangular region and because g (๐‘ฆ1,๐‘ฆ2) can be factored into a function

of ๐‘ฆ1 and a function of ๐‘ฆ2, it follows that ๐‘Œ1 and ๐‘Œ2 are statistically independent.

The marginal pdf of ๐‘Œ2 is

๐‘“๐‘Œ2(๐‘ฆ2) =

๐‘ฆ2๐›ผโˆ’1 1 โˆ’ ๐‘ฆ2

๐›ฝโˆ’1

ฮ“(ฮฑ)ฮ“(ฮฒ) ๐‘ฆ1

๐›ผ+๐›ฝโˆ’1โˆž

0

๐‘’โˆ’๐‘ฆ1๐‘‘๐‘ฆ1

=ฮ“ ฮฑ + ฮฒ

ฮ“(ฮฑ)ฮ“(ฮฒ)๐‘ฆ2

๐›ผโˆ’1 1 โˆ’ ๐‘ฆ2 ๐›ฝโˆ’1_______(2.3)

for 0 < ๐‘ฆ2 < 1.

This is the pdf of a beta distribution with parameters ฮฑ and ฮฒ.

Also, since ๐‘“(๐‘ฆ1 , ๐‘ฆ2) = ๐‘“๐‘Œ1(๐‘ฆ1) ๐‘“๐‘Œ2

(๐‘ฆ2) it implies that

๐‘“๐‘Œ1(๐‘ฆ1) =

1

ฮ“ ฮฑ + ฮฒ ๐‘ฆ1

๐›ผ+๐›ฝโˆ’1๐‘’โˆ’๐‘ฆ1

for 0 < ๐‘ฆ1 < โˆž.

Thus, ๐‘Œ1 has a gamma distribution with parameter values ฮฑ + ฮฒ and 1.

2.2.4 From the rth order statistic of the Uniform distribution

Let ๐‘‹1, โ€ฆ , ๐‘‹๐‘› be independent and identically distributed random sample from the

standard Uniform distribution ๐‘ข(0,1). Let ๐‘‹๐‘Ÿ be the rth

order statistics from this sample.

Then the probability distribution of ๐‘‹๐‘Ÿ is a beta distribution with parameters r and n-r+1.

Page 39: From The Classical Beta Distribution To Generalized Beta ...

34

2.3 Properties of the Classical Beta Distribution

2.3.1 rth-order moments

To obtain the rth

-order moments of the classical beta distribution, we evaluate

E Xr = ๐‘ฅ๐‘Ÿ๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘

1

0

๐‘‘๐‘ฅ

= ๐‘ฅ๐‘Ÿ ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1

๐ต(๐‘Ž, ๐‘)

1

0

๐‘‘๐‘ฅ

=1

B(๐‘, ๐‘ž) ๐‘ฅ๐‘Ž+๐‘Ÿโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1

1

0

๐‘‘๐‘ฅ

= 1

๐ต(๐‘Ž, ๐‘)

๐‘ฅ(๐‘Ž+๐‘Ÿ)โˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1

๐ต(๐‘Ž + ๐‘Ÿ, ๐‘)

1

0

. ๐ต(๐‘Ž + ๐‘Ÿ, ๐‘)๐‘‘๐‘ฅ

=๐ต(๐‘Ž + ๐‘Ÿ, ๐‘)

๐ต(๐‘Ž, ๐‘)

=ฮ“(a + r) ฮ“(b)

ฮ“(a + b + r) .

ฮ“(a + b)

ฮ“(a)ฮ“(b)

=ฮ“(a + r) ฮ“(a + b)

ฮ“(a + b + r) ฮ“(a) ________________(2.4)

2.3.2 The first four moments

The mean is found by substituting r = 1 in equation (2.4)

i. e., ๐‘š1 โ‰ก ฮผ = E ๐‘‹ =ฮ“(a + 1) ฮ“(a + b)

ฮ“(a + b + 1)ฮ“(a)

=aฮ“(a) ฮ“(a + b)

(a + b)ฮ“(a + b) ฮ“(a)

=a

a + b (๐ถ๐‘•๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘Ž๐‘› ๐‘Š๐‘Ž๐‘™๐‘๐‘˜, 1996)_________________________(2.5)

Page 40: From The Classical Beta Distribution To Generalized Beta ...

35

๐‘š2 โ‰ก ๐ธ ๐‘‹2 =ฮ“(a + b) ฮ“(a + 2)

ฮ“ a + b + 2 ฮ“(a)

= ฮ“(a + b) (a + 1)ฮ“(a + 1)

(a + b + 1)ฮ“(a + b + 1) ฮ“(a)

=ฮ“ a + b (a + 1) aฮ“(a

a + b + 1 (a + b)ฮ“(a + b) ฮ“(a)

=(a + 1) a

a + b + 1 (a + b)

=a(a + 1)

(a + b) a + b + 1

= ๐‘š1

(a + 1)

a + b + 1 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก. ๐‘Ž๐‘™. , 2010)____________(2.6)

๐‘š3 โ‰ก ๐ธ ๐‘‹3 =ฮ“(a + b) ฮ“(a + 3)

ฮ“(a + b + 3) ฮ“(a)

=ฮ“(a + b) a + 2 a + 1 aฮ“(a)

a + b a + b + 2 a + b + 1 ฮ“(a + b) ฮ“(a)

=(a + 2)(a + 1)a

a + b + 2 a + b + 1 (a + b)

= ๐‘š2

a + 2

a + b + 2 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)_______________(2.7)

๐‘š4 โ‰ก ๐ธ ๐‘‹4 =ฮ“(a + b) ฮ“(a + 4)

ฮ“(a + b + 4) ฮ“(a)

=ฮ“ a + b a + 3 (a + 2) a + 1 aฮ“(a)

a + b (a + b + 1) a + b + 2 a + b + 3 ฮ“(a + b) ฮ“(a)

=(a + 3)(a + 2)(a + 1)a

(a + b + 3) a + b + 2 a + b + 1 (a + b)

Page 41: From The Classical Beta Distribution To Generalized Beta ...

36

= a(a + 1) (a + 2)(a + 3)

(a + b) a + b + 1 a + b + 2 a + b + 3

= ๐‘š3

(a + 3)

a + b + 3

2.3.3 Mode

Mode is obtained by solving

d

dx๐‘“(๐‘ฅ; ๐‘Ž, ๐‘) = 0

d

dx ๐‘ฆ๐‘Žโˆ’1 1 โˆ’ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ = 0

(๐‘Ž โˆ’ 1)๐‘ฅ๐‘Žโˆ’2 1 โˆ’ ๐‘ฅ ๐‘โˆ’1 + ๐‘ โˆ’ 1 (โˆ’1) 1 โˆ’ ๐‘ฅ ๐‘โˆ’2๐‘ฅ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ = 0

(๐‘Ž โˆ’ 1)๐‘ฅ๐‘Žโˆ’2 1 โˆ’ ๐‘ฅ ๐‘โˆ’1 = ๐‘ โˆ’ 1 1 โˆ’ ๐‘ฅ ๐‘โˆ’2๐‘ฅ๐‘Žโˆ’1

(๐‘Ž โˆ’ 1)๐‘ฅ๐‘Žโˆ’1๐‘ฅโˆ’1 1 โˆ’ ๐‘ฅ ๐‘โˆ’1 = ๐‘ โˆ’ 1 1 โˆ’ ๐‘ฅ ๐‘โˆ’1(1 โˆ’ ๐‘ฅ)โˆ’1๐‘ฅ๐‘Žโˆ’1

(๐‘Ž โˆ’ 1)๐‘ฅโˆ’1 = ๐‘ โˆ’ 1 (1 โˆ’ ๐‘ฅ)โˆ’1

๐‘Ž โˆ’ 1

๐‘ โˆ’ 1=

๐‘ฅ

1 โˆ’ ๐‘ฅ, ๐‘Ž > 1, ๐‘ > 1

1 โˆ’ ๐‘ฅ ๐‘Ž โˆ’ 1 = ๐‘ฅ(๐‘ โˆ’ 1)

๐‘Ž โˆ’ 1 โˆ’ ๐‘ฅ๐‘Ž + ๐‘ฅ = ๐‘ฅ๐‘ โˆ’ ๐‘ฅ

๐‘ฅ โˆ’๐‘Ž + 1 โˆ’ ๐‘ + 1 = 1 โˆ’ ๐‘Ž

๐‘ฅ =(๐‘Ž โˆ’ 1)

(๐‘Ž + ๐‘ โˆ’ 2), ๐‘ฅ = 0 ๐‘–๐‘“ ๐‘Ž = 1 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ = 1 ๐‘–๐‘“ ๐‘ = 1________________(2.8)

Page 42: From The Classical Beta Distribution To Generalized Beta ...

37

2.3.4 Variance

Since variance can be expressed as

Var X = ๐ธ ๐‘‹2 โˆ’ ๐ธ ๐‘‹ 2

= m2 โˆ’ ๐‘š12

We can now get the variance as

Var X = ๐œ2 =a(a + 1)

(a + b)(a + b + 1)โˆ’

a

a + b

2

=a a + 1 (a + b)2 โˆ’ a2 a + b (a + b + 1)

(a + b)(a + b + 1)(a + b)2

=a a + 1 (a + b) โˆ’ a2 a + b a + b + 1

a + b + 1 a + b 2

=a3 + a2b + a2 + ab โˆ’ a3 โˆ’ a2b + a2

a + b + 1 a + b 2

=ab

a + b + 1 a + b 2(๐ถ๐‘•๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘Ž๐‘› ๐‘Š๐‘Ž๐‘™๐‘๐‘˜, 1996)____________(2.9)

2.3.5 Skewness

Skewness (the third central moment) can be expressed as

Skewness = ๐‘ข3 = ๐ธ(๐‘‹ โˆ’ ๐ธ(๐‘‹))3

= ๐ธ ๐‘‹3 โˆ’ 3๐ธ ๐‘‹2 ๐ธ ๐‘‹ + 2 ๐ธ ๐‘‹ 3

= m3 โˆ’ 3๐‘š2๐‘š1+2๐‘š13,

This can be manipulated algebraically as follows:

๐‘ข3 =a a + 1 (a + 2)

a + b a + b + 1 (a + b + 2)โˆ’ 3

a2(a + 1)

(a + b)2(a + b + 1)+ 2

a

a + b

3

Page 43: From The Classical Beta Distribution To Generalized Beta ...

38

=a a + 1 (a + 2) โˆ’ a2 a + 1 (a + b + 2)

(a + b)2(a + b + 1)(a + b + 2)+

2a3

(a + b)3

= a3 + 3a2 + 2a a + b โˆ’ 3a4 โˆ’ 3a3b โˆ’ 9a3 โˆ’ 3a2b โˆ’ 6a2

a + b 2 a + b + 1 a + b + 2 +

2a3

(a + b)3

=a4 + 3a3 + 2a2 + a3b + 3a2b + 2ab โˆ’ 3a4 โˆ’ 3a3b โˆ’ 9a3 โˆ’ 3a2b โˆ’ 6a2

a + b 2 a + b + 1 a + b + 2

+2a3

(a + b)3

= โˆ’2a4 โˆ’ 6a3 โˆ’ 4a2 โˆ’ 2a3b + 2ab

a + b 2 a + b + 1 a + b + 2 +

2a3

(a + b)3

= (a + b)(โˆ’2a4 โˆ’ 6a3 โˆ’ 4a2 โˆ’ 2a3b + 2ab) + (2a4 + 2a3b + 2a3)(a + b + 2)

a + b 3 a + b + 1 a + b + 2

= โˆ’2a5 โˆ’ 6a4 โˆ’ 2a4b โˆ’ 4a3 + 2a2bโˆ’2a4b โˆ’ 6a3b โˆ’ 2a3b2 โˆ’ 4a2b + 2ab2+2a5+2a4b

a + b 3 a + b + 1 a + b + 2

+4a4 + 2a4b + 2a3b2 + 4a3b + 2a4 + 2a3b + 4a3

a + b 3 a + b + 1 a + b + 2

=2ab2 โˆ’ 2a2b

a + b 3 a + b + 1 a + b + 2

=2ab(b โˆ’ a)

a + b 3 a + b + 1 a + b + 2 (๐ถ๐‘•๐‘Ÿ๐‘–๐‘ ๐‘ก๐‘–๐‘Ž๐‘› ๐‘Š๐‘Ž๐‘™๐‘๐‘˜, 1996)_____________________(2.10)

The standardized skewness can be expressed as

๐ธ ๐‘‹ โˆ’ ๐ธ ๐‘‹

๐œ

3

Page 44: From The Classical Beta Distribution To Generalized Beta ...

39

=1

๐œ3

2ab b โˆ’ a

a + b 3 a + b + 1 a + b + 2

=1

ab

a + b + 1 a + b 2

3 2ab b โˆ’ a

a + b 3 a + b + 1 a + b + 2

= a + b + 1 a + b 2

๐‘Ž๐‘. a + b + 1 a + b

ab

2ab b โˆ’ a

a + b 3 a + b + 1 a + b + 2

= a + b + 1

ab

2 b โˆ’ a

a + b + 2

=2 b โˆ’ a

a + b + 2

a + b + 1

ab______________(2.11)

2.3.6 Kurtosis

Kurtosis can be expressed as

Kurtosis = ๐‘ข4 = ๐ธ ๐‘‹4 โˆ’ 4๐ธ ๐‘‹ ๐ธ ๐‘‹3 + 6{๐ธ ๐‘‹ }2๐ธ ๐‘‹2 โˆ’ 3 ๐ธ ๐‘‹ 4

= m4 โˆ’ 4๐‘š1๐‘š3+6๐‘š12๐‘š2 โˆ’ 3๐‘š1

4,

=a a + 1 a + 2 a + 3

a + b a + b + 1 a + b + 2 a + b + 3

โˆ’4a a a + 1 a + 2

a + b a + b a + b + 1 a + b + 2

+6 a

a + b

2 a(a + 1)

a + b (a + b + 1)โˆ’ 3

a

a + b

4

= a2 + a a2 + 5a + 6

a + b a + b + 1 a + b + 2 a + b + 3

โˆ’4a2 a2 + 3a + 2

(a + b)2 a + b + 1 a + b + 2

Page 45: From The Classical Beta Distribution To Generalized Beta ...

40

+6a4 + 6a3

(a + b)3(a + b + 1)โˆ’ 3

a

a + b

4

= a + b a4 + 5a3 + 6a2 + a3 + 5a2 + 6a โˆ’ 4a4 + 12a3 + 8a2 (a + b + 3)

(a + b)2 a + b + 1 a + b + 2 a + b + 3

+6 a + b (a4 + a3) โˆ’ 3a4(a + b + 1)

(a + b)4(a + b + 1)

=

a5 + 5a4 + 6a3 + a4 + 5a3 + 6a2 + a4b + 5a3b + 6a2b + a3b + 5a2b + 6ab โˆ’

(4a5 + 4a4b + 12a4 + 12a4 + 12a3b + 36a3 + 8a3 + 8a2b + 24a2)

(a + b)2 a + b + 1 a + b + 2 a + b + 3

+(6a5 + 6a4 + 6a4 + 6a3b) โˆ’ 3a5 โˆ’ 3a4b โˆ’ 3a4)

(a + b)4(a + b + 1)

=โˆ’3a5 โˆ’ 18a4 โˆ’ 33a3 โˆ’ 18a2 โˆ’ 3a4b โˆ’ 6a3b โˆ’ 6a3b + 3a2b + 6ab

(a + b)2 a + b + 1 a + b + 2 a + b + 3

+3a5 + 3a4 + 3a4q + 6a3b

(a + b)4(a + b + 1)

= a2 + 2ab + b2 โˆ’3a5 โˆ’ 18a4 โˆ’ 33a3 โˆ’ 18a2 โˆ’ 3a4b โˆ’ 6a3b โˆ’ 6a3b + 3a2b + 6ab

a + b 4 a + b + 1 a + b + 2 a + b + 3

+ a2 + b2 + 2ab + 5a + 5b + 6 3a5 + 3a4 + 3a4b + 6a3b

a + b 4 a + b + 1 a + b + 2 a + b + 3

=

โˆ’3a7 โˆ’ 18a6 โˆ’ 33a5 โˆ’ 18a4 โˆ’ 3a6b โˆ’ 6a5b + 3a4b โˆ’ 6a6b + 36a5b โˆ’ 66a4b

โˆ’36a3b โˆ’ 6a5b2

a + b 4 a + b + 1 a + b + 2 a + b + 3

+ โˆ’12a4b2 + 6a3b2 + 12a2b2 โˆ’ 3a5b2 โˆ’ 18a4b2 โˆ’ 33a3a2 โˆ’ 18a2b2 โˆ’ 3a4b3

โˆ’6a3b3 + 3a2b3

a + b 4 a + b + 1 a + b + 2 a + b + 3

+ 6ab3 + 3a7 + 3a6 + 3a6b + 6a5b + 3a5b2 + 3a4b2 + 3a4b3 + 6a3b3 + 6a6b

+6a5b + 6a5b2

a + b 4 a + b + 1 a + b + 2 a + b + 3

Page 46: From The Classical Beta Distribution To Generalized Beta ...

41

+ 12a4b2 + 15a6 + 15a5 + 15a5b + 30a4b + 15a5b + 15a4b2 + 30a3b2 + 18a5

+18a4 + 18a4b + 36a3b

a + b 4 a + b + 1 a + b + 2 a + b + 3

=6a3b + 3a3b2 โˆ’ 6a2b2 + 3a2b3 + 6ab3

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3๐‘Ž๐‘[2a2 + a2b โˆ’ 2ab + ab2 + 2b2]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)_____________(2.12)

The standardized kurtosis can be expressed as

๐ธ ๐‘‹ โˆ’ ๐ธ ๐‘‹

๐œ

4

=1

๐œ4

3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=1

ab

a + b + 1 a + b 2 2

3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

= a + b + 1 2 a + b 4

(๐‘Ž๐‘)2

3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

= a + b + 1

๐‘Ž๐‘

3[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b + 2 a + b + 3 ____________________________(2.13)

The standardized skewness and kurtosis are often denoted by ๐›ฝ1 , ๐›ฝ2 in literature.

2.4 Shapes of Classical Beta Distribution

The shape of the distribution is governed by the two parameters a and b, and can be

summarized as follows;

i. When a=b, the distribution is symmetrical about ยฝ, the case of arcsine distribution,

uniform distribution and parabolic distribution, and the skewness is zero, as a and b

become larger, the distribution becomes more peaked and the variance decreases

Page 47: From The Classical Beta Distribution To Generalized Beta ...

42

ii. When ๐‘Ž โ‰  ๐‘, the distribution is skewed with the degree of skewness increasing as ๐‘Ž

and ๐‘ become more unequal. In particular, if ๐‘ > ๐‘Ž, then the skewness, ๐‘ข3 > 0 and

the distribution is skewed to the right as in figure 2.2 and if ๐‘Ž > ๐‘, then the

distribution is skewed to the left as in figure 2.1.

iii. When a=b=1, the distribution becomes uniform distribution and the density function

has a constant value 1 over the interval (0,1) for the random variable X.

iv. Figures 2.2 and 2.3 below shows two cases of the beta unimodal distributions with

๐‘Ž > 0 and ๐‘ > 0. If a and/or b is less than one i.e ๐‘Ž โˆ’ 1 ๐‘ โˆ’ 1 < 1

๐‘“ 0 โ†’ โˆž and /or f(1) โ†’ โˆž and the distribution is J- shaped. Figure 2.4 and 2.5

below show the beta distribution of two cases a=10, b=1 and a=1, b=10 respectively.

v. The Classical beta distribution is U shaped if a < 1, and b < 1 as shown in figure 2.1

below.

Fig.2. 1 : Left Skewedness

0

1

2

3

4

5

6

0

0.0

4

0.0

8

0.1

2

0.1

6

0.2

0.2

4

0.2

8

0.3

2

0.3

6

0.4

0.4

4

0.4

8

0.5

2

0.5

6

0.6

0.6

4

0.6

8

0.7

2

0.76 0.

8

0.8

4

0.8

8

0.9

2

0.9

6 1

Beta(0.66,0.5)

Page 48: From The Classical Beta Distribution To Generalized Beta ...

43

Fig.2. 2: Case of beta unimodal distribution with ๐‘Ž > 0

Fig.2. 3: Case of beta unimodal distribution with ๐‘ > 0

0

2

4

6

8

10

12

14

00.

035

0.07

0.10

50.

140.

175

0.21

0.24

50.

280.

315

0.35

0.38

50.

420.

455

0.49

0.52

50.

560.

595

0.63

0.66

50.

70.

735

0.77

0.80

50.

840.

875

0.91

0.94

50.

98

Beta(2,30)

0

2

4

6

8

10

12

14

00.

035

0.0

70.

105

0.1

40.

175

0.2

10.

245

0.2

80.

315

0.3

50.

385

0.4

20.

455

0.4

90.

525

0.5

60.

595

0.6

30.

665

0.7

0.73

50

.77

0.80

50

.84

0.87

50

.91

0.94

50

.98

Beta(30,2)

Page 49: From The Classical Beta Distribution To Generalized Beta ...

44

Fig.2. 4: j-Shaped beta distribution

Fig.2. 5: inverted j-Shaped beta distribution

0

2

4

6

8

10

12

0

0.04

0.08

0.12

0.16 0.

2

0.24

0.28

0.32

0.36 0.

4

0.44

0.48

0.52

0.56 0.

6

0.64

0.68

0.72

0.76 0.

8

0.84

0.88

0.92

0.96 1

Beta(10,1)

0

2

4

6

8

10

12

0

0.04

0.08

0.12

0.16 0.2

0.24

0.28

0.32

0.36 0.4

0.44

0.48

0.52

0.56 0.

6

0.64

0.68

0.72

0.76 0.8

0.84

0.88

0.92

0.96

1

Beta(1,10)

Page 50: From The Classical Beta Distribution To Generalized Beta ...

45

2.5 Applications of the Classical Beta Distribution

Income and Wealth

Thurow (1970) applied the Classical beta distribution to US Census Bureau data of

income distribution for households (families and unrelated individuals) for every year

from 1949 โ€“ 1966, stratified by race. He also studied the impact of various

macroeconomic factors on the parameters of the distribution via regression techniques.

McDonald and Ransom (1979a) employed the Classical beta distribution for

approximating US family incomes for 1960 and 1969 through 1975. When utilizing three

different estimators, it turns out that the distribution is preferable to the gamma and

lognormal distributions but inferior to Singh Maddala. McDonald (1984) estimated beta

distribution of the first kind for 1970, 1975 and 1980 US family incomes.

2.6 Special Cases of the Classical Beta Distribution

2.6.1 Power Distribution Function

This distribution is obtained when ๐‘ = 1 in the formula of the classical beta distribution.

Thus, from equation (2.1) the pdf becomes

๐‘“ ๐‘ฅ; ๐‘Ž =๐‘ฅ๐‘Žโˆ’1

๐ต(๐‘Ž, 1)

=๐‘ฅ๐‘Žโˆ’1

ฮ“(๐‘Ž)ฮ“(1). ฮ“(๐‘Ž + 1)

=๐‘ฅ๐‘Žโˆ’1

ฮ“(๐‘Ž)ฮ“(1). ๐‘Žฮ“(๐‘Ž)

= ๐‘Ž๐‘ฅ๐‘Žโˆ’1, ๐‘Ž > 0 ________(2.14)

and the CDF is given by

๐น ๐‘ฅ = ๐‘“(๐‘ฅ)โˆž

0

๐‘‘๐‘ฅ

Page 51: From The Classical Beta Distribution To Generalized Beta ...

46

= ๐‘Ž๐‘ฅ๐‘Žโˆ’1โˆž

0

๐‘‘๐‘ฅ

= ๐‘Ž๐‘ฅ๐‘Žโˆ’1+1

๐‘Ž

= ๐‘ฅ๐‘Ž , 0 < ๐‘Ž < 1

Equation (2.14) is the power distribution.

Generally letting ๐‘ฅ = ๐‘ฆ/๐›ผ, with b=1 in equation (2.1) yield the general power

distribution given by

๐‘“ ๐‘ฆ =๐‘Ž๐‘ฆ๐‘Žโˆ’1

๐›ผ๐‘Ž, 0 < ๐‘Ž < ๐›ผ

(Leemis and McQueston, 2008)

2.6.2 Properties of power distribution

i. rth-order moments

Putting b=1 in equation (2.4)

๐ธ ๐‘‹๐‘Ÿ =ฮ“ ๐‘Ž + ๐‘Ÿ ฮ“ ๐‘Ž + 1

ฮ“ a + 1 + r ฮ“ a

=ฮ“(๐‘Ž + ๐‘Ÿ)๐‘Žฮ“(๐‘Ž)

(a + r)ฮ“ a + r ฮ“(a)

=๐‘Ž

a + r

ii. Mean

๐ธ ๐‘‹ =๐‘Ž

a + 1

iii. Mode

๐‘€๐‘œ๐‘‘๐‘’ =๐‘Ž โˆ’ 1

a + 1 โˆ’ 2

=๐‘Ž โˆ’ 1

a โˆ’ 1= 1

Page 52: From The Classical Beta Distribution To Generalized Beta ...

47

iv. Variance

๐‘‰๐‘Ž๐‘Ÿ ๐‘‹ =๐‘Ž

(a + 2)(a + 1)2

v. Skewness

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  =2๐‘Ž(1 โˆ’ ๐‘Ž)

(a + 1)3(a + 2)(a + 3)

While the standardized skewness is

2๐‘Ž(1 โˆ’ ๐‘Ž)

(a + 3)

(a + 2)

a

vi. Kurtosis

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  =3๐‘Ž[๐‘Ž2 1 + 2 โˆ’ 2๐‘Ž + ๐‘Ž + 2 ]

a + 1 4 a + 1 + 1 a + 1 + 2 (a + 1 + 3)

=3๐‘Ž[3๐‘Ž2 โˆ’ ๐‘Ž + 2]

a + 1 4 a + 2 a + 3 (a + 4)

and the standardized kurtosis is expressed as

๐‘Ž + 2

๐‘Ž

3 3๐‘Ž2 โˆ’ ๐‘Ž + 2

a + 3 a + 4

2.6.3 Shape of Power distribution

The figure 2.6 below shows a graph of a power distribution with the parameter ๐‘Ž = 0.05.

This is an example of Power distribution graph, being used to demonstrate ranking of

popularity. To the right is the long tail, and to the left are the few that dominate. Varying

๐‘Ž gives different shapes of the power distribution. Special cases of ๐‘Ž = 1 (Uniform

distribution), ๐‘Ž =2 (triangular distribution), ๐‘Ž < 1 gives inverted J-shaped distributions

and ๐‘Ž > 2 (J-shaped distributions).

Page 53: From The Classical Beta Distribution To Generalized Beta ...

48

Fig.2. 6: Power distribution

2.6.4 Uniform Distribution Function

Special case when ๐‘Ž=b=1 in equation (2.1)

๐‘“ ๐‘ฅ = 1 _______________________(2.15)

Equation (2.15) is a Uniform distribution on the interval [0,1]. The Uniform distribution

function is a special case of the power distribution function when a=1.

2.6.5 Properties of the Uniform distribution

i. rth-order moments

Putting ๐‘Ž = 1 and ๐‘ = 1 in equation 2.4

๐ธ ๐‘ฅ๐‘Ÿ =ฮ“ 1 + ๐‘Ÿ ฮ“ 1 + 1

ฮ“ 1 + 1 + r ฮ“ 1

=rฮ“ ๐‘Ÿ . 1

1 + r r ฮ“ r . 1

=1

1 + r

0

1

2

3

4

5

6

7

8

9

0

0.0

4

0.0

8

0.1

2

0.1

6

0.2

0.2

4

0.2

8

0.3

2

0.3

6

0.4

0.4

4

0.4

8

0.5

2

0.5

6

0.6

0.6

4

0.6

8

0.7

2

0.7

6

0.8

0.8

4

0.8

8

0.9

2

0.9

6 1

Power Distribution

Page 54: From The Classical Beta Distribution To Generalized Beta ...

49

ii. Mean

mean =๐‘Ž

๐‘Ž + ๐‘,

Letting a=b=1,

=1

1 + 1= 0.5

iii. Mode

Mode is any value in the interval [0,1]

iv. Variance

From the variance of the standard beta distribution given by

Variance =๐‘Ž๐‘

(๐‘Ž + ๐‘ + 1)(๐‘Ž + ๐‘)2

a=b=1,

=1

3 2 2

=1

12= 0.0833

v. Skewness

Skewness =2๐‘Ž๐‘(b โˆ’ a)

a + b 3 a + b + 1 a + b + 2 = 0

Standardized skewness =2(1 โˆ’ 1)

(1 + 3)

(1 + 2)

1= 0

vi. Kurtosis

kurtosis =3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

Page 55: From The Classical Beta Distribution To Generalized Beta ...

50

=3 3 โˆ’ 2 + 3

2 4 3 4 5

=1

16 5 = 0.0125

The standardized kurtosis is given by

๐‘Ž + 2

๐‘Ž

3 3๐‘Ž2 โˆ’ ๐‘Ž + 2

a + 3 a + 4

=1 + 2

1

3 3 โˆ’ 1 + 2

1 + 3 1 + 4

= 3 3 4

4 5 = 1.8

2.6.6 Shape of Uniform distribution

Figure 2.7 below shows a graphical representation of the Uniform distribution on the

interval (0,1)

Fig.2. 7: Uniform distribution on the interval (0,1)

0

0.2

0.4

0.6

0.8

1

1.2

0

0.0

45

0.0

9

0.1

35

0.1

8

0.2

25

0.27

0.3

15

0.3

6

0.4

05

0.4

5

0.4

95

0.5

4

0.5

85

0.6

3

0.67

5

0.7

2

0.7

65

0.8

1

0.8

55 0.9

0.9

45

0.9

9

Beta(1,1)

Page 56: From The Classical Beta Distribution To Generalized Beta ...

51

2.6.7 Arcsine Distribution Function

Special case of the standard beta distribution is the arcsine distribution, when a=b=1/2 in

equation (2.1). In this special case, we have

๐‘“ ๐‘ฅ;1

2,1

2 =

๐‘ฅ1/2โˆ’1 1 โˆ’ x 1/2โˆ’1

๐ต 12 ,

12

, 0 < ๐‘ฅ < 1

๐‘“ ๐‘ฅ =๐‘ฅโˆ’1/2 1 โˆ’ x โˆ’1/2

๐ต 12 ,

12

, 0 < ๐‘ฅ < 1

๐‘“ ๐‘ฅ =1

๐œ‹ ๐‘ฅ(1 โˆ’ ๐‘ฅ) , 0 < ๐‘ฅ < 1 ________(2.16)

and the cumulative distribution function is given by

F x =2

๐œ‹arcsin ๐‘ฅ .

Note: ฮ“(1/2) = ๐œ‹

Equation (2.16) is an Arcsine distribution

2.6.8 Properties of the arcsine distribution

i. rth-order moments

Putting ๐‘Ž =1

2 and ๐‘ =

1

2 in equation 2.4

๐ธ ๐‘‹๐‘Ÿ =ฮ“

12 + ๐‘Ÿ ฮ“ 1

ฮ“ 1 + r ฮ“ 1

=ฮ“

12 + ๐‘Ÿ

rฮ“ r ฮ“ 12

Page 57: From The Classical Beta Distribution To Generalized Beta ...

52

ii. Mean

From the mean of the beta distribution given by

mean =๐‘Ž

๐‘Ž + ๐‘,

a = b =1

2

=

12

12 +

12

=1

2= 0.5

iii. Mode

mode =๐‘Ž โˆ’ 1

๐‘Ž + ๐‘ โˆ’ 2=

12 โˆ’ 1

12 +

12 โˆ’ 2

=

12 โˆ’ 1

12 +

12 โˆ’ 2

=1

2

iv. Variance

From the variance of the beta distribution given by

Variance =๐‘Ž๐‘

(๐‘Ž + ๐‘ + 1)(๐‘Ž + ๐‘)2

a = b =1

2

=

14

2 1 2= 0.125

Page 58: From The Classical Beta Distribution To Generalized Beta ...

53

v. Skewness

Skewness =2๐‘Ž๐‘(b โˆ’ a)

a + b 3 a + b + 1 a + b + 2 = 0

Standardized skewness =2(b โˆ’ a)

a + b + 2

๐‘Ž + ๐‘ + 1

๐‘Ž๐‘

=2(

12 โˆ’

12)

1 + 2 1 + 1

14

= 0

vi. Kurtosis

kurtosis =3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3

14 [

14 (

12 + 2) โˆ’ 2(

14) +

14 (

12 + 2)]

1 4 1 + 1 1 + 2 1 + 3

=

34 [(

58) โˆ’ (

48) + (

58)]

2 3 4

=

1832

24 = 0.0234

Standardized kurtosis = 1 + 1

14

3

14

12 + 2 โˆ’ 2

14 +

14

12 + 2

1 + 2 1 + 3 = 1.5

Page 59: From The Classical Beta Distribution To Generalized Beta ...

54

2.6.9 Shape of Arcsine distribution

Fig.2. 8: Arcsine distribution

2.6.10 Triangular shaped distributions (a=1, b=2)

For a=1 and b=2 we get triangular shaped distribution as follows

f x; 1,2 = 1 โˆ’ x

B 1,2

= 2 โˆ’ 2๐‘ฅ ________________________(2.17)

With the cdf given as

๐น ๐‘ฅ = 2๐‘ฅ โˆ’ ๐‘ฅ2

2.6.11 Properties of the Triangular shaped distribution (a=1, b=2)

i. rth-order moments

Putting ๐‘Ž = 1 and ๐‘ = 2 in equation 2.4

๐ธ ๐‘‹๐‘Ÿ =ฮ“ 1 + ๐‘Ÿ ฮ“ 3

ฮ“ 3 + r ฮ“ 1

=2rฮ“ ๐‘Ÿ

ฮ“ r + 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.0

05

0.0

45

0.0

85

0.1

25

0.1

65

0.2

05

0.2

45

0.2

85

0.3

25

0.3

65

0.4

05

0.4

45

0.4

85

0.5

25

0.5

65

0.6

05

0.6

45

0.6

85

0.7

25

0.7

65

0.8

05

0.8

45

0.8

85

0.9

25

0.9

65

Arcsine Distribution

Page 60: From The Classical Beta Distribution To Generalized Beta ...

55

ii. Mean

From the mean of the standard beta distribution given by

mean =๐‘Ž

๐‘Ž + ๐‘,

a = 1, b = 2

=1

3= 0.3333

iii. Mode

mode =๐‘Ž โˆ’ 1

๐‘Ž + ๐‘ โˆ’ 2=

1 โˆ’ 1

1 + 2 โˆ’ 2= 0

iv. Variance

From the variance of the standard beta distribution given by

Variance =๐‘Ž๐‘

(๐‘Ž + ๐‘ + 1)(๐‘Ž + ๐‘)2

a = 1, b = 2

=2

4 3 2

=1

18= 0.0556

Standard deviation, ๐œ = ๐‘ฃ๐‘Ž๐‘Ÿ = 0.2358

๐ถ๐‘‰ =๐œ

๐œ‡=

0.2358

0.3333= 0.7074

v. Skewness

Skewness =2๐‘Ž๐‘(b โˆ’ a)

a + b 3 a + b + 1 a + b + 2

=2(2)(1)

3 3 4 5

=1

3 3 5 = 0.0074

Page 61: From The Classical Beta Distribution To Generalized Beta ...

56

Standardized skewness =2(b โˆ’ a)

a + b + 2

๐‘Ž + ๐‘ + 1

๐‘Ž๐‘

a = 1, b = 2

=2

5 2 = 0.5657

vi. Kurtosis

kurtosis =3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3 2 [1(4) โˆ’ 4 + 4(3)]

3 4 4 5 6

=1

3 3 5 = 0.0074

Standardized kurtosis = 3 + 1

2

3 1 2 + 2 โˆ’ 2 1 2 + 4 1 + 2

3 + 2 3 + 3 = 2.4

Page 62: From The Classical Beta Distribution To Generalized Beta ...

57

2.6.12 Shape of triangular distribution (a=1, b=2)

Fig.2. 9: Triangular shaped distribution

2.6.13 Triangular shaped distributions (a=2, b=1)

For a=2 and b=1 we get triangular shaped distribution as follows

๐‘“ ๐‘ฅ; 2,1 =๐‘ฅ

๐ต(2,1)

= 2๐‘ฅ____________________________(2.18)

The CDF of equation 2.18 is given by

๐น(๐‘ฅ) = ๐‘ฅ2

2.6.14 Properties of the Triangular shaped distribution (a=2, b=1)

i. rth - order moments

Putting ๐‘Ž = 2 and ๐‘ = 1 in equation 2.4

๐ธ ๐‘‹๐‘Ÿ =ฮ“ 2 + ๐‘Ÿ ฮ“ 3

ฮ“ 3 + r ฮ“ 2

0

0.5

1

1.5

2

2.5

0

0.04

5

0.0

9

0.13

5

0.1

8

0.22

5

0.2

7

0.31

5

0.3

6

0.40

5

0.4

5

0.49

5

0.5

4

0.58

5

0.6

3

0.67

5

0.7

2

0.76

5

0.8

1

0.85

5

0.9

0.94

5

0.9

9

Beta(1,2)

Page 63: From The Classical Beta Distribution To Generalized Beta ...

58

=2ฮ“ 2 + ๐‘Ÿ

ฮ“ r + 3

ii. Mean

From the mean of the beta distribution given by

mean =๐‘Ž

๐‘Ž + ๐‘,

a=2, b=1,

=2

3= 0.6667

iii. Mode

mode =๐‘Ž โˆ’ 1

๐‘Ž + ๐‘ โˆ’ 2=

2 โˆ’ 1

2 + 1 โˆ’ 2= 1

iv. Variance

From the variance of the beta distribution given by

Variance =๐‘Ž๐‘

(๐‘Ž + ๐‘ + 1)(๐‘Ž + ๐‘)2

a=2, b=1,

=2

4 3 2

=1

18= 0.0556

v. Skewness

Skewness =2๐‘Ž๐‘(b โˆ’ a)

a + b 3 a + b + 1 a + b + 2

=2(2)(โˆ’1)

3 3 4 5

=โˆ’1

3 3 5 = โˆ’0.0074

Page 64: From The Classical Beta Distribution To Generalized Beta ...

59

Standardized skewness =2(b โˆ’ a)

a + b + 2

๐‘Ž + ๐‘ + 1

๐‘Ž๐‘

a=2, b=1

=โˆ’2

5 2 = โˆ’0.5657

vi. Kurtosis

kurtosis =3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3 2 [4(3) โˆ’ 4 + 1(4)]

3 4 4 5 6

=1

3 3 5 = 0.0074

Standardized kurtosis = 3 + 1

2

3 4 1 + 2 โˆ’ 2 2 1 + 1 2 + 2

3 + 2 3 + 3 = 2.4

2.6.15 Shape of triangular distribution (a=2, b=1)

Fig.2. 10: Trangular shaped distribution

0

0.5

1

1.5

2

2.5

0

0.0

4

0.0

85

0.1

3

0.1

75

0.2

2

0.2

65

0.31

0.35

5

0.4

0.4

45

0.4

9

0.5

35

0.5

8

0.6

25

0.6

7

0.7

15

0.7

6

0.8

05

0.8

5

0.8

95

0.9

4

0.9

85

Beta(2,1)

Page 65: From The Classical Beta Distribution To Generalized Beta ...

60

2.6.16 Parabolic shaped distribution

For a=b=2 we obtain a distribution of parabolic shape,

๐‘“ ๐‘ฅ; 2,2 =๐‘ฅ(1 โˆ’ ๐‘ฅ)

๐ต(2,2)

= 6๐‘ฅ(1 โˆ’ ๐‘ฅ)____________________(2.19)

The cdf of equation 2.19 is given by

๐น(๐‘ฅ) = 3๐‘ฅ2 โˆ’ 2๐‘ฅ3

2.6.17 Properties of parabolic shaped distribution

i. rth-order moments

Putting ๐‘Ž = 2 and ๐‘ = 2 in equation 2.4

๐ธ ๐‘‹๐‘Ÿ =ฮ“ 2 + ๐‘Ÿ ฮ“ 4

ฮ“ 4 + r ฮ“ 2

=6

r + 3 (r + 2)

ii. Mean

From the mean of the Classical beta distribution given by

E(X) =๐‘Ž

๐‘Ž + ๐‘,

a = b = 2,

=2

2 + 2= 0.5

iii. Mode

From the mode of the Classical beta distribution given by

Mode =๐‘Ž โˆ’ 1

(๐‘Ž + ๐‘ โˆ’ 2)

a = b = 2, = 0.5

Page 66: From The Classical Beta Distribution To Generalized Beta ...

61

iv. Variance

From the variance of Classical beta distribution given by

Variance =๐‘Ž๐‘

(๐‘Ž + ๐‘ + 1)(๐‘Ž + ๐‘)2

a = b = 2,

=4

5 4 2

=1

20= 0.05

standard deviation,๐œ = 0.05 = 0.2236

๐ถ๐‘‰ =0.2236

0.5= 0.4472

v. Skewness

From the skewness of the Classical beta distribution given by

Skewness =2๐‘Ž๐‘(๐‘ โˆ’ ๐‘Ž)

๐‘Ž + ๐‘ ๐‘Ž + ๐‘ + 1 (๐‘Ž + ๐‘ + 2)

a=b=2,

= 0

Standardized skewness =2(b โˆ’ a)

a + b + 2

๐‘Ž + ๐‘ + 1

๐‘Ž๐‘= 0

vi. Kurtosis

kurtosis =3๐‘Ž๐‘[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b 4 a + b + 1 a + b + 2 a + b + 3

=3 4 [4(4) โˆ’ 8 + 4(4)]

4 4 5 6 7

=3

4 2 5 7 = 0.0054

Page 67: From The Classical Beta Distribution To Generalized Beta ...

62

Standardized kurtosis = 4 + 1

4

3 4 2 + 2 โˆ’ 2 2 2 + 4 2 + 2

4 + 2 4 + 3 = 2.1429

2.6.18 Shape of Parabolic distribution

The figure 2.11 below shows the shape of the parabolic distribution.

Fig.2. 11: Parabolic distribution

2.7 Transformation of Special Case of the Classical Beta Distribution

2.7.1 Wigner Semicircle Distribution Function

Letting a=b=3/2 in equation (2.1) we obtain the following distribution function

๐‘“ ๐‘ฅ;3

2,3

2 =

๐‘ฅ3/2โˆ’1 1 โˆ’ ๐‘ฅ 3/2โˆ’1

๐ต 32 ,

32

, 0 < ๐‘ฅ < 1

๐‘“ ๐‘ฅ =2. ๐‘ฅ1/2 1 โˆ’ ๐‘ฅ 1/2

12 ๐œ‹

2 , 0 < ๐‘ฅ < 1

๐‘“ ๐‘ฅ =8 ๐‘ฅ(1 โˆ’ ๐‘ฅ)

๐œ‹

Let

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.60

0.04

0.08

5

0.13

0.17

5

0.22

0.26

5

0.31

0.35

5

0.4

0.44

5

0.49

0.53

5

0.58

0.62

5

0.67

0.71

5

0.76

0.80

5

0.85

0.89

5

0.94

0.98

5

Beta(2,2)

Page 68: From The Classical Beta Distribution To Generalized Beta ...

63

๐‘ฅ =๐‘ฆ + ๐‘…

2๐‘…, |๐ฝ| =

1

2๐‘…

Limits changes as ๐‘ฅ = 0 โ†’ ๐‘ฆ > โˆ’๐‘… and ๐‘ฅ = 1 โ†’ ๐‘ฆ = ๐‘…

๐‘“ ๐‘ฆ =8 ๐‘ฆ + ๐‘…

2๐‘… 1 โˆ’๐‘ฆ + ๐‘…

2๐‘…

๐œ‹.

1

2๐‘…

=4 ๐‘ฆ + ๐‘…

2๐‘… โˆ’ ๐‘ฆ + ๐‘…

2๐‘… 2

๐‘…๐œ‹

=4 2๐‘…๐‘ฆ + 2๐‘…2 โˆ’ ๐‘ฆ2 โˆ’ 2๐‘ฆ๐‘… โˆ’ ๐‘…2

4๐‘…2

๐‘…๐œ‹

=2 ๐‘…2 โˆ’ ๐‘ฆ2

๐‘…2๐œ‹, โˆ’๐‘… < ๐‘ฆ < ๐‘… ________(2.20)

Equation (2.20) is the Wigner semicircle distribution.

2.7.2 Properties of Wigner Semicircle

i. rth-order moments

The rth-order moments for positive integers r, the 2r

thmoments are given by

๐ธ ๐‘Œ2๐‘Ÿ = ๐‘…

2

2๐‘Ÿ

๐ถ๐‘Ÿ

Where ๐ถ๐‘Ÿ is the rth catalan number given by ๐ถ๐‘Ÿ =

1

๐‘Ÿ+1 2๐‘Ÿ

๐‘Ÿ so that the moments are the

catalan numbers if R=2. The odd numbers are zero.

ii. Mean

Mean of Wigner semi-circle, the first order moment, odd moment is zero.

iii. Mode

Mode of Wigner semi-circle is given by

๐‘‘

๐‘‘๐‘ฆ๐‘“(๐‘ฆ) = 0

2

๐‘…2๐œ‹

๐‘‘

๐‘‘๐‘ฆ ๐‘…2 โˆ’ ๐‘ฆ2 = 0

๐‘ฆ = 0

Page 69: From The Classical Beta Distribution To Generalized Beta ...

64

iv. Variance

The variance of Wigner semi-circle is given by

Var Y = ๐ธ ๐‘Œ2 โˆ’ ๐ธ(๐‘Œ)

= ๐‘…

2

2 1

2. 2

=๐‘…2

4

v. Skewness

The Skewness of Wigner semi-circle is zero, since it is the third order moment which is

an odd moment.

vi. Kurtosis

The Kurtosis of Wigner semi-circle is given by

Kurtosis = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ ๐ธ ๐‘Œ3 + 6 ๐ธ ๐‘Œ 2๐ธ ๐‘Œ2 โˆ’ 3 ๐ธ ๐‘Œ 4

= ๐ธ ๐‘Œ4

= ๐‘…

2

2.2 1

2 + 1

2.2

2

=๐‘…4

8

Standardized Kurtosis =๐‘…4

8.

4

๐‘…2 2

= 2

Page 70: From The Classical Beta Distribution To Generalized Beta ...

65

2.7.3 Shape of Wigner semicircle distribution

The figure 2.12 below shows the shape of the Wigner semicircle distribution.

Fig.2. 12: Wigner semicircle distribution

0

0.2

0.4

0.6

0.8

1

1.2

1.40

0.04

0.08

5

0.13

0.17

5

0.22

0.26

5

0.31

0.35

5

0.4

0.44

5

0.49

0.53

5

0.58

0.62

5

0.67

0.71

5

0.76

0.80

5

0.85

0.89

5

0.94

0.98

5

Beta(1.5,1.5)

Page 71: From The Classical Beta Distribution To Generalized Beta ...

3 Chapter III: Type II Two Parameter Inverted

Beta Distribution

3.1 Construction of Beta Distribution of the Second Kind

The beta distribution of the second kind is derived by using the transformation

๐‘‡1: ๐‘ฅ =y

1 + y

in equation 2.1 to give a new distribution as follows:

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) = ๐‘“(๐‘ฅ; ๐‘Ž, ๐‘)|๐ฝ|

The limits changes as follows ๐‘ฅ + ๐‘ฅ๐‘ฆ = ๐‘ฆ โŸน ๐‘ฆ 1 โˆ’ ๐‘ฅ = ๐‘ฅ, ๐‘ฆ =๐‘ฅ

1โˆ’๐‘ฅ

when x = 0, y = 0 and when x = 1, y = โˆž โŸน 0 < ๐‘ฆ < โˆž

Where

|๐ฝ| =1

(1 + y)2

Therefore

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ =๐‘ฅ๐‘Žโˆ’1 1 โˆ’ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ . |๐ฝ|

=(

๐‘ฆ1 + ๐‘ฆ)๐‘Žโˆ’1 1 โˆ’

๐‘ฆ1 + ๐‘ฆ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ .

1

(1 + y)2

=๐‘ฆ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ (1 + y)a+b , 0 < ๐‘ฆ < โˆž, ๐‘Ž, ๐‘ > 0_______(3.1)

Page 72: From The Classical Beta Distribution To Generalized Beta ...

67

Equation (3.1) is a beta distribution of the second kind. It is also known as the standard

form of a Pearson Type VI distribution, sometimes called beta prime distribution or

Inverted beta distribution.

Another method of deriving beta distribution of the second kind is by using the

transformation

๐‘ฅ =1

1 + y in equation (2.1)

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ=

โˆ’1

1 + y 2

The limits changes as follows

๐‘ฅ + ๐‘ฅ๐‘ฆ = 1 โŸน ๐‘ฆ =1 โˆ’ x

x, when x = 0, y = โˆž and when x = 1, y = 0 โŸน 0 < ๐‘ฆ < โˆž

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) = ๐‘“(๐‘ฅ; ๐‘Ž, ๐‘)|๐ฝ|

=

1

1 + ๐‘ฆ ๐‘Žโˆ’1

1 โˆ’ 1

1 + ๐‘ฆ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ .

1

1 + y 2

=(

11 + ๐‘ฆ)๐‘Žโˆ’1

๐‘ฆ1 + ๐‘ฆ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ .

1

1 โˆ’ y 2

=๐‘ฆ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฆ a+b

3.2 Properties of Beta Distribution of the Second Kind

3.2.1 rth-order moments

To obtain rth-order moments of the beta distribution of the second kind, we evaluate

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ โˆž

0

๐‘‘๐‘ฆ

Page 73: From The Classical Beta Distribution To Generalized Beta ...

68

= ๐‘ฆ๐‘Ÿ ๐‘ฆ๐‘Žโˆ’1

๐ต(๐‘Ž, ๐‘)(1 + y)a+b

โˆž

0

๐‘‘๐‘ฆ

=1

๐ต(๐‘Ž, ๐‘)

๐‘ฆ๐‘Ÿ+๐‘Žโˆ’1

(1 + y)a+b

โˆž

0

๐‘‘๐‘ฆ

To integrate the integral in above expression, substitute

๐‘ฆ =๐‘ฅ

1 โˆ’ ๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

(1 โˆ’ ๐‘ฅ)2

๐‘ฆ 1 โˆ’ ๐‘ฅ = ๐‘ฅ โŸน 1 + ๐‘ฅ =1

(1โˆ’๐‘ฆ) , and limits of integration become 0 to 1. Then

substituting these terms in the above integral, we have

๐‘ฆ๐‘Ÿ+๐‘Žโˆ’1

(1 + y)a+b

โˆž

0

๐‘‘๐‘ฆ = (๐‘ฅ

1 โˆ’ ๐‘ฅ)๐‘Ÿ+๐‘Žโˆ’1 1 โˆ’ ๐‘ฅ ๐‘Ž+๐‘(1 โˆ’ ๐‘ฅ)โˆ’2

1

0

๐‘‘๐‘ฅ

= ๐‘ฅ๐‘Ÿ+๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)โˆ’๐‘Ÿโˆ’๐‘Ž+1+๐‘Ž+๐‘โˆ’2

1

0

๐‘‘๐‘ฅ

= ๐‘ฅ(๐‘Ÿ+๐‘Ž)โˆ’1(1 โˆ’ ๐‘ฅ)(๐‘โˆ’๐‘Ÿ)โˆ’1

1

0

๐‘‘๐‘ฅ

= ๐ต ๐‘Ž + ๐‘Ÿ, ๐‘ โˆ’ ๐‘Ÿ , ๐‘Ÿ < ๐‘

Consequently, the moments of beta distribution of the second kind are given by

๐ธ ๐‘Œ๐‘Ÿ =๐ต ๐‘Ž + ๐‘Ÿ, ๐‘ โˆ’ ๐‘Ÿ

๐ต ๐‘Ž, ๐‘

=ฮ“ ๐‘Ž + ๐‘Ÿ ฮ“ ๐‘ โˆ’ ๐‘Ÿ

ฮ“ ๐‘Ž ฮ“ ๐‘ ๐‘Ÿ < ๐‘ ___________________(3.2)

Using recursive relationship ฮ“ a + 1 = aฮ“(a), the first four moments about zero can be

written as follows

Page 74: From The Classical Beta Distribution To Generalized Beta ...

69

3.2.2 Mean

The mean can be obtained by substituting r=1 in equation 3.2

๐‘š1 โ‰ก ฮผ = E Y =๐ต ๐‘Ž + ๐‘Ÿ, ๐‘ โˆ’ ๐‘Ÿ

๐ต ๐‘Ž, ๐‘

=ฮ“ a + 1 ฮ“(b โˆ’ 1)

ฮ“(a + b).ฮ“ a + b

ฮ“(a)ฮ“(b)

=aฮ“ a ฮ“ b โˆ’ 1

ฮ“ a + b .ฮ“ a + b

ฮ“(a)ฮ“(b)

=aฮ“ b โˆ’ 1

ฮ“(b)

=a b โˆ’ 2 !

๐‘ โˆ’ 1 !

=๐‘Ž ๐‘ โˆ’ 2 !

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 !

=๐‘Ž

๐‘ โˆ’ 1 , ๐‘ > 1(๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)_______(3.3)

If b โ‰ค 1, the mean is infinite i. e undefined

๐‘š2 โ‰ก E Y2 =๐ต ๐‘Ž + 2, ๐‘ โˆ’ 2

๐ต ๐‘Ž, ๐‘

=ฮ“ a + 2 ฮ“(b โˆ’ 2)

ฮ“(a + b).ฮ“ a + b

ฮ“(a)ฮ“(b)

=(a + 1)aฮ“ a ฮ“ b โˆ’ 2

ฮ“(a)ฮ“(b)

=a(a + 1) b โˆ’ 3 !

b โˆ’ 1 b โˆ’ 2 (b โˆ’ 3)!

=a(a + 1)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2

= ๐‘š1

(a + 1)

๐‘ โˆ’ 2 , ๐‘ > 2 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)

Page 75: From The Classical Beta Distribution To Generalized Beta ...

70

๐‘š3 โ‰ก E Y3 =๐ต ๐‘Ž + 3, ๐‘ โˆ’ 3

๐ต ๐‘Ž, ๐‘

=ฮ“ a + 3 ฮ“(b โˆ’ 3)

ฮ“(a + b).ฮ“ a + b

ฮ“(a)ฮ“(b)

= a + 2 a + 1 aฮ“ a b โˆ’ 4 !

ฮ“(a) b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)!

=a a + 1 (a + 2)

b โˆ’ 1 b โˆ’ 2 (b โˆ’ 3)

=๐‘š2(a + 2)

(b โˆ’ 3) , ๐‘ > 3 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)

๐‘š4 โ‰ก E Y4 =๐ต ๐‘Ž + 4, ๐‘ โˆ’ 4

๐ต ๐‘Ž, ๐‘

=ฮ“ a + 4 ฮ“(b โˆ’ 4)

ฮ“(a + b).ฮ“ a + b

ฮ“(a)ฮ“(b)

=(a + 3)(a + 2)(a + 1)aฮ“ a b โˆ’ 5 !

ฮ“ a b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4 (b โˆ’ 5)!

=a a + 1 a + 2 (a + 3)

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)

=๐‘š3(a + 3)

(b โˆ’ 4) , ๐‘ > 4 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)

3.2.3 Mode

Mode is obtained by solving

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

=๐‘‘

๐‘‘๐‘ฆ

๐‘ฆ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฆ a+b = 0

Page 76: From The Classical Beta Distribution To Generalized Beta ...

71

=1

๐ต ๐‘Ž, ๐‘ ๐‘ โˆ’ 1 ๐‘ฆ๐‘โˆ’2 . 1 + ๐‘ฆ a+b โˆ’ a + b 1 + ๐‘ฆ a+bโˆ’1 . ๐‘ฆ๐‘โˆ’1

1 + ๐‘ฆ 2a+2b = 0

= ๐‘ โˆ’ 1 ๐‘ฆ๐‘โˆ’2 . 1 + ๐‘ฆ a+b โˆ’ a + b 1 + ๐‘ฆ a+bโˆ’1 . ๐‘ฆ๐‘โˆ’1 = 0

๐‘ โˆ’ 1 ๐‘ฆ๐‘โˆ’2. 1 + ๐‘ฆ a+b = a + b 1 + ๐‘ฆ a+bโˆ’1 . ๐‘ฆ๐‘โˆ’1

๐‘ โˆ’ 1 ๐‘ฆ๐‘โˆ’1 . ๐‘ฆโˆ’1 . 1 + ๐‘ฆ a+b = a + b 1 + ๐‘ฆ a+b 1 + ๐‘ฆ โˆ’1. ๐‘ฆ๐‘โˆ’1

๐‘ โˆ’ 1 ๐‘ฆโˆ’1 = (a + b) 1 + ๐‘ฆ โˆ’1

1 + ๐‘ฆ ๐‘ โˆ’ 1 = ๐‘ฆ(a + b)

๐‘ โˆ’ 1 + ๐‘ฆ๐‘ โˆ’ ๐‘ฆ = ๐‘ฆ๐‘Ž + yb

๐‘ฆ(๐‘Ž + 1) = ๐‘ โˆ’ 1

๐‘ฆ =๐‘ โˆ’ 1

๐‘Ž + 1, if b โ‰ฅ 1, 0 otherwise___________________(3.4)

3.2.4 Variance

Since variance is given by ๐ธ ๐‘Œ2 โˆ’ ๐ธ ๐‘Œ 2, we have

๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) = a(a + 1)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 โˆ’

๐‘Ž2

๐‘ โˆ’ 1 2

= ๐‘ โˆ’ 1 ๐‘Ž2 + ๐‘Ž โˆ’ ๐‘Ž2(๐‘ โˆ’ 2)

๐‘ โˆ’ 1 2(๐‘ โˆ’ 2)

=๐‘Ž2๐‘ + ๐‘Ž๐‘ โˆ’ ๐‘Ž2 โˆ’ ๐‘Ž โˆ’ ๐‘Ž2๐‘ + 2๐‘Ž2

๐‘ โˆ’ 1 2(๐‘ โˆ’ 2)

=๐‘Ž๐‘ + ๐‘Ž2 โˆ’ ๐‘Ž

๐‘ โˆ’ 1 2(๐‘ โˆ’ 2)

Page 77: From The Classical Beta Distribution To Generalized Beta ...

72

=๐‘Ž(๐‘Ž + ๐‘ โˆ’ 1)

๐‘ โˆ’ 1 2(๐‘ โˆ’ 2), ๐‘ > 2 (๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)________(3.5)

3.2.5 Skewness

Skewness can be expressed as

Skewness = ๐‘ข3 = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2 ๐ธ ๐‘Œ 3

= m3 โˆ’ 3๐‘š2๐‘š1+2๐‘š13,

=๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)โˆ’ 3

a(a + 1)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2

๐‘Ž

๐‘ โˆ’ 1 + 2(

๐‘Ž

๐‘ โˆ’ 1 )3

= ๐‘Ž2 + ๐‘Ž (๐‘Ž + 2)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)โˆ’

3a3 + 3a2

๐‘ โˆ’ 1 2 ๐‘ โˆ’ 2 +

2a3

๐‘ โˆ’ 1 3

= ๐‘Ž3 + 3๐‘Ž2 + 2๐‘Ž

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)โˆ’

3a3 + 3a2

๐‘ โˆ’ 1 2 ๐‘ โˆ’ 2 +

2a3

๐‘ โˆ’ 1 3

= ๐‘ โˆ’ 1 2 ๐‘Ž3 + 3๐‘Ž2 + 2๐‘Ž โˆ’ ๐‘ โˆ’ 1 ๐‘ โˆ’ 3 3a3 + 3a2 + 2a3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

=(๐‘2 โˆ’ 2๐‘ + 1) ๐‘Ž3 + 3๐‘Ž2 + 2๐‘Ž โˆ’ (๐‘2 โˆ’ 4๐‘ + 3) 3a3 + 3a2 + 2a3(๐‘2 โˆ’ 5๐‘ + 6)

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

=

๐‘Ž3๐‘2 + 3๐‘Ž2๐‘2 + 2๐‘Ž๐‘2 โˆ’ 2๐‘Ž3๐‘ โˆ’ 6๐‘Ž2๐‘ โˆ’ 4๐‘Ž๐‘ + ๐‘Ž3 + 3๐‘Ž2 + 2๐‘Ž โˆ’ 3a3๐‘2 โˆ’ 3a2๐‘2 + 12a3b+12๐‘2๐‘ โˆ’ 9๐‘Ž3 โˆ’ 9๐‘Ž2 + 2p3๐‘2 โˆ’ 10a3๐‘ + 12a3

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

=2๐‘Ž๐‘2 + 6๐‘Ž2๐‘ โˆ’ 4๐‘Ž๐‘ + 4๐‘Ž3 โˆ’ 6๐‘Ž2 + 2๐‘Ž

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 ๐‘ โˆ’ 3

=2๐‘Ž[๐‘2 + 3๐‘Ž๐‘ โˆ’ 2๐‘ + 2๐‘Ž2 โˆ’ 3๐‘Ž + 1]

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

=2๐‘Ž[2๐‘Ž2 + 3๐‘Ž๐‘ โˆ’ 3๐‘Ž + ๐‘2 โˆ’ 2๐‘ + 1]

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

Page 78: From The Classical Beta Distribution To Generalized Beta ...

73

=2๐‘Ž[2๐‘Ž2 + 3๐‘Ž ๐‘ โˆ’ 1 + (๐‘ โˆ’ 1)2]

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3), ๐‘ > 3_____________(3.6)

(๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)

Since skewness is positive, it can be concluded that the beta distribution of the second

kind has usually along tail to the right.

3.2.6 Kurtosis

Kurtosis can be expressed as

Kurtosis = ๐‘ข4 = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ ๐ธ ๐‘Œ3 + 6{๐ธ ๐‘Œ }2๐ธ ๐‘Œ2 โˆ’ 3 ๐ธ ๐‘Œ 4

= m4 โˆ’ 4๐‘š1๐‘š3+6๐‘š12๐‘š2 โˆ’ 3๐‘š1

4,

=a a + 1 a + 2 (a + 3)

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’ 4

๐‘Ž

๐‘ โˆ’ 1

a a + 1 (a + 2)

b โˆ’ 1 b โˆ’ 2 (b โˆ’ 3)

+ 6 ๐‘Ž

๐‘ โˆ’ 1

2 a(a + 1)

๐‘ โˆ’ 1 ๐‘ โˆ’ 2 โˆ’ 3(

๐‘Ž

๐‘ โˆ’ 1 )4

=(a2 + a)(a2 + 5a + 6)

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’

4(a3 + a2)(a + 2)

b โˆ’ 1 2 b โˆ’ 2 (b โˆ’ 3)+

6(a4 + a3)

b โˆ’ 1 3 ๐‘ โˆ’ 2

โˆ’3a4

b โˆ’ 1 4

=(a4 + 5a3 + 6a2 + a3 + 5a2 + 6a)

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’

(4a4 + 8a3 + 4a3 + 8a2)

b โˆ’ 1 2 b โˆ’ 2 (b โˆ’ 3)+

(6a4 + 6a3)

b โˆ’ 1 3 ๐‘ โˆ’ 2

โˆ’3a4

b โˆ’ 1 4

= b โˆ’ 1 3 a4 + 5a3 + 6a2 + a3 + 5a2 + 6a โˆ’ b โˆ’ 1 2(b โˆ’ 4)(4a4 + 8a3 + 4a3 + 8a2)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)

+ b โˆ’ 1 b โˆ’ 3 b โˆ’ 4 6a4 + 6a3 โˆ’ b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)3a4

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)

Page 79: From The Classical Beta Distribution To Generalized Beta ...

74

=(b โˆ’ 1) b2 โˆ’ 2b + 1 a4 + 6a3 + 11a2 + 6a โˆ’ b2 โˆ’ 2b + 1 (b โˆ’ 4)(4a4 + 12a3

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)

+8a2) b2 โˆ’ 4b + 3 b โˆ’ 4 6a4 + 6a3 โˆ’ (b โˆ’ 2)(b2 โˆ’ 7b + 12)3a4

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

=(b3 โˆ’ 3b2 + 3b โˆ’ 1) a4 + 6a3 + 11a2 + 6a โˆ’ b3 โˆ’ 6b2 + 9b โˆ’ 4 (4a4 + 12a3

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)

+8a2) b3 โˆ’ 8b2 + 19b โˆ’ 12 6a4 + 6a3 โˆ’ (b โˆ’ 2)(3a4b2 โˆ’ 21a4b + 36a4)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

= [(a4b3 + 6a3b3 + 11a2b3 + 6ab3)+(โˆ’3a4b2โˆ’18a3b2โˆ’33a2b2 โˆ’ 18ab2)+(3a4b +

18a3b + 33a2b + 18ab ) + โˆ’a4 โˆ’ 6a3 โˆ’ 11a2 โˆ’ 6a + โˆ’4a4b3 โˆ’ 12a3b3 โˆ’ 8a2b3 +

(24a4b2 + 72a3b2 + 48a2b2)+(โˆ’36a4b โˆ’ 108a3b โˆ’ 72a2b) + 16a4 + 48a3 +

32a2+6a4b3โˆ’48a4b2+114a4bโˆ’72a4+6a3b3โˆ’48a3b2+114a3bโˆ’72a3+โˆ’3a4b3+27

a4b2โˆ’78a4b+72a4]/bโˆ’14bโˆ’2bโˆ’3bโˆ’4

=

3a2b3 + 6ab3+6a3b2+15a2b2 โˆ’ 18ab2+3a4b + 24a3b โˆ’ 39a2b + 18ab + 15a4 โˆ’ 30a3

+21a2 โˆ’ 6a b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

=

3a(ab3 + 2b3+2a2b2 + 5ab2 โˆ’ 6b2+a3b + 8a2b โˆ’ 13ab + 6b + 5a3 โˆ’ 10a2

+7a โˆ’ 2)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4 _______(3.7)

(๐ถ๐‘Ž๐‘ก๐‘•๐‘’๐‘Ÿ๐‘–๐‘›๐‘’ ๐‘’๐‘ก ๐‘Ž๐‘™. , 2010)

Page 80: From The Classical Beta Distribution To Generalized Beta ...

75

3.2.7 Shapes of Beta distribution of the second kind

Fig.3. 1: Beta distribution of the second kind

3.3 Application of Beta Distribution of the Second Kind

Vartia and Vartia (1980) fitted a four parameter shifted beta distribution of the second

kind under the name of scaled and shifted F distribution to the 1967 distribution of taxed

income in Finland. Using maximum likelihood and method of momentโ€˜s estimators, they

found that their model fits systematically better than the two- and three-parameter

lognormal distributions. McDonald (1984) estimated the beta distribution of the second

kind and both beta of the first and second kind distributions for 1970, 1975 and 1980 US

family incomes.

3.4 Special Cases of Beta Distribution of the Second Kind

3.4.1 Lomax (Pareto II) distribution function

Special case when a=1 in equation (3.1) gives the following density function

๐‘“ ๐‘ฅ; ๐‘ =1

๐ต 1, ๐‘ 1 + x 1+b , 0 < ๐‘ฅ < โˆž, ๐‘ > 0

0

2

4

6

8

10

12

14

16

0

0.05

5

0.11

0.16

5

0.22

0.27

5

0.33

0.38

5

0.44

0.49

5

0.55

0.60

5

0.66

0.71

5

0.77

0.82

5

0.88

0.93

5

0.99

B(0.5,0.5)

B(1,1)

B(1,2)

B(2,1)

B(2,2)

B(10,1)

B(1,10)

B(2,30)

Page 81: From The Classical Beta Distribution To Generalized Beta ...

76

๐ต 1, ๐‘ =1

๐‘

=๐‘

(1 + x)1+b, ๐‘ฅ > 0 , ๐‘ > 0___________________(3.8)

Equation (3.8) is a Lomax distribution.

3.4.2 Properties of Lomax distribution

i. rth-order moments

Putting ๐‘Ž = 1 in equation 3.2

๐ธ ๐‘‹๐‘Ÿ =ฮ“ 1 + ๐‘Ÿ ฮ“ ๐‘ โˆ’ ๐‘Ÿ

ฮ“ 1 ฮ“ ๐‘

=ฮ“ 1 + ๐‘Ÿ ฮ“ ๐‘ โˆ’ ๐‘Ÿ

ฮ“ ๐‘

ii. Mean

E(X) =ฮ“ 1 + 1 ฮ“ ๐‘ โˆ’ 1

ฮ“ ๐‘

= b โˆ’ 2 !

b โˆ’ 1 b โˆ’ 2 !

=1

๐‘ โˆ’ 1

iii. Mode

Mode =๐‘ โˆ’ 1

2

iv. Variance

๐‘‰๐‘Ž๐‘Ÿ(๐‘‹) =๐‘

(๐‘ โˆ’ 2)(๐‘ โˆ’ 1)2

Page 82: From The Classical Beta Distribution To Generalized Beta ...

77

v. Skewness

Skewness =2 2 + 3 ๐‘ โˆ’ 1 + ๐‘ โˆ’ 1 2

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 ๐‘ โˆ’ 3

=2๐‘ ๐‘ + 1

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 ๐‘ โˆ’ 3

vi. Kurtosis

kurtosis =3(3b3 + b2 + 2b)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

3.4.3 Shape of Lomax distribution

The figure 3.2 below shows the shape of the Lomax distribution with parameter b=10.

The graph is equivalent to the graph of beta distribution of the second kind with

parameters a=1 and b=10.

Fig.3. 2: Lomax distribution

3.4.4 Log-Logistic (Fisk) distribution function

Special case of beta distribution of the second kind when a=b=1 in equation (3.1)

๐‘“ ๐‘ฅ =1

(1 + ๐‘ฅ)2 , ๐‘ฅ > 0 _____________________(3.9)

Equation 3.9 is the log-logistic distribution, also known as Fisk distribution.

0

1

2

3

4

5

6

7

8

9

10

00.

035

0.0

70.

105

0.1

40.

175

0.2

10.

245

0.2

80.

315

0.3

50.

385

0.4

20.

455

0.4

90.

525

0.5

60.

595

0.6

30.

665

0.7

0.73

50

.77

0.80

50

.84

0.87

50

.91

0.94

50

.98

Lomax distribution

Page 83: From The Classical Beta Distribution To Generalized Beta ...

78

3.4.5 Properties of Log-logistic distribution

i. rth-order moments

Putting ๐‘Ž = 1 and ๐‘ = 1 in equation 3.2

๐ธ ๐‘‹๐‘Ÿ =ฮ“ 1 + ๐‘Ÿ ฮ“ 1 โˆ’ ๐‘Ÿ

ฮ“ 1 ฮ“ 1

= ฮ“ 1 + ๐‘Ÿ ฮ“ 1 โˆ’ ๐‘Ÿ

=rฯ€

sin rฯ€

ii. Mean

E(X) = ฮ“ 1 + ๐‘Ÿ ฮ“ 1 โˆ’ ๐‘Ÿ

= ฮ“ 1 + 1 ฮ“ โˆ’1 + 1

=ฯ€

sin ฯ€

iii. Mode

Mode =1 โˆ’ 1

1 + 1= 0

iv. Variance

Var X =2ฯ€

sin 2ฯ€โˆ’

ฯ€

sin ฯ€

2

v. Skewness

Skewness = ๐ธ ๐‘‹3 โˆ’ 3๐ธ ๐‘‹2 ๐ธ ๐‘‹ + 2{๐ธ(๐‘‹)}3

=3ฯ€

sin 3ฯ€โˆ’ 3

2ฯ€

sin 2ฯ€

ฯ€

sin ฯ€ + 2

ฯ€

sin ฯ€

3

Page 84: From The Classical Beta Distribution To Generalized Beta ...

79

vi. Kurtosis

kurtosis = ๐ธ ๐‘‹4 โˆ’ 4๐ธ ๐‘‹ ๐ธ(๐‘‹3) + 6{๐ธ(๐‘‹)}2๐ธ ๐‘‹2 โˆ’ 3{๐ธ(๐‘‹)}4

=4ฯ€

sin 4ฯ€โˆ’ 4

ฯ€

sin ฯ€

3ฯ€

sin 3ฯ€+ 6

ฯ€

sin ฯ€

2 2ฯ€

sin 2ฯ€โˆ’ 3

ฯ€

sin ฯ€

4

3.4.6 Shape of Log-logistic distribution

Fig.3. 3: Log-logistic distribution

3.5 Limiting Distribution

Gamma distribution

The two parameter beta distribution in equation 3.1 can be shown to approach the gamma

distribution as bโ†’โˆž with scale parameter a changing with the parameter b as a= ๐‘ฮฒ. The

resultant probability density function is given by

๐‘“(x; a, ฮฒ, b) = ๐‘ฅ๐‘ฮฒโˆ’1

๐‘Žฮฒ ฮ“ ๐‘ฮฒ ๐‘’

โˆ’ ๐‘ฅ๐‘๐›ฝ

0 โ‰ค ๐‘ฅ _______________(3.10)

Equation (3.10) is the gamma distribution function which is covered in details under the

generalized beta distribution of the second kind in chapter VI.

0

0.2

0.4

0.6

0.8

1

1.20

0.0

45

0.09

0.1

35

0.18

0.2

25

0.27

0.3

15

0.36

0.4

05

0.45

0.4

95

0.54

0.5

85

0.63

0.6

75

0.72

0.7

65

0.81

0.8

55

0.9

0.9

45

0.99

Log-logistic distribution

Page 85: From The Classical Beta Distribution To Generalized Beta ...

80

4 Chapter IV: The Three Parameter Beta

Distributions

4.1 Introduction

This chapter highlights some of the three parameter beta distribution functions used by

various authors in literature. These three parameter beta distributions are special cases of

the more generalized four parameter beta distributions.

4.2 Case I: Libby and Novick Three Parameter Beta Distribution

Libby and Novick (1982) used the following approach in deriving the three parameter

beta distribution

Let ๐‘Œ0 = ๐‘‹0 and ๐‘Œ1 =๐‘‹1

๐‘‹0+๐‘‹1

โŸน ๐‘‹0 = ๐‘Œ0 and ๐‘Œ1(๐‘‹0 + ๐‘‹1) = ๐‘‹1

๐‘Œ1๐‘‹0 + ๐‘Œ1๐‘‹1 = ๐‘‹1

๐‘Œ1๐‘‹0 = (1 โˆ’ ๐‘Œ1)๐‘‹1

โˆด ๐‘‹1 =๐‘Œ0๐‘Œ1

1 โˆ’ ๐‘Œ1

๐ฝ =

d๐‘ฅ0

d๐‘ฆ0

d๐‘ฅ0

d๐‘ฆ1

d๐‘ฅ1

d๐‘ฆ0

d๐‘ฅ1

d๐‘ฆ1

= 1 0๐‘Œ1

1 โˆ’ ๐‘Œ1

๐‘Œ0

1 โˆ’ ๐‘Œ1 2 =

๐‘Œ0

1 โˆ’ ๐‘Œ1 2

๐‘” ๐‘ฆ0,๐‘ฆ1 = ๐‘“(๐‘ฅ0, ๐‘ฅ1) ๐ฝ

= ๐‘“(๐‘ฅ0) ๐‘“(๐‘ฅ1) ๐‘Œ0

1 โˆ’ ๐‘Œ1 2

=๐‘ข๐‘Ž

ฮ“(a)๐‘’โˆ’๐‘ข๐‘ฅ0๐‘ฅ0

๐‘Žโˆ’1 ๐‘ฃ๐‘

ฮ“(b)๐‘’โˆ’๐‘ฃ๐‘ฅ1๐‘ฅ1

๐‘โˆ’1 .๐‘Œ0

1 โˆ’ ๐‘Œ1 2

=๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)๐‘’โˆ’๐‘ข๐‘ฅ0โˆ’๐‘ฃ๐‘ฅ1๐‘ฅ0

๐‘Žโˆ’1๐‘ฅ1๐‘โˆ’1

๐‘Œ0

1 โˆ’ ๐‘Œ1 2

๐‘” ๐‘ฆ0,๐‘ฆ1 =๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“ a ฮ“ b ๐‘’โˆ’๐‘ข๐‘ฅ0โˆ’๐‘ฃ๐‘ฅ1๐‘ฅ0

๐‘Žโˆ’1๐‘ฅ1๐‘โˆ’1

๐‘Œ0

1 โˆ’ ๐‘Œ1 2

=๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)๐‘’

โˆ’๐‘ข๐‘ฆ0โˆ’๐‘ฃ ๐‘Œ0๐‘Œ11โˆ’๐‘Œ1

๐‘ฆ0

๐‘Žโˆ’1 ๐‘Œ0๐‘Œ1

1 โˆ’ ๐‘Œ1

๐‘โˆ’1

๐‘Œ0

1 โˆ’ ๐‘Œ1 2

Page 86: From The Classical Beta Distribution To Generalized Beta ...

81

โˆด ๐‘” ๐‘ฆ0,๐‘ฆ1 =๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)๐‘’

โˆ’๐‘ฆ0 ๐‘ข+ ๐‘ฃ๐‘Œ1

1โˆ’๐‘Œ1

๐‘ฆ0

๐‘Ž+๐‘โˆ’1๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1

=๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)๐‘’

โˆ’๐‘ข๐‘ฆ0 1+ ๐œ†1๐‘Œ11โˆ’๐‘Œ1

๐‘ฆ0

๐‘Ž+๐‘โˆ’1๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1

๐‘” ๐‘ฆ1 =๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)

๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1 ๐‘’

โˆ’๐‘ฆ0 ๐‘ข+ ๐‘ฃ๐‘Œ1

1โˆ’๐‘Œ1 โˆž

0

๐‘ฆ0๐‘Ž+๐‘โˆ’1 ๐‘‘๐‘ฆ0

๐‘ฅ = ๐‘๐‘ฆ0 โŸน ๐‘ฆ0 =๐‘ฅ

๐‘

๐‘‘๐‘ฆ0 =๐‘‘๐‘ฅ

๐‘

๐‘’โˆ’๐‘ฅโˆž

0

๐‘ฅ

๐‘ ๐‘Ž+๐‘โˆ’1

๐‘‘๐‘ฅ

๐‘

๐‘” ๐‘ฆ1 =๐‘ข๐‘Ž๐‘ฃ๐‘

ฮ“(a)ฮ“(b)

๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1 ๐‘’โˆ’๐‘๐‘ฆ0

โˆž

0

๐‘ฆ0๐‘Ž+๐‘โˆ’1 ๐‘‘๐‘ฆ0

๐‘’โˆ’๐‘ฅโˆž

0

๐‘ฅ๐‘Ž+๐‘โˆ’1

๐‘๐‘Ž+๐‘๐‘‘๐‘ฅ

ฮ“(a + b)

ฮ“ a ฮ“ b

๐‘ข๐‘Ž๐‘ฃ๐‘

u +v๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1

1

B(a, b)

๐‘ข๐‘Ž๐‘ฃ๐‘

uab 1 +ฮป1๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

๐‘ฆ1๐‘โˆ’1

1 โˆ’ ๐‘Œ1 ๐‘+1

vu

b

B a, b

๐‘ฆ1

1 โˆ’ ๐‘ฆ1

๐‘โˆ’1

1

1 โˆ’ ๐‘Œ1

2

1 + ฮป1 ๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b, 0 < ๐‘ฆ1 < 1

ฮป1b

B a, b

๐‘ฆ1

1 โˆ’ ๐‘ฆ1

๐‘โˆ’1

1

1 โˆ’ ๐‘Œ1

2

1 + ฮป1 ๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

๐‘” ๐‘ฆ1 =ฮป1

b

B a, b

๐‘ฆ1

1 โˆ’ ๐‘ฆ1

๐‘โˆ’1

1

1 โˆ’ ๐‘Œ1

2

1 + ฮป1 ๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

Page 87: From The Classical Beta Distribution To Generalized Beta ...

82

=ฮป1

b

B a, b

๐‘ฆ1๐‘โˆ’1

(1 โˆ’ ๐‘Œ1)b+1 1 + ฮป1 ๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

=ฮป1

b

B a, b

๐‘ฆ1๐‘โˆ’1

(1 โˆ’ ๐‘Œ1)b+1 1 โˆ’ ๐‘ฆ1 + ฮป1๐‘ฆ1

1 โˆ’ ๐‘ฆ1

a+b

=ฮป1

b

B a, b

๐‘ฆ1๐‘โˆ’1 1 โˆ’ ๐‘Œ1

aโˆ’1

1 โˆ’ (1 โˆ’ ฮป1)๐‘ฆ1 a+b_________________________(4.1)

Equation (4.1) was first used by Libby and Novick (1982) for utility function fitting and

by Chen and Novick (1984) as prior in some binomial sampling model. The equation

becomes standard beta distribution when c=1.

An alternative method of deriving the three parameter beta distribution introduced by

Libby and Novick (1982) is by using transformation as follows:

From the Classical beta distribution in equation (2.1), a third parameter c is introduced

using the transformation

x =๐‘๐‘ฆ

1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

๐‘(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ โˆ’ [ โˆ’1 + ๐‘ ๐‘๐‘ฆ]

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)2

= ๐‘ โˆ’ ๐‘๐‘ฆ + ๐‘๐‘ฆ2 โˆ’ [โˆ’๐‘๐‘ฆ + ๐‘๐‘ฆ2]

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)2

=๐‘

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)2

We get

Page 88: From The Classical Beta Distribution To Generalized Beta ...

83

f y; c, a, b =(

๐‘๐‘ฆ1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)aโˆ’1 1 โˆ’

๐‘๐‘ฆ1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ

bโˆ’1

B a, b .

๐‘

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)2

=1

B a, b

๐‘aโˆ’1๐‘ฆaโˆ’1

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)๐‘Žโˆ’1

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ โˆ’ ๐‘๐‘ฆ)bโˆ’1

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)๐‘โˆ’1.

๐‘

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)2

=1

B a, b

๐‘aโˆ’1+1๐‘ฆaโˆ’1(1 โˆ’ ๐‘ฆ)bโˆ’1

(1 โˆ’ ๐‘ฆ + ๐‘๐‘ฆ)๐‘Žโˆ’1+๐‘โˆ’1+2

=1

B a, b

๐‘a๐‘ฆaโˆ’1(1 โˆ’ ๐‘ฆ)bโˆ’1

(1 โˆ’ (1 โˆ’ ๐‘)๐‘ฆ)๐‘Ž+๐‘

for 0 < ๐‘ฆ < 1, ๐‘ > 0, ๐‘Ž > 0, ๐‘ > 0

4.3 Case II: McDonaldโ€™s Three Parameter Beta I Distribution

The general three parameter beta (a,b,c) can be derived from the standard beta

distribution with two parameters in equation (2.1) by using the transformation

๐‘ฅ =๐‘ฆ

๐‘

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

1

๐‘

f y; a, b, c =

yc

aโˆ’1

1 โˆ’yc

bโˆ’1

B a, b .

1

๐‘

=

yc

aโˆ’1

1 โˆ’ yc

bโˆ’1

c B a, b

Page 89: From The Classical Beta Distribution To Generalized Beta ...

84

=yaโˆ’1 1 โˆ’

yc

bโˆ’1

ca B a, b , 0 < ๐‘ฆ < ๐‘ , ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0__________(4.2)

The three parameter beta distribution in equation 4.2 is referred to as the beta of the first

kind in McDonald, 1995. The Classical beta distribution corresponds to equation 4.2

when c=1.

4.4 Gamma Distribution as a Limiting Distribution

We show that the three parameter generalized beta distribution in equation 4.2

approaches the gamma distribution as bโ†’โˆž as follows:

Let the scale factor b changes with b as c=ฮฒ ๐‘Ž + ๐‘ . Substituting this in equation 4.2

gives

๐‘“(๐‘ฅ; ๐‘Ž, b, ๐‘) = ๐‘ฅ๐‘Žโˆ’1 1 โˆ’

๐‘ฅฮฒ a + b

๐‘โˆ’1

ฮฒ a + b ๐‘Ž๐ต ๐‘Ž, ๐‘

Collecting the terms yields

= ๐‘ฅ๐‘Žโˆ’1

ฮ“(๐‘Ž)ฮฒ๐‘Ž

ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘) a + b ๐‘Ž 1 โˆ’

๐‘ฅ

ฮฒ a + b

๐‘โˆ’1

For large values of b, the gamma function can be approximated by Stirlingโ€˜s formula

ฮ“(๐‘) = ๐‘’โˆ’๐‘๐‘๐‘โˆ’12 2๐œ‹

โŸน ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘) a + b ๐‘Ž =

๐‘’โˆ’๐‘Žโˆ’๐‘(๐‘Ž + ๐‘)๐‘Ž+๐‘โˆ’12 2๐œ‹

๐‘’โˆ’๐‘๐‘๐‘โˆ’12 2๐œ‹ (๐‘Ž + ๐‘)๐‘Ž

Page 90: From The Classical Beta Distribution To Generalized Beta ...

85

โˆด lim ๐‘โ†’โˆž

๐‘’โˆ’๐‘Ž(๐‘Ž + ๐‘)๐‘โˆ’12 2๐œ‹

๐‘๐‘โˆ’12 2๐œ‹

= 1

Similarly, lim ๐‘โ†’โˆž

1 โˆ’๐‘ฅ

ฮฒ(a + b)

๐‘โˆ’1

= ๐‘’โˆ’

๐‘ฅ๐›ฝ

โˆด ๐‘“(x; a, ฮฒ) =๐‘ฅ๐‘Žโˆ’1

ฮฒ๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

0 โ‰ค ๐‘ฅ _______________(4.3)

Equation 4.3 is the gamma distribution function.

4.5 Case III

4.5.1 3 Parameter Beta Distribution Derived from the Beta Distribution of

the Second Kind

From the Classical beta distribution in equation 2.1, let

๐‘ฅ =cy

1 + y

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

c

1 + y 2

f(๐‘ฆ; ๐‘, ๐‘Ž, ๐‘) = ๐‘“(๐‘ฅ; ๐‘Ž, ๐‘) ๐ฝ

=๐‘ฅ๐‘Žโˆ’1 1 โˆ’ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ . ๐ฝ

=

๐‘๐‘ฆ1 + ๐‘ฆ

๐‘Žโˆ’1

1 โˆ’๐‘๐‘ฆ

1 + ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ .

c

(1 + y)2

=๐‘๐‘Ž๐‘ฆ๐‘Žโˆ’1 1 + 1 โˆ’ ๐‘ ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (1 + y)a+b , 0 < ๐‘ฆ < 1 ________(4.4)

The three parameter beta distribution in equation 4.4 reduces to the beta distribution of

the second kind when ๐‘ = 1. When ๐‘ = 2 it reduces to beta type 3 given by

Page 91: From The Classical Beta Distribution To Generalized Beta ...

86

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ =2๐‘Ž๐‘ฆ๐‘Žโˆ’1 1 โˆ’ ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (1 + y)a+b , 0 < ๐‘ฆ < 1______________(4.5)

which is defined on a finite interval and may serve as an alternative to the Classical beta

distribution for many practical applications. The beta type 3 was introduced and studied

by Cardeล„o et.al (2004)

4.5.2 Case IV

An alternative form of the probability density function of the three parameter beta

distribution of the second kind can be obtained by substituting ๐‘ฆ = x/c , ๐‘ > 0 in

equation 3.1,

Then we obtain

f(๐‘ฅ; ๐‘, ๐‘Ž, ๐‘) = ๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) ๐ฝ

= ๐‘ฅ๐‘

๐‘Žโˆ’1

๐‘๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฅ๐‘

a+b

=๐‘ฅ๐‘Žโˆ’1

๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฅ๐‘

a+b , 0 โ‰ค ๐‘ฅ < โˆž, ๐‘Ž > 0, ๐‘ > 0________(4.6)

The three parameter beta distribution in equation (4.6) was used as the beta of the second

kind by Chotikapanich et.al (2010). It is referred to as beta of the second kind in

McDonald and Xu, (1995). Equation 4.6 becomes the beta distribution of the second kind

when c=1.

4.5.3 Case V

A three parameter probability density function of beta distribution of the second kind can

be obtained by using the transformation ๐‘ฆ = ๐‘๐‘ฅ , ๐‘ > 0 in equation 3.1,

Then we obtain

f(๐‘ฅ; ๐‘, ๐‘Ž, ๐‘) = ๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) ๐ฝ

Page 92: From The Classical Beta Distribution To Generalized Beta ...

87

= ๐‘๐‘ฅ ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘๐‘ฅ a+b

. ๐‘

=๐‘๐‘Ž๐‘ฅ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘๐‘ฅ a+b

, 0 โ‰ค ๐‘ฅ < โˆž, ________________(4.7)

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0

Equation 4.7 becomes the beta distribution of the second kind when c=1.

4.5.4 Case VI

A three parameter probability density function of the Classical beta distribution can be

obtained by using the transformation ๐‘ฅ = ๐‘ฆ๐‘ ๐‘‘๐‘ฅ

๐‘‘๐‘ฆ = ๐‘๐‘ฆ๐‘โˆ’1in equation 2.1,

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘, ๐‘ =๐‘ฆ๐‘๐‘Žโˆ’๐‘ 1 โˆ’ ๐‘ฆ๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ . ๐‘๐‘ฆ๐‘โˆ’1

=๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ ๐‘ฆ๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ , 0 < ๐‘ฆ < 1, ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0____(4.8)

Special case when c=1 in equation 4.8 gives the Classical beta distribution given in

equation 2.1.

Special case when a=1 in equation 4.8 gives

๐‘“ ๐‘ฆ; ๐‘, ๐‘ =๐‘๐‘ฆ๐‘โˆ’1 1 โˆ’ ๐‘ฆ๐‘ ๐‘โˆ’1

๐ต 1, ๐‘

= ๐‘๐‘๐‘ฆ๐‘โˆ’1 1 โˆ’ ๐‘ฆ๐‘ ๐‘โˆ’1 0 < ๐‘ฆ < 1, ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0_____(4.9)

Equation 4.9 is a Kumaraswamy distribution.

Special case when c=1 and b=1 in equation 4.8 gives

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ = ๐‘Ž๐‘ฅ๐‘Žโˆ’1 _______________(4.10)

Equation 4.10 is a power distribution function. When a=1 in equation 4.10 we get a

Uniform distribution function.

Page 93: From The Classical Beta Distribution To Generalized Beta ...

88

5 Chapter V: The Four Parameter Beta

Distributions

5.1 Introduction

This chapter provides for the construction, properties and special cases of four parameter

generalized beta distribution of the first kind and second kind introduced by McDonald

(1984) as an income distribution, whereas the beta distribution of the first kind was used

for the same purpose more than a decade earlier by Thurow (1970). It also provides for

the construction and properties of the five parameter generalized beta distributions which

includes both generalized beta distribution of the first kind and second kind and many

other distributions.

5.2 Generalized Four Parameter Beta Distribution of the First Kind

The generalized beta distribution of the first kind was introduced by McDonald (1984). It

can be obtained from the Classical beta distribution in equation 2.1 by using the

transformation

๐‘ฅ = ๐‘ฆ

๐‘ž

๐‘

in equation (2.1)

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

๐‘

๐‘ž๐‘ ๐‘ฆ๐‘โˆ’1

The limits changes as follows ๐‘ฅ๐‘ž๐‘ = ๐‘ฆ๐‘ , when ๐‘ฅ = 0, ๐‘ฆ๐‘ = 0 and when

๐‘ฆ = 1, ๐‘ฆ๐‘ = ๐‘ž๐‘

The new distribution is

๐‘“(๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘) = ๐‘“(๐‘ฅ; ๐‘Ž, ๐‘) ๐ฝ

= ๐‘ฆ๐‘ž

๐‘๐‘Žโˆ’๐‘

1 โˆ’ ๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐ต(๐‘Ž, ๐‘).

๐‘

๐‘ž๐‘๐‘ฆ๐‘โˆ’1

Page 94: From The Classical Beta Distribution To Generalized Beta ...

89

= ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘Žโˆ’1

1 โˆ’ ๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ .

1

๐‘ž๐‘๐‘ฆ๐‘โˆ’1

= ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘๐ต ๐‘Ž, ๐‘ , 0 โ‰ค ๐‘ฆ๐‘ โ‰ค ๐‘ž๐‘ , ______(5.1)

The CDF of 5.1 is given by

๐น ๐‘ฆ =๐ต ๐‘Ž, ๐‘,

๐‘ฆ๐‘ž

๐‘

๐ต ๐‘Ž, ๐‘ , 0 < ๐‘ฆ < ๐‘ž

where all the four parameters ๐‘Ž, ๐‘, ๐‘ and ๐‘ž are positive. ๐‘ž is a scale parameter and ๐‘Ž, ๐‘, ๐‘

are shape parameters.

The probability distribution function in equation 5.1 is a four parameter generalized beta

distribution of the first kind. If p=q=1, the generalized beta distribution of the first kind in

equation 5.1 becomes the two parameter Classical beta distribution in equation 2.1 over

the interval (0,1). If p=1, in equation 4.1, we obtain a three parameter beta distribution in

equation 4.2. When p=-1 and b=1 in equation 5.1, one obtain the inverse beta distribution

of the first kind (Pareto type 1) with density function given by

๐‘“(๐‘ฆ; ๐‘ž, ๐‘Ž) =๐‘ฆโˆ’๐‘Žโˆ’1

๐‘žโˆ’๐‘Ž๐ต(๐‘Ž, 1)

=๐‘Ž๐‘ž๐‘Ž

๐‘ฆ1+๐‘Ž , for ๐‘ž < ๐‘ฆ

The generalized beta distribution of the first kind is supported on a bounded domain and

is useful in the modeling of size phenomena, particularly the distribution of income.

Page 95: From The Classical Beta Distribution To Generalized Beta ...

90

5.2.1 Properties of generalized beta distribution of the first kind

i. rth-order moments

To obtain the rth

-order moments of generalized beta distribution of the first kind, we

evaluate

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘

๐‘ž

0

๐‘‘๐‘ฆ

= ๐‘ ๐‘ฆ๐‘Ÿ+๐‘๐‘Žโˆ’1 1 โˆ’

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

๐‘ž

0

๐‘‘๐‘ฆ

=1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

๐‘ ๐‘ฆ๐‘

๐‘Ÿ๐‘

+๐‘Ž โˆ’1 1 โˆ’

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘

๐‘Ÿ๐‘

+๐‘Ž ๐ต

๐‘Ÿ๐‘ + ๐‘Ž, ๐‘

๐‘ž

0

๐‘ž๐‘Ÿ+๐‘๐‘Ž๐ต ๐‘Ÿ

๐‘+ ๐‘Ž, ๐‘ ๐‘‘๐‘ฆ

=๐‘ž๐‘Ÿ+๐‘๐‘Ž๐ต

๐‘Ÿ๐‘ + ๐‘Ž, ๐‘

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

=๐‘ž๐‘Ÿ๐ต

๐‘Ÿ๐‘ + ๐‘Ž, ๐‘

๐ต ๐‘Ž, ๐‘

=๐‘ž๐‘Ÿฮ“

๐‘Ÿ๐‘ + ๐‘Ž ฮ“ ๐‘ ฮ“ a + b

ฮ“ ๐‘Ÿ๐‘ + ๐‘Ž + ๐‘ ฮ“ a ฮ“ b

=๐‘ž๐‘Ÿฮ“ a + b ฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮ“ ๐‘Ž + ๐‘ +๐‘Ÿ๐‘ ฮ“ a

, ๐‘Ž +๐‘Ÿ

๐‘> 0_________________(5.2)

ii. Mean

The mean is given by substituting r=1 in equation 5.2 as

๐ธ ๐‘Œ = ๐‘ž๐ต ๐‘Ž +

1๐‘ , ๐‘

๐ต ๐‘Ž, ๐‘

Page 96: From The Classical Beta Distribution To Generalized Beta ...

91

=๐‘žฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

___________(5.3)

iii. Mode

The mode of generalized beta distribution of the first kind is given by

๐‘€๐‘œ๐‘‘๐‘’ =๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

๐‘

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

๐‘‘

๐‘‘๐‘ฆ ๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’

๐‘ฆ

๐‘ž

๐‘

๐‘โˆ’1

= 0

๐‘๐‘Ž โˆ’ 1 ๐‘ฆ๐‘๐‘Žโˆ’2 1 โˆ’ ๐‘ฆ

๐‘ž

๐‘

๐‘โˆ’1

+ ๐‘ฆ๐‘๐‘Žโˆ’1(๐‘ โˆ’ 1) 1 โˆ’ ๐‘ฆ

๐‘ž

๐‘

๐‘โˆ’2 โˆ’๐‘

๐‘ž๐‘๐‘ฆ๐‘โˆ’1 = 0

(๐‘๐‘Ž โˆ’ 1) โˆ’๐‘๐‘ฆ๐‘(๐‘ โˆ’ 1)

๐‘ž๐‘ 1 โˆ’ ๐‘ฆ๐‘ž

๐‘

= 0

๐‘๐‘Ž โˆ’ 1 =๐‘๐‘ฆ๐‘(๐‘ โˆ’ 1)

๐‘ž๐‘ โˆ’ ๐‘ฆ๐‘

(๐‘๐‘Ž โˆ’ 1)(๐‘ž๐‘ โˆ’ ๐‘ฆ๐‘) = ๐‘๐‘ฆ๐‘(๐‘ โˆ’ 1)

๐‘ฆ = ๐‘ž๐‘ ๐‘๐‘Ž โˆ’ 1

๐‘๐‘Ž + ๐‘๐‘ โˆ’ 1 โˆ’ ๐‘

1๐‘

iv. Variance

Variance of generalized beta distribution of the first kind can be obtained from the rth

-

order moments as follows

Variance = ๐ธ ๐‘Œ2 โˆ’ ๐ธ ๐‘Œ 2

=๐‘ž2ฮ“ a +

2p ฮ“ b ฮ“ a + b

ฮ“ a + b +2p

โˆ’ ๐‘žฮ“ a +

1p ฮ“ b ฮ“ a + b

ฮ“ a + b +1p

2

Page 97: From The Classical Beta Distribution To Generalized Beta ...

92

= ๐‘ž2

ฮ“ a +

2p ฮ“ b ฮ“ a + b

ฮ“ a + b +2p

โˆ’ ฮ“ a +

1p ฮ“ b ฮ“ a + b

ฮ“ a + b +1p

2

= ๐‘ž2 ฮ“ a +

2p ฮ“ b ฮ“ a + b

ฮ“ a + b +2p

โˆ’ฮ“2 a +

1p ฮ“2 b ฮ“2 a + b

ฮ“2 a + b +1p

v. Skewness

Skewness can be given by

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ ๐ธ(๐‘Œ2) +2 {๐ธ ๐‘Œ }3

=๐‘ž3ฮ“ a + b ฮ“ a +

3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

โˆ’ 3๐‘žฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

๐‘ž2ฮ“ a + b ฮ“ a +2๐‘

ฮ“ a + b +2๐‘ ฮ“ a

+ 2 ๐‘žฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

3

= ๐‘ž3

ฮ“ a + b ฮ“ a +

3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

โˆ’ 3ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

ฮ“ a + b ฮ“ a +2๐‘

ฮ“ a + b +2๐‘ ฮ“ a

+ 2 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

3

vi. Kurtosis

Kurtosis can be given by

Kurtosis = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ ๐ธ ๐‘Œ3 + 6{๐ธ ๐‘Œ }2๐ธ ๐‘Œ2 โˆ’ 3 ๐ธ ๐‘Œ 4

Page 98: From The Classical Beta Distribution To Generalized Beta ...

93

=q4ฮ“ a + b ฮ“ a +

4๐‘

ฮ“ a + b +4๐‘ ฮ“ a

โˆ’ 4qฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

q3ฮ“ a + b ฮ“ a +3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

+ 6 qฮ“ a + b ฮ“ q +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

2

q2ฮ“ a + b ฮ“ a +2๐‘

ฮ“ q + b +2๐‘ ฮ“ a

โˆ’ 3 qฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

4

= q4

ฮ“ a + b ฮ“ a +

4๐‘

ฮ“ a + b +4๐‘ ฮ“ a

โˆ’ 4ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

ฮ“ a + b ฮ“ a +3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

+ 6 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

2

ฮ“ a + b ฮ“ a +2๐‘

ฮ“ a + b +2๐‘ ฮ“ a

โˆ’ 3 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

4

5.3 Applications of Generalized Beta Distribution of the First Kind

McDonald (1984) estimated both the generalized beta of the first and second kind and

both beta of the first and second kind distributions for 1970, 1975 and 1980 US family

incomes and found out that the performance of the generalized beta of the first kind is

comparable to the generalized gamma and beta of the second kind distribution.

5.4 Special Cases of Generalized Beta Distribution of the First Kind

The four parameter probability density function of the generalized beta distribution of the

first kind is very flexible and includes the following distributions:

Page 99: From The Classical Beta Distribution To Generalized Beta ...

94

5.4.1 Pareto type 1 distribution function

Special case of the generalized beta distribution of the first kind when p=-1 and b=1 in

equation 5.1 gives

๐‘“(๐‘ฆ; ๐‘ž, ๐‘Ž) =๐‘ฆโˆ’๐‘Žโˆ’1

๐‘žโˆ’๐‘Ž๐ต(๐‘Ž, 1)(1 โˆ’ (

๐‘ฆ

๐‘ž)โˆ’1)1โˆ’1

=๐‘ž๐‘Ž

๐ต(๐‘Ž, 1)๐‘ฆ๐‘Ž+1

=๐‘Ž๐‘ž๐‘Ž

๐‘ฆ๐‘Ž+1 , 0 < ๐‘ž โ‰ค ๐‘ฆ______________________(5.4)

The cdf of equation 5.4 is given by

๐น ๐‘ฆ = 1 โˆ’ ๐‘ž

๐‘ฆ

๐‘Ž

, ๐‘ฆ โ‰ฅ ๐‘ž

The probability distribution function in equation 5.4 is the Pareto type 1 distribution also

known as classical Pareto distribution. This special case also include inverse beta of the

first kind (IB1), implying Pareto (y;q,a) =IB1 (y;q,a,b=1) (McDonald 1995).

5.4.2 Properties of Pareto type 1 distribution

i. rth- order moments

Putting p=-1 and b=1 in equation 5.2

๐ธ(๐‘Œ๐‘Ÿ) =๐‘ž๐‘Ÿฮ“ a + 1 ฮ“ ๐‘Ž โˆ’ ๐‘Ÿ

ฮ“ ๐‘Ž + 1 โˆ’ ๐‘Ÿ ฮ“ a

=๐‘ž๐‘Ÿa

๐‘Ž โˆ’ ๐‘Ÿ, ๐‘Ž โˆ’ ๐‘Ÿ > 0

Page 100: From The Classical Beta Distribution To Generalized Beta ...

95

ii. Mean

๐ธ ๐‘Œ = ๐‘žฮ“ a + 1 ฮ“ ๐‘Ž โˆ’ 1

ฮ“ ๐‘Ž + 1 โˆ’ 1 ฮ“ a

=๐‘ž๐‘Žฮ“(๐‘Ž โˆ’ 1)

ฮ“(๐‘Ž)

=๐‘ž๐‘Ž ๐‘Ž โˆ’ 2 !

(๐‘Ž โˆ’ 1)!

=๐‘ž๐‘Ž ๐‘Ž โˆ’ 2 !

(๐‘Ž โˆ’ 1)(๐‘Ž โˆ’ 2)!

=๐‘ž๐‘Ž

๐‘Ž โˆ’ 1, ๐‘Ž > 1

iii. Mode

Mode of Pareto type 1 distribution can be obtained by substituting b=1 and p = โˆ’1 in the

mode of generalized beta distribution of the first kind

๐‘ฆ = ๐‘žโˆ’1 โˆ’1๐‘Ž โˆ’ 1

โˆ’1๐‘Ž โˆ’ 1.1 โˆ’ 1 โˆ’ 1

โˆ’11

= ๐‘ž โˆ’๐‘Ž โˆ’ 1 + 1 โˆ’ 1

โˆ’๐‘Ž โˆ’ 1

= ๐‘ž

iv. Variance

Substituting ๐‘ = โˆ’1 and b = 1 in the expression of variance for the generalized beta

distribution of the second kind we obtain

Var Y = m2 โˆ’ m12

=๐‘ž2a

๐‘Ž โˆ’ 2โˆ’

๐‘ža

๐‘Ž โˆ’ 1

2

๐‘ž2

=๐‘ž2a a2 โˆ’ 2a + 1 โˆ’ ๐‘ž2๐‘Ž2(๐‘Ž โˆ’ 2)

(a โˆ’ 2) a โˆ’ 1 2

=๐‘ž2a

(a โˆ’ 2) a โˆ’ 1 2

Page 101: From The Classical Beta Distribution To Generalized Beta ...

96

v. Skewness

Skewness of Pareto type 1 distribution can be obtained by substituting b=1 and p = โˆ’1

in the skewness of generalized beta distribution of the first kind

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘ 

= ๐‘ž3 ฮ“ a + 1 ฮ“ a โˆ’ 3

ฮ“ a + 1 โˆ’ 3 ฮ“ a โˆ’ 3

ฮ“ a + 1 ฮ“ a โˆ’ 1

ฮ“ a + 1 โˆ’ 1 ฮ“ a

ฮ“ a + 1 ฮ“ a โˆ’ 2

ฮ“ a + 1 โˆ’ 2 ฮ“ a

+ 2 ฮ“ a + 1 ฮ“ a โˆ’ 1

ฮ“ a + 1 โˆ’ 1 ฮ“ a

3

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐‘ž3 a

(a โˆ’ 3)โˆ’

3a2

a โˆ’ 1 (a โˆ’ 2)+ 2

a

a โˆ’ 1

3

= ๐‘ž3 a a โˆ’ 1 3 a โˆ’ 2 โˆ’ 3a2 a โˆ’ 1 2(a โˆ’ 3) + 2a3 a โˆ’ 2 (a โˆ’ 3)

a โˆ’ 1 3 a โˆ’ 2 (a โˆ’ 3)

= ๐‘ž3

(a5 โˆ’ 5a4 + 9a3 โˆ’ 7a2 + 2a) + (โˆ’3a5 + 15a4 โˆ’ 21a3 + 9a2)

+(2a5 โˆ’ 10a4 + 12a3)

a โˆ’ 1 3 a โˆ’ 2 (a โˆ’ 3)

= 2๐‘Ž๐‘ž3 1 + a

a โˆ’ 1 3 a โˆ’ 2 (a โˆ’ 3)

๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘ ๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = 2๐‘Ž๐‘ž3 1 + a

a โˆ’ 1 3 a โˆ’ 2 (a โˆ’ 3) โˆ—

a โˆ’ 2 a โˆ’ 1 2

๐‘ž2a

32

= 2๐‘Ž๐‘ž3 1 + a

a โˆ’ 1 3 a โˆ’ 2 (a โˆ’ 3) โˆ—

a โˆ’ 2 a โˆ’ 2 a โˆ’ 1 3

๐‘ž3a a

=2(1 + a)

a โˆ’ 3

a โˆ’ 2

a , ๐‘Ž > 3

vi. Kurtosis

Kurtosis of Pareto type 1 distribution can be obtained by substituting b=1 and p = โˆ’1 in

the Kurtosis of generalized beta distribution of the first kind

Page 102: From The Classical Beta Distribution To Generalized Beta ...

97

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= q4 ฮ“ a + 1 ฮ“ a โˆ’ 4

ฮ“ a + 1 โˆ’ 4 ฮ“ a โˆ’ 4

ฮ“ a + 1 ฮ“ a โˆ’ 1

ฮ“ a + 1 โˆ’ 1 ฮ“ a

ฮ“ a + 1 ฮ“ a โˆ’ 3

ฮ“ a + 1 โˆ’ 3 ฮ“ a

+ 6 ฮ“ a + 1 ฮ“ a โˆ’ 1

ฮ“ a + 1 โˆ’ 1 ฮ“ a

2ฮ“ a + 1 ฮ“ a โˆ’ 2

ฮ“ a + 1 โˆ’ 2 ฮ“ a โˆ’ 3

ฮ“ a + 1 ฮ“ a โˆ’ 1

ฮ“ a + 1 โˆ’ 1 ฮ“ a

4

= q4 a

a โˆ’ 4 โˆ’

4a2

(a โˆ’ 1)(a โˆ’ 3)+

6a3

(a โˆ’ 1)2(a โˆ’ 2)โˆ’

3a4

(a โˆ’ 1)4

= q4

a a โˆ’ 1 4 a โˆ’ 2 a โˆ’ 3 โˆ’ 4a2 a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 4 +

6a3 a โˆ’ 1 2 a โˆ’ 3 a โˆ’ 4 โˆ’ 3a4 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4

a โˆ’ 1 4 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4

= q4

(a7โˆ’9a6+32a5โˆ’58a4+57a3 โˆ’ 29a2 + 6a) +

โˆ’4a7 + 36a6 โˆ’ 116a5 + 172a4 โˆ’ 120a3 + 32a2 +

6a7 โˆ’ 54a6 + 162a5 โˆ’ 186a4 + 72a3 +

(โˆ’3a7 + 27a6 โˆ’ 78a5 + 72a4)

a โˆ’ 1 4 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4

= 3aq4 3a2 + a + 2

a โˆ’ 1 4 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4

๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= 3aq4 3a2 + a + 2

a โˆ’ 1 4 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4 โˆ—

a โˆ’ 2 a โˆ’ 1 2

๐‘ž2a

2

= 3 3a2 + a + 2

a โˆ’ 3 a โˆ’ 4 โˆ—

a โˆ’ 2

a

=3(3a3 โˆ’ 5a2 โˆ’ 4)

a a โˆ’ 3 a โˆ’ 4

5.4.3 Stoppa (generalized Pareto type 1) distribution function

Special case when a=1 and p=-p in equation 5.1 gives the following density function

Page 103: From The Classical Beta Distribution To Generalized Beta ...

98

f y; p, q, b = p๐‘ž๐‘๐‘๐‘ฆโˆ’๐‘โˆ’1 1 โˆ’ ๐‘ฆ

๐‘ž

โˆ’๐‘

bโˆ’1

, y โ‰ฅ q > 0____________(5.5)

The CDF of equation 5.5 is given by

F y = 1 โˆ’ ๐‘ฆ

๐‘ž

โˆ’๐‘

b

, y โ‰ฅ q > 0

Equation 5.5 is a Stoppa distribution also known as the generalized Pareto type 1

distribution.

5.4.4 Properties of Stoppa distribution

i. rth- order moments

Putting a=1 and p = โˆ’p in equation 5.2

๐ธ ๐‘Œ๐‘Ÿ =qrฮ“ 1 + ๐‘ ฮ“ 1 โˆ’

๐‘Ÿ๐‘

ฮ“ 1 + ๐‘ โˆ’๐‘Ÿ๐‘ ฮ“ 1

=qr๐‘ฮ“ ๐‘ ฮ“ 1 โˆ’

๐‘Ÿ๐‘

ฮ“ 1 + ๐‘ โˆ’๐‘Ÿ๐‘

ii. Mean

The mean is given by substituting r=1 in the expression for the rth-order moments

E(Y) =๐‘žbฮ“ ๐‘ ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + ๐‘ โˆ’1๐‘

iii. Mode

Putting a=1 and p = โˆ’p in the mode of generalized beta distribution of the first kind

๐‘ฆ = ๐‘žโˆ’๐‘ โˆ’๐‘ โˆ’ 1

โˆ’๐‘ โˆ’ ๐‘๐‘ โˆ’ 1 + ๐‘

โˆ’1๐‘

= ๐‘ž 1 + ๐‘๐‘

1 + ๐‘

1๐‘

, ๐‘ > 1

Page 104: From The Classical Beta Distribution To Generalized Beta ...

99

Compared to the classical Pareto distribution, the Stoppa distribution is more flexible

since it has an additional shape parameter b that allows for unimodal (for ๐‘ > 1) and

zero-modal (for ๐‘ โ‰ค 1) densities.

iv. Variance

Putting a=1 and p=-p in the variance of the generalized beta distribution of the first kind

Var Y = q2 ฮ“ 1 โˆ’

2p ฮ“ b ฮ“ 1 + b

ฮ“ 1 + b โˆ’2p

โˆ’ฮ“2 1 โˆ’

1p ฮ“2 b ฮ“2 1 + b

ฮ“2 1 + b โˆ’1p

v. Skewness

Putting a=1 and p = โˆ’p in the skewness of generalized beta distribution of the first kind

Skewness

= ๐‘ž3

ฮ“ 1 + b ฮ“ 1 โˆ’

3๐‘

ฮ“ 1 + b โˆ’3๐‘ ฮ“ 1

โˆ’ 3ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

ฮ“ 1 + b ฮ“ 1 โˆ’2๐‘

ฮ“ 1 + b โˆ’2๐‘ ฮ“ 1

+ 2 ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

3

Skewness

= ๐‘ž3

bฮ“ b ฮ“ 1 โˆ’

3๐‘

b โˆ’3๐‘ ฮ“ b โˆ’

3๐‘

โˆ’ 3bฮ“ b ฮ“ 1 โˆ’

1๐‘

b โˆ’1๐‘ ฮ“ b โˆ’

1๐‘

bฮ“ b ฮ“ 1 โˆ’2๐‘

b โˆ’2๐‘ ฮ“ b โˆ’

2๐‘

+ 2 bฮ“ b ฮ“ 1 โˆ’

1๐‘

b โˆ’1๐‘ ฮ“ b โˆ’

1๐‘

3

vi. Kurtosis

Putting a=1 and p = โˆ’p in the Kurtosis of generalized beta distribution of the first kind

Page 105: From The Classical Beta Distribution To Generalized Beta ...

100

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= q4

ฮ“ 1 + b ฮ“ 1 โˆ’

4๐‘

ฮ“ 1 + b โˆ’4๐‘ ฮ“ 1

โˆ’ 4ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

ฮ“ 1 + b ฮ“ 1 โˆ’3๐‘

ฮ“ 1 + b โˆ’3๐‘ ฮ“ 1

+ 6 ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

2

ฮ“ 1 + b ฮ“ 1 โˆ’2๐‘

ฮ“ 1 + b โˆ’2๐‘ ฮ“ 1

โˆ’ 3 ฮ“ 1 + b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘ ฮ“ 1

4

= q4

bฮ“ b ฮ“ 1 โˆ’

4๐‘

ฮ“ 1 + b โˆ’4๐‘

โˆ’ 4bฮ“ b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

bฮ“ b ฮ“ 1 โˆ’3๐‘

ฮ“ 1 + b โˆ’3๐‘

+ 6 ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘Ž

2

ฮ“ 1 + b ฮ“ 1 โˆ’2๐‘

ฮ“ 1 + b โˆ’2๐‘

โˆ’ 3 ฮ“ 1 + b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

4

5.4.5 Kumaraswamy distributions

Special case when a=1 and q=1 in equation 5.1 gives the following density function

f(y; p, b) =p๐‘ฆ๐‘โˆ’1(1 โˆ’ ๐‘ฆ๐‘)bโˆ’1

B(1, b)

= pb๐‘ฆ๐‘โˆ’1(1 โˆ’ ๐‘ฆ๐‘ )bโˆ’1 , b > 0____________(5.6)

Equation 5.6 is a Kumaraswamy distribution. On the other hand, if b=1 in equation 5.6

then we get the power distribution ๐‘“ y; p = pzpโˆ’1 as in equation 2.12 or equation 4.10.

Page 106: From The Classical Beta Distribution To Generalized Beta ...

101

This implies that the power distribution is a special case of Kumaraswamy distribution

with parameters (a,1). If p=b=1 in equation 5.6, then the Kumaraswamy distribution

becomes a uniform distribution.

5.4.6 Properties of Kumaraswamy distribution

i. rth-order moments

The rth-order moments are obtained by substituting a=1 and q=1 in equation 5.2

๐ธ ๐‘Œ๐‘Ÿ =๐ต

๐‘Ÿ๐‘ + 1, ๐‘

๐ต 1, ๐‘

=ฮ“

๐‘Ÿ๐‘ + 1 bฮ“ ๐‘

ฮ“ ๐‘Ÿ๐‘ + 1 + ๐‘

=bฮ“

๐‘Ÿ๐‘ + 1 ฮ“(๐‘)

ฮ“(1 +๐‘Ÿ๐‘ + ๐‘)

ii. Mean

The mean is given by substituting r=1 in the expression for the rth-order moments

E(Y) =bฮ“

1๐‘ + 1 ฮ“(๐‘)

ฮ“(1 +1๐‘ + ๐‘)

iii. Mode

The mode of the Kumaraswamy distribution occurs at

d

dyf y = 0

d

dy pbypโˆ’1 1 โˆ’ yp bโˆ’1 = 0

pb p โˆ’ 1 ypโˆ’2 1 โˆ’ yp bโˆ’1 + b โˆ’ 1 1 โˆ’ yp bโˆ’2 . โˆ’pypโˆ’1 . ypโˆ’1 = 0

p โˆ’ 1 ypโˆ’1 . yโˆ’1 1 โˆ’ yp bโˆ’1 โˆ’ b โˆ’ 1 1 โˆ’ yp bโˆ’1(1 โˆ’ yp)โˆ’1pypโˆ’1ypyโˆ’1 = 0

p โˆ’ 1 โˆ’ b โˆ’ 1 (1 โˆ’ yp)โˆ’1pyp = 0

Page 107: From The Classical Beta Distribution To Generalized Beta ...

102

p โˆ’ 1 = b โˆ’ 1 (1 โˆ’ yp)โˆ’1pyp = b โˆ’ 1 pyp

(1 โˆ’ yp )

p โˆ’ 1 (1 โˆ’ yp) = b โˆ’ 1 pyp

p โˆ’ pyp โˆ’ 1 + yp = pbyp โˆ’ pyp

yp โˆ’p + 1 โˆ’ pb + p = 1 โˆ’ p

yp = 1 โˆ’ ๐‘

1 โˆ’ ๐‘๐‘

๐‘ฆ = 1 โˆ’ ๐‘

1 โˆ’ ๐‘๐‘

1๐‘

for p โ‰ฅ 1, b โ‰ฅ 1, (p, b) โ‰  (1,1)

iv. Variance

Substituting a=1 and q=1in the variance of the generalized beta distribution of the first

kind we get

Var (Y) =ฮ“ 1 +

2p ฮ“ b ฮ“ 1 + b

ฮ“ 1 + b +2p

โˆ’ฮ“2 1 +

1p ฮ“2 b ฮ“2 1 + b

ฮ“2 1 + b +1p

= b! b โˆ’ 1 !

2p !

2p + b !

โˆ’ b! b โˆ’ 1 !

1p !

1p + b !

2

v. Skewness

Putting a=1 and q = 1 in the skewness of generalized beta distribution of the first kind

and is given by

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘ 

=bฮ“ b ฮ“ a +

3๐‘

ฮ“ 1 + b +3๐‘

โˆ’ 3bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

bฮ“ b ฮ“ 1 +2๐‘

ฮ“ 1 + b +2๐‘

+ 2 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

3

Page 108: From The Classical Beta Distribution To Generalized Beta ...

103

vi. Kurtosis

Putting a=1 and q = 1 in the Kurtosis of generalized beta distribution of the first kind and

is given by

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

=bฮ“ b ฮ“ 1 +

4๐‘

ฮ“ 1 + b +4๐‘

โˆ’ 4bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

bฮ“ b ฮ“ 1 +3๐‘

ฮ“ 1 + b +3๐‘

+ 6 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

2

bฮ“ b ฮ“ 1 +2๐‘

ฮ“ 1 + b +2๐‘

โˆ’ 3 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

4

5.4.7 Generalized Power distribution Function

Special case when p=1 and b=1 in equation (5.1) gives the following density

๐‘“ ๐‘ฆ; ๐‘ž, ๐‘Ž =๐‘ฆ๐‘Žโˆ’1

๐‘ž๐‘Ž๐ต(๐‘Ž, 1)

=๐‘Ž๐‘ฆ๐‘Žโˆ’1

๐‘ž๐‘Ž, 0 < ๐‘ฆ < ๐‘ž ________(5.7)

Equation (5.7) is a generalized power distribution function.

5.4.8 Properties of power distribution

i. rth-order moments

Putting ๐‘ = 1 and ๐‘ = 1 in equation 5.2

๐ธ ๐‘Œ๐‘Ÿ =๐‘ž๐‘Ÿฮ“ a + 1 ฮ“ ๐‘Ž + ๐‘Ÿ

ฮ“ ๐‘Ž + 1 + ๐‘Ÿ ฮ“ a

=๐‘ž๐‘Ÿaฮ“ a ฮ“ ๐‘Ž + ๐‘Ÿ

a + r ฮ“ ๐‘Ž + ๐‘Ÿ ฮ“ a

=๐‘ž๐‘Ÿa

a + r , ๐‘Ž + ๐‘Ÿ > 0

Page 109: From The Classical Beta Distribution To Generalized Beta ...

104

ii. Mean

๐ธ ๐‘Œ =๐‘ž๐‘Ž

a + 1

iii. Variance

Putting ๐‘ = 1 and b = 1 in the expression of variance for the generalized beta

distribution of the second kind we obtain

Var Y = ๐‘ž2 ฮ“ a + 2 ฮ“ 1 ฮ“ a + 1

ฮ“ a + 1 + 2 โˆ’

ฮ“2 a + 1 ฮ“2 1 ฮ“2 a + 1

ฮ“2 a + 1 + 2

= ๐‘ž2 aฮ“ a

a + 2 โˆ’

aฮ“ a aฮ“ a

(a + 1)2 a + 2 2

= ๐‘ž2 (a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

(a + 1)2 a + 2 2

iv. Skewness

Putting p=1 and b = 1 in the skewness of generalized beta distribution of the first kind

and is given by

Skewness

= ๐‘ž3 ฮ“ a + 1 ฮ“ a + 3

ฮ“ a + 1 + 3 ฮ“ a โˆ’ 3

ฮ“ a + 1 ฮ“ a + 1

ฮ“ a + 1 + 1 ฮ“ a

ฮ“ a + 1 ฮ“ a + 2

ฮ“ a + 1 + 2 ฮ“ a

+ 2 ฮ“ a + 1 ฮ“ a + 1

ฮ“ a + 1 + 1 ฮ“ a

3

= ๐‘ž3 a

a + 3โˆ’

3a2

(a + 1) a + 2 +

2a3

(a + 1)3

= ๐‘ž3 a a + 1 3 a + 2 โˆ’ 3a2(a + 1)2 a + 3 + 2a3(a + 2) a + 3

(a + 1)3(a + 2) a + 3

= ๐‘ž3 (a5+5a4+9a3+7a2 + 2a) + โˆ’3a5 โˆ’ 15a4 โˆ’ 21a3 โˆ’ 9a2 + 2a5 + 10a4 + 12a3

(a + 1)3(a + 2) a + 3

=2๐‘Ž๐‘ž3(1 โˆ’ a)

(a + 1)3(a + 2) a + 3

Standardized Skewness

=2๐‘Ž๐‘ž3(1 โˆ’ a)

(a + 1)3(a + 2) a + 3 .

(a + 1)2 a + 2 2

๐‘ž2(a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

32

Page 110: From The Classical Beta Distribution To Generalized Beta ...

105

=2๐‘Ž(โˆ’a3 โˆ’ 3a2 + 4)

a + 3

1

(a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

32

v. Kurtosis

Putting p=1 and b = 1 in the Kurtosis of generalized beta distribution of the first kind

and is given by

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= q4 ฮ“ a + 1 ฮ“ a + 4

ฮ“ a + 1 + 4 ฮ“ a โˆ’ 4

ฮ“ a + 1 ฮ“ a + 1

ฮ“ a + 1 + 1 ฮ“ a

ฮ“ a + 1 ฮ“ a + 3

ฮ“ a + 1 + 3 ฮ“ a

+ 6 ฮ“ a + 1 ฮ“ a + 1

ฮ“ a + 1 + 1 ฮ“ a

2ฮ“ a + 1 ฮ“ a + 2

ฮ“ a + 1 + 2 ฮ“ a โˆ’ 3

ฮ“ a + 1 ฮ“ a + 1

ฮ“ a + 1 + 1 ฮ“ a

4

= q4 a

a + 4โˆ’

4a2

(a + 1)(a + 3)+

6a3

a + 1 2(a + 2)โˆ’

3a4

a + 1 4

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= (a + 1)2 a + 2 2

๐‘ž2(a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

2

. q4 a

a + 4โˆ’

4a2

(a + 1)(a + 3)

+6a3

a + 1 2(a + 2)โˆ’

3a4

a + 1 4

5.4.9 Generalized Gamma Distribution Function

We show that the generalized beta distribution of the first kind approaches the

generalized gamma distribution as bโ†’โˆž as follows:

Let the scale factor q changes with b as q=ฮฒ(a + b)1

๐‘ . Substituting this in equation 5.1 we

get

๐‘“(๐‘ฆ; ๐‘, ฮฒ, ๐‘Ž) =

๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1(1 โˆ’ (๐‘ฆ

ฮฒ(a + b)1๐‘

)๐‘)๐‘โˆ’1

(ฮฒ(a + b)1๐‘)๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

Page 111: From The Classical Beta Distribution To Generalized Beta ...

106

Collecting the terms yields

= ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

ฮ“(๐‘Ž)ฮฒ๐‘๐‘Ž

ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘) a + b ๐‘Ž 1 โˆ’

๐‘ฆ๐‘

ฮฒp(a + b)

๐‘โˆ’1

For large values of b, the gamma function can be approximated by Stirlingโ€˜s formula

ฮ“(๐‘) = ๐‘’โˆ’๐‘๐‘๐‘โˆ’12 2๐œ‹

โŸน ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘) a + b ๐‘Ž =

๐‘’โˆ’๐‘Žโˆ’๐‘(๐‘Ž + ๐‘)๐‘Ž+๐‘โˆ’12 2๐œ‹

๐‘’โˆ’๐‘๐‘๐‘โˆ’12 2๐œ‹ (๐‘Ž + ๐‘)๐‘Ž

โˆด lim ๐‘โ†’โˆž

๐‘’โˆ’๐‘Ž(๐‘Ž + ๐‘)๐‘โˆ’12 2๐œ‹

๐‘๐‘โˆ’12 2๐œ‹

= 1

Similarly, lim ๐‘โ†’โˆž

1 โˆ’๐‘ฆ๐‘

ฮฒp(a + b)

๐‘โˆ’1

= ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

โˆด ๐‘“(y; p, ฮฒ, a) = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

0 โ‰ค ๐‘ฆ _______________(5.8)

Equation 5.8 is the generalized Gamma (GG) distribution function. See the relationship

of generalized gamma to other distribution under the GG derived from generalized beta

of the second kind where it includes lognormal, Weibull, Gamma, Exponential, Normal

and Pareto distributions as special or limiting cases.

5.4.10 Unit Gamma Distribution Function

Special case of generalized beta distribution of the second kind when ๐‘Ž = ๐›ฟ/๐‘ and

getting the limit as ๐‘ โ†’ 0 in equation 5.1 gives

Page 112: From The Classical Beta Distribution To Generalized Beta ...

107

๐‘“ y; q, ๐›ฟ, b = lim ๐‘โ†’0

๐‘ ๐‘ฆ

๐‘ ๐›ฟ๐‘ โˆ’1

(1 โˆ’ (๐‘ฆ๐‘ž)๐‘)๐‘โˆ’1

(qp)๐›ฟ๐‘ B(

๐›ฟ๐‘

, b)

=๐‘ฆ๐›ฟโˆ’1

q๐›ฟlim

๐‘โ†’0

๐‘ (1 โˆ’ (๐‘ฆ๐‘ž)๐‘)๐‘โˆ’1

B(๐›ฟ๐‘ , b)

=๐‘ฆ๐›ฟโˆ’1

q๐›ฟlim

๐‘โ†’0

๐‘ (1 โˆ’ (๐‘ฆ๐‘ž)๐‘)๐‘โˆ’1

ฮ“ ๐›ฟ๐‘ ฮ“ b

. ฮ“(๐›ฟ

๐‘+ b)

=๐‘ฆ๐›ฟโˆ’1

q๐›ฟฮ“ b lim

๐‘โ†’0

๐‘ (1 โˆ’ (

๐‘ฆ๐‘ž)๐‘)๐‘โˆ’1

ฮ“ ๐›ฟ๐‘

. ฮ“ ๐›ฟ

๐‘+ b

=๐‘ฆ๐›ฟโˆ’1

q๐›ฟฮ“ b ๐›ฟ๐‘Ž ln

๐‘ฆ

๐‘ž

๐‘โˆ’1

, 0 < ๐‘ฆ < ๐‘ž _______________(5.9)

Equation 5.9 is the Unit gamma distribution. The unit gamma with q=1 is mentioned in

Patil et al (1984) and has been used as a mixing distribution for the parameter p in the

binomial, Grassia (1977).

5.5 Generalized Four Parameter Beta Distribution of the Second Kind

The generalized beta distribution of the second kind can be derived from the beta

distribution of the second kind in equation 3.1 by using the transformation

๐‘ฆ = ๐‘ฅ

๐‘ž

๐‘

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

๐‘

๐‘ž๐‘ ๐‘ฅ๐‘โˆ’1

The new limits are as follows (๐‘ฆ๐‘ž๐‘)1

๐‘ = ๐‘ฅ

Page 113: From The Classical Beta Distribution To Generalized Beta ...

108

When ๐‘ฆ = 0, ๐‘ฅ = 0 and when ๐‘ฆ = โˆž, ๐‘ฅ = โˆž

The new distribution is

๐‘“(๐‘ฅ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘) = ๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) ๐ฝ

= (

๐‘ฅ๐‘ž)๐‘

๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + (๐‘ฅ๐‘ž)๐‘

a+b

๐‘

๐‘ž๐‘ ๐‘ฅ๐‘โˆ’1

= ๐‘ ๐‘ฅ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž๐ต(๐‘Ž, ๐‘)(1 + (๐‘ฅ๐‘ž)๐‘)a+b

, 0 < ๐‘ฅ < โˆž , ๐‘Ž, ๐‘, ๐‘, ๐‘ž > 0 ______(5.10)

The probability density function in equation (5.10) is a four parameter generalized beta

distribution of the second kind. It is a result of the pioneering work of McDonald (1984)

and Venter (1983) which led to this generalized beta of the second kind (or transformed

beta) distribution. It is also known in the statistical literature as the generalized F (see,

e.g., Kalbfleisch and Prentice, 1980). If p=q=1, then the generalized beta distribution of

the second kind in equation 5.10 reduces to beta distribution of the second kind in

equation 3.1. If p=1 in equation 5.10, one obtain the three parameter beta distribution in

equation 4.6.

5.5.1 Properties of generalized beta distribution of the second kind

i. rth-order moments

To obtain the rth

-order moments of generalized beta distribution of the second kind, we

evaluate

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘

โˆž

0

๐‘‘๐‘ฆ

= ๐‘ ๐‘ฆ๐‘Ÿ+๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + (๐‘ฆ๐‘ž)๐‘

๐‘Ž+๐‘

โˆž

0

๐‘‘๐‘ฆ

Page 114: From The Classical Beta Distribution To Generalized Beta ...

109

=1

๐ต ๐‘Ž, ๐‘

๐‘ ๐‘ฆ๐‘ ๐‘Ž+

๐‘Ÿ๐‘ โˆ’1

๐‘ž๐‘๐‘Ž 1 + ๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘

โˆž

0

๐‘‘๐‘ฆ

=1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

๐‘ ๐‘ฆ๐‘ ๐‘Ž+

๐‘Ÿ๐‘ โˆ’1

1 โˆ’ (๐‘ฆ๐‘ž)๐‘

๐‘โˆ’1

๐‘ž๐‘ ๐‘Ž+

๐‘Ÿ๐‘ 1 + (

๐‘ฆ๐‘ž)๐‘

๐‘Ž+๐‘Ÿ๐‘ +๐‘โˆ’

๐‘Ÿ๐‘

โˆž

0

๐‘ž๐‘ ๐‘Ž+

๐‘Ÿ๐‘ ๐‘‘๐‘ฆ

=๐‘ž

๐‘ ๐‘Ž+๐‘Ÿ๐‘

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ ๐ต ๐‘Ž +

๐‘Ÿ

๐‘, ๐‘ โˆ’

๐‘Ÿ

๐‘

=๐‘ž๐‘๐‘Ž+๐‘Ÿโˆ’๐‘๐‘Ž

๐ต ๐‘Ž, ๐‘ ๐ต ๐‘Ž +

๐‘Ÿ

๐‘, ๐‘ โˆ’

๐‘Ÿ

๐‘

=๐‘ž๐‘Ÿ๐ต ๐‘Ž +

๐‘Ÿ๐‘ , ๐‘ โˆ’

๐‘Ÿ๐‘

๐ต ๐‘Ž, ๐‘

=๐‘ž๐‘Ÿฮ“ ๐‘Ž +

๐‘Ÿ๐‘ ฮ“ ๐‘ โˆ’

๐‘Ÿ๐‘

ฮ“(๐‘Ž)ฮ“(๐‘), โˆ’๐‘๐‘Ž < ๐‘Ÿ < ๐‘๐‘_______________________(5.11)

ii. Mean

The mean of the generalized beta distribution of the second kind is found by substituting

r=1 in equation 5.11

๐‘š1 โ‰ก ๐ธ ๐‘Œ = ๐‘ž๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

=๐‘žฮ“ ๐‘Ž +

1๐‘ ฮ“ ๐‘ โˆ’

1๐‘

ฮ“ ๐‘Ž + ๐‘ .ฮ“ ๐‘Ž + ๐‘

ฮ“ ๐‘Ž ฮ“ ๐‘

=๐‘žฮ“ ๐‘Ž +

1๐‘ ฮ“ ๐‘ โˆ’

1๐‘

ฮ“ ๐‘Ž ฮ“ ๐‘ , ๐‘, ๐‘ > 1

Page 115: From The Classical Beta Distribution To Generalized Beta ...

110

๐‘š2 โ‰ก ๐ธ ๐‘Œ2 =๐‘ž๐‘Ÿ๐ต ๐‘Ž +

๐‘Ÿ๐‘ , ๐‘ โˆ’

๐‘Ÿ๐‘

๐ต ๐‘Ž, ๐‘

=๐‘ž2๐ต ๐‘Ž +

2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘

iii. Mode

The mode of the generalized beta distribution of the second kind occurs at

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘ = 0

๐‘‘

๐‘‘๐‘ฆ

๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ (1 + (๐‘ฆ๐‘ž)๐‘)a+b

= 0

๐‘

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘

๐‘‘

๐‘‘๐‘ฆ

๐‘ฆ๐‘๐‘Žโˆ’1

(1 + (๐‘ฆ๐‘ž

)๐‘)a+b = 0

๐‘๐‘Ž โˆ’ 1 ๐‘ฆ๐‘๐‘Žโˆ’1โˆ’1 (1 + (๐‘ฆ๐‘ž)๐‘)a+b โˆ’ a + b (1 + (

๐‘ฆ๐‘ž)๐‘)a+bโˆ’1

pypโˆ’1

qp ๐‘ฆ๐‘๐‘Žโˆ’1

1 + (๐‘ฆ๐‘ž)๐‘

a+b

2

= 0

๐‘๐‘Ž โˆ’ 1 ๐‘ฆ๐‘๐‘Žโˆ’1โˆ’1 (1 + (๐‘ฆ

๐‘ž)๐‘)a+b โˆ’ a + b (1 + (

๐‘ฆ

๐‘ž)๐‘)a+bโˆ’1

pypโˆ’1

qp ๐‘ฆ๐‘๐‘Žโˆ’1

= 0

๐‘๐‘Ž โˆ’ 1 ๐‘ฆ๐‘๐‘Žโˆ’1๐‘ฆโˆ’1 (1 + (๐‘ฆ

๐‘ž)๐‘)a+b

โˆ’ a + b (1 + (๐‘ฆ

๐‘ž)๐‘)a+b (1 + (

๐‘ฆ

๐‘ž)๐‘)โˆ’1

pypyโˆ’1

qp ๐‘ฆ๐‘๐‘Žโˆ’1 = 0

Page 116: From The Classical Beta Distribution To Generalized Beta ...

111

๐‘๐‘Ž โˆ’ 1 = a + b 1

(1 + (๐‘ฆ๐‘ž)๐‘)

pyp

qp

(qp + qp (๐‘ฆ

๐‘ž)๐‘)(๐‘๐‘Ž โˆ’ 1) = apyp + bpyp

qp๐‘๐‘Ž โˆ’ qp + ๐‘ฆ๐‘๐‘๐‘Ž โˆ’ ๐‘ฆ๐‘ = apyp + bpyp

๐‘ฆ๐‘(๐‘๐‘Ž + ๐‘๐‘ โˆ’ ๐‘๐‘Ž + 1) = qp (๐‘๐‘Ž โˆ’ 1)

๐‘ฆ๐‘ = ๐‘ž๐‘(๐‘๐‘Ž โˆ’ 1)

(๐‘๐‘ + 1)

๐‘ฆ = ๐‘ž ๐‘๐‘Ž โˆ’ 1

๐‘๐‘ + 1

1๐‘

if ๐‘๐‘Ž โ‰ฅ 1

iv. Variance

The variance of the generalized beta distribution of the second kind is given by

Var ๐‘Œ = ๐ธ ๐‘Œ2 โˆ’ ๐ธ ๐‘Œ 2

= ๐‘ž2

๐ต ๐‘Ž +

2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘ โˆ’

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

Coefficient of Variation

๐ถ๐‘‰ =

๐‘ž2

๐ต ๐‘Ž +

2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

๐‘ž๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

=

๐ต ๐‘Ž +

2๐‘

, ๐‘Ž โˆ’2๐‘ ๐ต2 ๐‘Ž, ๐‘

๐ต ๐‘Ž, ๐‘ ๐ต2 ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

โˆ’ ๐ต ๐‘Ž +

1๐‘

, ๐‘ โˆ’1๐‘

๐ต ๐‘Ž, ๐‘

2

๐ต2 ๐‘Ž, ๐‘

๐ต2 ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

Page 117: From The Classical Beta Distribution To Generalized Beta ...

112

= ๐ต ๐‘Ž +

2๐‘ , ๐‘ โˆ’

2๐‘ ๐ต ๐‘Ž, ๐‘

๐ต2 ๐‘Ž +1๐‘

, ๐‘ โˆ’1๐‘

โˆ’ 1

v. Skewness

Skewness of the generalized beta distribution of the second kind can be given by

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ ๐ธ(๐‘Œ2) +2 {๐ธ ๐‘Œ }3

=๐‘ž3๐ต ๐‘Ž +

3๐‘ , ๐‘ โˆ’

3๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 3

๐‘ž๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

๐‘ž2๐ต ๐‘Ž +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘

+ 2 ๐‘ž๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

3

= ๐‘ž3

๐ต ๐‘Ž +

3๐‘

, ๐‘ โˆ’3๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 3

๐ต ๐‘Ž +1๐‘

, ๐‘ โˆ’1๐‘

๐ต ๐‘Ž, ๐‘

๐ต ๐‘Ž +2๐‘

, ๐‘ โˆ’2๐‘

๐ต ๐‘Ž, ๐‘

+ 2 ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

3

Standardized Skewness =๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ ๐ธ(๐‘Œ2) + 2 {๐ธ ๐‘Œ }3

๐œ3

vi. Kurtosis

Kurtosis of generalized beta distribution of the second kind can be given by

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ(๐‘Œ)๐ธ ๐‘Œ3 + 6๐ธ{ ๐‘Œ }2๐ธ(๐‘Œ2) โˆ’3 {๐ธ ๐‘Œ }4

Page 118: From The Classical Beta Distribution To Generalized Beta ...

113

=๐‘ž4๐ต ๐‘Ž +

4๐‘ , ๐‘ โˆ’

4๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 4

๐‘ž๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

๐‘ž3๐ต ๐‘Ž +3๐‘ , ๐‘ โˆ’

3๐‘

๐ต ๐‘Ž, ๐‘

+ 6 ๐‘ž๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

๐‘ž2๐ต ๐‘Ž +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘

โˆ’ 3 ๐‘ž๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

4

= ๐‘ž4

๐ต ๐‘Ž +

4๐‘ , ๐‘ โˆ’

4๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 4

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

๐ต ๐‘Ž +3๐‘ , ๐‘ โˆ’

3๐‘

๐ต ๐‘Ž, ๐‘

+ 6 ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

๐ต ๐‘Ž +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 3

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

4

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  =๐ธ ๐‘Œ4 โˆ’ 4๐ธ(๐‘Œ)๐ธ ๐‘Œ3 + 6๐ธ{ ๐‘Œ }2๐ธ(๐‘Œ2) โˆ’ 3 {๐ธ ๐‘Œ }4

๐œ4

5.6 Special Case of the Generalized Beta Distribution of the Second

Kind

The generalized beta distribution of the second kind nests many distributions as special or

limiting cases, below is a consideration of some of the distributions and their properties

5.6.1 Singh-Maddala (Burr 12) Distribution

Special case of the generalized beta distribution of the second kind when a=1 in equation

5.10 gives the following density function

๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘ = ๐‘ ๐‘ฆ๐‘โˆ’1

๐‘ž๐‘๐ต 1, ๐‘ (1 + (๐‘ฆ๐‘ž)๐‘)1+b

Page 119: From The Classical Beta Distribution To Generalized Beta ...

114

= ๐‘ ๐‘๐‘ฆ๐‘โˆ’1

๐‘ž๐‘ 1 + (๐‘ฆ๐‘ž)๐‘ 1+b

, ๐‘ฆ > 0_______________________(5.12)

The CDF of equation 2.1 is given by

F y = 1 โˆ’ 1 + (๐‘ฆ

๐‘ž)๐‘ โˆ’b

Where all three parameters p, q, b are positive. q is a scale parameter and p, b are shape

parameters; b only affects the right tail, whereas p affects both tails (Kleiber and Kotz,

2003). Singh Maddala distribution is known under a variety of names: Usually called

Burr Type 12 distribution, or simply the Burr distribution. The Singh-Maddala

distribution includes the Weibull and Fisk distributions as special cases.

5.6.2 Properties of Singh-Maddala distribution

i. rth-order moments

The rth-order moments of the Singh-Maddala distribution can be obtained from the

expression of the rth โ€“order moments of the generalized beta distribution of the second

kind by substituting a=1 in equation 5.11. Thus

๐ธ ๐‘Œ๐‘Ÿ =๐‘ž๐‘Ÿ๐ต 1 +

๐‘Ÿ๐‘ , ๐‘ โˆ’

๐‘Ÿ๐‘

๐ต 1, ๐‘

=๐‘ž๐‘Ÿฮ“ 1 +

๐‘Ÿ๐‘ ฮ“ ๐‘ โˆ’

๐‘Ÿ๐‘

ฮ“ b , โˆ’๐‘ < ๐‘Ÿ < ๐‘๐‘

ii. Mean

The mean is given by

๐ธ ๐‘Œ =๐‘žฮ“ 1 +

1๐‘ ฮ“ ๐‘ โˆ’

1๐‘

ฮ“ b

iii. Mode

The mode of the Singh-Maddala distribution is given by

Page 120: From The Classical Beta Distribution To Generalized Beta ...

115

Mode = ๐‘ž ๐‘ โˆ’ 1

๐‘๐‘ + 1

1๐‘

if ๐‘ โ‰ฅ 1

and at zero elsewhere. Thus the mode is decreasing with b, reflecting the fact that the

right tail becomes lighter as b increases

iv. Variance

Var Y = ๐œ2 =๐‘ž2๐ต 1 +

2๐‘ , ๐‘ โˆ’

2๐‘

๐ต 1, ๐‘ž โˆ’

๐‘ž๐ต 1 +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘

2

=๐‘ž2bฮ“ 1 +

2๐‘ ฮ“ b โˆ’

2p

bฮ“(๐‘)โˆ’

๐‘ž๐‘ฮ“(1 +1๐‘)ฮ“ ๐‘ โˆ’

1๐‘

bฮ“ ๐‘

2

= ๐‘ž2 ฮ“(b)ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘ โˆ’ ฮ“2(1 +

1๐‘)ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“2(๐‘)

Hence the coefficient of variation is given by

๐ถ๐‘‰ =๐œ

๐œ‡

๐ถ๐‘‰ =

๐‘ž2 ฮ“ b ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘ โˆ’ ฮ“2 1 +

1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“2 ๐‘

๐‘žฮ“(1 +1๐‘

)ฮ“(๐‘ โˆ’1๐‘

)

ฮ“(b)

=

๐‘žฮ“ ๐‘ ฮ“ b ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘ โˆ’ ฮ“2 1 +

1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

๐‘žฮ“(1 +1๐‘)ฮ“(๐‘ โˆ’

1๐‘)

ฮ“(b)

= ฮ“ b ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘ โˆ’ ฮ“2 1 +

1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“(1 +1๐‘)ฮ“(๐‘ โˆ’

1๐‘)

Page 121: From The Classical Beta Distribution To Generalized Beta ...

116

= ฮ“ b ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘

ฮ“2 1 +1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

โˆ’ฮ“2 1 +

1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“2 1 +1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“ b ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘

ฮ“2 1 +1๐‘ ฮ“2 ๐‘ โˆ’

1๐‘

โˆ’ 1

v. Skewness

Putting a=1in the Skewness of generalized beta distribution of the second kind

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘ 

= ๐‘ž3

๐ต 1 +

3๐‘ , ๐‘ โˆ’

3๐‘

๐ต 1, ๐‘ โˆ’ 3

๐ต 1 +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘

๐ต 1 +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต 1, ๐‘

+ 2 ๐ต 1 +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘๐‘

3

= ๐‘ž3 ๐‘๐ต 1 +3

๐‘, ๐‘ โˆ’

3

๐‘ โˆ’ 3๐‘๐ต 1 +

1

๐‘, ๐‘ โˆ’

1

๐‘ ๐‘๐ต 1 +

2

๐‘, ๐‘ โˆ’

2

๐‘

+ 2 ๐‘๐ต 1 +1

๐‘, ๐‘ โˆ’

1

๐‘

3

vi. Kurtosis

Kurtosis of Singh-Maddala distribution can be obtained from the Kurtosis of generalized

beta distribution of the second kind by letting a=1

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ(๐‘Œ)๐ธ ๐‘Œ3 + 6๐ธ{ ๐‘Œ }2๐ธ(๐‘Œ2) โˆ’3 {๐ธ ๐‘Œ }4

Page 122: From The Classical Beta Distribution To Generalized Beta ...

117

= ๐‘ž4

๐ต 1 +

4๐‘ , ๐‘ โˆ’

4๐‘

๐ต 1, ๐‘ โˆ’ 4

๐ต 1 +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘

๐ต 1 +3๐‘ , ๐‘ โˆ’

3๐‘

๐ต 1, ๐‘

+ 6 ๐ต 1 +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘

2

๐ต 1 +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต 1, ๐‘ โˆ’ 3

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต 1, ๐‘

4

= ๐‘ž4 ๐‘๐ต 1 +4

๐‘, ๐‘ โˆ’

4

๐‘ โˆ’ 4๐‘2๐ต 1 +

1

๐‘, ๐‘ โˆ’

1

๐‘ ๐ต 1 +

3

๐‘, ๐‘ โˆ’

3

๐‘

+ 6 ๐‘๐ต 1 +1

๐‘, ๐‘ โˆ’

1

๐‘

2

๐‘๐ต 1 +2

๐‘, ๐‘ โˆ’

2

๐‘

โˆ’ 3 ๐‘๐ต ๐‘Ž +1

๐‘, ๐‘ โˆ’

1

๐‘

4

5.6.3 Shapes of Singh-Maddala distribution

0

1

2

3

4

5

6

7

8

0

0.0

4

0.0

8

0.1

2

0.16 0.

2

0.2

4

0.2

8

0.3

2

0.36 0.

4

0.4

4

0.4

8

0.5

2

0.5

6

0.6

0.6

4

0.6

8

0.7

2

0.7

6

0.8

0.8

4

0.8

8

0.9

2

0.9

6 1(a,q,b)=(1,1,1)

(a,q,b)=(1,2,1)

(a,q,b)=(1,3,1)

(a,q,b)=(2,1,1)

(a,q,b)=(3,1,1)

(a,q,b)=(0.5,2,1)

Page 123: From The Classical Beta Distribution To Generalized Beta ...

118

5.6.4 Generalized Lomax (Pareto type II) Distribution

Special case of the generalized beta distribution of the second kind when p=1, ๐‘ž =1

ฮป and

๐‘Ž = 1 in equation 5.10 gives

๐‘“ y; ฮป, b = 1 ๐‘ฆ1(1)โˆ’1

(1๐œ†)1.1๐ต(1, ๐‘)(1 + (

๐‘ฆ1๐œ†

)1)1+b

=๐œ†๐‘

(1 + ๐œ†๐‘ฆ)1+b, ๐‘ฆ > 0, __________(5.13)

The CDF is given by

F y = 1 โˆ’ (1 + ๐œ†๐‘ฆ)โˆ’b

Equation 5.13 is the general expression of Lomax distribution which becomes equation

3.8 when ๐œ† = 1.

5.6.5 Properties of Generalized Lomax distribution

i. rth-order moments

The rth

-order moments of the generalized Lomax distribution can be obtained from the

expression of the rth

โ€“order moments of the generalized beta distribution of the second

kind by substituting ๐‘ = 1, ๐‘ž =1

๐œ†, ๐‘Ž = 1 in equation 5.11.

๐ธ ๐‘Œ๐‘Ÿ =

1๐œ†

๐‘Ÿ

ฮ“(1 + ๐‘Ÿ)ฮ“(๐‘ โˆ’ ๐‘Ÿ)

ฮ“(b)

ii. Mean

The mean is given by

๐ธ ๐‘Œ =

1๐œ† ฮ“ 1 + 1 ฮ“ ๐‘ โˆ’ 1

ฮ“ b

Page 124: From The Classical Beta Distribution To Generalized Beta ...

119

=

1๐œ†

๐‘ โˆ’ 2 !

b โˆ’ 1 (b โˆ’ 2)!=

1

๐œ† b โˆ’ 1 , ๐‘ > 1

iii. Mode

The mode of generalized Lomax distribution is given by

Mode =1

๐œ†

1 โˆ’ 1

๐‘ + 1 = 0

iv. Variance

The variance of generalized Lomax distribution can be obtained from the variance of

generalized beta distribution of the second kind by substituting ๐‘ = 1, ๐‘ž =1

๐œ† and ๐‘Ž = 1

Var Y =

1๐œ†

2

๐ต 1 + 2, ๐‘ โˆ’ 2

๐ต 1, ๐‘ โˆ’

๐‘ž๐ต 1 + 1, ๐‘ โˆ’ 1

๐ต 1, ๐‘

2

=2

1๐œ†

2

b โˆ’ 3 !

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 !โˆ’

1๐œ† ๐‘ โˆ’ 2 !

b โˆ’ 1 b โˆ’ 2 !

2

= 1

๐œ†

2 1

b โˆ’ 1

2

b โˆ’ 2 โˆ’

1

b โˆ’ 1

= 1

๐œ†

2 1

b โˆ’ 1

2 ๐‘ โˆ’ 1 โˆ’ (๐‘ โˆ’ 2)

b โˆ’ 2 (b โˆ’ 1)

=b

๐œ†2 b โˆ’ 1 2 b โˆ’ 2 , ๐‘ > 2

Hence the coefficient of variation is given by

๐ถ๐‘‰ =๐œ

๐œ‡

๐ถ๐‘‰ =

b๐œ†2 b โˆ’ 1 2 b โˆ’ 2

1๐œ† b โˆ’ 1

Page 125: From The Classical Beta Distribution To Generalized Beta ...

120

= ๐œ†2 b โˆ’ 1 2b

๐œ†2 b โˆ’ 1 2 b โˆ’ 2

= b

b โˆ’ 2

v. Skewness

Skewness of generalized Lomax distribution is given by

๐‘ ๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2 ๐ธ ๐‘Œ 3

=

1๐œ†

3

ฮ“(4)ฮ“(๐‘ โˆ’ 3)

ฮ“(b)โˆ’ 3

1๐œ†

2

ฮ“(3)ฮ“(๐‘ โˆ’ 2)

ฮ“(b)

1

๐œ† b โˆ’ 1 + 2

1

๐œ†3 b โˆ’ 1 3

=1

๐œ†3

6

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 โˆ’

6

b โˆ’ 1 2 b โˆ’ 2 +

2

b โˆ’ 1 3

=1

๐œ†3

6 b2 โˆ’ 2b + 1 + 6 โˆ’b2 + 4b โˆ’ 3 + 2 b2 โˆ’ 5b + 6

b โˆ’ 1 3 b โˆ’ 2 b โˆ’ 3

=1

๐œ†3

2b b + 1

b โˆ’ 1 3 b โˆ’ 2 b โˆ’ 3

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘ ๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  =2b(b + 1)

๐œ†3 b โˆ’ 1 3 b โˆ’ 2 (b โˆ’ 3).

1

b

๐œ†2 b โˆ’ 1 2 b โˆ’ 2

3

=2b(b + 1)

๐œ†3 b โˆ’ 1 3 b โˆ’ 2 (b โˆ’ 3). ๐œ†3 b โˆ’ 1 3

b โˆ’ 2

b

3

=2(b + 1)

(b โˆ’ 3)

b โˆ’ 2

b

vi. Kurtosis

Kurtosis of generalized Lomax distribution can be obtained from the kurtosis of

generalized beta distribution of the second kind by substituting ๐‘ = 1, ๐‘ž =1

๐œ† and ๐‘Ž = 1

Page 126: From The Classical Beta Distribution To Generalized Beta ...

121

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= 1

๐œ†

4

๐ต 1 + 4, ๐‘ โˆ’ 4

๐ต 1, ๐‘ โˆ’ 4

๐ต 1 + 1, ๐‘ โˆ’ 1

๐ต 1, ๐‘

๐ต 1 + 3, ๐‘ โˆ’ 3

๐ต 1, ๐‘

+ 6 ๐ต 1 + 1, ๐‘ โˆ’ 1

๐ต 1, ๐‘

2๐ต 1 + 2, ๐‘ โˆ’ 2

๐ต 1, ๐‘ โˆ’ 3

๐ต 1 + 1, ๐‘ โˆ’ 1

๐ต 1, ๐‘

4

= 1

๐œ†

4

๐‘๐ต 5, ๐‘ โˆ’ 4 โˆ’ 4๐‘๐ต 2, ๐‘ โˆ’ 1 ๐‘๐ต 4, ๐‘ โˆ’ 3 + 6 ๐‘๐ต 2, ๐‘ โˆ’ 1 2๐‘๐ต 3, ๐‘ โˆ’ 2

โˆ’ 3 ๐‘๐ต 2, ๐‘ โˆ’ 1 4

= 1

๐œ†

4

24

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’

4

(b โˆ’ 1)

6

b โˆ’ 1 b โˆ’ 2 (b โˆ’ 3)

+ 6 1

(b โˆ’ 1)

2 2

b โˆ’ 1 (b โˆ’ 2)โˆ’ 3

1

(b โˆ’ 1)

4

= 1

๐œ†

4

24

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’

24

(b โˆ’ 1)2 b โˆ’ 2 (b โˆ’ 3) +

12

(b โˆ’ 1)3(b โˆ’ 2)

โˆ’3

(b โˆ’ 1)4

5.6.6 Inverse Lomax Distribution

Special case of the generalized beta distribution of the second kind when b=1and p=1 in

equation 5.10 gives

๐‘“ y; q, a =๐‘Ž๐‘ฆ๐‘Žโˆ’1

๐‘ž๐‘Ž(1 +๐‘ฆ๐‘ž)1+a

, ๐‘ฆ > 0, ๐‘ž > 0, ๐‘Ž > 0__________________(5.14)

Equation 5.14 is the inverse Lomax distribution

Page 127: From The Classical Beta Distribution To Generalized Beta ...

122

5.6.7 Properties of Inverse Lomax distribution

i. rth-order moments

The rth-order moments of Inverse Lomax distribution can be obtained from the expression

of the rth

โ€“order moments of the generalized beta distribution of the second kind by

substituting ๐‘ = 1, ๐‘ = 1 in equation 5.11.

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ž ๐‘Ÿฮ“(๐‘Ž + ๐‘Ÿ)ฮ“(1 โˆ’ ๐‘Ÿ)

ฮ“(๐‘Ž)ฮ“(1)

ii. Mean

The mean of inverse Lomax distribution is given by

๐ธ ๐‘Œ = ๐‘ž ฮ“(๐‘Ž + 1)ฮ“(1 โˆ’ 1)

ฮ“(๐‘Ž)ฮ“(1)

iii. Mode

The mode of inverse Lomax distribution is given by

๐‘€๐‘œ๐‘‘๐‘’ = ๐‘ž ๐‘Ž โˆ’ 1

2

iv. Variance

The variance of inverse Lomax distribution can be obtained from the variance of

generalized beta distribution of the second kind by substituting ๐‘ = 1, and ๐‘ = 1

Var Y = ๐‘ž2 ๐‘๐ต 3, ๐‘ โˆ’ 2 โˆ’ ๐‘๐ต 2, ๐‘ โˆ’ 1 2

Var(Y) = ๐‘ž2 ๐‘Ž๐ต ๐‘Ž + 2,1 โˆ’ 2 โˆ’ ๐‘Ž๐ต ๐‘Ž + 1,1 โˆ’ 1 2

= ๐‘ž2 ๐‘Ž๐ต ๐‘Ž + 2, โˆ’1 โˆ’ ๐‘Ž๐ต ๐‘Ž + 1,0 2

v. Skewness

The skewness of inverse Lomax distribution can be obtained from the skewness of

generalized beta distribution of the second kind by substituting ๐‘ = 1, and ๐‘ = 1

= ๐‘ž3 ๐ต ๐‘Ž + 3,1 โˆ’ 3

๐ต ๐‘Ž, 1 โˆ’ 3

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

๐ต ๐‘Ž + 2,1 โˆ’ 2

๐ต ๐‘Ž, 1 + 2

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

3

Page 128: From The Classical Beta Distribution To Generalized Beta ...

123

vi. Kurtosis

The Kurtosis of inverse Lomax distribution can be obtained from the kurtosis of

generalized beta distribution of the second kind by substituting ๐‘ = 1, and ๐‘ = 1

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

= ๐‘ž4 ๐ต ๐‘Ž + 4,1 โˆ’ 4

๐ต ๐‘Ž, 1 โˆ’ 4

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

๐ต ๐‘Ž + 3,1 โˆ’ 3

๐ต ๐‘Ž, 1

+ 6 ๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

2๐ต ๐‘Ž + 2,1 โˆ’ 2

๐ต ๐‘Ž, 1 โˆ’ 3

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

4

5.6.8 Dagum (Burr type 3) Distribution

Special case of the generalized beta distribution of the second kind with b=1 in equation

5.10 gives the following density function

๐‘“ y; p, q, a = ๐‘ ๐‘Ž๐‘ฆ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž (1 + (๐‘ฆ๐‘ž

)๐‘)1+a, ๐‘ฆ > 0, ๐‘ > 0, ๐‘ž > 0,

๐‘Ž > 0____________(5.15)

Equation 5.15 is the Dagum distribution. The Dagum distribution is also known as Burr

Type 3 distribution in the statistic literature (Kleiber and Kotz, 2003)

5.6.9 Properties of Dagum distribution

i. rth-order moments

The rth-order moments of the Dagum distribution can be obtained from the expression of

the generalized beta distribution of the second kind by substituting b=1 in equation 5.11.

Thus

๐ธ ๐‘Œ๐‘Ÿ =๐‘ž๐‘Ÿ๐ต ๐‘Ž +

๐‘Ÿ๐‘

, 1 โˆ’๐‘Ÿ๐‘

๐ต ๐‘Ž, 1

=๐‘ž๐‘Ÿฮ“(๐‘Ž +

๐‘Ÿ๐‘)ฮ“(1 โˆ’

๐‘Ÿ๐‘)

ฮ“(a), โˆ’๐‘๐‘Ž < ๐‘Ÿ < ๐‘

Page 129: From The Classical Beta Distribution To Generalized Beta ...

124

ii. Mean

The mean is given by

๐ธ ๐‘Œ =๐‘žฮ“(๐‘Ž +

1๐‘)ฮ“(1 โˆ’

1๐‘)

ฮ“(a)

iii. Mode

The mode of the Dagum distribution is given by

Mode = ๐‘ž ๐‘๐‘Ž โˆ’ 1

๐‘ + 1

1๐‘

if ๐‘๐‘Ž โ‰ฅ 1

and at zero elsewhere.

iv. Variance

Var Y = ๐œ2 =๐‘ž2๐ต ๐‘Ž +

2๐‘ , 1 โˆ’

2๐‘

๐ต ๐‘Ž, 1 โˆ’

๐‘ž๐ต ๐‘Ž +1๐‘ , 1 โˆ’

1๐‘

๐ต ๐‘Ž, 1

2

=๐‘ž2aฮ“ ๐‘Ž +

2๐‘ ฮ“ 1 โˆ’

2p

aฮ“(๐‘Ž)โˆ’

๐‘ž๐‘Žฮ“(๐‘Ž +1๐‘)ฮ“ 1 โˆ’

1๐‘

aฮ“ ๐‘Ž

2

= ๐‘ž2 ฮ“(a)ฮ“ ๐‘Ž +

2๐‘ ฮ“ 1 โˆ’

2๐‘ โˆ’ ฮ“2(๐‘Ž +

1๐‘)ฮ“2 1 โˆ’

1๐‘

ฮ“2(๐‘Ž)

Hence the coefficient of variation is

๐ถ๐‘‰ = ฮ“(a)ฮ“ ๐‘Ž +

2๐‘ ฮ“ 1 โˆ’

2๐‘

ฮ“2(๐‘Ž +1๐‘)ฮ“2 1 โˆ’

1๐‘

โˆ’ 1

Page 130: From The Classical Beta Distribution To Generalized Beta ...

125

5.6.10 Para-logistic distribution

Special case of the generalized beta distribution of the second kind with a=1 and b=p in

equation 5.10 (Klugman, Panjer and Willmot, 1998)

๐‘“ y; p, q = ๐‘ ๐‘ฆ๐‘โˆ’1

๐‘ž๐‘๐ต 1, ๐‘ (1 + (๐‘ฆ๐‘ž)๐‘)1+p

=๐‘2๐‘ฆ๐‘โˆ’1

๐‘ž๐‘(1 + (๐‘ฆ๐‘ž)๐‘)1+p

, ๐‘ฆ > 0__________________(5.16)

5.6.11 General Fisk (Log-Logistic) Distribution Function

Special case of the generalized beta distribution of the second kind when a=b=1 and

๐‘ž =1

๐œ† in equation 5.10

๐‘“ y; p, ๐œ† = ๐‘ ๐‘ง๐‘ .1โˆ’1

1๐œ†

๐‘ .1

๐ต(1,1)(1 + (๐‘ฆ1๐œ†

)๐‘)1+1

=๐œ† ๐‘ (๐œ†๐‘ฆ)๐‘โˆ’1

(1 + (๐‘ฆ๐œ†)๐‘)2 , ๐‘ฆ > 0 ___________________(5.17)

Equation 5.17 is the general form of the log logistic distribution. The Fisk (Log-logistic)

distribution can also be obtained from Singh-Maddala distribution by letting b=1 and q= 1

๐œ†

or from Dagum distribution by letting a=1 and ๐‘ž =1

๐œ†

Page 131: From The Classical Beta Distribution To Generalized Beta ...

126

5.6.12 Properties of Fisk (log-logistic) distribution

i. rth-order moments

The rth-order moments is obtained from the r

thโ€“order moments of the generalized beta

distribution of the second kind by substituting a=b=1 in equation 5.11. Thus we get

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ž๐‘Ÿ๐ต 1 +๐‘Ÿ

๐‘, 1 โˆ’

๐‘Ÿ

๐‘

= ๐‘ž๐‘Ÿฮ“ 1 +๐‘Ÿ

๐‘ ฮ“ 1 โˆ’

๐‘Ÿ

๐‘ , โˆ’๐‘ < ๐‘Ÿ < ๐‘

ii. Mean

The mean is given by

๐ธ ๐‘Œ = ๐‘žฮ“ 1 +1

๐‘ ฮ“ 1 โˆ’

1

๐‘

= ๐‘ž1

๐‘ฮ“

1

๐‘ ฮ“ 1 โˆ’

1

๐‘

iii. Mode

The mode of the Fisk distribution is given by

Mode = ๐‘ž ๐‘ โˆ’ 1

๐‘ + 1

1๐‘

if ๐‘ > 1

and at zero for ๐‘ โ‰ค 1.

iv. Variance

Var Y = ๐œ2 = ๐‘ž2๐ต 1 +2

๐‘, 1 โˆ’

2

๐‘ โˆ’ ๐‘ž๐ต 1 +

1

๐‘, 1 โˆ’

1

๐‘

2

Page 132: From The Classical Beta Distribution To Generalized Beta ...

127

= ๐‘ž2ฮ“ 1 +2

๐‘ ฮ“ 1 โˆ’

2

p โˆ’ ๐‘žฮ“(1 +

1

๐‘)ฮ“ 1 โˆ’

1

๐‘

2

= ๐‘ž2 ฮ“ 1 +2

๐‘ ฮ“ 1 โˆ’

2

๐‘ โˆ’ ฮ“2(1 +

1

๐‘)ฮ“2 1 โˆ’

1

๐‘

5.6.13 Fisher (F) Distribution Function

Special case of the generalized beta distribution of the second kind when ๐‘Ž =๐‘ข

2, ๐‘ =

๐‘ฃ

2, ๐‘ = 1 and ๐‘ž =

๐‘ฃ

๐‘ข in equation 5.10

๐‘“ y; ๐‘ข, ๐‘ฃ = 1 ๐‘ฆ1.

๐‘ข2โˆ’1

๐‘ฃ๐‘ข

1.๐‘ข2๐ต

๐‘ข2 ,

๐‘ฃ2 1 +

๐‘ฆ๐‘ฃ๐‘ข

1

๐‘ข2

+๐‘ฃ2

=ฮ“

๐‘ข + ๐‘ฃ2

๐‘ข๐‘ฃ

๐‘ข2๐‘ฆ

๐‘ข2โˆ’1

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2 1 +

๐‘ฆ๐‘ข๐‘ฃ

๐‘ข+๐‘ฃ2

___________________(5.18)

Equation 5.18 is the Fisher (F) distribution.

5.6.14 Properties of F distribution

i. rth-order moments

The rth-order moments is obtained from the r

thโ€“order moments of the generalized beta

distribution of the second kind by substituting ๐‘Ž =๐‘ข

2, ๐‘ =

๐‘ฃ

2, ๐‘ = 1 and ๐‘ž =

๐‘ฃ

๐‘ข in equation

5.11. Thus we get

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฃ๐‘ข

๐‘Ÿ

๐ต ๐‘ข2

+ ๐‘Ÿ,๐‘ฃ2

โˆ’ ๐‘Ÿ

๐ต ๐‘ข2 ,

๐‘ฃ2

= ๐‘ฃ๐‘ข

๐‘Ÿ

ฮ“ ๐‘ข2 + ๐‘Ÿ ฮ“

๐‘ฃ2 โˆ’ ๐‘Ÿ

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2

, โˆ’๐‘ข

2< ๐‘Ÿ < 1

Page 133: From The Classical Beta Distribution To Generalized Beta ...

128

ii. Mean

The mean of F distribution is given by

๐ธ ๐‘Œ = ๐‘ฃ๐‘ข ฮ“

๐‘ข2 + 1 ฮ“

๐‘ฃ2 โˆ’ 1

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2

= ๐‘ฃ๐‘ข

๐‘ข2 ฮ“

๐‘ข2

๐‘ฃ2 โˆ’ 2 !

ฮ“ ๐‘ข2

๐‘ฃ2 โˆ’ 1

๐‘ฃ2 โˆ’ 2 !

= ๐‘ฃ2

๐‘ฃ2 โˆ’ 1

=๐‘ฃ

๐‘ฃ โˆ’ 2, ๐‘ฃ > 2

iii. Mode

The mode of F distribution is given by

Mode =๐‘ฃ

๐‘ข

๐‘ข2 โˆ’ 1

๐‘ฃ2 + 1

=๐‘ฃ

๐‘ข ๐‘ข โˆ’ 2

๐‘ฃ + 2

= ๐‘ข โˆ’ 2

๐‘ข

๐‘ฃ

๐‘ฃ + 2 , ๐‘ข > 2

iv. Variance

The variance for F distribution can be given by

Var Y =(๐‘ฃ๐‘ข)2๐ต

๐‘ข2 + 2,

๐‘ฃ2 โˆ’ 2

๐ต(๐‘ข2 ,

๐‘ฃ2)

โˆ’ ๐‘ฃ

๐‘ฃ โˆ’ 2

2

Page 134: From The Classical Beta Distribution To Generalized Beta ...

129

=(๐‘ฃ๐‘ข)2ฮ“

๐‘ข2 + 2 ฮ“

๐‘ฃ2 โˆ’ 2 ฮ“

u + v2

ฮ“ u + v

2 ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2

โˆ’ ๐‘ฃ

๐‘ฃ โˆ’ 2

2

=(๐‘ฃ๐‘ข)2

๐‘ข2 + 1

๐‘ข2 ฮ“

๐‘ข2

๐‘ฃ2 โˆ’ 3 !

ฮ“ ๐‘ข2

๐‘ฃ2 โˆ’ 1

๐‘ฃ2 โˆ’ 2

๐‘ฃ2 โˆ’ 3 !

โˆ’ ๐‘ฃ

๐‘ฃ โˆ’ 2

2

=(๐‘ฃ๐‘ข

)2 ๐‘ข2

+ 1 ๐‘ข2

๐‘ฃ2 โˆ’ 1

๐‘ฃ2 โˆ’ 2

โˆ’ ๐‘ฃ

๐‘ฃ โˆ’ 2

2

= ๐‘ฃ2

1๐‘ข

๐‘ข + 22

12

๐‘ฃ โˆ’ 2

2

๐‘ฃ โˆ’ 42

โˆ’

1

๐‘ฃ โˆ’ 2

2

= ๐‘ฃ2 ๐‘ข + 2

๐‘ข ๐‘ฃ โˆ’ 2 ๐‘ฃ โˆ’ 4 โˆ’

1

๐‘ฃ โˆ’ 2

2

= ๐‘ฃ2 ๐‘ฃ๐‘ข + 2๐‘ฃ โˆ’ 2๐‘ข โˆ’ 4 โˆ’ ๐‘ข๐‘ฃ + 4๐‘ข

๐‘ข ๐‘ฃ โˆ’ 2 2 ๐‘ฃ โˆ’ 4

= 2๐‘ฃ2 ๐‘ข + ๐‘ฃ โˆ’ 2

๐‘ข ๐‘ฃ โˆ’ 2 2 ๐‘ฃ โˆ’ 4 , ๐‘ฃ > 4

5.6.15 Half Studentโ€™s t distribution

Special case of the generalized beta distribution of the second kind when ๐‘Ž =1

2, ๐‘ =

๐‘Ÿ

2, ๐‘ = 2 and ๐‘ž = ๐‘Ÿ in equation 5.10

๐‘“ y; ๐‘Ÿ = 2 ๐‘ฆ2.

12โˆ’1

๐‘Ÿ 2.

12๐ต

12 ,

๐‘Ÿ2 1 +

๐‘ง

๐‘Ÿ

2

12

+๐‘Ÿ2

=2ฮ“

1 + ๐‘Ÿ2

๐‘Ÿฯ€ฮ“ ๐‘Ÿ2 1 +

๐‘ฆ2

๐‘Ÿ

1+๐‘Ÿ2

, โˆ’โˆž < ๐‘ฆ < โˆž ___________________(5.19)

Equation 5.19 is the Half studentโ€˜s t distribution.

Page 135: From The Classical Beta Distribution To Generalized Beta ...

130

5.6.16 Logistic Distribution Function

Letting ๐‘ฆ = ๐‘’๐‘ฅ and ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ = ๐‘’๐‘ฅ

In equation 5.10 for the generalized beta distribution of the second kind, we get the

following density function

๐‘“ x; p, ๐œ† = ๐‘ ๐‘’๐‘๐‘Ž๐‘ฅ โˆ’๐‘ฅ

๐‘ž๐‘๐‘Ž๐ต(๐‘Ž, ๐‘)(1 + (๐‘’๐‘ฅ

๐‘ž )๐‘)a+b . ๐‘’๐‘ฅ

= ๐‘ ๐‘’๐‘๐‘Ž๐‘ฅ

๐‘’๐‘๐‘Ž๐‘™๐‘œ๐‘” (๐‘ž)๐ต(๐‘Ž, ๐‘)(1 + (๐‘’๐‘ฅ๐‘’โˆ’log (๐‘ž))๐‘)a+b

= ๐‘ ๐‘’๐‘๐‘Ž ๐‘ฅโˆ’๐‘™๐‘œ๐‘” ๐‘ž

๐ต(๐‘Ž, ๐‘) 1 + ๐‘’๐‘ ๐‘ฅโˆ’log q a+b, โˆ’โˆž < ๐‘ฅ < โˆž _________________(5.20)

Equation 5.20 is the generalized logistic distribution. McDonald and Xu (1995) referred

to equation 5.20 as the density of an exponential generalized distribution. The standard

logistic distribution can be obtained by setting p = q = a = b = 1 as

๐‘“(๐‘ฅ) =๐‘’๐‘ฅ

1 + ๐‘’๐‘ฅ 2

5.6.17 Generalized Gamma Distribution Function

We show that the generalized beta distribution of the second kind approaches the

generalized gamma distribution as bโ†’โˆž as follows:

Let q=ฮฒb1

๐‘ . Substituting this expression in equation 5.10 yields

๐‘“(๐‘ฆ; ๐‘, ฮฒ, ๐‘Ž, ๐‘) = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

(ฮฒb1๐‘)๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ (1 + (

๐‘ฆ

ฮฒb1๐‘

)๐‘)๐‘Ž+๐‘

= ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

๐‘๐‘Žฮฒ๐‘๐‘Ž ๐ต ๐‘Ž, ๐‘ (1 +

1๐‘ (

๐‘ฆฮฒ

)๐‘)๐‘Ž+๐‘

Page 136: From The Classical Beta Distribution To Generalized Beta ...

131

Grouping the terms gives

๐‘“(๐‘ฆ; ๐‘, ฮฒ, ๐‘Ž, ๐‘) = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

ฮ“(๐‘Ž)ฮฒ๐‘๐‘Ž

ฮ“(๐‘Ž + ๐‘

ฮ“ ๐‘ b๐‘Ž

1

(1 +1๐‘ (

๐‘ฆฮฒ

)๐‘)

๐‘Ž+๐‘

For large values of b, the gamma function can be approximated by Stirlingโ€˜s formula

thus

ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘)b๐‘Ž =

๐‘’โˆ’๐‘Žโˆ’๐‘(๐‘Ž + ๐‘)๐‘Ž+๐‘โˆ’12 2๐œ‹

๐‘’โˆ’๐‘๐‘๐‘โˆ’12 2๐œ‹๐‘๐‘Ž

limbโ†’โˆž

ฮ“(๐‘Ž + ๐‘)

ฮ“(๐‘)b๐‘Ž = lim

bโ†’โˆž

๐‘’โˆ’๐‘Ž(๐‘Ž + ๐‘)๐‘โˆ’12 2๐œ‹

๐‘๐‘โˆ’12 2๐œ‹

= 1

Similarly, limbโ†’โˆž

1

(1 +1๐‘ (

๐‘ฆฮฒ

)๐‘)๐‘Ž+๐‘ = ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

taking the limit of ๐‘“ ๐‘ฆ; ๐‘, ฮฒ, ๐‘Ž, ๐‘ as ๐‘ โ†’ โˆž yields

๐‘“ y; p, ฮฒ, a = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

, 0 โ‰ค ๐‘ฆ ______________________(5.21)

Equation 5.21 is the generalized gamma (GG) distribution function equivalent to the one

derived in equation 5.8.

5.6.18 Properties of Generalized Gamma distribution

i. rth-order moments

To obtain the rth-order moments of the generalized gamma distribution, we evaluate

Page 137: From The Classical Beta Distribution To Generalized Beta ...

132

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“(๐‘ฆ; ๐‘, ฮฒ, a)๐‘‘๐‘ฆโˆž

0

= ๐‘ฆ๐‘Ÿ ๐‘ ๐‘ง๐‘๐‘Žโˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

๐‘‘๐‘ฆโˆž

0

= ๐‘ ๐‘ฆ(๐‘๐‘Ž+๐‘Ÿ)โˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

๐‘‘๐‘ฆโˆž

0

= ๐‘ ๐‘ฆ

๐‘(๐‘Ž+๐‘Ÿ๐‘

)โˆ’1. ฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮฒ๐‘(๐‘Ž+

๐‘Ÿ๐‘

). ฮฒโˆ’๐‘Ÿ . ฮ“ ๐‘Ž ฮ“ ๐‘Ž +

๐‘Ÿ๐‘

๐‘’โˆ’

๐‘ง๐›ฝ

๐‘Ž

๐‘‘๐‘ฆโˆž

0

=ฮฒ

๐‘Ÿฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮ“ ๐‘Ž

๐‘ ๐‘ฆ๐‘(๐‘Ž+

๐‘Ÿ๐‘

)โˆ’1

ฮฒ๐‘ (๐‘Ž+

๐‘Ÿ๐‘

)ฮ“ ๐‘Ž +

๐‘Ÿ๐‘

๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

๐‘‘๐‘ฆโˆž

0

The expression under the integral sign integrates to 1

โˆด ๐ธ ๐‘Œ๐‘Ÿ =ฮฒ

๐‘Ÿฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮ“ ๐‘Ž , โˆ’pa < ๐‘Ÿ < โˆž________________________(5.22)

ii. Mean

The mean is given by

๐ธ ๐‘Œ =ฮฒฮ“ ๐‘Ž +

1๐‘

ฮ“ ๐‘Ž

iii. Mode

The mode of the generalized gamma distribution occurs at

d

dy๐‘“(๐‘ฆ) = 0

d

dy ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

= 0

๐‘๐‘Ž โˆ’ 1 ๐‘ฆ๐‘๐‘Žโˆ’1. ๐‘ฆโˆ’1๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

โˆ’ ๐‘๐‘ฆ๐‘โˆ’1

๐›ฝ๐‘. ๐‘ฆ๐‘๐‘Žโˆ’1๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

= 0

๐‘๐‘Ž โˆ’ 1 = ๐‘๐‘ฆ๐‘

๐›ฝ๐‘

Page 138: From The Classical Beta Distribution To Generalized Beta ...

133

๐‘ฆ = ๐›ฝ ๐‘Ž โˆ’1

๐‘

1๐‘

and at zero for ๐‘ โ‰ค 1.

iv. Variance

Var Y =๐›ฝ2ฮ“ ๐‘Ž +

2๐‘

ฮ“(a)โˆ’

๐›ฝฮ“ ๐‘Ž +1๐‘

ฮ“(a)

2

=๐›ฝ2ฮ“(a)ฮ“ ๐‘Ž +

2๐‘ โˆ’ ๐›ฝ2ฮ“2 ๐‘Ž +

1๐‘

ฮ“2(a)

=๐›ฝ2

ฮ“2 a ฮ“ a ฮ“ ๐‘Ž +

2

๐‘ โˆ’ ฮ“2 ๐‘Ž +

1

๐‘

v. Skewness

Skewness of the generalized gamma distribution can be expressed as follows

Skewness = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2 ๐ธ ๐‘Œ 3

=ฮฒ

3ฮ“ ๐‘Ž +

3๐‘

ฮ“ ๐‘Ž โˆ’

3ฮฒ3ฮ“ ๐‘Ž +

2๐‘ ฮ“ ๐‘Ž +

1๐‘

ฮ“2 ๐‘Ž +

2ฮฒ3ฮ“3 ๐‘Ž +

1๐‘

ฮ“3 ๐‘Ž

=ฮฒ

3ฮ“2 ๐‘Ž ฮ“ ๐‘Ž +

3๐‘ โˆ’ 3ฮฒ

3ฮ“ a ฮ“ ๐‘Ž +2๐‘ ฮ“ ๐‘Ž +

1๐‘ + 2ฮฒ

3ฮ“3 ๐‘Ž +

1๐‘

ฮ“3 ๐‘Ž

vi. Kurtosis

Kurtosis of the generalized gamma distribution can be expressed as follows

Kurtosis = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ3 ๐ธ ๐‘Œ + 6๐ธ ๐‘Œ2 {๐ธ ๐‘Œ }2โˆ’3 ๐ธ ๐‘Œ 4

=ฮฒ

4ฮ“ ๐‘Ž +

4๐‘

ฮ“ ๐‘Ž โˆ’

4ฮฒ3ฮ“ ๐‘Ž +

3๐‘ ฮฒฮ“ ๐‘Ž +

1๐‘

ฮ“ ๐‘Ž ฮ“(a)+

6ฮฒ2ฮ“ ๐‘Ž +

2๐‘ ฮฒ

2ฮ“2 ๐‘Ž +

1๐‘

ฮ“ ๐‘Ž ฮ“2 ๐‘Ž

โˆ’ 3ฮฒ

4ฮ“4 ๐‘Ž +

1๐‘

ฮ“4 ๐‘Ž

Page 139: From The Classical Beta Distribution To Generalized Beta ...

134

= ฮฒ4

ฮ“ ๐‘Ž +4๐‘

ฮ“ ๐‘Ž โˆ’

4ฮ“ ๐‘Ž +3๐‘ ฮ“ ๐‘Ž +

1๐‘

ฮ“2 ๐‘Ž +

6ฮ“ ๐‘Ž +2๐‘ ฮ“2 ๐‘Ž +

1๐‘

ฮ“3 ๐‘Ž โˆ’ 3

ฮ“4 ๐‘Ž +1๐‘

ฮ“4 ๐‘Ž

5.6.19 Gamma Distribution Function

Special case of the generalized gamma distribution derived in equation 5.21 when p=1

gives

๐‘“ y; ฮฒ, a =๐‘ฆ๐‘Žโˆ’1

ฮฒ๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

, 0 โ‰ค ๐‘ฆ _________________(5.23)

Equation 5.23 is the gamma distribution.

5.6.20 Properties of Gamma distribution

i. rth-order moments

The rth-order moments of the Gamma distribution can be obtained from the expression of

the moments of the generalized Gamma distribution by substituting p=1 in equation 5.22.

Thus

๐ธ ๐‘Œ๐‘Ÿ =ฮฒ

๐‘Ÿฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮ“ ๐‘Ž

=ฮฒ

๐‘Ÿฮ“ ๐‘Ž + ๐‘Ÿ

ฮ“ ๐‘Ž

ii. Mean

The mean is given by

๐ธ ๐‘Œ =ฮฒฮ“ ๐‘Ž + 1

ฮ“ ๐‘Ž = ฮฒa

Page 140: From The Classical Beta Distribution To Generalized Beta ...

135

iii. Mode

The mode of the Gamma distribution occurs at

Mode = ๐›ฝ ๐‘Ž โˆ’1

๐‘

1๐‘

= ฮฒ a โˆ’ 1 , a > 1

iv. Variance

The variance of gamma distribution can be obtained from the variance of generalized

gamma distribution by substituting p=1 as follows:

Var Y =๐›ฝ2

ฮ“2 a ฮ“ a ฮ“ ๐‘Ž + 2 โˆ’ ฮ“2 ๐‘Ž + 1

=๐›ฝ2

ฮ“2 a ฮ“ a a + 1 (a)ฮ“ ๐‘Ž โˆ’ (a)ฮ“ ๐‘Ž (a)ฮ“ ๐‘Ž

=๐›ฝ2

ฮ“2 a (a)ฮ“2 a a + 1 โˆ’ (a)

= a๐›ฝ2

v. Skewness

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2 ๐ธ ๐‘Œ 3

=ฮฒ

3ฮ“ ๐‘Ž + 3

ฮ“ ๐‘Ž โˆ’ 3

ฮฒ2ฮ“ ๐‘Ž + 2

ฮ“ ๐‘Ž . ๐‘Žฮฒ + 2 ๐‘Žฮฒ 3

=ฮฒ

3 a + 2 a + 1 (a)ฮ“ ๐‘Ž

ฮ“ ๐‘Ž โˆ’

3๐‘Žฮฒ3 a + 1 (a)ฮ“ ๐‘Ž

ฮ“ ๐‘Ž + 2 ๐‘Žฮฒ 3

= ฮฒ3 a + 2 a + 1 (a) โˆ’ 3๐‘Žฮฒ

3 a + 1 (a) + 2 ๐‘Žฮฒ 3

= a3ฮฒ3 + 3a2ฮฒ

3 + 2๐‘Žฮฒ3 โˆ’ 3a3ฮฒ

3 โˆ’ 3a2ฮฒ3 + 2a3ฮฒ

3

= 2๐‘Žฮฒ3

The standardized skewness is given by

Page 141: From The Classical Beta Distribution To Generalized Beta ...

136

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘ ๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  =2๐‘Žฮฒ

3

(a๐›ฝ2)32

=2

๐‘Ž

vi. Kurtosis

Kurtosis is given by

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ3 ๐ธ ๐‘Œ + 6๐ธ ๐‘Œ2 ๐ธ ๐‘Œ 2 โˆ’ 3 ๐ธ ๐‘Œ 4

= ฮฒ

4ฮ“ ๐‘Ž + 4

ฮ“ ๐‘Ž โˆ’ 4

ฮฒ3ฮ“ ๐‘Ž + 3

ฮ“ ๐‘Ž . ๐‘Žฮฒ + 6

ฮฒ2ฮ“ ๐‘Ž + 2

ฮ“ ๐‘Ž . (๐‘Žฮฒ)2 โˆ’ 3 ๐‘Žฮฒ 4

= ฮฒ4 ๐‘Ž + 3 ๐‘Ž + 2 ๐‘Ž + 1 (๐‘Ž) โˆ’ 4๐‘Žฮฒ

4 ๐‘Ž + 2 ๐‘Ž + 1 (๐‘Ž) + 6๐‘Ž2ฮฒ4(๐‘Ž + 1)(๐‘Ž)

โˆ’ 3๐‘Ž4ฮฒ4

= ๐‘Ž4ฮฒ4

+ 6๐‘Ž3ฮฒ4

+ 11๐‘Ž2ฮฒ4

+ 6๐‘Žฮฒ4 โˆ’ 4๐‘Ž4ฮฒ

4โˆ’ 12๐‘Ž3ฮฒ

4โˆ’ 8๐‘Ž2ฮฒ

4+ 6๐‘Ž4ฮฒ

4+ 6๐‘Ž3ฮฒ

4

โˆ’ 3๐‘Ž4ฮฒ4

= 3๐‘Ž2ฮฒ4

+ 6๐‘Žฮฒ4

The standardized kurtosis is given by

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘˜๐‘ข๐‘ก๐‘œ๐‘ ๐‘–๐‘  =3๐‘Ž2ฮฒ

4+ 6๐‘Žฮฒ

4

๐‘Ž2ฮฒ4

= 3 +6

๐‘Ž

5.6.21 Inverse Gamma distribution

Special case of the generalized gamma distribution derived in equation 5.21 when

๐‘ = โˆ’1 gives

๐‘“ y; ฮฒ, a =๐‘ฆโˆ’๐‘Žโˆ’1

ฮฒโˆ’๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

โˆ’1

, 0 โ‰ค ๐‘ฆ

=ฮฒ

๐‘Ž

๐‘ฆ1+๐‘Žฮ“ ๐‘Ž ๐‘’

โˆ’ ๐›ฝ๐‘ฆ , 0 โ‰ค ๐‘ฆ_________________(5.24)

Equation 5.24 is the inverse gamma distribution

Page 142: From The Classical Beta Distribution To Generalized Beta ...

137

5.6.22 Properties of Inverse Gamma distribution

i. rth-order moments

The rth-order moments of the Inverse Gamma distribution can be obtained from the

expression of the moments of the generalized Gamma distribution by substituting

๐‘ = โˆ’1 in equation 5.22.

๐ธ ๐‘Œ๐‘Ÿ =ฮฒ

๐‘Ÿฮ“ ๐‘Ž โˆ’ ๐‘Ÿ

ฮ“ ๐‘Ž

ii. Mean

The mean is given by

๐ธ ๐‘Œ =ฮฒฮ“ ๐‘Ž โˆ’ 1

ฮ“ ๐‘Ž

=ฮฒ ๐‘Ž โˆ’ 2 !

a โˆ’ 1 a โˆ’ 2 !

=ฮฒ

a โˆ’ 1

iii. Mode

The mode of the inverse Gamma distribution occurs at

Mode = ๐›ฝ ๐‘Ž + 1 โˆ’1

=ฮฒ

a + 1 , a > 1

iv. Variance

The variance of inverse gamma distribution can be obtained from the variance of

generalized gamma distribution by substituting ๐‘ = โˆ’1 as follows:

Var ๐‘Œ =๐›ฝ2

ฮ“2 a ฮ“ a ฮ“ ๐‘Ž โˆ’ 2 โˆ’ ฮ“2 ๐‘Ž โˆ’ 1

=๐›ฝ2( ๐‘Ž โˆ’ 1 ! ๐‘Ž โˆ’ 3 ! โˆ’ ๐‘Ž โˆ’ 2 ! ๐‘Ž โˆ’ 2 !

a โˆ’ 1 ! a โˆ’ 1 !

Page 143: From The Classical Beta Distribution To Generalized Beta ...

138

= ๐›ฝ2 1

a โˆ’ 1 a โˆ’ 2 โˆ’

1

a โˆ’ 1 a โˆ’ 1

=๐›ฝ2

(๐‘Ž โˆ’ 1)2 a โˆ’ 2 , ๐‘Ž > 2

v. Skewness

Skewness of inverse gamma distribution can be as follows

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2 ๐ธ ๐‘Œ 3

=ฮฒ

3ฮ“ ๐‘Ž โˆ’ 3

ฮ“ ๐‘Ž โˆ’ 3

ฮฒ2ฮ“ ๐‘Ž โˆ’ 2

ฮ“ ๐‘Ž .

ฮฒ

a โˆ’ 1+ 2

ฮฒ

a โˆ’ 1

3

=ฮฒ

3 a โˆ’ 4 !

a โˆ’ 1 a โˆ’ 2 a โˆ’ 3 a โˆ’ 4 !โˆ’

3ฮฒ3 a โˆ’ 3 !

a โˆ’ 1 2 a โˆ’ 2 a โˆ’ 3 ! +

2๐›ฝ3

(๐‘Ž โˆ’ 1)3

=ฮฒ

3

a โˆ’ 1 a โˆ’ 2 a โˆ’ 3 โˆ’

3ฮฒ3

a โˆ’ 1 2 a โˆ’ 2 +

2๐›ฝ3

(๐‘Ž โˆ’ 1)3

= ฮฒ3

๐‘Ž2 โˆ’ 2๐‘Ž + 1 โˆ’ 3๐‘Ž2 โˆ’ 12๐‘Ž + 9 + 2 ๐‘Ž2 โˆ’ 5๐‘Ž + 6

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 3

= ฮฒ3

4

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 3

=4ฮฒ

3

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 3

The standardized skewness is given by

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘ ๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  =

4ฮฒ

3

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 3

(๐›ฝ2

(๐‘Ž โˆ’ 1)2 a โˆ’ 2 )32

=4ฮฒ

3

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 3

a โˆ’ 1 3 a โˆ’ 2 a โˆ’ 2

ฮฒ3

Page 144: From The Classical Beta Distribution To Generalized Beta ...

139

=4 (a โˆ’ 2)

a โˆ’ 3

vi. Kurtosis

Kurtosis is given by

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ3 ๐ธ ๐‘Œ + 6๐ธ ๐‘Œ2 ๐ธ ๐‘Œ 2 โˆ’ 3 ๐ธ ๐‘Œ 4

= ฮฒ

4ฮ“ ๐‘Ž โˆ’ 4

ฮ“ ๐‘Ž โˆ’ 4

ฮฒ3ฮ“ ๐‘Ž โˆ’ 3

ฮ“ ๐‘Ž .

ฮฒ

a โˆ’ 1+ 6

ฮฒ2ฮ“ ๐‘Ž โˆ’ 2

ฮ“ ๐‘Ž .

ฮฒ

a โˆ’ 1

2

โˆ’ 3 ฮฒ

a โˆ’ 1

4

=ฮฒ

4

๐‘Ž โˆ’ 1 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4 โˆ’

4ฮฒ4

(๐‘Ž โˆ’ 1)2 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 +

6ฮฒ4

๐‘Ž โˆ’ 1 3(๐‘Ž โˆ’ 2)

โˆ’ 3 ฮฒ

a โˆ’ 1

4

= ฮฒ4

๐‘Ž โˆ’ 1 3 โˆ’ 4 ๐‘Ž โˆ’ 1 2 ๐‘Ž โˆ’ 4 +6 ๐‘Ž โˆ’ 1 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4 โˆ’ 3 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4

๐‘Ž โˆ’ 1 4 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4

= ฮฒ4

๐‘Ž3 โˆ’ 3๐‘Ž2 + 3๐‘Ž โˆ’ 1 โˆ’ 4๐‘Ž3 + 24๐‘Ž2 โˆ’ 36๐‘Ž + 16 + 6๐‘Ž3 โˆ’ 48๐‘Ž2 + 114๐‘Žโˆ’72โˆ’3๐‘Ž3 + 27๐‘Ž2 โˆ’ 78๐‘Ž + 72 ๐‘Ž โˆ’ 1 4 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4

= ฮฒ4

3๐‘Ž + 15

๐‘Ž โˆ’ 1 4 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4

The standardized kurtosis is given by

๐‘†๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘๐‘–๐‘ง๐‘’๐‘‘ ๐‘˜๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ฮฒ4

3๐‘Ž + 15

๐‘Ž โˆ’ 1 4 ๐‘Ž โˆ’ 2 ๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4 .

(๐‘Ž โˆ’ 1)4 a โˆ’ 2 2

๐›ฝ4

=3(๐‘Ž2 + 3๐‘Ž โˆ’ 10)

๐‘ โˆ’ 3 ๐‘Ž โˆ’ 4

=3(๐‘Ž โˆ’ 2)(๐‘Ž + 5)

๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4 , ๐‘Ž > 4

Page 145: From The Classical Beta Distribution To Generalized Beta ...

140

5.6.23 Weibull Distribution Function

Special case of the generalized gamma distribution derived in equation 5.21 when a=1

๐‘“ y; p, ฮฒ = ๐‘ ๐‘ฆ๐‘โˆ’1

ฮฒ๐‘ ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

, 0 โ‰ค ๐‘ฆ

= ๐‘

ฮฒ๐‘ ๐‘ฆ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

_________________(5.25)

The cdf of the distribution in equation 5.25 is given by

๐น ๐‘ฆ = 1 โˆ’ ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

Equation 5.25 is the Weibull distribution with ๐‘ > 0 as the shape parameter and ๐›ฝ > 0 as

the scale parameter.

5.6.24 Properties of Weibull distribution

i. rth-order moments

The rth-order moments of the Weibull distribution can be obtained from the expression of

the moments of the generalized Gamma distribution by substituting a=1 in equation 5.22.

Thus

๐ธ ๐‘Œ =ฮฒ

๐‘Ÿฮ“ 1 +

๐‘Ÿ๐‘

ฮ“ 1

= ฮฒ๐‘Ÿฮ“ 1 +

๐‘Ÿ

๐‘

ii. Mean

The mean is given by

๐ธ ๐‘Œ = ฮฒฮ“ 1 +1

๐‘ =

ฮฒ

pฮ“

1

p

iii. Mode

The mode occurs at

Page 146: From The Classical Beta Distribution To Generalized Beta ...

141

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

๐‘‘

๐‘‘๐‘ง ๐‘

ฮฒ๐‘ ๐‘ฆ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

= 0

๐‘

ฮฒ๐‘ ๐‘ โˆ’ 1 ๐‘ฆ๐‘โˆ’2 ๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

โˆ’๐‘๐‘ฆ๐‘โˆ’1

๐›ฝ๐‘๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

. ๐‘ฆ๐‘โˆ’1 = 0

(๐‘ โˆ’ 1)๐‘ฆโˆ’1 =๐‘

๐›ฝ๐‘. ๐‘ฆ๐‘โˆ’1

๐›ฝ๐‘(๐‘ โˆ’ 1) = ๐‘๐‘ฆ๐‘

๐‘ฆ = ๐›ฝ ๐‘ โˆ’ 1

๐‘

1๐‘

, ๐‘ > 0

iv. Variance

Var(๐‘Œ) = ๐ธ ๐‘Œ2 โˆ’ (๐ธ(๐‘Œ))2

= ฮฒ2ฮ“ 1 +

2

๐‘ โˆ’ ฮฒ

2ฮ“2 1 +

1

๐‘

= ฮฒ2ฮ“ 1 +

2

๐‘ โˆ’ ฮผ2

5.6.25 Exponential distribution Function

Special case of the generalized gamma distribution in equation 5.21 with p=a=1 gives

๐‘“(y; p = 1, ฮฒ, a = 1) = 1 ๐‘ง1โˆ’1

ฮฒ1ฮ“(1)

๐‘’โˆ’(

๐‘ฆ๐›ฝ

)1

0 โ‰ค ๐‘ฆ

=1

ฮฒ ๐‘’

โˆ’(๐‘ฆ๐›ฝ

) , 0 โ‰ค ๐‘ฆ_________________(5.26)

and the cdf is given by

๐น ๐‘Œ = 1 โˆ’ ๐‘’โˆ’(

๐‘ฆ๐›ฝ

)

Page 147: From The Classical Beta Distribution To Generalized Beta ...

142

Equation 5.26 is the exponential distribution. This exponential distribution can be

expressed as a special case of gamma distribution in equation 5.23 with a=1 and also a

special case of Weibull distribution in equation 5.25 with p=1.

5.6.26 Properties of exponential distribution

i. rth-order moments

The rth

-order moments for the exponential distribution can be obtained from the

expression of moments of the generalized gamma distribution in equation 5.22 by

substituting p = a =1

๐ธ ๐‘Œ๐‘Ÿ =ฮฒ

๐‘Ÿฮ“ 1 +

๐‘Ÿ1

ฮ“ 1

= ฮฒ๐‘Ÿฮ“ 1 + ๐‘Ÿ

= ฮฒ๐‘Ÿrฮ“ ๐‘Ÿ

ii. Mean

The mean is given by

๐ธ ๐‘Œ = ฮฒ1(1)

= ฮฒ

iii. Mode

The mode of the exponential distribution occurs at

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

=๐‘‘

๐‘‘๐‘ฆ

1

ฮฒ๐‘’

โˆ’๐‘ฆฮฒ = 0

=1

ฮฒ โˆ’

1

ฮฒ๐‘’

โˆ’๐‘ฆฮฒ = 0

Page 148: From The Classical Beta Distribution To Generalized Beta ...

143

โˆ’๐‘ฆ

ฮฒ= 0

๐‘ฆ = 0

iv. Variance

From the rth-order moments given by

E(Yr) = ฮฒ๐‘Ÿ r

the variance is given by ฯ‚2 = 2ฮฒ2 โˆ’ (ฮฒ)2

= ฮฒ2

5.6.27 Chi-Squared distribution function

Special case of the generalized gamma distribution in equation 5.21 when p=1, a =n

2 and

ฮฒ = 2 gives

๐‘“ y; n = 1 ๐‘ฆ

n2โˆ’1

2n2ฮ“

n2

๐‘’โˆ’ ๐‘ฆ2

1

, 0 โ‰ค ๐‘ฆ

=1

2n2ฮ“

n2 ๐‘ฆ

n2โˆ’1๐‘’โˆ’

๐‘ฆ2 , 0 โ‰ค ๐‘ฆ _________________(5.27)

Equation 5.27 is the chi-squared distribution. Chi-squared distribution is a special case of

the gamma distribution in equation 5.24 when ๐‘Ž =๐‘›

2 and ๐›ฝ = 2

5.6.28 Properties of Chi-squared distribution

i. rth-order moments

The rth

-order moments for the Chi-squared distribution can be obtained from the

expression of moments of the generalized gamma distribution in equation 5.22 by

substituting ๐‘ = 1, a =n

2 and ฮฒ = 2

๐ธ ๐‘Œ๐‘Ÿ =2๐‘Ÿฮ“

n2 +

๐‘Ÿ1

ฮ“ n2

Page 149: From The Classical Beta Distribution To Generalized Beta ...

144

=2๐‘Ÿฮ“

n2 + ๐‘Ÿ

ฮ“ n2

ii. Mean

The mean is given by

๐ธ ๐‘Œ =2ฮ“

n2 + 1

ฮ“ n2

=2(

n2)ฮ“

n2

ฮ“ n2

= n

iii. Mode

The mode of the Chi-squared distribution can be obtained from the mode of generalized

gamma distribution by substituting ๐‘ = 1, a =n

2 and ฮฒ = 2 and is given by

๐‘ฆ = 2 n

2โˆ’ 1

= n โˆ’ 2

iv. Variance

The variance of Chi-squared distribution can be obtained from the variance of

generalized gamma distribution by substituting ๐‘ = 1, a =n

2 and ฮฒ = 2

Var(๐‘Œ) =4

ฮ“2 n2

ฮ“ n

2 ฮ“

n

2+ 2 โˆ’ ฮ“2

n

2+ 1

= 4 n

2

n

2+ 1 โˆ’

n

2

2

= 2n

Page 150: From The Classical Beta Distribution To Generalized Beta ...

145

5.6.29 Rayleigh distribution function

Special case of the generalized gamma distribution in equation 5.21 when p=2, a = 1 and

ฮฒ = ฮฑ 2 gives

๐‘“ y; ฮฑ = 2 ๐‘ฆ2โˆ’1

(ฮฑ 2)2ฮ“ 1 ๐‘’

โˆ’ ๐‘ฆ

ฮฑ 2

2

, 0 โ‰ค ๐‘ฆ

=๐‘ฆ

ฮฑ2 ๐‘’

โˆ’ ๐‘ฆ

ฮฑ 2

2

, 0 โ‰ค ๐‘ฆ_________________(5.28)

The cdf is given by

๐น y = 1 โˆ’ ๐‘’โˆ’

๐‘ฆ2

2ฮฑ2 , 0 โ‰ค ๐‘ฆ

Equation 5.28 is the Rayleigh distribution. Rayleigh distribution is a special case of

Weibull distribution with p=2 and ฮฒ=ฮฑ 2 in equation 5.25.

5.6.30 Properties of Rayleigh distribution

i. rth-order moments

The rth

-order moments for the Rayleigh distribution can be obtained from the expression

of moments of the generalized gamma distribution in equation 5.22 by substituting p=2,

a=1 and ฮฒ = ฮฑ 2

๐ธ ๐‘Œ๐‘Ÿ = ฮฑ 2

๐‘Ÿฮ“ 1 +

๐‘Ÿ2

ฮ“ 1

= ฮฑ 2 ๐‘Ÿฮ“ 1 +

๐‘Ÿ

2

ii. Mean

The mean is given by

Page 151: From The Classical Beta Distribution To Generalized Beta ...

146

๐ธ ๐‘Œ = ฮฑ 2 ฮ“ 1 +1

2

=ฮฑ

2 2ฯ€ = ฮฑ

ฯ€

2

iii. Mode

The mode of the Rayleigh distribution occurs at

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

=๐‘‘

๐‘‘๐‘ฆ

๐‘ฆ

ฮฑ2๐‘’

โˆ’๐‘ฆ2

2ฮฑ2 = 0

=1

ฮฑ2 ๐‘’

โˆ’๐‘ฆ2

2ฮฑ2 โˆ’ ๐‘ฆ2๐‘ฆ

2ฮฑ2๐‘’

โˆ’๐‘ฆ2

2ฮฑ2 = 0

1 โˆ’๐‘ฆ2

ฮฑ2= 0

๐‘ฆ = ฮฑ

iv. Variance

From the rth-order moments given by

E(Yr) = ฮฑ 2 ๐‘Ÿฮ“ 1 +

๐‘Ÿ

2

the variance is given by ฯ‚2 = ฮฑ 2 2ฮ“ 1 +

2

2 โˆ’ ฮฑ 2 ฮ“ 1 +

1

2 2

=4ฮฑ2 โˆ’ ฮฑ2๐œ‹

2

= ฮฑ2 4 โˆ’ ๐œ‹

2

5.6.31 Maxwell distribution function

Special case of the generalized gamma distribution in equation 5.21 when p=2, a =3

2 and

ฮฒ = ฮฑ 2 gives

Page 152: From The Classical Beta Distribution To Generalized Beta ...

147

๐‘“ y; ฮฑ = 2 ๐‘ฆ2(

32

)โˆ’1

(ฮฑ 2)2(32

)ฮ“

32

๐‘’โˆ’

๐‘ฆ

ฮฑ 2

2

, 0 โ‰ค ๐‘ฆ

=2๐‘ฆ2

ฮฑ 2 3ฮ“

12 + 1

๐‘’โˆ’๐‘ฆ2/(ฮฑ 2)2

=2๐‘ฆ2

2 2 ฮฑ3 12 ฮ“

12

๐‘’โˆ’

๐‘ฆ2

2โˆ2

=2๐‘ฆ2

2 ฮฑ3 ฯ€ ๐‘’

โˆ’ ๐‘ฆ2

2โˆ2

=๐‘ฆ2

ฯ€2 ฮฑ3

๐‘’โˆ’

๐‘ฆ2

2โˆ2

= 2

ฯ€

๐‘ฆ2๐‘’โˆ’

๐‘ฆ2

2โˆ2

ฮฑ3 , 0 โ‰ค ๐‘ฆ_________________(5.29)

Equation 5.29 is the Maxwell distribution.

5.6.32 Properties of Maxwell distribution

i. rth-order moments

The rth

-order moments for the Maxwell distribution can be obtained from the expression

of moments of the generalized gamma distribution in equation 5.22 by substituting p=2,

a=3/2 and ฮฒ = ฮฑ 2

๐ธ ๐‘Œ๐‘Ÿ = ฮฑ 2

๐‘Ÿฮ“

32 +

๐‘Ÿ2

12 ฯ€

Page 153: From The Classical Beta Distribution To Generalized Beta ...

148

ii. Mean

The mean is given by

๐ธ ๐‘Œ = ฮฑ 2 ฮ“

32 +

12

12 ฯ€

=2ฮฑ 2

ฯ€

iii. Mode

The mode of the Maxwell distribution occurs at

๐‘‘

๐‘‘๐‘ฆ๐‘“ ๐‘ฆ = 0

=๐‘‘

๐‘‘๐‘ฆ ๐‘ฆ2๐‘’

โˆ’๐‘ฆ2

2ฮฑ2 = 0

2๐‘ฆ๐‘’โˆ’

๐‘ฆ2

2ฮฑ2 โˆ’ ๐‘ฆ22๐‘ฆ

2ฮฑ2๐‘’

โˆ’๐‘ฆ2

2ฮฑ2 = 0

2๐‘ฆ โˆ’๐‘ฆ3

ฮฑ2= 0

๐‘ฆ = 2ฮฑ

iv. Variance

From the rth-order moments given by

E(Yr) = ฮฑ 2 ๐‘Ÿฮ“

1

2+

๐‘Ÿ

2

the variance is given by

๐‘‰๐‘Ž๐‘Ÿ(๐‘Œ) = ฮฑ 2

2ฮ“

32 +

22

12 ฯ€

โˆ’ 2ฮฑ 2

ฯ€

2

Page 154: From The Classical Beta Distribution To Generalized Beta ...

149

= 3ฮฑ2 โˆ’8ฮฑ2

ฯ€

= ฮฑ2 3ฯ€ โˆ’ 8

ฯ€

5.6.33 Half Standard normal function

Special case of the generalized gamma distribution in equation 5.21 when p=2, ๐‘Ž =1

2 and

ฮฒ = 2

๐‘“ y = 2 ๐‘ฆ2(

12

)โˆ’1

2 2(

12

)ฮ“

12

๐‘’โˆ’

๐‘ฆ

2

2

=2

2ฯ€ ๐‘’โˆ’

๐‘ฆ2

2 , 0 โ‰ค ๐‘ฆ_________________(5.30)

5.6.34 Properties of Half Standard normal distribution

i. rth-order moments

The rth-order moments of the Half-standard normal distribution can be obtained from the

expression of the moments of the generalized gamma distribution by substituting p=2,

a =1

2 and ฮฒ = 2 in equation 5.22 as follows

๐ธ ๐‘Œ๐‘Ÿ = 2

๐‘Ÿฮ“

12 +

๐‘Ÿ2

ฮ“ 12

ii. Mean

The mean is given by

๐ธ ๐‘Œ = 2

1ฮ“

12 +

12

ฮ“ 12

= 2

ฯ€

Page 155: From The Classical Beta Distribution To Generalized Beta ...

150

iii. Mode

The mode is given by

๐‘ฆ = 2 1

2โˆ’

1

2

12

= 0

iv. Variance

Variance is given by

Var Y = 2

2ฮ“

12 +

22

ฮ“ 12

โˆ’2

ฯ€

= 1

5.6.35 Half-normal distribution function

Special case of the generalized gamma distribution in equation 5.21 when ๐‘ = 2, ๐‘Ž =1

2

and ฮฒ = ฯ‚ 2 gives

๐‘“ y; ฯ‚ = 2 ๐‘ฆ2(

12

)โˆ’1

(ฯ‚ 2)2(12

)ฮ“

12

๐‘’โˆ’

๐‘ฆ

ฯ‚ 2

2

, 0 โ‰ค ๐‘ฆ

=2

ฯ‚ 2 ฮ“ 12

๐‘’โˆ’๐‘ฆ2/(ฯ‚ 2)2

=2

ฯ‚ 2 ฯ€ ๐‘’

โˆ’ ๐‘ฆ2

2๐œ2

= 2

๐œ ฯ€ ๐‘’

โˆ’ ๐‘ฆ2

2๐œ2

= 2

ฯ€

๐‘’โˆ’

๐‘ฆ2

2๐œ2

๐œ , 0 โ‰ค ๐‘ฆ_________________(5.31)

Equation 5.31 is the Half-normal distribution.

Page 156: From The Classical Beta Distribution To Generalized Beta ...

151

5.6.36 Properties of Half-normal distribution

i. rth-order moments

The rth-order moments of the Half-normal distribution can be obtained from the

expression of the moments of the generalized gamma distribution by substituting p=2,

a =1

2 and ฮฒ = ฯ‚ 2 in equation 5.22 as follows

๐ธ ๐‘Œ๐‘Ÿ = ฯ‚ 2

๐‘Ÿฮ“

12 +

๐‘Ÿ2

ฮ“ 12

ii. Mean

The mean is given by

๐ธ ๐‘Œ = ฯ‚ 2 ฮ“

12 +

12

ฯ€

=ฯ‚ 2

ฯ€

iii. Mode

The mode of the Half-normal distribution is given by

๐‘ฆ = ฯ‚ 2 1

2โˆ’

1

2

12

= 0

iv. Variance

Variance is given by

Var Y = ฯ‚ 2

2ฮ“

12 +

22

ฮ“ 12

โˆ’2ฯ‚2

ฯ€

= ฯ‚2 1 โˆ’2

ฯ€

Page 157: From The Classical Beta Distribution To Generalized Beta ...

152

5.6.37 Half Log-normal distribution function

Letting

๐‘ฆ = (ln x โˆ’ ฮผ) and ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ =

1

x in equation 5.21 we get

๐‘“ x; ฮผ, ฯ‚ = ๐‘ ln ๐‘ฅ โˆ’ ๐œ‡ pa โˆ’1

๐›ฝpa ฮ“ ๐‘Ž ๐‘’

โˆ’ ln ๐‘ฅ โˆ’๐œ‡

๐›ฝ ๐‘

.1

๐‘ฅ

Substituting p=2, a =1

2 and ฮฒ = ฯ‚ 2 gives

๐‘“ x; ฮผ, ฯ‚ =2

ฯ‚๐‘ฅ 2ฯ€ ๐‘’

โˆ’(ln ๐‘ฅ โˆ’๐œ‡ )2

2ฯ‚2

๐‘“ x; ฮผ, ฯ‚ =2

ฯ‚๐‘ฅ 2ฯ€ ๐‘’

โˆ’ ln ๐‘ฅ โˆ’๐œ‡ 2

2ฯ‚2 , ๐‘ฅ > 0_________________(5.32)

Equation 5.32 is the Half Log-normal distribution. The log-normal distribution can be

obtained as a limiting case of the generalized gamma distribution by setting ฮฒ = (ฯ‚2p2)1

p

and a =pฮผ+1

ฯ‚2p2 as p โ†’ 0.

5.6.38 Properties of Half Log-normal distribution

i. rth-order moments

The rth-order moments of the Half Log-normal distribution is given by

๐ธ ๐‘Œ๐‘Ÿ = e๐‘Ÿ๐œ‡+12๐‘Ÿ2๐œ2

ii. Mean

The mean is given by

๐ธ ๐‘Œ = e๐œ‡+12๐œ2

Page 158: From The Classical Beta Distribution To Generalized Beta ...

153

iii. Mode

The mode of the Half Log-normal distribution is given by

๐‘ฆ = e๐œ‡ +๐œ2

iv. Variance

Var Y = e2๐œ‡ +2๐œ2โˆ’ e2๐œ‡ +๐œ2

= e2๐œ‡ +๐œ2 e๐œ2

โˆ’ 1

๐ถ๐‘‰ =e๐œ‡+

12๐œ2

e๐œ2โˆ’ 1

12

e๐œ‡+12๐œ2

= e๐œ2โˆ’ 1

12

5.7 Four Parameter Generalized Beta Distribution Function

From the beta distribution with two shape parameters a and b in equation

(2.1), ๐‘“(๐‘ฅ; ๐‘Ž, ๐‘) =๐‘ฅ๐‘Žโˆ’1(1โˆ’๐‘ฅ)๐‘โˆ’1

๐ต ๐‘Ž ,๐‘ ), supported on the range 0 โ€“ 1. The location and scale

parameters of the distribution can be altered by introducing two further parameters p and

q representing the minimum and maximum values of the distribution respectively using

the following transformation:-

๐‘ฅ =๐‘ฆ โˆ’ ๐‘

๐‘ž โˆ’ ๐‘

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

1

๐‘ž โˆ’ ๐‘

โˆด ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘ =1

๐ต ๐‘Ž, ๐‘

(๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1

(๐‘ž โˆ’ ๐‘)๐‘Žโˆ’1 1 โˆ’

๐‘ฆ โˆ’ ๐‘

๐‘ž โˆ’ ๐‘

๐‘โˆ’1 1

๐‘ž โˆ’ ๐‘

=1

๐ต ๐‘Ž, ๐‘

(๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1

(๐‘ž โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ โˆ’ ๐‘ฆ + ๐‘

๐‘ž โˆ’ ๐‘

๐‘โˆ’1 1

๐‘ž โˆ’ ๐‘

Page 159: From The Classical Beta Distribution To Generalized Beta ...

154

=1

๐ต ๐‘Ž, ๐‘ (๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฆ ๐‘โˆ’1

1

(๐‘ž โˆ’ ๐‘)๐‘Žโˆ’1+๐‘โˆ’1+1

=1

๐ต ๐‘Ž, ๐‘ (๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฆ ๐‘โˆ’1

1

(๐‘ž โˆ’ ๐‘)๐‘Žโˆ’1+๐‘โˆ’1+1

=(๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (๐‘ž โˆ’ ๐‘)๐‘Ž+๐‘โˆ’1 _____________________(5.33)

The probability distribution function in equation 5.33 is a four parameter beta distribution

function.

5.7.1 Properties of the four parameter generalized beta distribution

i. Mean

๐ธ ๐‘Œ = ๐‘ฆ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘ ๐‘‘๐‘ฆโˆž

0

= ๐‘ฆ(๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (๐‘ž โˆ’ ๐‘)๐‘Ž+๐‘โˆ’1

โˆž

0

๐‘‘๐‘ฆ

=1

๐ต ๐‘Ž, ๐‘ (๐‘ž โˆ’ ๐‘)๐‘Ž+๐‘โˆ’1 ๐‘ฆ(๐‘ฆ โˆ’ ๐‘)๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฆ ๐‘โˆ’1

โˆž

0

๐‘‘๐‘ฆ

=๐‘Ž๐‘ž + ๐‘๐‘

๐‘Ž + ๐‘

ii. Mode

= ๐‘Ž โˆ’ 1 ๐‘ž + (๐‘ โˆ’ 1)๐‘

๐‘Ž + ๐‘ โˆ’ 2 ๐‘“๐‘œ๐‘Ÿ ๐‘Ž > 1, ๐‘ > 1

iii. Variance

=๐‘Ž๐‘(๐‘ž โˆ’ ๐‘)2

๐‘Ž + ๐‘ 2(๐‘Ž + ๐‘ + 1)

Page 160: From The Classical Beta Distribution To Generalized Beta ...

155

6 Chapter VI: The Generalized Beta Distribution

Based on Transformation Technique

6.1 Introduction

This chapter provides the construction, properties and special cases of the five parameter

generalized beta distributions due to McDonaldโ€˜s. It gives an extension of the

McDonaldโ€˜s five parameter to a five parameter weighted generalized beta distribution. It

further considers a five parameter exponential generalized beta distribution function. The

five parameter generalized beta distribution nests both the generalized beta distribution of

the first kind and the generalized beta distribution of the second kind. It includes many

distributions as special or limiting cases.

6.2 Five Parameter Generalized Beta Distribution Function Due to

McDonald

McDonald and Xu (1995) introduced the five parameter generalized beta distribution and

showed that it contains the distributions previously mentioned under 4-3-2 parameters, as

special or limiting cases. The probability density function of the five parameter

generalized beta distribution can be obtained from the classical beta distribution with two

shape parameters a and b in equation (2.1), using the following transformation

๐‘ฅ = ๐‘ฆ๐‘

๐‘ž๐‘ + ๐‘๐‘ฆ๐‘

๐‘‘๐‘ฅ

๐‘‘๐‘ฆ =

๐‘๐‘ฆ๐‘โˆ’1 ๐‘ž๐‘ + ๐‘๐‘ฆ๐‘ โˆ’ [๐‘๐‘๐‘ฆ๐‘โˆ’1(๐‘ฆ๐‘)]

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)2

=๐‘๐‘ž๐‘๐‘ฆ๐‘โˆ’1

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)2

โˆด ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘, ๐‘Ž, ๐‘ =๐‘ฆ๐‘๐‘Žโˆ’๐‘

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)๐‘Žโˆ’1 1 โˆ’

๐‘ฆ๐‘

๐‘ž๐‘ + ๐‘๐‘ฆ๐‘

๐‘โˆ’1 1

๐ต ๐‘Ž, ๐‘

๐‘๐‘ž๐‘๐‘ฆ๐‘โˆ’1

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)2

Page 161: From The Classical Beta Distribution To Generalized Beta ...

156

=๐‘ฆ๐‘๐‘Žโˆ’๐‘

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)๐‘Žโˆ’1 ๐‘ž๐‘ + ๐‘๐‘ฆ๐‘ โˆ’ ๐‘ฆ๐‘

๐‘ž๐‘ + ๐‘๐‘ฆ๐‘

๐‘โˆ’1 1

๐ต ๐‘Ž, ๐‘

๐‘๐‘ž๐‘๐‘ฆ๐‘โˆ’1

(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)2

=๐‘๐‘ž๐‘๐‘ฆ๐‘๐‘Žโˆ’๐‘+๐‘โˆ’1(๐‘ž๐‘ + ๐‘๐‘ฆ๐‘ โˆ’ ๐‘ฆ๐‘)๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (๐‘ž๐‘ + ๐‘๐‘ฆ๐‘)๐‘Žโˆ’1+๐‘โˆ’1+2

=๐‘๐‘ž๐‘๐‘ฆ๐‘๐‘Žโˆ’1(๐‘ž๐‘)๐‘โˆ’1 1 + ๐‘

๐‘ฆ๐‘

๐‘ž๐‘ โˆ’๐‘ฆ๐‘

๐‘ž๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ (๐‘ž๐‘)๐‘Ž+๐‘ 1 + ๐‘๐‘ฆ๐‘

๐‘ž๐‘ ๐‘Ž+๐‘

=๐‘๐‘ž๐‘+๐‘๐‘โˆ’๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 + ๐‘ โˆ’ 1 (

๐‘ฆ๐‘ž)๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐‘ž๐‘๐‘Ž+๐‘๐‘ 1 + ๐‘(๐‘ฆ๐‘ž)๐‘

๐‘Ž+๐‘

=๐‘๐‘ž๐‘๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘๐‘Ž+๐‘๐‘ ๐ต ๐‘Ž, ๐‘ 1 + ๐‘(๐‘ฆ๐‘ž) ๐‘

๐‘Ž+๐‘

=๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘ ๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘ ___________________________________________(6.1)

for 0 < ๐‘ฆ๐‘ < ๐‘ž๐‘

1โˆ’๐‘ , 0 โ‰ค ๐‘ โ‰ค 1 and ๐‘ > 0, ๐‘ž > 0, ๐‘Ž > 0, ๐‘ > 0

Equation 6.1 is a five parameter generalized beta distribution. The five parameter

generalized beta distribution encompasses both the four parameter generalized beta

distribution in equation 5.1 and 5.10 as follows:-

i. Letting c=0 in the five parameter generalized beta distribution in equation 6.1 gives a

four parameter generalized beta distribution in equation 5.1

ii. Letting c=1 in the five parameter generalized beta distribution in equation 6.1 gives

the four parameter generalized beta distribution in equation 5.10.

Page 162: From The Classical Beta Distribution To Generalized Beta ...

157

However, when fitting this five parameter generalized beta distribution model to 1985

family income, McDonald and Xu (1995) found that the four parameter generalized beta

of the second kind subfamily is selected (in terms of likelihood and several other criteria).

Thus, it appears that the five parameter generalized beta distribution does not provide

additional flexibility.

6.3 Properties of the Five Parameter Generalized Beta Distribution

6.3.1 rthโ€“order moments

To obtain the rth-order moments for the five parameter generalized beta distribution, we

evaluate

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘, ๐‘Ž, ๐‘ ๐‘‘๐‘ฆโˆž

โˆ’โˆž

= ๐‘ฆ๐‘Ÿ๐‘๐‘ฆ๐‘๐‘Žโˆ’1(1 โˆ’ (1 โˆ’ ๐‘)(

๐‘ฆ๐‘ž)๐‘)๐‘โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ (1 + ๐‘(๐‘ฆ๐‘ž)๐‘)๐‘Ž+๐‘

โˆž

โˆ’โˆž

๐‘‘๐‘ฆ

replacing 1 โˆ’ 1 โˆ’ ๐‘ (๐‘ฆ

๐‘ž)๐‘

๐‘โˆ’1

by its binomial expansion, letting

๐‘ข = (1 โˆ’ ๐‘)(๐‘ฆ

๐‘ž)๐‘ and collecting like terms yield

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ž๐‘Ÿ ๐‘Ž + ๐‘ ๐‘–

โˆ’๐‘1 โˆ’ ๐‘

๐‘–

(1 โˆ’ ๐‘)๐‘Ž+

๐‘Ÿ๐‘

+๐‘–

โˆž

๐‘–=0

๐‘ข๐‘Ž+

๐‘Ÿ๐‘

+๐‘–(1 โˆ’ ๐‘ข)๐‘โˆ’1

1

0

๐‘‘๐‘ข

= ๐‘ž๐‘Ÿ ๐‘Ž + ๐‘ ๐‘–

โˆ’๐‘1 โˆ’ ๐‘

๐‘–

1 โˆ’ ๐‘ ๐‘Ž+

๐‘Ÿ๐‘

+๐‘–

โˆž

๐‘–=0

๐ต(๐‘Ž +๐‘Ÿ

๐‘+ ๐‘–, ๐‘)

= ๐‘ž๐‘Ÿ ๐‘Ž + ๐‘ ๐‘–

โˆ’๐‘1 โˆ’ ๐‘

๐‘–

ฮ“ ๐‘Ž +๐‘Ÿ๐‘ + ๐‘– ฮ“ b

1 โˆ’ ๐‘ ๐‘Ž+

๐‘Ÿ๐‘

+๐‘–ฮ“ ๐‘Ž +

๐‘Ÿ๐‘ + ๐‘– + ๐‘

โˆž

๐‘–=0

=๐‘ž๐‘Ÿ๐ต(๐‘Ž +

๐‘Ÿ๐‘ , ๐‘)

1 โˆ’ ๐‘ ๐‘Ž+

๐‘Ÿ๐‘๐ต(๐‘Ž, ๐‘)

๐‘Ž + ๐‘, ๐‘ +๐‘Ÿ

๐‘;

โˆ’๐‘

1 โˆ’ ๐‘

๐‘Ž + ๐‘ +๐‘Ÿ

๐‘

Page 163: From The Classical Beta Distribution To Generalized Beta ...

158

=๐‘ž๐‘Ÿ๐ต(๐‘Ž +

๐‘Ÿ๐‘ , ๐‘)

๐ต(๐‘Ž, ๐‘)

๐‘Ž +๐‘Ÿ

๐‘,

๐‘Ÿ

๐‘; ๐‘

๐‘Ž + ๐‘ +๐‘Ÿ

๐‘

_______________________________(6.2)

Equation 6.2 is defined for all r if ๐‘ < 1 or for โˆ’๐‘Ž <๐‘Ÿ

๐‘< ๐‘ if ๐‘ = 1

6.3.2 Mean

The mean is given by

๐ธ(๐‘Œ) =๐‘ž๐ต(๐‘Ž +

1๐‘ , ๐‘)

1 โˆ’ ๐‘ ๐‘Ž+

1๐‘๐ต(๐‘Ž, ๐‘)

๐‘Ž +

1

๐‘,

1

๐‘; ๐‘

๐‘Ž + ๐‘ +1

๐‘

6.3.3 Variance

Var(Y) =q2B(a +

2p , b)

1 โˆ’ c a+

2p B(a, b)

2F1

a +

2

p,

2

p; c

a + b +2

p

โˆ’

qB(a +

1p , b)

1 โˆ’ c a+

1p B(a, b)

2F1

a +

1

p,

1

p; c

a + b +1

p

2

6.4 Special Cases of the Five Parameter Generalized Beta Distribution

Function

6.4.1 The four parameter generalized beta distribution of the first kind

This is a special case when ๐‘ = 0 in equation 6.1

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘, ๐‘, ๐‘ž) =๐‘๐‘ฆ๐‘Ž๐‘โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘๐ต ๐‘Ž, ๐‘ 1 + 0 ๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘

Page 164: From The Classical Beta Distribution To Generalized Beta ...

159

=๐‘๐‘ฆ๐‘Ž๐‘โˆ’1 1 โˆ’

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘๐ต ๐‘Ž, ๐‘

for 0 < ๐‘ฆ๐‘ < ๐‘ž๐‘ , and ๐‘ > 0, ๐‘ž > 0, ๐‘Ž > 0, ๐‘ > 0

6.4.2 The four parameter generalized beta distribution of the second kind

This is a special case when ๐‘ = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘, ๐‘, ๐‘ž =๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + 1 ๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘

=๐‘๐‘ฆ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘

for 0 < ๐‘ฆ๐‘ < โˆž , ๐‘ > 0, ๐‘ž > 0, ๐‘Ž > 0, ๐‘ > 0

6.4.3 The four parameter generalized beta distribution

This is a special case when a = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘, ๐‘, ๐‘, ๐‘ž =๐‘๐‘๐‘ฆ๐‘โˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘ 1 + ๐‘ ๐‘ฆ๐‘ž

๐‘

1+๐‘

for 0 < ๐‘ฆ๐‘ < โˆž , ๐‘ > 0, ๐‘ž > 0, ๐‘Ž > 0, ๐‘ > 0

6.4.4 The four parameter generalized Logistic distribution function

This is a special case when ๐‘ = 1, y = ๐‘’๐‘ฅ , and ๐ฝ = ๐‘’๐‘ฅ in equation 6.1

๐‘“ ๐‘’๐‘ฅ ; ๐‘Ž, ๐‘, ๐‘, ๐‘ž =๐‘(๐‘’๐‘ฅ)๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ 1

(๐‘’๐‘ฅ)๐‘ž

๐‘

๐‘โˆ’1

. (๐‘’๐‘ฅ)

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + 1 (๐‘’๐‘ฅ)๐‘ž

๐‘

๐‘Ž+๐‘

=๐‘๐‘’๐‘Ž๐‘(๐‘ฅโˆ’๐‘™๐‘œ๐‘”๐‘ )

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘’๐‘(๐‘ฅโˆ’๐‘™๐‘œ๐‘”๐‘ž ) ๐‘Ž+๐‘

Page 165: From The Classical Beta Distribution To Generalized Beta ...

160

for โˆ’โˆž < ๐‘ฅ < โˆž , ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, ๐‘ž > 0

6.4.5 The three parameter Inverse Beta distribution of the first kind

This is a special case when ๐‘ = 0, and p = โˆ’1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘, ๐‘ž) =(โˆ’1)๐‘ฆ๐‘Ž(โˆ’1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ๐‘ž

(โˆ’1)

๐‘โˆ’1

๐‘ž๐‘Ž(โˆ’1)๐ต ๐‘Ž, ๐‘ 1 + 0 ๐‘ฆ๐‘ž

(โˆ’1)

๐‘Ž+๐‘

=๐‘ž๐‘Ž 1 โˆ’

๐‘ž๐‘ฆ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐‘ฆ๐‘Ž+1

for 0 < ๐‘ฆ < 1 , and ๐‘Ž > 0, ๐‘ > 0, ๐‘ž > 0

6.4.6 The three parameter Stoppa (generalized pareto type I) distribution

function

This is a special case when ๐‘ = 0, a = 1 and p = โˆ’p in equation 6.1

๐‘“(๐‘ฆ; ๐‘, ๐‘, ๐‘ž) =| โˆ’ ๐‘|๐‘ฆ 1 (โˆ’๐‘)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ๐‘ž

โˆ’๐‘

๐‘โˆ’1

๐‘ž 1 (โˆ’๐‘)๐ต 1, ๐‘ 1 + 0 ๐‘ฆ๐‘ž

โˆ’๐‘

1+๐‘

= ๐‘๐‘ž๐‘๐‘๐‘ฆโˆ’๐‘โˆ’1 1 โˆ’ ๐‘ฆ

๐‘ž

โˆ’๐‘

๐‘โˆ’1

for ๐‘ฆ โ‰ฅ ๐‘ž > 0 , and ๐‘ > 0, ๐‘ > 0

6.4.7 The three parameter Singh-Maddala (Burr12) distribution function

This is a special case when ๐‘ = 1, and a = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘, ๐‘, ๐‘ž =๐‘๐‘ฆ๐‘(1)โˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘(1)๐ต 1, ๐‘ 1 + 1 ๐‘ฆ๐‘ž

๐‘

(1)+๐‘

=๐‘๐‘๐‘ฆ๐‘โˆ’1

๐‘ž๐‘ 1 + ๐‘ฆ๐‘ž

๐‘

1+๐‘

Page 166: From The Classical Beta Distribution To Generalized Beta ...

161

for 0 < ๐‘ฆ๐‘ < โˆž , ๐‘ > 0, ๐‘ > 0, ๐‘ž > 0

6.4.8 The three parameter Dagum (Burr3) distribution function

This is a special case when ๐‘ = 1, and b = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘, ๐‘ž =๐‘๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆ๐‘ž

๐‘

(1)โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, 1 1 + 1 ๐‘ฆ๐‘ž

๐‘

๐‘Ž+(1)

=๐‘Ž๐‘๐‘ฆ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž 1 + ๐‘ฆ๐‘ž

๐‘

๐‘Ž+1

for 0 < ๐‘ฆ๐‘ < โˆž , ๐‘Ž > 0, ๐‘ > 0, ๐‘ž > 0

6.4.9 The two parameter Classical Beta distribution

This is a special case when ๐‘ = 0, p = 1, and q = 1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘) =

(1)๐‘ฆ๐‘Ž(1)โˆ’1 1 โˆ’ 1 โˆ’ 0 ๐‘ฆ

(1) (1)

๐‘โˆ’1

(1)๐‘Ž(1)๐ต ๐‘Ž, ๐‘ 1 + 0 ๐‘ฆ

(1)

(1)

๐‘Ž+๐‘

=๐‘ฆ๐‘Žโˆ’1 1 โˆ’ ๐‘ฆ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

for 0 < ๐‘ฆ < 1 , and ๐‘Ž > 0, ๐‘ > 0

6.4.10 The two parameter Pareto type I distribution function

This is a special case when ๐‘ = 0, p = โˆ’1, and b = 1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘ž) =(โˆ’1)๐‘ฆ๐‘Ž(โˆ’1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ๐‘ž

(โˆ’1)

1โˆ’1

๐‘ž๐‘Ž(โˆ’1)๐ต ๐‘Ž, 1 1 + 0 ๐‘ฆ๐‘ž

(โˆ’1)

๐‘Ž+1

Page 167: From The Classical Beta Distribution To Generalized Beta ...

162

=๐‘Ž๐‘ž๐‘Ž

๐‘ฆ๐‘Ž+1

for 0 < ๐‘ฆ < 1 , and ๐‘Ž > 0, ๐‘ž > 0,

6.4.11 The two parameter Kumaraswamy distribution function

This is a special case when ๐‘ = 0, a = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘, ๐‘) =๐‘๐‘ฆ(1)๐‘โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

๐‘

๐‘โˆ’1

1 1 ๐‘๐ต 1, ๐‘ 1 + 0 ๐‘ฆ1

๐‘

1+๐‘

= ๐‘๐‘๐‘ฆ๐‘โˆ’1 1 โˆ’ ๐‘ฆ ๐‘ ๐‘โˆ’1

for 0 < ๐‘ฆ๐‘ < 1 , and ๐‘ > 0, ๐‘ > 0

6.4.12 The two parameter generalized Power distribution function

This is a special case when ๐‘ = 0, b = 1, and p = 1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘ž) =(1)๐‘ฆ๐‘Ž(1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ๐‘ž

(1)

1โˆ’1

๐‘ž๐‘Ž(1)๐ต ๐‘Ž, 1 1 + 0 ๐‘ฆ๐‘ž

(1)

๐‘Ž+1

=๐‘Ž๐‘ฆ๐‘Žโˆ’1

๐‘ž๐‘Ž

for 0 < ๐‘ฆ < 1 , and ๐‘Ž > 0, ๐‘ž > 0,

6.4.13 The two parameter Beta distribution of the second kind

This is a special case when ๐‘ = 1, p = 1, and q = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ =

(1)๐‘ฆ(1)๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ 1 ๐‘ฆ

(1) (1)

๐‘โˆ’1

(1)(1)๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + 1 ๐‘ฆ

(1)

(1)

๐‘Ž+๐‘

=๐‘ฆ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘ฆ ๐‘Ž+๐‘

for 0 < ๐‘ฆ < โˆž , ๐‘Ž > 0, ๐‘ > 0

Page 168: From The Classical Beta Distribution To Generalized Beta ...

163

6.4.14 The two parameter Inverse Lomax distribution function

This is a special case when ๐‘ = 1, b = 1, and p = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘ž =(1)๐‘ฆ(1)๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆ๐‘ž

(1)

1โˆ’1

๐‘ž(1)๐‘Ž๐ต ๐‘Ž, 1 1 + 1 ๐‘ฆ๐‘ž

(1)

๐‘Ž+1

=๐‘Ž๐‘ฆ๐‘Žโˆ’1

๐‘ž๐‘Ž 1 + ๐‘ฆ๐‘ž

๐‘Ž+1

for 0 < ๐‘ฆ < โˆž , ๐‘Ž > 0, ๐‘ž > 0

6.4.15 The two parameter General Fisk (Log-Logistic) distribution function

This is a special case when ๐‘ = 1, a = 1, b = 1 and q =1

ฮป in equation 6.1

๐‘“ ๐‘ฆ; ฮป, ๐‘ =

๐‘๐‘ฆ๐‘(1)โˆ’1 1 โˆ’ 1 โˆ’ 1 ๐‘ฆ1ฮป

๐‘

(1)โˆ’1

1ฮป ๐‘(1)

๐ต 1,1 1 + 1 ๐‘ฆ1ฮป

๐‘

(1)+(1)

=ฮป๐‘ ฮป๐‘ฆ ๐‘โˆ’1

1 + ฮป๐‘ฆ ๐‘ ๐Ÿ

for 0 < ๐‘ฆ๐‘ < โˆž , ฮป > 0, ๐‘ > 0, ๐‘ž > 0

6.4.16 The two parameter Fisher (F) distribution function

This is a special case when ๐‘ = 1, a =u

2, b =

v

2, p = 1 and q =

v

uin equation 6.1

๐‘“ ๐‘ฆ; ๐‘ข, ๐‘ฃ =

(1)๐‘ฆ 1

๐‘ข2 โˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆvu

(1)

๐‘ข2 โˆ’1

vu

1 ๐‘ข2

๐ต ๐‘ข2 ,

๐‘ฃ2 1 + 1

๐‘ฆvu

(1)

๐‘ข2 +

๐‘ฃ2

Page 169: From The Classical Beta Distribution To Generalized Beta ...

164

=ฮ“

๐‘ข + ๐‘ฃ2

uv

๐‘ข2

๐‘ฆ ๐‘ข2 โˆ’1

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2 1 +

๐‘ฆuv

๐‘ข+๐‘ฃ2

for 0 < ๐‘ฆ < โˆž , u > 0, ๐‘ฃ > 0

6.4.17 The one parameter Power distribution function

This is a special case when ๐‘ = 0, a = 1, b = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ; ๐‘) =๐‘๐‘ฆ(1)๐‘โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

๐‘

1โˆ’1

1 1 ๐‘๐ต 1,1 1 + 0 ๐‘ฆ1

๐‘

1+1

= ๐‘๐‘ฆ๐‘โˆ’1

for 0 < ๐‘ฆ < 1 , and ๐‘ > 0,

6.4.18 The one parameter Wigner semicircle distribution function

This is a special case when ๐‘ = 0, a =3

2, b =

3

2, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ

32 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

32โˆ’1

1 32 (1)๐ต

32 ,

32 1 + 0

๐‘ฆ1

(1)

32

+32

=8 ๐‘ฆ 1 โˆ’ ๐‘ฆ

๐œ‹, 0 < ๐‘ฆ < 1

Letting

๐‘ฆ =๐‘ฅ + ๐‘…

2๐‘… ๐‘Ž๐‘›๐‘‘ |๐ฝ| =

1

2๐‘…

Limits changes as ๐‘ฆ = 0 โŸน ๐‘ฅ > โˆ’๐‘… and ๐‘ฆ = 1 โŸน ๐‘ฅ = ๐‘…

๐‘“ ๐‘ฅ =8 ๐‘ฆ + ๐‘…

2๐‘… 1 โˆ’๐‘ฆ + ๐‘…

2๐‘…

๐œ‹.

1

2๐‘…

=2 ๐‘…2 โˆ’ ๐‘ฆ2

๐‘…2๐œ‹, โˆ’๐‘… < ๐‘ฆ < ๐‘…

Page 170: From The Classical Beta Distribution To Generalized Beta ...

165

6.4.19 The one parameter Lomax (pareto type II) distribution function

This is a special case when ๐‘ = 1, a = 1, p = 1, and q = 1 in equation 6.1

๐‘“ ๐‘ฆ; ๐‘ =

(1)๐‘ฆ(1)(1)โˆ’1 1 โˆ’ 1 โˆ’ 1 ๐‘ฆ

(1) (1)

๐‘โˆ’1

(1)(1)(1)๐ต 1, ๐‘ 1 + 1 ๐‘ฆ

(1) (1)

(1)+๐‘

=๐‘

1 + ๐‘ฆ ๐Ÿ+๐‘

for 0 < ๐‘ฆ < โˆž , ๐‘ > 0

6.4.20 The one parameter half studentโ€™s (t) distribution function

This is a special case when ๐‘ = 1, a =1

2, b =

r

2, p = 2 and q = r in equation 6.1

๐‘“ ๐‘ฆ; ๐‘Ÿ =

(2)๐‘ฆ 2

12 โˆ’1 1 โˆ’ 1 โˆ’ 1

๐‘ฆ

r

(2)

๐‘Ÿ2 โˆ’1

r 2

12 ๐ต

12 ,

๐‘Ÿ2 1 + 1

๐‘ฆ

r

(2)

12 +

๐‘Ÿ2

=2ฮ“

1 + ๐‘Ÿ2

rฯ€ ฮ“ ๐‘Ÿ2 1 +

๐‘ฆ๐Ÿ

๐‘Ÿ ๐Ÿ+๐’“๐Ÿ

for 0 < ๐‘ฆ < โˆž , ๐‘Ÿ > 0

6.4.21 Uniform distribution function

This is a special case when ๐‘ = 0, a = 1, b = 1, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ 1 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

1โˆ’1

1 1 (1)๐ต 1,1 1 + 0 ๐‘ฆ1

(1)

1+1

= 1

Page 171: From The Classical Beta Distribution To Generalized Beta ...

166

6.4.22 Arcsine distribution function

This is a special case when ๐‘ = 0, a =1

2, b =

1

2, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ

12 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

12โˆ’1

1 12 (1)๐ต

12 ,

12 1 + 0

๐‘ฆ1

(1)

12

+12

=1

๐œ‹ ๐‘ฆ(1 โˆ’ ๐‘ฆ), 0 < ๐‘ฆ < 1

6.4.23 Triangular shaped distribution functions

i. This is a special case when ๐‘ = 0, a = 1, b = 2, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ 1 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

2โˆ’1

1 1 (1)๐ต 1,2 1 + 0 ๐‘ฆ1

(1)

1+2

= 2 1 โˆ’ ๐‘ฆ , 0 < ๐‘ฆ < 1

ii. This is a special case when ๐‘ = 0, a = 2, b = 1, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ 2 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

1โˆ’1

1 2 (1)๐ต 2,1 1 + 0 ๐‘ฆ1

(1)

2+1

= 2๐‘ฆ, 0 < ๐‘ฆ < 1

6.4.24 Parabolic shaped distribution functions

This is a special case when ๐‘ = 0, a = 2, b = 2, p = 1 and q = 1 in equation 6.1

๐‘“(๐‘ฆ) =(1)๐‘ฆ 2 (1)โˆ’1 1 โˆ’ 1 โˆ’ 0

๐‘ฆ1

(1)

2โˆ’1

1 2 (1)๐ต 2,2 1 + 0 ๐‘ฆ1

(1)

2+2

= 6๐‘ฆ 1 โˆ’ ๐‘ฆ , 0 < ๐‘ฆ < 1

Page 172: From The Classical Beta Distribution To Generalized Beta ...

167

6.4.25 Log-Logistic (Fisk) distribution function

This is a special case when ๐‘ = 1, a = 1, b = 1, p = 1, and q = 1 in equation 6.1

๐‘“ ๐‘ฆ =

(1)๐‘ฆ(1)(1)โˆ’1 1 โˆ’ 1 โˆ’ 1 ๐‘ฆ

(1) (1)

(1)โˆ’1

(1)(1)(1)๐ต 1,1 1 + 1 ๐‘ฆ

(1) (1)

(1)+(1)

=1

1 + ๐‘ฆ ๐Ÿ

for 0 < ๐‘ฆ < โˆž

6.4.26 Logistic distribution function

This is a special case when ๐‘ = 1, a = 1, b = 1, p = 1, q = 1, y = ๐‘’๐‘ฅ , and ๐ฝ = ๐‘’๐‘ฅ

in equation 6.1

๐‘“ ๐‘ฅ =

(1)(๐‘’๐‘ฅ)(1)(1)โˆ’1 1 โˆ’ 1 โˆ’ 1 (๐‘’๐‘ฅ)(1)

(1)

(1)โˆ’1

. (๐‘’๐‘ฅ)

(1)(1)(1)๐ต 1,1 1 + 1 (๐‘’๐‘ฅ)(1)

(1)

(1)+(1)

=๐‘’๐‘ฅ

1 + ๐‘’๐‘ฅ 2, for โˆ’ โˆž < ๐‘ฅ < โˆž

Page 173: From The Classical Beta Distribution To Generalized Beta ...

168

The Five Parameter Beta Distribution and its Special Cases Diagrammatically

5 Parameter

4 Parameter

Generalized beta

Generalized beta

of the 1st kind

Generalized beta

of the 2nd

kind

Inverse beta Stoppa Singh Maddala

(Burr12) Dagum (Burr3)

Pareto

type I

Beta of the

1st kind

Kumaraswamy Generalized

Power

Beta of the

2nd

kind

3 Parameter

2 Parameter

Inverse

Lomax

General

Fisk (Log

logistic)

Fisher F

1 Parameter

Generalized

beta

Power Wigner

Semicircle

Lomax (Pareto

type II) Half studentโ€˜s t Uniform

Arcsine Triangular Parabolic Logistic

Fisk (Log

logistic)

Page 174: From The Classical Beta Distribution To Generalized Beta ...

169

6.5 Construction of the Five Parameter Weighted Generalized Beta Distribution

Function

Extending the McDonaldโ€˜s five parameter model by introducing a sixth parameter, k

gives a six parameter weighted generalized beta distribution as follows.

Let

๐‘“(๐‘ฆ; ๐‘Ž, ๐‘, ๐‘, ๐‘˜, ๐‘, ๐‘ž) =๐‘๐‘ฆ๐‘Ž๐‘ +๐‘˜โˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘+๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 + ๐‘

๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘ ______________________(6.3)

for 0 < ๐‘ฆ๐‘ < ๐‘ž๐‘

1โˆ’๐‘ , 0 โ‰ค ๐‘ โ‰ค 1 and ๐‘ > 0, ๐‘ž > 0, ๐‘Ž +

๐‘˜

๐‘> 0, ๐‘ โˆ’

๐‘˜

๐‘> 0

The Weighted generalized beta distribution of the second kind with polynomial weight

function ๐‘ค ๐‘ฆ = ๐‘ฆ๐‘˜ is a special case of equation 6.3 when ๐‘ =1. Alternatively, it can be

obtained from the generalized beta distribution of the second kind by adding some weight

to the parameters ๐‘Ž and ๐‘.

Let ๐‘Ž = ๐‘Ž +๐‘˜

๐‘ and ๐‘ = ๐‘ โˆ’

๐‘˜

๐‘ž in equation 4.1 of generalized beta distribution of the

first kind.

๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘, ๐‘˜ = ๐‘ ๐‘ฆ

๐‘ ๐‘Ž+๐‘˜๐‘ โˆ’1

๐‘ž๐‘ ๐‘Ž+

๐‘˜๐‘ ๐ต ๐‘Ž +

๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 +

๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘

= ๐‘ ๐‘ฆ๐‘Ž๐‘+๐‘˜โˆ’1

๐‘ž๐‘๐‘Ž +๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 +

๐‘ฆ๐‘ž

๐‘

๐‘Ž+๐‘ _____________________________________(6.4)

๐‘ฆ > 0, ๐‘, ๐‘ž, ๐‘Ž, ๐‘ > 0, and โˆ’ ๐‘๐‘Ž < ๐‘˜ < ๐‘๐‘

Page 175: From The Classical Beta Distribution To Generalized Beta ...

170

Equation 6.4 is a very flexible five parameter weighted generalized beta distribution of

the second kind presented by Yuan et al. (2012).

6.6 Properties of Five Parameter Weighted Generalized Beta

Distribution

6.6.1 rth-order moments

To obtain the rth-order moments for the weighted generalized beta distribution, we

evaluate

๐ธ ๐‘Œ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘, ๐‘Ž, ๐‘ ๐‘‘๐‘ฆโˆž

โˆ’โˆž

= ๐‘ฆ๐‘Ÿ๐‘๐‘ฆ๐‘๐‘Ž+๐‘˜โˆ’1

๐‘ž๐‘๐‘Ž +๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 + ๐‘(

๐‘ฆ๐‘ž)๐‘

๐‘Ž+๐‘

โˆž

โˆ’โˆž

๐‘‘๐‘ฆ

=๐‘ž๐‘Ÿ๐ต ๐‘Ž +

๐‘˜๐‘ +

๐‘Ÿ๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

๐‘Ÿ๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

_____________________________________________(6.5)

6.6.2 Mean

The mean is given by

๐ธ(๐‘Œ) =๐‘ž๐ต ๐‘Ž +

๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘

, ๐‘ โˆ’๐‘˜๐‘

_____________________________________(6.6)

6.6.3 Variance

Var(Y) = ๐‘ž2

๐ต ๐‘Ž +

๐‘˜ + 2๐‘ , ๐‘ โˆ’

๐‘˜ + 2๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

โˆ’ ๐‘Ž +

๐‘˜ + 1๐‘ , ๐‘ โˆ’

๐‘˜ โˆ’ 1๐‘

๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

2

The coefficient of variation is given by

Page 176: From The Classical Beta Distribution To Generalized Beta ...

171

๐ถ๐‘‰ = ๐ต ๐‘Ž +

๐‘˜ + 2๐‘ , ๐‘ โˆ’

๐‘˜ + 2๐‘ ๐ต ๐‘Ž +

๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

๐ต2 ๐‘Ž +๐‘˜ + 1

๐‘ , ๐‘ โˆ’๐‘˜ + 1

๐‘ โˆ’ 1

6.6.4 Skewness

The skewness is given by

๐‘†๐‘˜๐‘’๐‘ค๐‘›๐‘’๐‘ ๐‘  = ๐ธ ๐‘Œ3 โˆ’ 3๐ธ ๐‘Œ2 ๐ธ ๐‘Œ + 2(๐ธ ๐‘Œ )3

=๐‘ž3๐ต ๐‘Ž +

๐‘˜ + 3๐‘ , ๐‘ โˆ’

๐‘˜ + 3๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

โˆ’ 3๐‘ž2๐ต ๐‘Ž +

๐‘˜ + 2๐‘ , ๐‘ โˆ’

๐‘˜ + 2๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

.

๐‘ž๐ต ๐‘Ž +๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

+ 2 ๐‘ž๐ต ๐‘Ž +

๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

2

6.6.5 Kurtosis

The kurtosis is given by

๐‘˜๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘  = ๐ธ ๐‘Œ4 โˆ’ 4๐ธ ๐‘Œ3 ๐ธ ๐‘Œ + 6๐ธ ๐‘Œ2 ๐ธ ๐‘Œ 2โˆ’ 3 ๐ธ ๐‘Œ

4

๐พ๐‘ข๐‘Ÿ๐‘ก๐‘œ๐‘ ๐‘–๐‘ 

=๐‘ž4๐ต ๐‘Ž +

๐‘˜ + 4๐‘ , ๐‘ โˆ’

๐‘˜ + 4๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

โˆ’ 4๐‘ž3๐ต ๐‘Ž +

๐‘˜ + 3๐‘ , ๐‘ โˆ’

๐‘˜ + 3๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

.๐‘ž๐ต ๐‘Ž +

๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

+ 6๐‘ž2๐ต ๐‘Ž +

๐‘˜ + 2๐‘ , ๐‘ โˆ’

๐‘˜ + 2๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

. ๐‘ž๐ต ๐‘Ž +

๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

2

โˆ’ 3 ๐‘ž๐ต ๐‘Ž +

๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘๐‘

4

Page 177: From The Classical Beta Distribution To Generalized Beta ...

172

6.7 Special Cases of the Five Parameter Weighted Generalized Beta

Distribution Function

The five parameter weighted generalized beta distribution includes both the generalized

beta distribution of the first and second kinds as special cases, it also includes several

other weighted distributions as special or limiting cases: weighted generalized gamma,

weighted beta of the second kind, weighted Singh-Maddala, weighted Dagum, weighted

gamma, weighted Weibull, and weighted exponential distributions among others as

shown below.

6.7.1 Weighted beta of the second distribution function

This is a special case when p = 1 and q = 1 in equation 6.4

๐‘“ ๐‘ฆ; ๐‘Ž, ๐‘, ๐‘˜ =๐‘ฆ๐‘Ž+๐‘˜โˆ’1

๐ต ๐‘Ž + ๐‘˜, ๐‘ โˆ’ ๐‘˜ 1 + ๐‘ฆ ๐‘Ž+๐‘______________________(6.7)

๐‘ฆ > 0, ๐‘Ž, ๐‘, ๐‘˜ > 0, and โˆ’ 1 < ๐‘˜ < ๐‘

6.7.2 Weighted Singh-Maddala (Burr12) distribution function

This is a special case when a = 1 in equation 6.4

๐‘“ ๐‘ฆ; ๐‘, ๐‘˜, ๐‘, ๐‘ž = ๐‘ ๐‘ฆ๐‘+๐‘˜โˆ’1

๐‘ž๐‘+๐‘˜๐ต 1 +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 +

๐‘ฆ๐‘ž

๐‘

1+๐‘ ____________(6.8)

๐‘ฆ > 0, ๐‘, ๐‘ž, ๐‘ > 0, and โˆ’ ๐‘ < ๐‘˜ < ๐‘๐‘

6.7.3 Weighted Dagum (Burr3) distribution function

This is a special case when b = 1 in equation 6.4

๐‘“ ๐‘ฆ; ๐‘, ๐‘ž, ๐‘Ž, ๐‘˜ = ๐‘ ๐‘ฆ๐‘Ž๐‘+๐‘˜โˆ’1

๐‘ž๐‘๐‘Ž +๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , 1 โˆ’

๐‘˜๐‘ 1 +

๐‘ฆ๐‘ž

๐‘

๐‘Ž+1 __________________(6.9)

๐‘ฆ > 0, ๐‘, ๐‘ž, ๐‘Ž > 0, and โˆ’ ๐‘๐‘Ž < ๐‘˜ < ๐‘

Page 178: From The Classical Beta Distribution To Generalized Beta ...

173

6.7.4 Weighted Generalized Fisk (Log-Logistic) distribution function

This is a special case when , a = 1, b = 1 and q =1

ฮป in equation 6.4

๐‘“ ๐‘ฆ; ๐‘, ฮป, ๐‘˜ =๐‘๐‘ฆ๐‘+๐‘˜โˆ’1

1ฮป

๐‘+๐‘˜

๐ต ๐‘Ž +๐‘˜๐‘

, 1 โˆ’๐‘˜๐‘ 1 + ๐œ†๐‘ฆ๐‘ 2

___________________________(6.10)

๐‘ฆ > 0, ๐‘, ฮป > 0, and โˆ’ ๐‘ < ๐‘˜ < ๐‘

Page 179: From The Classical Beta Distribution To Generalized Beta ...

174

The Five Parameter Weighted Beta Distribution and its Special Cases Diagrammatically

Weighted

Generalized Beta2

Weighted Beta of

the 2nd

kind

Weighted

Generalized Fisk

(log-logistic)

Weighted Dagum

(Burr3)

Weighted Singh

Maddala (Burr12)

5 Parameter

4 Parameter

3 Parameter

2 Parameter

Page 180: From The Classical Beta Distribution To Generalized Beta ...

175

6.8 Construction of the Five Parameter Exponential Generalized Beta

Distribution Function

This section considers a five parameter exponential generalized beta distribution

function, its construction, properties and special cases. If a random variable ๐‘Œ follows the

generalized beta distribution given in equation 6.1 with parameters ๐‘Ž, ๐‘, ๐‘, ๐‘, ๐‘ž , then the

random variable ๐‘ = ๐ผ๐‘› ๐‘Œ is said to be distributed as an exponential generalized beta,

with the pdf given by

Let

๐‘ฆ = ๐‘’๐‘ง

and

๐‘‘๐‘ฆ

๐‘‘๐‘ง = ๐‘’๐‘ง

๐‘“(๐‘ง; ๐‘Ž, ๐‘, ๐‘, ๐‘, ๐‘ž) =๐‘(๐‘’๐‘ง)๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘’๐‘ง

๐‘ž ๐‘

๐‘โˆ’1

. ๐‘’๐‘ง

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘ ๐‘’๐‘ง

๐‘ž ๐‘

๐‘Ž+๐‘

=๐‘ ๐‘’๐‘ง ๐‘๐‘Ž 1 โˆ’ 1 โˆ’ ๐‘

๐‘’๐‘ง

๐‘ž ๐‘

๐‘โˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘ ๐‘’๐‘ง

๐‘ž

๐‘

๐‘Ž+๐‘ ___________________________________________(6.11)

Let ๐‘ =1

๐œ and ๐‘ž = ๐‘’๐›ฟ in equation 6.11

๐‘“ ๐‘ง; ๐‘Ž, ๐‘, ๐‘, ๐œ, ๐›ฟ =

1๐œ (๐‘’๐‘ง)

1๐œ๐‘Ž 1 โˆ’ 1 โˆ’ ๐‘

๐‘’๐‘ง

๐‘’๐›ฟ

1๐œ

๐‘โˆ’1

(๐‘’๐›ฟ)1๐œ๐‘Ž๐ต ๐‘Ž, ๐‘ 1 + ๐‘

๐‘’๐‘ง

๐‘’๐›ฟ

1๐œ

๐‘Ž+๐‘

=๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ 1 โˆ’ 1 โˆ’ ๐‘ ๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐‘โˆ’1

๐œ๐ต ๐‘Ž, ๐‘ 1 + ๐‘๐‘’๐‘งโˆ’๐›ฟ๐œ

๐‘Ž+๐‘ ________________________________________________(6.12)

Page 181: From The Classical Beta Distribution To Generalized Beta ...

176

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< ๐ผ๐‘›

1

1 โˆ’ ๐‘

Equation 6.12 is the five parameter exponential generalized beta distribution function.

6.9 Properties of Five Parameter Exponential Generalized Beta

Distribution

6.9.1 Moment-generating function

The moment-generating function of the exponential generalized beta distribution variates

can be obtained by using the substitution ๐‘ข = ๐‘’(๐‘งโˆ’๐›ฟ)/๐œ in ๐ธ(๐‘’๐‘ก๐‘ง ) and combining terms:

๐‘€ ๐‘ก = ๐ธ(๐‘ก๐‘)

= ๐‘’๐›ฟ๐‘ก ๐ธ(๐‘Œ๐œ๐‘ก ; ๐‘ = 1, ๐‘ž = 1, ๐‘, ๐‘Ž, ๐‘)

=๐‘’๐›ฟ๐‘ก ๐ต ๐‘Ž + ๐œ๐‘ก, ๐‘

๐ต ๐‘Ž, ๐‘ 2๐น1

๐‘Ž + ๐œ๐‘ก, ๐œ๐‘ก; ๐‘๐‘Ž + ๐‘ + ๐œ๐‘ก

, ___(6.13)

Equation 6.13 is the moment-generating function of the five parameter exponential

generalized beta distribution. The other moment generating functions related to special

cases can be obtained from equation 6.13 as necessary; for instance, the moment

generating function for the exponential generalized beta distribution of the first kind can

be obtained as a special case when ๐‘ = 0 and is given by

๐‘€(๐‘ก) =๐‘’๐›ฟ๐‘ก ๐ต ๐‘Ž + ๐œ๐‘ก, ๐‘

๐ต ๐‘Ž, ๐‘

While for the exponential generalized beta distribution of the second kind can be

obtained as a special case when ๐‘ = 1 and is given by

๐‘€ ๐‘ก =๐‘’๐›ฟ๐‘ก ๐ต ๐‘Ž + ๐œ๐‘ก, ๐‘ โˆ’ ๐œ๐‘ก

๐ต ๐‘Ž, ๐‘ .

Page 182: From The Classical Beta Distribution To Generalized Beta ...

177

6.9.2 Mean of the exponential generalized beta distribution

The mean of the exponential generalized beta distribution can be obtained by

differentiating the natural logarithm of equation 6.13, the cumulant-generating function,

and substituting ๐‘ก = 0 to yield

๐ธ ๐‘ = ๐›ฟ + ๐œ ๐œ“ ๐‘Ž โˆ’ ๐œ“ ๐‘ ๐‘๐œ๐‘Ž

๐‘Ž + ๐‘ 3๐น1

1, 1, ๐‘Ž + 1; ๐‘2, ๐‘Ž + ๐‘ + 1;

The means for the exponential generalized beta of the first kind, exponential generalized

beta of the second kind, and exponential generalized gamma, respectively, can be given

by

๐ธ1 ๐‘ = ๐›ฟ + ๐œ ๐œ“ ๐‘Ž โˆ’ ๐œ“ ๐‘Ž + ๐‘ ,

๐ธ2 ๐‘ = ๐›ฟ + ๐œ ๐œ“ ๐‘Ž โˆ’ ๐œ“ ๐‘ ,

๐ธ3 ๐‘ = ๐›ฟ + ๐œ๐œ“ ๐‘ ,

Where ๐œ“() denotes the digamma function. The higher-order moments for the exponential

generated beta distribution are quite involving, however, relatively simple expressions for

the variance, skewness and Kurtosis for the exponential generated beta distribution of the

first kind, the exponential generated beta distribution of the second kind and the

exponential generated gamma distribution can be easily obtained by differentiating the

desired cumulant-generating functions.

6.10 Special Cases of Exponential Generalized Beta Distribution

Since the five parameter exponential generalized beta and the five parameter generalized

beta distributions are related by the logarithmic transformation, similar โ€—exponentialโ€˜

distributions can be obtained by transforming each of the distributions mentioned under

Page 183: From The Classical Beta Distribution To Generalized Beta ...

178

the five parameter generalized beta distribution in section 6.2.3 which corresponds to the

special cases given below:

6.10.1 Exponential generalized beta of the first kind

This is a special case of the exponential generalized beta distribution in equation 6.12

when ๐‘ = 0

๐‘“ ๐‘ง; ๐‘Ž, ๐‘, ๐œ, ๐›ฟ =๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ 1โˆ’๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐‘โˆ’1

๐œ๐ต ๐‘Ž, ๐‘ __________________________________(6.14)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< 0

Equation 6.14 is just an alternative representation of the generalized exponential

distribution.

6.10.2 Exponential generalized beta of the second kind

This is a special case of the exponential generalized beta distribution in equation 6.12

when ๐‘ = 1

๐‘“ ๐‘ง; ๐‘Ž, ๐‘, ๐œ, ๐›ฟ =๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ

๐œ๐ต ๐‘Ž, ๐‘ 1 + ๐‘’๐‘งโˆ’๐›ฟ๐œ

๐‘Ž+๐‘ ____________________________(6.15)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

Equation 6.15 is just an alternative representation of the generalized logistic distribution.

Page 184: From The Classical Beta Distribution To Generalized Beta ...

179

6.10.3 Exponential generalized gamma

The exponential generalized gamma distribution can be derived as a limiting case ๐‘ โ†’

โˆž and ๐›ฟ โˆ—= ๐œIn๐‘ž + ๐›ฟ using the same method given in section 5.6.17. It is defined by the

following probability density function:

๐‘“ ๐‘ง; ๐‘Ž, ๐œ, ๐›ฟ =๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ ๐‘’โˆ’๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐œฮ“ฮž ๐‘ _______________________________________(6.16)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

Equation 6.16 is an alternative representation of the generalized Gompertz distribution.

6.10.4 Generalized Gumbell distribution

This is a special case of the exponential generalized beta distribution in equation 6.12

when ๐‘ = 1 and a = b

๐‘“ ๐‘ง; ๐‘Ž, ๐œ, ๐›ฟ =๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ

๐œ๐ต ๐‘Ž, ๐‘Ž 1 + ๐‘’๐‘งโˆ’๐›ฟ๐œ

2๐‘Ž ____________________________(6.17)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

6.10.5 Exponential Burr 12

This is a special case of the exponential generalized beta distribution in equation 6.12

when ๐‘ = 1 and b = 1

๐‘“ ๐‘ง; ๐‘Ž, ๐œ, ๐›ฟ =๐‘Ž๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ

๐œ 1 + ๐‘’๐‘งโˆ’๐›ฟ๐œ

๐‘Ž+1 ______________________________(6.18)

Page 185: From The Classical Beta Distribution To Generalized Beta ...

180

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

6.10.6 Exponential power distribution function

The 3 parameter exponential power distribution function is a special case of the

exponential generalized beta distribution in equation 6.12 when ๐‘ = 0 and ๐‘ = 1

๐‘“ ๐‘ง; ๐‘Ž, ๐œ, ๐›ฟ =๐‘Ž๐‘’

๐‘Ž ๐‘งโˆ’๐›ฟ ๐œ

๐œ____________________________________(6.19)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< 0

6.10.7 Two parameter exponential distribution function

The 2 parameter exponential distribution function is a special case of the exponential

generalized beta distribution in equation 6.12 when ๐‘ = 0, ๐‘Ž = 1 and ๐‘ = 1

๐‘“ ๐‘ง; ๐œ, ๐›ฟ =๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐œ___________________________________________(6.20)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< 0

6.10.8 One parameter exponential distribution function

The 1 parameter exponential distribution function is a special case of the exponential

generalized beta distribution in equation 6.12 when ๐‘ = 0, ๐‘Ž = 1, ๐‘ = 1 and ๐›ฟ = 0

๐‘“ ๐‘ง; ๐œ =๐‘’

๐‘ง๐œ

๐œ____________________________________________(6.21)

for โˆ’ โˆž <๐‘ง

๐œ< 0

Page 186: From The Classical Beta Distribution To Generalized Beta ...

181

6.10.9 Exponential Fisk (logistic) distribution

The exponential fisk distribution is a special case of the exponential generalized beta

distribution in equation 6.12 when ๐‘ = 1, a = 1 and b = 1

๐‘“ ๐‘ง; ๐œ, ๐›ฟ =๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐œ 1 + ๐‘’๐‘งโˆ’๐›ฟ๐œ

2 ____________________________(6.22)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

Equation 6.22 of the exponential fisk distribution is also known as the logistic distribution.

6.10.10 Standard logistic distribution

The standard logistic distribution is a special case of the exponential generalized beta

distribution in equation 6.12 when ๐‘ = 1, a = 1, b = 1 and ๐›ฟ = 0

๐‘“ ๐‘ง; ๐œ =๐‘’

๐‘ง๐œ

๐œ 1 + ๐‘’๐‘ง๐œ

2 __________________________________(6.23)

for โˆ’ โˆž <๐‘ง

๐œ< โˆž

6.10.11 Exponential weibull distribution

The exponential weibull distribution is a special case of the exponential generalized

gamma distribution in equation 6.16 when a = 1

๐‘“ ๐‘ง; ๐‘, ๐œ, ๐›ฟ =๐‘’

๐‘งโˆ’๐›ฟ๐œ ๐‘’โˆ’๐‘’

๐‘งโˆ’๐›ฟ๐œ

๐œฮ“ฮž ๐‘ ___________________________(6.24)

for โˆ’ โˆž <๐‘ง โˆ’ ๐›ฟ

๐œ< โˆž

Page 187: From The Classical Beta Distribution To Generalized Beta ...

182

The exponential weibull distribution is the extreme value type 1 distribution or the

Gompertz distribution. Equation 6.24 of the exponential weibull distribution can also be

derived as a limiting case (๐‘ โ†’ โˆž with ๐›ฟ = ๐›ฟโˆ— + ๐œIn๐‘ž) from the exponential burr 12

distribution.

Page 188: From The Classical Beta Distribution To Generalized Beta ...

183

The Five Parameter exponential Beta Distribution and its Special Cases Diagrammatically

Exponential

Generalized Beta 5 Parameter

4 Parameter

Exponential

Generalized Beta

of the 1st kind

Exponential

Generalized Beta

of the 2nd

kind

Exponential Burr 12 Exponential

Power

Exponential

Exponential

Exponential Fisk

(Logistic)

Generalized

Gumbell 3 Parameter

2 Parameter

1 Parameter

Standard Logistic

Page 189: From The Classical Beta Distribution To Generalized Beta ...

184

7 Chapter VII: Generalized Beta Distributions

Based on Generated Distributions

7.1 Introduction

This chapter looks at the new family of generalized beta distributions. The new family of

generalized beta distributions is based on beta generators and can be classified as follows:

Beta generated distributions

Exponentiated generated distributions

Generalized beta generated distributions

7.2 Beta Generator Approach

The beta generated distribution was first introduced by Eugene et. al (2002) through its

cumulative distribution function (cdf). The cdf of a beta distribution is defined by

๐‘Š ๐‘ก = ๐‘ก๐‘Žโˆ’1(1 โˆ’ t)๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐‘‘๐‘ก

y

0

, ๐‘Ž > 0, ๐‘ > 0

Note that 0 < ๐‘ฆ < 1 since 0 < ๐‘ก < 1

Replace ๐‘ฆ by a cdf say G ๐‘ฅ , of any distribution, since 0 < G ๐‘ฅ < 1,

for โˆ’โˆž < ๐‘ฅ < โˆž

โˆด ๐‘Š G ๐‘ฅ =1

๐ต ๐‘Ž, ๐‘ ๐‘ก๐‘Žโˆ’1(1 โˆ’ t)๐‘โˆ’1๐‘‘๐‘ก

G ๐‘ฅ

0

, ๐‘Ž > 0, ๐‘ > 0

๐‘Š G ๐‘ฅ = ๐ด ๐‘๐‘‘๐‘“ ๐‘œ๐‘“ ๐‘Ž ๐‘๐‘‘๐‘“

= ๐ด ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฅ

= ๐น ๐‘ฅ

๐น ๐‘ฅ = ๐น G ๐‘ฅ

โˆด๐‘‘

๐‘‘๐‘ฅ(๐น ๐‘ฅ =

๐‘‘

๐‘‘๐‘ฅ๐น G ๐‘ฅ

๐‘“ ๐‘ฅ = {๐น โ€ฒ G ๐‘ฅ } Gโ€ฒ ๐‘ฅ

= ๐‘“ G ๐‘ฅ g ๐‘ฅ

Page 190: From The Classical Beta Distribution To Generalized Beta ...

185

โŸน ๐‘“(๐‘ฅ) =๐‘”(๐‘ฅ)[๐บ(๐‘ฅ)]๐‘Žโˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ________________________(7.1)

for 0 < ๐บ ๐‘ฅ < 1, โˆ’โˆž < ๐‘ฅ < โˆž where ๐‘Ž > 0, ๐‘ > 0, ๐ต ๐‘Ž, ๐‘ =ฮ“ a ฮ“ b

ฮ“ a+b is the beta

function.

Equation 7.1 is the beta generator or beta generated distribution. It is also referred to as

the generalized beta-F distribution (Sepanski and Kong, 2007). The equation can be used

to generate a new family of beta distributions usually referred to as beta generated

distributions. Jones (2004) called it generalized ith order statistic because the order

statistic distribution is a special case when ๐‘Ž = ๐‘–, ๐‘ = ๐‘› โˆ’ ๐‘– + 1 which gives the

following density function

๐‘“ ๐บ ๐‘ฆ; ๐‘Ž, ๐‘ =๐‘”(๐‘ฆ)[๐บ(๐‘ฆ)]๐‘–โˆ’1 1 โˆ’ ๐บ ๐‘ฆ ๐‘›โˆ’๐‘–+1 โˆ’1

๐ต ๐‘–, ๐‘› โˆ’ ๐‘– + 1

=ฮ“ n + 1

ฮ“ ๐‘– ฮ“ ๐‘› โˆ’ ๐‘– + 1 ๐‘”(๐‘ฆ)[๐บ(๐‘ฆ)]๐‘–โˆ’1 1 โˆ’ ๐บ ๐‘ฆ ๐‘›โˆ’๐‘–

=n!

๐‘– โˆ’ 1 ! ๐‘› โˆ’ ๐‘– !๐‘”(๐‘ฆ)[๐บ(๐‘ฆ)]๐‘–โˆ’1 1 โˆ’ ๐บ ๐‘ฆ ๐‘›โˆ’๐‘–__________________(7.2)

Equation 7.2 is the ith-order statistics generated from the beta distribution.

7.3 Various Beta Generated Distributions

7.3.1 Beta-Normal Distribution - (Eugene et. al (2002))

Eugene et. al (2002) introduced the beta-normal distribution, based on a composition of

the classical beta distribution and the normal distribution. Its importance is more than just

generalize the normal distribution. The beta-normal distribution generalizes the normal

distribution and has flexible shapes, giving it greater applicability. Since then, many

authors generalized other distributions similar to the beta-normal distribution.

The beta-normal distribution is obtained as follows:

Page 191: From The Classical Beta Distribution To Generalized Beta ...

186

Let

๐บ ๐‘ฅ = ฮฆ ๐‘ฅ โˆ’ ๐œ‡

๐œ

be the cumulative density function of normal distribution with parameters ๐œ‡ and ๐œ, and

๐‘” ๐‘ฅ = ๐œ™ ๐‘ฅ โˆ’ ๐œ‡

๐œ

be the probability density function of the normal distribution.

By using equation 7.1, the density function of beta-normal distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐œ‡, ๐œ =๐œโˆ’1 ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ

๐‘Žโˆ’1

1 โˆ’ ฮฆ ๐‘ฅ โˆ’ ๐œ‡

๐œ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐œ™

๐‘ฅ โˆ’ ๐œ‡

๐œ ___(7.3)

Where ๐‘Ž > 0, ๐‘ > 0, ๐œ > 0, ๐œ‡ โˆˆ โ„ ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ โ„

The parameters ๐‘Ž and ๐‘ are the shape parameters characterizing the skewness, kurtosis

and bimodality of the beta normal distribution. The parameters ๐œ‡ and ๐œ have the same

role as in normal distribution where, ๐œ‡ is a location parameter and ๐œ is a scale parameter

that stretches out or shrinks the distribution.

Special case of equation 7.3 when ๐œ‡ = 0 and ๐œ = 1 gives the standard beta-normal

distribution given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, =[ฮฆ ๐‘ฅ ]๐‘Žโˆ’1 1 โˆ’ ฮฆ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐œ™ ๐‘ฅ ________________(7.4)

Where ๐‘Ž > 0, ๐‘ > 0, ๐‘ฅ โˆˆ โ„

Equation 7.3 is the beta-normal distribution introduced by Eugene et.al who also

discussed some of its properties.

7.3.2 Beta-Exponential distribution โ€“ (Nadarajah and Kotz (2006))

Nadarajah and Kotz (2006) introduced the beta-exponential distribution, based on a

composition of the classical beta distribution and the exponential distribution. They

discussed in their paper the expression for the rth

moment, properties of the hazard

function, results for the distribution of the sum of beta-exponential random variables,

maximum likelihood estimation and some asymptotic results.

Page 192: From The Classical Beta Distribution To Generalized Beta ...

187

The beta-exponential distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 โˆ’ exp(โˆ’ฮปx)

be the cdf of exponential distribution with parameter ฮป, and

๐‘” ๐‘ฅ = ฮป exp(โˆ’ฮปx)

be the pdf of exponential distribution

By using equation 7.1, the density of the beta-exponential distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฮป =ฮป exp(โˆ’ฮปx)[1 โˆ’ exp(โˆ’ฮปx) ]๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ exp โˆ’ฮปx ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

=ฮป exp(โˆ’๐‘ฮปx)[1 โˆ’ exp(โˆ’ฮปx) ]๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ ____________________(7.5)

๐‘Ž > 0, ๐‘ > 0, ฮป > 0, ๐‘ฅ >0

Equation 7.5 is the beta-exponential distribution introduced by Nadarajah and Kotz

(2006). They also discussed some of its properties. This beta-exponential distribution

contains the exponentiated-exponential distribution (Gupta and Kundu (1999)) as a

special case for b=1. i.e

๐‘“ ๐‘ฅ; ๐‘Ž, ฮป = ๐‘Žฮป exp(โˆ’ฮปx)[1 โˆ’ exp(โˆ’ฮปx) ]๐‘Žโˆ’1

๐‘Ž > 0, ฮป > 0, ๐‘ฅ >0

When ๐‘Ž = 1, the beta-exponential distribution coincides with the exponential distribution

with parameters ๐‘ฮป i.e

๐‘“ ๐‘ฅ; ๐‘, ฮป = bฮป exp(โˆ’๐‘ฮปx)

๐‘ > 0, ฮป > 0, ๐‘ฅ >0

Page 193: From The Classical Beta Distribution To Generalized Beta ...

188

7.3.3 Beta-Weibull Distribution โ€“ (Famoye et al. (2005))

Famoye et.al (2005) introduced the beta-weibull distribution, based on a composition of

the classical beta distribution and the weibull distribution. Lee et.al (2007) gave some

properties of the hazard function, entropies and an application to censored data. Cordeiro

et.al (2005) derived additional mathematical properties of beta-weibull such as

expression for moments.

The beta-weibull distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 โˆ’ eโˆ’

xฮฒ

c

be the cdf of Weibull distribution and

๐‘” ๐‘ฅ = ๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

be the pdf of Weibull distribution

By using equation 7.1, the density function of the beta-weibull distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ๐›ฝ =

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

1 โˆ’ eโˆ’

xฮฒ

c

๐‘Žโˆ’1

1 โˆ’ 1 โˆ’ eโˆ’

xฮฒ

c

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

=

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

1 โˆ’ eโˆ’

xฮฒ

c

๐‘Žโˆ’1

eโˆ’

xฮฒ

c

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

=

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’๐‘ ๐‘ฅ๐›ฝ

๐‘

1 โˆ’ eโˆ’

xฮฒ

c

๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ , ๐‘Ž, ๐‘, ๐‘, ฮฒ > 0______(7.6)

Page 194: From The Classical Beta Distribution To Generalized Beta ...

189

Equation 7.6 is the four parameter beta-Weibull distribution introduced by Famoye et.al

(2005) and studied by Lee et.al (2007).

7.3.4 Beta-Hyperbolic Secant Distribution โ€“ (Fischer and Vaughan. (2007))

Fisher and Vaughan (2007) introduced the beta-hyperbolic secant distribution, based on a

composition of the classical beta distribution and the hyperbolic secant distribution. They

gave some of its properties like the moments, special and limiting cases and compare it

with other distributions using a real data set.

The beta-hyperbolic secant distribution is obtained as follows:

Let

๐บ ๐‘ฅ =2

ฯ€arctan ๐‘’๐‘ฅ

be the cdf of the hyperbolic secant distribution and

๐‘” ๐‘ฅ =1

ฯ€Cosh(x)

be the pdf of the hyperbolic secant distribution

By using equation 7.1, the density function of the beta-hyperbolic secant is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฯ€ = 2ฯ€ arctan ๐‘’๐‘ฅ

๐‘Žโˆ’1

1 โˆ’2ฯ€ arctan ๐‘’๐‘ฅ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฯ€ cosh x ______________(7.7)

๐‘Ž > 0, ๐‘ > 0 and ๐‘ฅ โˆˆ โ„

Equation 7.7 is the beta-hyperbolic secant distribution introduced and studied by. Fischer

and Vaughan (2007).

7.3.5 Beta-Gamma โ€“ (Kong et al. (2007))

Kong et.al (2007) introduced the beta-gamma distribution, based on a composition of the

classical beta distribution and the gamma distribution. They derived in their paper some

Page 195: From The Classical Beta Distribution To Generalized Beta ...

190

properties of the limit of the density function and of the hazard function. They gave an

expression for the moments when the shape parameter ๐‘Ž is an integer and made an

application of the beta-gamma distribution.

The beta-gamma distribution is obtained as follows:

Let

๐บ ๐‘ฅ =ฮ“xฮป ฯ

ฮ“ ฯ

be the cdf of gamma distribution where

ฮ“x ฯ = yฯโˆ’1eโˆ’yx

0

dy

is the incomplete gamma function and

๐‘” ๐‘ฅ = x

ฮป

ฯโˆ’1

eโˆ’xฮป

is the pdf of the gamma function.

By using equation 7.1, the density function of the beta-gamma distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฯ, ฮป =

๐‘ฅ๐œŒโˆ’1๐‘’โˆ’

๐‘ฅ๐œ†ฮ“x

ฮป ฯ ๐‘Žโˆ’1 1 โˆ’

ฮ“xฮป ฯ

ฮ“ ฯ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฮ“ ฯ aฮปฯ___________________(7.8)

๐‘Ž, ๐‘, ฯ, ฮป, x > 0

Equation 7.8 is the beta-gamma distribution introduced by Kong et al. (2007). They also

derived some properties of the limit of the density function and hazard function.

7.3.6 Beta-Gumbel Distribution โ€“ (Nadarajah and Kotz (2004))

Nadarajah and Kotz (2004) introduced the beta-Gumbel distribution, based on a

composition of the classical beta distribution and the Gumbel distribution. They

calculated expressions for the rth moment, gave some particular cases, and studied the

density function.

Page 196: From The Classical Beta Distribution To Generalized Beta ...

191

The beta-Gumbel distribution is obtained as follows:

Let

๐บ ๐‘ฅ = exp โˆ’ exp โˆ’x โˆ’ ฮผ

ฯ‚

be the cdf of Gumbel distribution and

๐‘” ๐‘ฅ =1

ฯ‚exp โˆ’

x โˆ’ ฮผ

ฯ‚ exp โˆ’ exp โˆ’

x โˆ’ ฮผ

ฯ‚

=๐‘ข

ฯ‚exp โˆ’๐‘ข

is the pdf of the gumbel distribution. Where

๐‘ข = exp โˆ’x โˆ’ ฮผ

ฯ‚

By using equation 7.1, the density function of the beta-gumbel distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘ข, ฯ‚ =1

๐ต(๐‘Ž, ๐‘)[exp โˆ’๐‘ข ]aโˆ’1 [1 โˆ’ exp โˆ’๐‘ข ]bโˆ’1 .

๐‘ข

ฯ‚exp โˆ’๐‘ข

= ๐‘ข

๐œ๐ต ๐‘Ž, ๐‘ eโˆ’๐‘Ž๐‘ข 1 โˆ’ eโˆ’๐‘ข bโˆ’1___________________________________________(7.9)

๐‘Ž, ๐‘, ๐‘ข, ฯ‚, ๐‘ฅ > 0

Equation 7.9 is the beta-gumbel distribution introduced by Nadarajah and Kotz (2004).

They calculated expressions for the rth moments, gave some particular cases and studied

the density function.

7.3.7 Beta-Frรจchet Distribution (Nadarajah and Gupta (2004))

Nadarajah and Gupta (2004) introduced the beta- Frรจchet distribution, based on a

composition of the classical beta distribution and the Frรจchet distribution. They derived

in their paper some of its properties and hazard function and of the hazard functions.

They also gave an expression for the rth moment. Barreto-Souza et.al (2008) gave another

expression for the moments and derived some additional mathematical properties.

The beta- Frรจchet distribution is obtained as follows:

Page 197: From The Classical Beta Distribution To Generalized Beta ...

192

Let

๐บ ๐‘ฅ = exp โˆ’ x

ฯ‚

โˆ’ฮป

be the cdf of standard Frรจchet distribution and

๐‘” ๐‘ฅ =ฮป๐œฮป

๐‘ฅ1+ฮปexp โˆ’

x

ฯ‚ โˆ’ฮป

be the pdf of the Frรจchet distribution.

By using equation 7.1, the density function of the beta-Frรจchet distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฮผ, ฯ‚ = ฮป๐œฮป exp โˆ’a

xฯ‚

โˆ’ฮป

1 โˆ’ exp โˆ’ xฯ‚

โˆ’ฮป

bโˆ’1

๐‘ฅ1+ฮป๐ต ๐‘Ž, ๐‘ ______(7.10)

๐‘Ž, ๐‘, ฮป, ฯ‚, x > 0

Equation 7.10 is the beta-Frรจchet distribution introduced by Nadarajah and Gupta (2004).

They derived some of its properties and gave an expression for the rth moment. Barreto-

Souza et.al (2008) gave another expression for the moments and derived some additional

mathematical properties.

7.3.8 Beta-Maxwell Distribution (Amusan (2010))

Amusan (2010) introduced the beta-Maxwell distribution, based on a composition of the

classical beta distribution and the Maxwell distribution. She defined and studied the

three-parameter Maxwell distribution. She also discussed various properties of the

distribution.

The beta-maxwell distribution is obtained as follows:

Let

๐บ ๐‘ฅ =2ฮณ

32 ,

๐‘ฅ2

2

ฯ€

be the cdf of maxwell distribution and

Page 198: From The Classical Beta Distribution To Generalized Beta ...

193

๐‘” ๐‘ฅ = 2

ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3

be the pdf of the maxwell distribution.

By using equation 7.1, the density function of the beta-maxwell distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฮฑ =

2ฮณ

32

,๐‘ฅ2

2ฮฑ

ฯ€

aโˆ’1

1 โˆ’2ฮณ

32

,๐‘ฅ2

2ฮฑ

ฯ€

bโˆ’1

2ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3

๐ต ๐‘Ž, ๐‘

=1

๐ต ๐‘Ž, ๐‘

2

ฯ€ฮณ

3

2,๐‘ฅ2

2ฮฑ

aโˆ’1

1 โˆ’2

ฯ€ฮณ

3

2,๐‘ฅ2

2ฮฑ

bโˆ’1

2

ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3______(7.11)

๐‘“๐‘œ๐‘Ÿ ๐‘Ž, ๐‘, ฮฑ, ๐‘ฅ > 0 ๐‘Ž๐‘›๐‘‘ ฮณ ๐‘Ž, ๐‘ is an incomplete gamma function.

Equation 7.11 is the beta-Maxwell distribution introduced by Amusan (2010).

7.3.9 Beta-Pareto Distribution (Akinsete et.al (2008))

Akinsete et.al (2008) introduced the beta-Pareto distribution, based on a composition of

the classical beta distribution and the Pareto distribution. They defined and studied

properties of the four-parameter beta-pareto distribution.

The beta-pareto distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 โˆ’ ๐‘ฅ

๐œƒ

โˆ’k

be the cdf of pareto distribution and

๐‘” ๐‘ฅ =๐‘˜๐œƒ๐‘˜

๐‘ฅ๐‘˜+1

be the pdf of the pareto distribution.

By using equation 7.1, the density function of the beta-pareto distribution is given by

Page 199: From The Classical Beta Distribution To Generalized Beta ...

194

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘˜, ๐œƒ = 1 โˆ’

๐‘ฅ๐œƒ

โˆ’k

aโˆ’1

1 โˆ’ 1 โˆ’ ๐‘ฅ๐œƒ

โˆ’k

bโˆ’1

๐‘˜๐œƒ๐‘˜

๐‘ฅ๐‘˜+1

๐ต ๐‘Ž, ๐‘

=๐‘˜

๐œƒ๐ต ๐‘Ž, ๐‘ 1 โˆ’

๐‘ฅ

๐œƒ โˆ’k

aโˆ’1

๐‘ฅ

๐œƒ โˆ’๐‘˜๐‘โˆ’1

_______________________(7.12)

๐‘Ž, ๐‘, ๐‘˜, ๐œƒ, ๐‘ฅ > 0

Equation 7.12 is the beta-pareto distribution defined by Akinsete et.al.

7.3.10 Beta-Rayleigh Distribution (Akinsete and Lowe (2009))

Akinsete and Lowe (2009) introduced the beta-Rayleigh distribution, based on a

composition of the classical beta distribution and the Rayleigh distribution.

The beta-Rayleigh distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ2

2ฮฑ2

be the cdf of Rayleigh distribution and

๐‘” ๐‘ฅ =๐‘ฅ

ฮฑ2 ๐‘’

โˆ’ ๐‘ฅ

ฮฑ 2

2

be the pdf of the Rayleigh distribution.

By using equation 7.1, the density function of the beta-Rayleigh distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐›ผ =

1 โˆ’ ๐‘’โˆ’

๐‘ฅ2

2ฮฑ2

aโˆ’1

1 โˆ’ 1 โˆ’ ๐‘’โˆ’

๐‘ฅ2

2ฮฑ2

bโˆ’1๐‘ฅฮฑ2 ๐‘’

โˆ’ ๐‘ฅ

ฮฑ 2

2

๐ต ๐‘Ž, ๐‘

=๐‘ฅ

ฮฑ2๐ต ๐‘Ž, ๐‘ 1 โˆ’ ๐‘’

โˆ’๐‘ฅ2

2ฮฑ2

aโˆ’1

๐‘’โˆ’๐‘

๐‘ฅ

ฮฑ 2

2

__________________________(7.13)

๐‘Ž, ๐‘, ๐‘˜, ๐›ผ > 0

Page 200: From The Classical Beta Distribution To Generalized Beta ...

195

Equation 7.13 is the beta-Rayleigh distribution. If ๐‘Ž = ๐‘ = 1, equation 7.13 reduces to

Rayleigh distribution with parameter ๐›ผ. When ๐‘Ž = 1, the beta-rayleigh distribution

reduces to the Rayleigh distribution with parameter ๐‘˜ =๐›ผ

๐‘.

7.3.11 Beta-generalized-logistic of type IV distribution (Morais (2009))

Morais (2009) introduced the beta-generalized logistic of type IV distribution, based on a

composition of the classical beta distribution and the generalized logistic of type IV

distribution. She discussed some of its special cases that belong to the beta-G such as the

beta โ€“generalized logistic of types I, II, and III and some related distributions like the

beta-beta prime and the beta-F. The generalized logistic of type IV distribution was

proposed by Prentice (1976) as an alternative to modeling binary response data with the

usual symmetric logistic distribution.

The beta-generalized logistic of type IV distribution is obtained as follows:

Let

๐บ ๐‘ฅ =

B 11+eโˆ’x

(p, q)

B(p, q)

be the cdf of the generalized logistic of type IV distribution given by a normalized

incomplete beta function and

๐‘” ๐‘ฅ =eโˆ’qx

B p, q (1 + eโˆ’x )p+q

be the pdf of the generalized logistic of type IV distribution.

By using equation 7.1, the density function of the beta-generalized logistic of type IV

distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, p, q

=B a, b 1โˆ’aโˆ’b

B a, b

eqx

1 โˆ’ eโˆ’x p+q[B 1

1+eโˆ’x(p, q)]aโˆ’1[B eโˆ’x

1+eโˆ’x

(q, p)]bโˆ’1 ______(7.14)

๐‘Ž, ๐‘, p, q, > 0, ๐‘ฅ > ๐‘…

Page 201: From The Classical Beta Distribution To Generalized Beta ...

196

Equation 7.14 is the beta-generalized logistic of type IV distribution introduced by

Morais (2009).

7.3.12 Beta-generalized-logistic of type I distribution (Morais (2009))

Morais (2009) introduced the beta-generalized logistic of type I distribution which is a

special case of the beta-generalized logistic of type IV distribution with q = 1.

The density function of the beta-generalized logistic of type I distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, p =peโˆ’x[ 1 + eโˆ’ax p โˆ’ 1]bโˆ’1

B a, b 1 + eโˆ’x a+pb, _____________________________(7.15)

๐‘Ž, ๐‘, p > 0, ๐‘ฅ > ๐‘…

Equation 7.15 is the beta-generalized logistic of type I distribution introduced by Morais

(2009).

7.3.13 Beta-generalized-logistic of type II distribution (Morais (2009))

Morais (2009) introduced the beta-generalized logistic of type II distribution which is a

special case of the beta-generalized logistic of type IV distribution with p = 1. This

distribution can also be obtained through the transformation ๐‘‹ = โˆ’๐‘Œ where Y follows the

beta-generalized logistic of type I distribution.

The density function of the beta-generalized logistic of type II distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, q =qeโˆ’bqx

B a, b 1 + eโˆ’x qb +1 1 โˆ’

eโˆ’qx

B a, b 1 + eโˆ’x q ________(7.16)

๐‘Ž, ๐‘, q, > 0, ๐‘ฅ > ๐‘…

Equation 7.16 is the beta-generalized logistic of type II distribution introduced by Morais

(2009).

Page 202: From The Classical Beta Distribution To Generalized Beta ...

197

7.3.14 Beta-generalized-logistic of type III distribution (Morais (2009))

Morais (2009) introduced the beta-generalized logistic of type III distribution which is a

special case of the beta-generalized logistic of type IV distribution with p = q. This

distribution is symmetric when a=b.

The density function of the beta-generalized logistic of type III distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, q =B q, q 1โˆ’aโˆ’b

B a, b

eโˆ’qx

1 + eโˆ’x 2q[B 1

1+eโˆ’x(q, q)]aโˆ’1[B eโˆ’x

1+eโˆ’x

(q, q)]bโˆ’1 ___(7.17)

๐‘Ž, ๐‘, q, > 0, ๐‘ฅ > ๐‘…

Equation 7.17 is the beta-generalized logistic of type III distribution introduced by

Morais (2009).

7.3.15 Beta-beta prime distribution (Morais (2009))

The beta-beta prime distribution can be obtained from the beta-generalized logistic of

type IV distribution using the transformation

๐‘ฅ = eโˆ’y

where Y is a random variable following the beta-generalized logistic of type IV

distribution.

The density function of the beta-beta prime distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, q =๐ต ๐‘, ๐‘ž 1โˆ’๐‘Žโˆ’๐‘

๐ต ๐‘Ž, ๐‘

๐‘ฅ๐‘žโˆ’1

1 + ๐‘ฅ ๐‘+๐‘ž[๐ต ๐‘ฅ

1+๐‘ฅ(๐‘ž, ๐‘)]๐‘Žโˆ’1[๐ต 1

1+๐‘ฅ(๐‘, ๐‘ž)]๐‘โˆ’1 ____(7.18)

๐‘Ž, ๐‘, ๐‘ž, > 0, ๐‘ฅ > ๐‘…

Equation 7.18 is the beta-beta prime distribution introduced by Morais (2009).

Page 203: From The Classical Beta Distribution To Generalized Beta ...

198

7.3.16 Beta-F distribution (Morais (2009))

The beta-F distribution can be obtained as follows:

Let

๐บ ๐‘ฅ =1

B ๐‘ข2 ,

๐‘ฃ2

B

vu x

1+ vu x

๐‘ฃ

2,๐‘ข

2

be the cdf of the F distribution and

๐‘” ๐‘ฅ =

vu

q2

B ๐‘ข2 ,

๐‘ฃ2

xv2โˆ’1

1 + vu x

(u+v)/2

be the pdf of the F distribution.

By using equation 7.1, the density function of the beta-F distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, u, v

=B a, b โˆ’1

B u2 ,

v2

vu

v2

xv2โˆ’1

1 + vu x

(u+v)/2

I

vu x

1+ vu x

v

2,u

2

aโˆ’1

I 1

1+ vu x

v

2,u

2

bโˆ’1

__(7.19)

๐‘Ž, ๐‘, u, v, x > 0

Equation 7.19 is the beta-F distribution. It can easily be verified that if Y follows the beta

generalized logistic of type IV distribution with parameters ๐‘Ž, ๐‘, u, v then F =v

ueโˆ’y

follows the beta F distribution with parameters ๐‘Ž, ๐‘, 2u, 2v,.

7.3.17 Beta-Burr XII distribution (Paranaรญba et.al (2010))

Paranaรญba et.al (2010) introduced the beta-burr XII distribution, based on a composition

of the classical beta distribution and the burr XII distribution. They defined and studied

the five parameter beta-burr XII distribution. They also derived some of its properties like

moment generating function, mean and proposed methods of estimating its parameters.

Page 204: From The Classical Beta Distribution To Generalized Beta ...

199

The beta- burr XII distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 โˆ’ 1 + ๐‘ฅ

q

p

โˆ’๐‘˜

be the cdf of burr XII distribution and

๐‘” ๐‘ฅ = ๐‘๐‘˜๐‘žโˆ’๐‘ 1 + ๐‘ฅ

q

p

โˆ’๐‘˜โˆ’1

๐‘ฅ๐‘โˆ’1

be the pdf of the burr XII distribution.

By using equation 7.1, the density function of the beta- burr XII distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ๐‘ž, ๐‘˜

=

1 โˆ’ 1 + ๐‘ฅq

p

โˆ’๐‘˜

aโˆ’1

1 + ๐‘ฅq

p

โˆ’๐‘˜

bโˆ’1

๐‘๐‘˜๐‘žโˆ’๐‘ 1 + ๐‘ฅq

p

โˆ’๐‘˜โˆ’1

๐‘ฅ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

=๐‘๐‘˜๐‘žโˆ’๐‘๐‘ฅ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ 1 โˆ’ 1 +

๐‘ฅ

q

p

โˆ’๐‘˜

aโˆ’1

1 + ๐‘ฅ

q

p

โˆ’๐‘˜๐‘โˆ’1

_________(7.20)

for ๐‘Ž, ๐‘, ๐‘, ๐‘ž, ๐‘˜, ๐‘ฅ > 0.

Equation 7.20 is the beta-burr XII distribution introduced by Paranaรญba et.al (2010). The

beta-burr XII distribution contains well-known distributions as special sub-models.

For ๐‘Ž = ๐‘ = 1, equation 7.20 gives the burr XII distribution

๐‘“ ๐‘ฅ; ๐‘, ๐‘ž, ๐‘˜ = ๐‘๐‘˜๐‘žโˆ’๐‘˜๐‘ฅ๐‘โˆ’1 1 + ๐‘ฅ

q

p

โˆ’๐‘˜โˆ’1

For ๐‘ = 1, equation 7.20 gives the exponentiated burr XII distribution

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘ž, ๐‘˜ = ๐‘Ž๐‘๐‘˜๐‘žโˆ’๐‘˜๐‘ฅ๐‘โˆ’1 1 โˆ’ 1 + ๐‘ฅ

q

p

โˆ’๐‘˜

aโˆ’1

1 + ๐‘ฅ

q

p

โˆ’๐‘˜โˆ’1

For ๐‘Ž = ๐‘ = 1, ๐‘ž = ๐œ†โˆ’1 and ๐‘˜ = 1 equation 7.20 gives the log logistic distribution

๐‘“ ๐‘ฅ; ๐‘, ๐‘ž, = ๐‘๐œ†๐‘๐‘ฅ๐‘โˆ’1 1 + ๐‘ฅ๐œ† p โˆ’2

Page 205: From The Classical Beta Distribution To Generalized Beta ...

200

For ๐‘Ž = ๐‘ = 1 equation 7.20 gives the beta-pareto type II

๐‘“ ๐‘ฅ; ๐‘, ๐‘˜, ๐‘ž, =๐‘๐‘˜

๐‘ž 1 +

๐‘ฅ

q

โˆ’๐‘˜๐‘โˆ’1

For ๐‘Ž = ๐‘ = ๐‘ = 1 equation 7.20 gives the beta-pareto type II

๐‘“ ๐‘ฅ; ๐‘˜, ๐‘ž, =๐‘˜

๐‘ž 1 +

๐‘ฅ

q

โˆ’๐‘˜โˆ’1

7.3.18 Beta-Dagum distribution (Condino and Domma (2010))

Condino and Domma (2010) introduced the beta-dagum distribution, based on a

composition of the classical beta distribution and the dagum distribution. They defined

and studied its properties.

The beta- dagum distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž

be the cdf of dagum distribution and

๐‘” ๐‘ฅ = ๐‘ ๐‘ž๐‘Ž๐‘ฅโˆ’๐‘โˆ’1

(1 + ๐‘ž๐‘ฅโˆ’๐‘)1+a

be the pdf of the dagum distribution.

By using equation 7.1, the density function of the beta- dagum distribution is given by

๐‘“ ๐‘ฅ =1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž aโˆ’1 1 โˆ’ 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž bโˆ’1

๐‘ ๐‘ž๐‘Ž๐‘ฅโˆ’๐‘โˆ’1

(1 + ๐‘ž๐‘ฅโˆ’๐‘)1+a______(7.21)

for ๐‘Ž, ๐‘, ๐‘, ๐‘ž, ๐‘ฅ > 0.

Equation 7.21 is the beta-dagum distribution introduced by Condino and Domma (2010).

The beta-dagum distribution contains the beta-fisk (log-logistic) distribution when

๐‘Ž = 1 and ๐‘ž =1

๐œ† and the dagum distribution when ๐‘Ž = ๐‘ = 1.

Page 206: From The Classical Beta Distribution To Generalized Beta ...

201

7.3.19 Beta-(fisk) log logistic distribution

This is a new distribution referred to by Paranaรญba et.al (2010) as a special sub-model of

beta-burr XII distribution. It can be constructed based on a composition of the classical

beta distribution and the log logistic (fisk) distribution as follows.

Let

๐บ ๐‘ฅ = ๐œ†๐‘ฅ p

1 + ๐œ†๐‘ฅ p

be the cdf of log logistic distribution and

๐‘” ๐‘ฅ =๐œ†๐‘ ๐œ†๐‘ฅ pโˆ’1

1 + ๐œ†๐‘ฅ p 2

be the pdf of the log logistic distribution.

By using equation 7.1, the density function of the beta- log logistic distribution is given

by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ๐œ† =

๐œ†๐‘ฅ p

1 + ๐œ†๐‘ฅ p aโˆ’1

1 โˆ’ ๐œ†๐‘ฅ p

1 + ๐œ†๐‘ฅ p bโˆ’1

๐œ†๐‘ ๐œ†๐‘ฅ pโˆ’1

1 + ๐œ†๐‘ฅ p 2

๐ต ๐‘Ž, ๐‘

= ๐œ†๐‘ ๐œ†๐‘ฅ apโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐œ†๐‘ฅ p a+b___________________________________________(7.22)

for ๐‘Ž, ๐‘, ๐‘, ๐œ†, ๐‘ฅ > 0.

Equation 7.22 is the beta-log logistic distribution referred to by Paranaรญba et.al (2010).

7.3.20 Beta-generalized half normal Distribution (Pescim, R.R, et.al (2009))

Pescim, R.R, et.al (2009) introduced the beta-generalized half normal distribution, based

on a composition of the classical beta distribution and the generalized half normal

distribution. They derived expansions for the cumulative distribution and density

functions. They also obtained formal expressions for the moments of the four-parameter

beta- generalized half normal distribution.

Page 207: From The Classical Beta Distribution To Generalized Beta ...

202

The beta- generalized half normal distribution is obtained as follows:

Let

๐บ ๐‘ฅ = 2๐œ™ ๐‘ฅ

๐œ

ฮฑ

โˆ’ 1 = erf ๐‘ฅ๐œ

๐›ผ

2

Where

๐œ™ ๐‘ฅ =1

2 1 + erf

๐‘ฅ

2 and erf ๐‘ฅ =

2

๐œ‹ ๐‘’๐‘ฅ๐‘ โˆ’๐‘ก2

๐‘ฅ

0

๐‘‘๐‘ก

be the cdf of generalized half normal distribution and

๐‘” ๐‘ฅ = 2

ฯ€ ฮฑ

๐‘ฅ

๐‘ฅ

๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ

๐Ÿ๐œถ

, 0 โ‰ค ๐‘ฅ

be the pdf of the generalized half normal distribution.

By using equation 7.1, the density function of the beta-generalized half normal

distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฮฑ, ๐œ = 2๐œ™

๐‘ฅ๐œ

ฮฑ

โˆ’ 1 aโˆ’1

2 โˆ’ 2๐œ™ ๐‘ฅ๐œ

ฮฑ

bโˆ’1

2ฯ€

ฮฑ๐‘ฅ

๐‘ฅ๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ

๐Ÿ๐œถ

๐ต ๐‘Ž, ๐‘

๐‘Ž, ๐‘, ฮฑ, ๐œ > 0 ______________________________________________________(7.23)

Equation 7.23 is the beta- generalized half normal distribution defined by Pescim, R.R,

et.al. (2009) It contains as special sub-models well known distributions.

for ฮฑ = 1, it reduces to beta half normal distribution given as

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐œ = 2๐œ™

๐‘ฅ๐œ โˆ’ 1

aโˆ’1

2 โˆ’ 2๐œ™ ๐‘ฅ๐œ

bโˆ’1 2

ฯ€๐‘’โˆ’

12 ๐‘ฅ๐œ ๐Ÿ

๐œ

๐ต ๐‘Ž, ๐‘

๐‘Ž, ๐‘, ๐œ > 0

for a = b = 1, it reduces to generalized half normal distribution given by

Page 208: From The Classical Beta Distribution To Generalized Beta ...

203

๐‘“ ๐‘ฅ; ฮฑ, ๐œ = 2

ฯ€ ฮฑ

๐‘ฅ

๐‘ฅ

๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ ๐Ÿ๐œถ

ฮฑ, ๐œ > 0

further if ฮฑ = 1, the generalized half normal distribution gives the half normal

distribution

๐‘“ ๐‘ฅ; ฮฑ, ๐œ = 2

ฯ€

๐‘’โˆ’12 ๐‘ฅ๐œ ๐Ÿ

๐œ

ฮฑ, ๐œ > 0

for ๐‘ = 1, it leads to the exponentiated generalized half normal distribution given as

๐‘“(๐‘ฅ; ๐‘Ž, ๐›ผ, ๐œ) = ๐‘Ž 2

ฯ€ ฮฑ

๐‘ฅ

๐‘ฅ

๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ ๐Ÿ๐œถ

2๐œ™ ๐‘ฅ

๐œ

ฮฑ

โˆ’ 1 aโˆ’1

7.4 Beta Exponentiated Generated Distributions

Beta exponentiated generated distributions are based on the power of the cdfs.

7.4.1 Exponentiated generated distribution

Let

๐น ๐‘ฅ = ๐บ ๐‘ฅ ๐›ผ

Where ๐บ ๐‘ฅ is the old or parent cdf and ๐น ๐‘ฅ is the new cdf

The new cdf in terms of the old is therefore given by

๐‘“(๐‘ฅ) = ๐›ผ ๐บ ๐‘ฅ ๐›ผโˆ’1๐‘”(๐‘ฅ)

The following are some of the examples of the exponentiated exponential distributions

Page 209: From The Classical Beta Distribution To Generalized Beta ...

204

7.4.2 Exponentiated exponential distribution (Gupta and Kundu (1999))

Let

๐‘” ๐‘ฅ =1

ฮฒ ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

, ฮฒ > 0, 0 < ๐‘ฅ < โˆž

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’(

๐‘ฅ๐›ฝ

)

๐น ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐›ผ

and

๐‘“ ๐‘ฅ =๐›ผ

ฮฒ 1 โˆ’ ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐›ผโˆ’1

๐‘’โˆ’

๐‘ฅ๐›ฝ

________________________(7.24)

Equation 7.24 is an example of the exponentiated generated distribution known as the

exponentiated exponential distribution which has been extensively covered by Gupta and

Kundu (1999).

7.4.3 Exponentiated Weibull distribution (Mudholkar et.al. (1995))

Let

๐‘” ๐‘ฅ = ๐‘

ฮฒp ๐‘ฅ๐‘โˆ’1๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐‘

๐น ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐‘

๐›ผ

๐‘“ ๐‘ฅ =๐›ผ

๐›ฝ๐‘ 1 โˆ’ ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

๐›ผโˆ’1

๐‘’โˆ’

๐‘ฅ๐›ฝ

๐‘

_______________________(7.25)

Equation 7.25 is the exponentiated Weibull distribution proposed by Mudholkar et.al.

(1995).

Page 210: From The Classical Beta Distribution To Generalized Beta ...

205

7.4.4 Exponentiated Pareto distribution (Gupta et.al (1998))

Let

๐‘” ๐‘ฅ = ๐‘qp๐‘๐‘ฅโˆ’๐‘โˆ’1 1 โˆ’ ๐‘ฅ

๐‘ž

โˆ’๐‘

๐‘โˆ’1

๐บ ๐‘ฅ = 1 โˆ’ ๐‘ฅ

๐‘ž โˆ’๐‘

๐‘

๐น ๐‘ฅ = 1 โˆ’ ๐‘ฅ

๐‘ž โˆ’๐‘

๐‘

๐›ผ

๐‘“ ๐‘ฅ = ๐›ผ 1 โˆ’ ๐‘ฅ

๐‘ž

โˆ’๐‘

๐‘

๐›ผโˆ’1๐‘๐‘

๐‘ž๐‘ฅโˆ’๐‘๐‘โˆ’1 ___________________________(7.26)

Equation 7.26 is the exponentiated Pareto distribution.

7.4.5 Beta exponentiated generated distribution

๐‘“ ๐‘ฅ =๐‘” ๐‘ฅ ๐›ผ ๐บ ๐‘ฅ ๐›ผโˆ’1 ๐บ ๐‘ฅ ๐›ผ ๐‘Žโˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐›ผ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

=๐‘” ๐‘ฅ ๐›ผ ๐บ ๐‘ฅ ๐‘Ž๐›ผโˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐›ผ ๐‘โˆ’1

๐ต(๐‘Ž, ๐‘), ๐‘Ž > 0, ๐›ผ > 0, ๐‘ > 0,

โˆ’โˆž < ๐‘ฅ < โˆž, 0 < ๐บ ๐‘ฅ ๐›ผ < 1

is the exponentiated generator distribution or exponentiated generated distribution. Below

are some of the examples on exponentiated generated distributions.

7.4.6 Generalized beta generated distributions

To obtain generalized beta distributions, we simply replace ๐บ ๐‘ฅ by [๐บ ๐‘ฅ ]๐‘ in the beta

generated distribution. Some of the many distributions which can arise within the

generalized beta generated class of distributions can be derived from an arbitrary parent

cumulative distribution function (cdf) ๐บ ๐‘ฅ , and the probability density function (pdf)

๐‘“ ๐‘ฅ of the new class of generalized beta distributions is defined as

Page 211: From The Classical Beta Distribution To Generalized Beta ...

206

๐‘“(๐บ ๐‘ฅ); ๐‘Ž, ๐‘ ) = ๐‘ ๐‘”(๐‘ฅ)[๐บ(๐‘ฅ)]๐‘Ž๐‘โˆ’1 1 โˆ’ ๐บ ๐‘ฅ

๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ______________(7.27)

where ๐‘Ž > 0, ๐‘ > 0 and ๐‘ > 0 are additional shape parameters which aim to introduce

skewness and to vary tail weight and ๐‘” ๐‘ฅ = ๐‘‘๐บ(๐‘ฅ)/๐‘‘๐‘ฅ. the new class of generalized

beta distributions generated by equation 7.27 includes as special sub-models the beta

generated distributions discussed in section 7.2 above. Eugene et.al (2002) introduced the

beta generated distributions for ๐‘ = 1 i.e

๐‘“(๐‘ฅ) =๐‘”(๐‘ฅ)[๐บ(๐‘ฅ)]๐‘Žโˆ’1 1 โˆ’ ๐บ ๐‘ฅ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

and Cordeiro and Castro (2010) introduced Kumaraswamy (Kw) generated distributions

for ๐‘Ž = 1 i. e

๐‘“(๐‘ฅ) = ๐‘ ๐‘ ๐‘”(๐‘ฅ)[๐บ(๐‘ฅ)]๐‘โˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐‘ ๐‘โˆ’1

Alternatively, the generalized beta generated distribution in equation 7.27 can be derived

from the generalized beta distribution of the first kind in equation 5.1 as follows:

Letting ๐‘ž = 1

๐‘” ๐‘ฆ = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’

๐‘ฆ1

๐‘

๐‘โˆ’1

. ๐‘” ๐‘ฅ

1๐‘Ž๐‘๐ต ๐‘Ž, ๐‘ , 0 < ๐‘ฆ๐‘ < 1, ๐‘Ž, ๐‘, ๐‘ > 0

Now consider

๐น(๐‘ฅ) = ๐‘ ๐‘ฆ๐‘๐‘Žโˆ’1 1 โˆ’ ๐‘ฆ๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

๐บ(๐‘ฅ)

0

๐‘‘๐‘ฆ

โˆด ๐‘“(๐‘ฅ) = ๐‘ ๐‘”(๐‘ฅ) ๐บ ๐‘ฅ

๐‘Ž๐‘โˆ’1 1 โˆ’ ๐บ ๐‘ฅ

๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ , โˆ’โˆž < ๐‘ฅ < โˆž, ๐‘Ž, ๐‘, ๐‘ > 0

7.4.7 Generalized beta exponential distribution (Barreto-Souza et al. (2010))

Let

๐บ ๐‘ฅ = 1 โˆ’ exp(โˆ’ฮปx)

be the cdf of exponential distribution with parameter ฮป, and

๐‘” ๐‘ฅ = ฮป exp(โˆ’ฮปx)

Page 212: From The Classical Beta Distribution To Generalized Beta ...

207

be the pdf of exponential distribution.

By using equation 7.27, the density function of the generalized beta-exponential

distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ฮป

= ๐‘ ฮป exp(โˆ’ฮปx)[1 โˆ’ exp(โˆ’ฮปx) ]๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ exp โˆ’ฮปx ๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ _________(7.28)

Equation 7.28 is the generalized beta-exponential distribution.

7.4.8 Generalized beta-Weibull distribution

Let

๐บ ๐‘ฅ = 1 โˆ’ eโˆ’

xฮฒ

c

be the cdf of Weibull distribution and

๐‘” ๐‘ฅ = ๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

be the pdf of Weibull distribution.

By using equation 7.27, the density function of the generalized beta-weibull distribution

is given by

๐‘“ ๐‘ฅ; ๐‘, ๐‘, ๐‘Ž, ๐‘, ๐›ฝ

=

๐‘ ๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

[1 โˆ’ eโˆ’

xฮฒ

c

]๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ eโˆ’

xฮฒ

c

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ___(7.29)

Equation 7.29 is the generalized beta-Weibull distribution.

Page 213: From The Classical Beta Distribution To Generalized Beta ...

208

7.4.9 Generalized beta-hyperbolic secant distribution

Let

๐บ ๐‘ฅ =2

ฯ€arctan ๐‘’

๐‘ฅโˆ’๐œ‡๐œ

be the cdf of the hyperbolic secant distribution and

๐‘” ๐‘ฅ =1

ฯ‚ฯ€Cosh ๐‘ฅ โˆ’ ๐œ‡

๐œ

be the pdf of the hyperbolic secant distribution

By using equation 7.27, the density function of the generalized beta-hyperbolic secant is

given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ฮผ, ฯ‚, ฯ€ = ๐‘

2ฯ€ arctan ๐‘’

๐‘ฅโˆ’๐œ‡๐œ

๐‘Ž๐‘โˆ’1

1 โˆ’ 2ฯ€ arctan ๐‘’

๐‘ฅโˆ’๐œ‡๐œ

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฯ‚ฯ€ cosh ๐‘ฅ โˆ’ ๐œ‡

๐œ ___(7.30)

๐‘Ž > 0, ๐‘ > 0, ฮผ > 0, ๐œ > 0 and ๐‘ฅ โˆˆ โ„

Equation 7.30 is the generalized beta-hyperbolic secant distribution. If ฮผ = 0 and ฯ‚ = 1,

the generalized beta-hyperbolic secant distribution reduces to the standard beta-

hyperbolic distribution in equation 7.7.

7.4.10 Generalized beta-normal distribution

The generalized beta-normal distribution is obtained as follows:

Let

๐บ ๐‘ฅ = ฮฆ ๐‘ฅ โˆ’ ๐œ‡

๐œ

be the cumulative density function of normal distribution with parameters ๐œ‡ and ๐œ, and

๐‘” ๐‘ฅ = ๐œ™ ๐‘ฅ โˆ’ ๐œ‡

๐œ

be the probability density function of the normal distribution.

Page 214: From The Classical Beta Distribution To Generalized Beta ...

209

By using equation 7.27, the density function of the generalized beta-normal distribution is

given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐œ‡, ๐œ, ๐‘ =๐‘๐œโˆ’1[ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ ]๐‘Ž๐‘โˆ’1 1 โˆ’ ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ

p

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐œ™

๐‘ฅ โˆ’ ๐œ‡

๐œ ___(7.31)

Where ๐‘Ž > 0, ๐‘ > 0, ๐œ > 0, ๐‘ > 0 ๐œ‡ โˆˆ โ„ ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ โ„

Equation 7.31 is the generalized beta-normal distribution. If ฮผ = 0 , ฯ‚ = 1 and ๐‘ = 1 ,

the generalized beta-normal distribution reduces to the standard beta-normal distribution

proposed by Eugene et.al (2002). If ฮผ = 0, ฯ‚ = 1, ๐‘ = 1 and ๐‘Ž๐‘ = 2 the generalized

beta-normal distribution coincides with the skew-normal distribution.

7.4.11 Generalized beta-log normal distribution

The generalized beta- log normal distribution is obtained as follows:

Let

๐บ ๐‘ฅ = ฮฆ log ๐‘ฅ

be the cumulative density function of standard log normal distribution, and

๐‘” ๐‘ฅ =๐œ™ log ๐‘ฅ

๐‘ฅ

be the probability density function of the standard log normal distribution.

By using equation 7.27, the density function of the generalized beta-log normal

distribution is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘ =๐‘๐œ™ log ๐‘ฅ [ฮฆ log๐‘ฅ ]๐‘Ž๐‘โˆ’1 1 โˆ’ ฮฆ log ๐‘ฅ ๐‘ ๐‘โˆ’1

๐‘ฅ๐ต ๐‘Ž, ๐‘ _______(7.32)

Where ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0 and ๐‘ฅ โˆˆ โ„

Equation 7.32 is the generalized beta-log normal distribution.

Page 215: From The Classical Beta Distribution To Generalized Beta ...

210

7.4.12 Generalized beta-Gamma distribution

The generalized beta-gamma distribution is obtained as follows:

Let

๐บ ๐‘ฅ =ฮ“xฮป ฯ

ฮ“ ฯ

be the cumulative density function of gamma distribution, and

๐‘” ๐‘ฅ = x

ฮป

ฯโˆ’1

eโˆ’xฮป

be the probability density function of the gamma distribution.

By using equation 7.27, the density function of the generalized beta-gamma distribution

is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ฯ, ฮป =

xฮป

ฯโˆ’1

eโˆ’xฮป

ฮ“xฮป ฯ

ฮ“ ฯ

๐‘Ž๐‘โˆ’1

1 โˆ’ ฮ“xฮป ฯ

ฮ“ ฯ

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ___(7.33)

Where ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, ฯ > 0, ๐œ† > 0 and ๐‘ฅ โˆˆ โ„

Equation 7.33 is the generalized beta-gamma distribution.

7.4.13 Generalized beta-Frรจchet distribution

The generalized beta- Frรจchet distribution is obtained as follows:

Let

๐บ ๐‘ฅ = exp โˆ’ x

ฯ‚

โˆ’ฮป

be the cumulative density function of Frรจchet distribution, and

๐‘” ๐‘ฅ =ฮป

ฯ‚exp โˆ’

x

ฯ‚

โˆ’ฮป

๐‘ฅ๐œ†โˆ’1

Page 216: From The Classical Beta Distribution To Generalized Beta ...

211

be the probability density function of the Frรจchet distribution.

By using equation 7.27, the density function of the generalized beta-Frรจchet distribution

is given by

๐‘“ ๐‘ฅ; ๐‘Ž, ๐‘, ๐‘, ฯ, ฮป

=

๐‘ฮปฯ‚ exp โˆ’

xฯ‚

โˆ’ฮป

๐‘ฅ๐œ†โˆ’1 exp โˆ’ xฯ‚

โˆ’ฮป

๐‘Ž๐‘โˆ’1

1 โˆ’ exp โˆ’ xฯ‚

โˆ’ฮป

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ___(7.34)

Where ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, ฯ > 0, ๐œ† > 0 and ๐‘ฅ โˆˆ โ„

Equation 7.34 is the generalized beta-Frรจchet distribution.

Page 217: From The Classical Beta Distribution To Generalized Beta ...

212

8 Chapter VIII: Generalized Beta Distributions

Based on Special Functions

8.1 Introduction

Beta, F, Gamma functions are among the many special functions. Most of these special

functions can be expressed as hypergeometric function. This chapter looks at the

generalized beta distributions based on special functions such as the hypergeometric

distribution function, the confluent hypergeometric function, gauss Hypergeometric

function among others.

8.2 Confluent Hypergeometric Function

The confluent hypergeometric (Kummerโ€˜s) function is denoted by the symbol

1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ and represent the series

1๐น1 ๐‘Ž; ๐‘, ๐‘ฅ = 1 +๐‘Ž

๐‘

๐‘ฅ

1!+

๐‘Ž ๐‘Ž + 1

๐‘ ๐‘ + 1

๐‘ฅ2

2!+

๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2)

๐‘ ๐‘ + 1 (๐‘ + 2)

๐‘ฅ3

3!+ โ‹ฏ

= ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

for ๐‘ โ‰  0, โˆ’1, โˆ’2, โ€ฆ It can simply be expressed in the following form

1๐น1 ๐‘Ž; ๐‘, ๐‘ฅ = ๐‘Ž n ๐‘ฅ๐‘›

๐‘ ๐‘› ๐‘›!

โˆž

n=0

, c โ‰  0, โˆ’1, โˆ’2, โ€ฆ

where ๐‘Ž n is the Pochhammerโ€˜s symbol defined by

๐‘Ž n = a a + 1 โ€ฆ a + n โˆ’ 1

=ฮ“(a + 1)

ฮ“(a); n is a positive integer

๐‘Ž 0 = 1

If a is a non-positive integer, the series terminates.

The integral representation is given as

1๐น1 ๐‘Ž; ๐‘, ๐‘ฅ =ฮ“(c)

ฮ“(a)ฮ“(c โˆ’ a) ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข ๐‘‘๐‘ข

1

0

_______________________(8.1)

Page 218: From The Classical Beta Distribution To Generalized Beta ...

213

where ๐‘ > ๐‘Ž > 0

We verify that equation 8.1 is a distribution

๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข ๐‘‘๐‘ข1

0

= ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1 (๐‘ฅ๐‘ข)๐‘›

๐‘›!

โˆž

๐‘›=0

๐‘‘๐‘ข1

0

= 1

๐‘›! ๐‘ฅ๐‘›๐‘ข๐‘›+๐‘Žโˆ’1

1

0

1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1

โˆž

๐‘›=0

๐‘‘๐‘ข

= ๐‘ฅ๐‘›

๐‘›! ๐‘ข๐‘›+๐‘Žโˆ’1

1

0

1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1

โˆž

๐‘›=0

๐‘‘๐‘ข

= ๐‘ฅ๐‘›

๐‘›!B(n + a, c โˆ’ a)

โˆž

๐‘›=0

โŸน ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข ๐‘‘๐‘ข =1

0

๐‘ฅ๐‘›

๐‘›!

ฮ“(n + a)ฮ“(c โˆ’ a)

ฮ“(n + c)

โˆž

๐‘›=0

but ฮ“ n + a = (n + a โˆ’ 1)ฮ“ n + a โˆ’ 1

= a a + 1 a + 2 โ€ฆ n + a โˆ’ 1 ฮ“(a)

โŸน ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข ๐‘‘๐‘ข =1

0

a a + 1 a + 2 โ€ฆ n + a โˆ’ 1 ฮ“(a)ฮ“(c โˆ’ a)

c c + 1 c + 2 โ€ฆ n + c โˆ’ 1 ฮ“(c)

๐‘ฅ๐‘›

๐‘›!

= 1๐น1 ๐‘Ž; ๐‘, ๐‘ฅ B(a, c โˆ’ a)

Thus

1๐น1 ๐‘Ž; ๐‘, ๐‘ฅ =1

๐ต(๐‘Ž, ๐‘ โˆ’ ๐‘Ž) ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข ๐‘‘๐‘ข

1

0

8.3 The Differential Equations

The first and second order differential equations can be expressed as follows;

๐‘‘

๐‘‘๐‘ฅ 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ = 0 +

๐‘Ž

๐‘

1

1!+

๐‘Ž ๐‘Ž + 1

๐‘ ๐‘ + 1

2๐‘ฅ

2!+

๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2)

๐‘ ๐‘ + 1 (๐‘ + 2)

3๐‘ฅ

3!+ โ‹ฏ

=๐‘Ž

๐‘+

๐‘Ž

๐‘

๐‘Ž + 1

๐‘ + 1

๐‘ฅ

1!+

๐‘Ž

๐‘

๐‘Ž + 1 (๐‘Ž + 2)

๐‘ + 1 (๐‘ + 2)

๐‘ฅ2

2!+ โ‹ฏ

=๐‘Ž

๐‘ 1 +

๐‘Ž + 1

๐‘ + 1

๐‘ฅ

1!+

๐‘Ž + 1 ๐‘Ž + 2

๐‘ + 1 ๐‘ + 2

๐‘ฅ2

2!+ โ‹ฏ

Page 219: From The Classical Beta Distribution To Generalized Beta ...

214

=๐‘Ž

๐‘ 1๐น1 ๐‘Ž + 1; ๐‘ + 1; ๐‘ฅ

๐‘‘2

๐‘‘๐‘ฅ2 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ =

๐‘Ž

๐‘ 0 +

๐‘Ž + 1

๐‘ + 1 +

๐‘Ž + 1 ๐‘Ž + 2

๐‘ + 1 ๐‘ + 2

๐‘ฅ

1!+ โ‹ฏ

=๐‘Ž

๐‘

๐‘Ž + 1

๐‘ + 1 1 +

๐‘Ž + 2

๐‘ + 2

๐‘ฅ

1!+ โ‹ฏ

=๐‘Ž ๐‘Ž + 1

๐‘ ๐‘ + 1 1๐น1 ๐‘Ž + 2; ๐‘ + 2; ๐‘ฅ

In applied mathematics, special functions are used in solving differential equation. Thus

1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ is a solution to a certain differential equation which is derived as follows:-

Using the operator

๐›ฟ = ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ

Therefore

๐›ฟ๐‘ฅ๐‘› = ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ๐‘ฅ๐‘› = ๐‘ฅ๐‘›๐‘ฅ๐‘›โˆ’1 = ๐‘›๐‘ฅ๐‘›

๐›ฟ + ๐‘ โˆ’ 1 ๐‘ฅ๐‘› = ๐›ฟ๐‘ฅ๐‘› + (๐‘ โˆ’ 1)๐‘ฅ๐‘›

โˆด ๐›ฟ + ๐‘ โˆ’ 1 ๐‘ฅ๐‘› = (๐‘› + ๐‘ โˆ’ 1)๐‘ฅ๐‘›

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 ๐‘ฅ๐‘› = ๐›ฟ(๐‘› + ๐‘ โˆ’ 1)๐‘ฅ๐‘›

= ๐›ฟ๐‘ฅ๐‘› (๐‘› + ๐‘ โˆ’ 1)

= ๐‘›๐‘ฅ๐‘› (๐‘› + ๐‘ โˆ’ 1)

โˆด ๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 ๐‘ฅ๐‘› = ๐‘›(๐‘› + ๐‘ โˆ’ 1)๐‘ฅ๐‘›

๐›ฟ + ๐‘Ž ๐›ฟ + ๐‘ ๐‘ฅ๐‘› = ๐›ฟ + ๐‘Ž ๐›ฟ๐‘ฅ๐‘› + ๐‘๐‘ฅ๐‘›

= ๐›ฟ + ๐‘Ž ๐‘›๐‘ฅ๐‘› + ๐‘๐‘ฅ๐‘›

= ๐›ฟ + ๐‘Ž ๐‘›๐‘ฅ๐‘› + ๐›ฟ + ๐‘Ž ๐‘๐‘ฅ๐‘›

= ๐›ฟ๐‘›๐‘ฅ๐‘› + ๐‘Ž๐‘›๐‘ฅ๐‘› + ๐›ฟ๐‘๐‘ฅ๐‘› + ๐‘Ž๐‘๐‘ฅ๐‘›

= ๐‘›2๐‘ฅ๐‘› + ๐‘Ž๐‘›๐‘ฅ๐‘› + ๐‘๐‘›๐‘ฅ๐‘› + ๐‘Ž๐‘๐‘ฅ๐‘›

= (๐‘›2 + ๐‘Ž๐‘› + ๐‘๐‘› + ๐‘Ž๐‘)๐‘ฅ๐‘›

= (๐‘›(๐‘› + ๐‘Ž) + ๐‘(๐‘› + ๐‘Ž))๐‘ฅ๐‘›

โˆด ๐›ฟ + ๐‘Ž ๐›ฟ + ๐‘ ๐‘ฅ๐‘› = ๐‘› + ๐‘Ž (๐‘› + ๐‘) ๐‘ฅ๐‘›

Page 220: From The Classical Beta Distribution To Generalized Beta ...

215

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ = ๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

= ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

= ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)๐‘› ๐‘› + ๐‘ โˆ’ 1

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

= ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 2)

๐‘ฅ๐‘›

(๐‘› โˆ’ 1)!

โˆž

n=0

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘› โˆ’ 1)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 2)

๐‘ฅ๐‘›โˆ’1

(๐‘› โˆ’ 1)!

โˆž

n=1

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 (๐‘Ž + 2) โ€ฆ (๐‘Ž + ๐‘›)

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

n=1

by replacing n with n+1

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 ๐‘Ž + 2 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ ๐‘ + ๐‘› โˆ’ 1 (๐‘Ž + ๐‘›)

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 ๐‘Ž + 2 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ ๐‘ + ๐‘› โˆ’ 1 (๐‘Ž + ๐›ฟ)

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

= ๐‘ฅ(๐‘Ž + ๐›ฟ) ๐‘Ž ๐‘Ž + 1 ๐‘Ž + 2 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 ๐‘ + 2 โ€ฆ ๐‘ + ๐‘› โˆ’ 1

๐‘ฅ๐‘›

๐‘›!

โˆž

n=0

โˆด ๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ = ๐‘ฅ(๐‘Ž + ๐›ฟ) 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ

i.e

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 ๐‘ฆ = ๐‘ฅ(๐‘Ž + ๐›ฟ)๐‘ฆ

where

๐‘ฆ = 1๐น1 ๐‘Ž; ๐‘; ๐‘ฅ

โˆด [๐›ฟ2 + ๐›ฟ(๐‘ โˆ’ 1)]๐‘ฆ = ๐‘ฅ(๐‘Ž + ๐›ฟ)๐‘ฆ

โŸน ๐›ฟ2๐‘ฆ + [๐›ฟ ๐‘ โˆ’ 1 โˆ’ ๐‘ฅ(๐‘Ž + ๐›ฟ)]๐‘ฆ = 0

โˆด ๐›ฟ2๐‘ฆ + ๐‘ โˆ’ 1 ๐›ฟ๐‘ฆ โˆ’ ๐‘ฅ๐‘Ž๐‘ฆ โˆ’ ๐‘ฅ๐›ฟ๐‘ฆ = 0

Page 221: From The Classical Beta Distribution To Generalized Beta ...

216

โˆด ๐›ฟ2๐‘ฆ + ๐‘ โˆ’ 1 โˆ’ ๐‘ฅ ๐›ฟ๐‘ฆ โˆ’ ๐‘ฅ๐‘Ž๐‘ฆ = 0

๐›ฟ(๐›ฟ๐‘ฆ) + ๐‘ โˆ’ 1 โˆ’ ๐‘ฅ ๐›ฟ๐‘ฆ โˆ’ ๐‘ฅ๐‘Ž๐‘ฆ = 0

๐›ฟ ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ๐‘ฆ + ๐‘ โˆ’ 1 โˆ’ ๐‘ฅ ๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ๐‘ฆ โˆ’ ๐‘ฅ๐‘Ž๐‘ฆ = 0

๐‘ฅ๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ๐‘ฆ + (๐‘ โˆ’ 1 โˆ’ ๐‘ฅ)๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฅ๐‘Ž๐‘ฆ = 0

โˆด ๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ๐‘ฆ + (๐‘ โˆ’ 1 โˆ’ ๐‘ฅ)

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘Ž๐‘ฆ = 0

๐‘ฅ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2+

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ (๐‘ โˆ’ 1 โˆ’ ๐‘ฅ)

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘Ž๐‘ฆ = 0

๐‘ฅ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2+ (๐‘ โˆ’ ๐‘ฅ)

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘Ž๐‘ฆ = 0

Which is the Kummerโ€˜s differential equation. The confluent hypergeometric function

satisfies this equation.

The confluent hypergeometric distribution due to Gordy (1988a) is a special case of the

confluent hypergeometric distribution given in equation 8.1 where

๐‘ = ๐‘Ž + ๐‘, ๐‘ข = ๐‘ฅ and ๐‘ฅ = โˆ’๐›พ such that

1๐น1 ๐‘Ž; ๐‘Ž + ๐‘, โˆ’๐›พ =ฮ“(a + b)

ฮ“(a)ฮ“(a + b โˆ’ a) ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘Ž+๐‘โˆ’๐‘Žโˆ’1๐‘’โˆ’๐›พ๐‘ฅ ๐‘‘๐‘ฅ

1

0

1๐น1 ๐‘Ž; ๐‘Ž + ๐‘, ๐‘ฅ =ฮ“(a + b)

ฮ“(a)ฮ“(b) ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1๐‘’โˆ’๐›พ๐‘ฅ ๐‘‘๐‘ฅ

1

0

1 = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1๐‘’โˆ’๐›พ๐‘ฅ ๐‘‘๐‘ฅ

1๐น1 ๐‘Ž; ๐‘Ž + ๐‘, โˆ’๐›พ B(a, b)

1

0

๐‘“ ๐‘ฅ =๐‘ฅ๐‘Žโˆ’1[1 โˆ’ ๐‘ฅ]๐‘โˆ’1๐‘’ โˆ’๐›พ๐‘ฅ

๐ต ๐‘Ž, ๐‘ 1๐น1(๐‘Ž; ๐‘Ž + ๐‘; โˆ’๐›พ), _________________________________________(8.2)

for 0 < x < 1, a > 0, b > 0, โˆ’โˆž < ๐›พ < โˆž and 1๐น1 is the confluent hypergeometric function.

If ๐›พ = 0, then the moment generating function denoted by

๐‘€ ๐‘ก =๐ต ๐‘Ž โˆ’ ๐‘ก, ๐‘ 1๐น1 ๐‘Ž โˆ’ ๐‘ก; ๐‘Ž + ๐‘ โˆ’ ๐‘ก; โˆ’๐›พ

๐ต ๐‘Ž, ๐‘ 1๐น1 ๐‘Ž; ๐‘Ž + ๐‘; โˆ’๐›พ _______________________(8.3)

reduces to the standard beta pdf given by equation 2.1

Page 222: From The Classical Beta Distribution To Generalized Beta ...

217

8.4 Gauss Hypergeometric Function.

The Gaussian hypergeometric function denoted by the symbol 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ represents

the series

2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ = 1 +๐‘Ž๐‘

๐‘

๐‘ฅ

1!+

๐‘Ž ๐‘Ž + 1 ๐‘ ๐‘ + 1

๐‘ ๐‘ + 1

๐‘ฅ2

2!+ โ‹ฏ

where ๐‘ โ‰  0, โˆ’1, โˆ’2, โ€ฆ

It can simply be expressed in the following form;

2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ = ๐‘Ž n ๐‘ n๐‘ฅ๐‘›

๐‘ ๐‘› ๐‘›!

โˆž

n=0

, c โ‰  0, โˆ’1, โˆ’2, โ€ฆ ______________(8.4)

where ๐‘Ž n is the Pochhammerโ€˜s symbol defined by

๐‘Ž n = a a + 1 โ€ฆ a + r โˆ’ 1

=ฮ“(a + 1)

ฮ“(a); (n is a positive integer)

๐‘Ž 0 = 1

If a is a non-positive integer, then ๐‘Ž n is zero for n > โˆ’๐‘Ž, and the series terminates.

The Eulerโ€˜s integral representation is given as

2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ =ฮ“(c)

ฮ“(a)ฮ“(c โˆ’ a) ๐‘ข๐‘Žโˆ’1(1 โˆ’ ๐‘ข)๐‘โˆ’๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ๐‘ข)โˆ’๐‘๐‘‘๐‘ข

1

0

______________(8.5)

where ๐‘ > ๐‘Ž > 0

8.5 The Differential Equations

The first and second order differentials can be expressed as follows;

๐‘‘

๐‘‘๐‘ฅ 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ =

๐‘Ž๐‘

๐‘+

๐‘Ž ๐‘Ž + 1 ๐‘ ๐‘ + 1

๐‘ ๐‘ + 1 ๐‘ฅ + โ‹ฏ

=๐‘Ž๐‘

๐‘ 1 +

๐‘Ž + 1 ๐‘ + 1

๐‘ + 1 ๐‘ฅ +

๐‘Ž + 1 ๐‘Ž + 2 ๐‘ + 1 (๐‘ + 2)

๐‘ + 1 (๐‘ + 2)

๐‘ฅ2

2!โ€ฆ

=๐‘Ž๐‘

๐‘ 2๐น1 ๐‘Ž + 1, ๐‘ + 1; ๐‘ + 1; ๐‘ฅ

Page 223: From The Classical Beta Distribution To Generalized Beta ...

218

๐‘‘2

๐‘‘๐‘ฅ2 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ =

๐‘Ž๐‘

๐‘ ๐‘Ž + 1 ๐‘ + 1

๐‘ + 1 +

๐‘Ž + 1 ๐‘Ž + 2 ๐‘ + 1 (๐‘ + 2)

๐‘ + 1 (๐‘ + 2)๐‘ฅ + โ‹ฏ

=๐‘Ž๐‘

๐‘

๐‘Ž + 1 ๐‘ + 1

๐‘ + 1 1 +

๐‘Ž + 2 (๐‘ + 2)

(๐‘ + 2)๐‘ฅ + โ‹ฏ

=๐‘Ž ๐‘Ž + 1 ๐‘ ๐‘ + 1

๐‘ ๐‘ + 1 2๐น1 ๐‘Ž + 2, ๐‘ + 2; ๐‘ + 2; ๐‘ฅ

We now wish to derive a differential equation whose solution is 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ

Let

๐›ฟ = ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ

then

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ

= ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1

๐‘ฅ๐‘›

๐‘›!

โˆž

๐‘›=0

= ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 2)

๐‘ฅ๐‘›

(๐‘› โˆ’ 1)!

โˆž

๐‘›=0

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 2)

๐‘ฅ๐‘›โˆ’1

(๐‘› โˆ’ 1)!

โˆž

๐‘›=1

replace n by n+1. Then

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1 ๐‘Ž + ๐‘› (๐‘ + ๐‘›)

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

๐‘›=1

= ๐‘ฅ ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1 ๐‘Ž + ๐›ฟ (๐‘ + ๐›ฟ)

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

๐‘›=0

= ๐‘ฅ ๐‘Ž + ๐›ฟ (๐‘ + ๐›ฟ) ๐‘Ž ๐‘Ž + 1 โ€ฆ ๐‘Ž + ๐‘› โˆ’ 1 ๐‘ ๐‘ + 1 โ€ฆ ๐‘ + ๐‘› โˆ’ 1

๐‘ ๐‘ + 1 โ€ฆ (๐‘ + ๐‘› โˆ’ 1)

๐‘ฅ๐‘›

๐‘›!

โˆž

๐‘›=0

โˆด ๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ = ๐‘ฅ ๐‘Ž + ๐›ฟ (๐‘ + ๐›ฟ) 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ

๐›ฟ ๐›ฟ + ๐‘ โˆ’ 1 ๐น = ๐‘ฅ ๐‘Ž + ๐›ฟ (๐‘ + ๐›ฟ) ๐น

where

Page 224: From The Classical Beta Distribution To Generalized Beta ...

219

๐น = 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ and ๐›ฟ = ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ

โˆด ๐›ฟ ๐›ฟ๐น + ๐‘ โˆ’ 1 ๐น = ๐‘ฅ ๐‘Ž + ๐›ฟ (๐‘๐น + ๐›ฟ๐น)

โŸน ๐›ฟ ๐‘ฅ๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘ โˆ’ 1 ๐น = ๐‘ฅ ๐‘Ž + ๐›ฟ ๐‘๐น + ๐‘ฅ

๐‘‘

๐‘‘๐‘ฅ๐น

โŸน ๐›ฟ ๐‘ฅ๐‘‘๐น

๐‘‘๐‘ฅ + ๐‘ โˆ’ 1 ๐›ฟ๐น = ๐‘ฅ ๐‘Ž + ๐›ฟ ๐‘๐น + ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ

โŸน ๐‘ฅ๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ + ๐‘ โˆ’ 1 ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ= ๐‘ฅ ๐‘Ž + ๐›ฟ ๐‘๐น + ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ

โŸน๐‘‘

๐‘‘๐‘ฅ ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ + ๐‘ โˆ’ 1

๐‘‘๐น

๐‘‘๐‘ฅ= ๐‘Ž + ๐›ฟ ๐‘๐น + ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ

๐‘ฅ๐‘‘2๐น

๐‘‘๐‘ฅ2 +

๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘

๐‘‘๐น

๐‘‘๐‘ฅโˆ’

๐‘‘๐น

๐‘‘๐‘ฅ= ๐‘Ž๐‘๐น + ๐‘Ž๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘๐›ฟ๐น + ๐›ฟ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ

โˆด ๐‘ฅ๐‘‘2๐น

๐‘‘๐‘ฅ2 + ๐‘

๐‘‘๐น

๐‘‘๐‘ฅ= ๐‘Ž๐‘๐น + ๐‘Ž๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅ

= ๐‘Ž๐‘๐น + (๐‘Ž + ๐‘)๐‘ฅ๐‘‘๐น

๐‘‘๐‘ฅ+ ๐‘ฅ ๐‘ฅ

๐‘‘2๐น

๐‘‘๐‘ฅ2+

๐‘‘๐น

๐‘‘๐‘ฅ

โˆด ๐‘ฅ 1 โˆ’ ๐‘ฅ ๐‘‘2๐น

๐‘‘๐‘ฅ2 + ๐‘ โˆ’ ๐‘Ž๐‘ฅ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅโˆ’ ๐‘Ž๐‘๐น = 0

โˆด ๐‘ฅ 1 โˆ’ ๐‘ฅ ๐‘‘2๐น

๐‘‘๐‘ฅ2 + ๐‘ โˆ’ (๐‘Ž + ๐‘ + 1)๐‘ฅ

๐‘‘๐น

๐‘‘๐‘ฅโˆ’ ๐‘Ž๐‘๐น = 0

This is the differential equation whose solution is 2๐น1 ๐‘Ž, ๐‘; ๐‘; ๐‘ฅ i.e the Gaussian

hypergeometric function satisfies this second order linear differential equation.

The Gauss hypergeometric distribution due to Armero and Bayarri (1994) is a special

case of the Gaussian hypergeometric distribution given in equation 8.5 where

๐‘ = ๐‘Ž + ๐‘, ๐‘ฅ = โˆ’๐‘ง , ๐‘ข = ๐‘ฅ, and โˆ’๐‘ = ๐›พ such that

2๐น1 ๐›พ, ๐‘; ๐‘Ž + ๐‘; โˆ’๐‘ง =ฮ“(a + b)

ฮ“(a)ฮ“(a + b โˆ’ a) ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘Ž+๐‘โˆ’๐‘Žโˆ’1(1 + ๐‘ง๐‘ฅ)โˆ’๐‘๐‘‘๐‘ฅ

1

0

1 = ๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1(1 + ๐‘ง๐‘ฅ)๐›พ๐‘‘๐‘ฅ

2๐น1 ๐›พ, ๐‘; ๐‘Ž + ๐‘; โˆ’๐‘ง B(a, b)

1

0

Page 225: From The Classical Beta Distribution To Generalized Beta ...

220

๐‘“ ๐‘ฅ =๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1/(1 + ๐‘ง๐‘ฅ)๐›พ

๐ต ๐‘Ž, ๐‘ 2๐น1(๐›พ, ๐‘Ž; ๐‘Ž + ๐‘; โˆ’๐‘ง)_________________(8.6)

for 0 < x < 1, a > 0, b > 0, and โˆ’โˆž < ๐›พ < โˆž. If ๐›พ = 0, then equation 8.6 reduces to beta of

the first kind given by equation 2.1

Nadarajah and Kotz (2004) also studied the beta distribution based on the Gauss

hypergeometric function. They defined the distribution as follows:

๐‘“ ๐‘ฅ =๐‘๐ต ๐‘Ž, ๐‘

๐ต ๐‘Ž, ๐‘ + ๐›พ ๐‘ฅ๐‘Ž+๐‘โˆ’1 2๐น1(1 โˆ’ ๐›พ, ๐‘Ž; ๐‘Ž + ๐‘; ๐‘ฅ), _________________(8.7)

When ๐‘ = 0 in equation 8.7, then it reduces to the Classical beta distribution with

parameters a and ๐›พ.

8.6 Appell Function

Nadarajah and Kotz (2006) introduced a beta function based on the Appell function. The

distribution is given by

๐‘“ ๐‘ฅ =๐ถ๐‘ฅ๐›ผโˆ’1(1 โˆ’ ๐‘ฅ)๐›ฝโˆ’1

(1 โˆ’ ๐‘ข๐‘ฅ)๐œŒ (1 โˆ’ ๐‘ฃ๐‘ฅ)๐œ†, ________________________________________(8.8)

for 0 < ๐‘ฅ < 1, ๐›ผ > 0, ๐›ฝ > 0, ๐œŒ > 0, ๐œ† > 0, โˆ’1 < ๐‘ข < 1, โˆ’1 < ๐‘ฃ < 1

where C denotes the normalizing constant given by

1

๐ถ= ๐ต ๐›ผ, ๐›ฝ ๐น1(๐›ผ, ๐œŒ, ๐œ†, ๐›ผ + ๐›ฝ; ๐‘ข, ๐‘ฃ)

and ๐น1 denotes the Appell function of the first kind. This distribution is flexible and

contains several of the known generalizations of the Classical beta distribution as

particular cases. The Classical beta distribution is the particular case for either ๐œŒ =

0 and ๐œ† = 0 or ๐œŒ = 0 and ๐‘ฃ = 0 or ๐‘ข = 0 and ๐œ† = 0 or ๐‘ข = 0 and ๐‘ฃ = 0.Libby and

Novickโ€˜s beta distribution in equation 4.1 is the particular case for either ๐œŒ = ๐›ผ +

๐›ฝ and ๐œ† = 0 or ๐‘ข = ๐‘ฃ and ๐œŒ + ๐œ† = ๐›ผ + ๐›ฝ. Armero and Bayarriโ€˜s Gauss hypergeometric

distribution in equation 8.6 is the particular case for either ๐œŒ = 0 or ๐œ† = 0

Page 226: From The Classical Beta Distribution To Generalized Beta ...

221

8.7 Nadarajah and Kotzโ€™s Power Beta Distribution

The generalization due to Nadarajah and Kotz (2004) is based on the basic

characterization that if X and Y are independent gamma distributed random variables

with common scale parameter then the ratio X/(X+Y) is a beta distribution of the first

kind. If one consider the distribution of

๐‘Š = ๐‘‹๐‘ / (๐‘‹๐‘ + ๐‘Œ๐‘ ) ๐ถ > 0, referred to as power beta, then the pdf and cdf of W can be

expressed as

๐‘“(๐‘ค) =๐‘คโˆ’ 1+๐‘/๐‘ 1 โˆ’ ๐‘ค ๐‘/๐‘โˆ’1

๐‘๐‘๐ต(๐‘Ž, ๐‘) ๐‘ 2๐น1 ๐‘, ๐‘Ž + ๐‘; ๐‘ + 1; โˆ’

1 โˆ’ ๐‘ค

๐‘ค

1๐‘

โˆ’ 1 โˆ’ ๐‘ค

๐‘ค

1๐‘

2๐น1 ๐‘ + 1, ๐‘Ž + ๐‘ + 1; ๐‘ + 2; โˆ’ 1 โˆ’ ๐‘ค

๐‘ค

1๐‘

and

๐น ๐‘ค = 1 โˆ’1

๐‘๐ต(๐‘Ž, ๐‘)

1 โˆ’ ๐‘ค

๐‘ค

๐‘/๐‘

2๐น1 ๐‘, ๐‘Ž + ๐‘; ๐‘ + 1; โˆ’ 1 โˆ’ ๐‘ค

๐‘ค

1/๐‘

.

Simpler expressions can be obtained for integer values of a, b and c.

8.8 Compound Confluent Hypergeometric Function

The compound confluent hypergeometric distribution due to Gordy (1988b) is given by

๐‘“ ๐‘ฅ =๐‘ฅ๐‘Žโˆ’1[1 โˆ’ ๐‘ฃ๐‘ฅ]๐‘โˆ’1{๐œƒ + (1 โˆ’ ๐œƒ)๐‘ฃ๐‘ฅ}โˆ’๐‘Ÿ๐‘’ โˆ’๐‘ ๐‘ฅ

๐ต ๐‘Ž, ๐‘ ๐‘ฃโˆ’๐‘Ž exp โˆ’๐‘ ๐‘ฃ ฮฆ1(๐‘, ๐‘Ÿ, ๐‘Ž + ๐‘,

๐‘ ๐‘ฃ , 1 โˆ’ ๐œƒ)

, ______________________(8.9)

for 0 < a < 1, b > 0, โˆ’โˆž < ๐‘Ÿ < โˆž, โˆ’โˆž < ๐‘  < โˆž, 0 โ‰ค ๐‘ฃ โ‰ค 1, ๐œƒ > 0 and ฮฆ1 is the

confluent hypergeometric function of two variables defined by

ฮฆ1 ๐›ผ, ๐›ฝ, ๐›พ, ๐‘ฅ, ๐‘ฆ = ๐›ผ ๐‘š+๐‘› (๐›ฝ)๐‘›

๐›พ ๐‘š+๐‘›๐‘š! ๐‘›!๐‘ฅ๐‘š๐‘ฆ๐‘›

โˆž

๐‘›=0

โˆž

๐‘š=0

Page 227: From The Classical Beta Distribution To Generalized Beta ...

222

When ๐‘  = 0, ๐‘Ÿ = ๐‘Ž + ๐‘, ๐‘ฃ = 1โˆ’๐‘

๐‘ž and ๐œƒ = 1 โˆ’ ๐‘ in Equation 8.9, then it reduces to

McDonald and Xuโ€˜s five parameter generalized beta distribution in equation 6.1.

When ๐‘  = 0, and ๐‘ฃ = 1 in Equation 8.9, then it reduces to gauss hypergeometric

distribution due to Armero and Bayarri (1994) in equation 8.6. When ๐‘ฃ = 1, and ๐œƒ = 1

in Equation 8.9, then it reduces to confluent hypergeometric distribution due to Gordy

(1988a) in equation 8.2. When ๐‘ฃ = 0, and > 0 , Equation 8.9 becomes the gamma

distribution.

8.9 Beta-Bessel Distribution (A.K Gupta and S.Nadarajah (2006))

A.K Gupta and S. Nadarajah (2006) introduced three types of beta-bessel distributions,

based on a composition of the classical beta distribution and the Bessel function. They

derived expressions for their shapes, particular cases and the nth

moments. They also

discussed estimation by the method of maximum likelihood and Bayes estimation.

The beta- bessel distribution is obtained as follows:

The first generalization of equation 2.1 is given by the pdf

๐‘“ ๐‘ฅ = C๐‘ฅ๐œถโˆ’1 1 โˆ’ ๐‘ฅ ๐œทโˆ’1๐ผ๐‘ฃ ๐‘๐‘ฅ ________________________________(8.10)

For 0 < ๐‘ฅ < 1, ๐‘ฃ > 0, ๐›ผ > 0, ๐›ฝ > 0 ๐‘Ž๐‘›๐‘‘ ๐‘ โ‰ฅ 0 , where C denotes the normalizing

constant and can be determined as

1

๐ถ=

๐‘๐‘ฃ๐›ค ๐›ผ + ๐‘ฃ ๐›ค ๐›ฝ

2๐‘ฃ๐›ค ๐›ผ + ๐›ฝ + ๐‘ฃ ๐›ค ๐‘ฃ + 1

2๐น3 ฮฑ + ๐‘ฃ

2,ฮฑ + ๐‘ฃ + 1

2; ๐‘ฃ

+ 1,ฮฑ + ๐‘ฃ + ฮฒ

2,ฮฑ + ๐‘ฃ + ฮฒ + 1

2;๐‘2

4

๐ผ๐‘ฃ ๐‘ฅ is the modified Bessel function defined by

๐ผ๐‘ฃ ๐‘ฅ =๐‘ฅ๐‘ฃ

๐œ‹ 2๐‘ฃ ๐‘ฃ + 1/2 1 โˆ’ ๐‘ก2 ๐‘ฃ+1/2 exp ๐‘ฅ๐‘ก

1

โˆ’1

๐‘‘๐‘ก

The classical beta pdf (2.1) arises as particular case of 8.10 for ๐‘ฃ = 0 and ๐‘ = 0.

The second generalization of equation 2.1 is given by the pdf

Page 228: From The Classical Beta Distribution To Generalized Beta ...

223

๐‘“ ๐‘ฅ = C๐‘ฅ๐œถโˆ’1 1 โˆ’ ๐‘ฅ ๐œทโˆ’1exp(๐‘๐‘ฅ)๐ผ๐‘ฃ ๐‘๐‘ฅ _________________________(8.11)

For 0 < ๐‘ฅ < 1, ๐‘ฃ > 0, ๐›ผ > 0, ๐›ฝ > 0 ๐‘Ž๐‘›๐‘‘ ๐‘ โ‰ฅ 0 , where C denotes the normalizing

constant and can be determined as

1

๐ถ=

๐‘๐‘ฃ๐›ค ๐›ผ + ๐‘ฃ ๐›ค ๐›ฝ

2๐‘ฃ๐›ค ๐›ผ + ๐›ฝ + ๐‘ฃ ๐›ค ๐‘ฃ + 1

2๐น2 ๐‘ฃ +1

2, ๐›ผ + ๐‘ฃ; 2๐‘ฃ + 1, ๐›ผ + ๐›ฝ + ๐‘ฃ; 2๐‘

The classical beta pdf (2.1) arises as the particular case of 8.11 for ๐‘ฃ = 0 and ๐‘ = 0.

The third and final generalization of equation 2.1 is given by the pdf

๐‘“ ๐‘ฅ = C๐‘ฅ๐œถโˆ’1 1 โˆ’ ๐‘ฅ ๐œทโˆ’1exp(โˆ’๐‘๐‘ฅ)๐ผ๐‘ฃ ๐‘๐‘ฅ _____________________(8.12)

For 0 < ๐‘ฅ < 1, ๐‘ฃ > 0, ๐›ผ > 0, ๐›ฝ > 0 ๐‘Ž๐‘›๐‘‘ ๐‘ โ‰ฅ 0 , where C denotes the normalizing

constant and can be determined as

1

๐ถ=

๐‘๐‘ฃ๐›ค ๐›ผ + ๐‘ฃ ๐›ค ๐›ฝ

2๐‘ฃ๐›ค ๐›ผ + ๐›ฝ + ๐‘ฃ ๐›ค ๐‘ฃ + 1

2๐น2 ๐‘ฃ +1

2, ๐›ผ + ๐‘ฃ; 2๐‘ฃ + 1, ๐›ผ + ๐›ฝ + ๐‘ฃ; 2๐‘

The classical beta pdf (2.1) arises as the particular case of 8.12 for ๐‘ฃ = 0 and ๐‘ = 0

Page 229: From The Classical Beta Distribution To Generalized Beta ...

224

9 Chapter IX: Summary and Conclusion

9.1 Summary

This project has looked at three methods of generalizing the classical beta distribution. The work

could be summarized as follows:

In Chapter I, a general introduction covering the work on statistical distributions in general is

given followed by a brief background on classical beta distribution. The limitation of the

classical beta distribution is noted leading to the main objective of adding more parameters to

make the distribution more flexible for analyzing empirical data. The recent works in literature is

also highlighted.

In Chapter II, the classical beta distribution is constructed from the beta function and the

relationship between the beta function and the Gamma function is shown. Its construction from

ratio transformation of two independent gamma variables is also done. Other constructions from

the rth order statistic of the Uniform distribution and from the stochastic processes are also

looked at. Some properties, shapes, and special cases of the classical beta are also covered under

this chapter.

In Chapter III, looks at the transformation of the classical beta distribution on the domain (0,1) to

the extended beta distribution of the second kind on the domain (0, โˆž). It also looked at some

properties, shapes, and special cases of the beta distribution of the second kind.

In Chapter IV, highlights some of the three parameter beta distributions used by various authors

in literature. In particular, the well known Libby and Novick (1982) three parameter beta

distribution and the McDonald (1995) three parameter beta distribution.

In Chapter V, the four parameter beta distributions are constructed. Their properties and special

cases are also given.

In Chapter VI, covers the construction of the five parameter beta distributions due to McDonald

(1995) giving some of its properties and special cases. It further extends the five parameter beta

distribution due to McDonald (1995) by introducing a sixth parameter to give a five parameter

weighted beta distribution. Some of the properties and special cases of this five parameter

Page 230: From The Classical Beta Distribution To Generalized Beta ...

225

weighted beta distribution have also been looked at. The chapter also looked at the construction

of the five parameter exponential generalized beta distribution and its special cases.

In Chapter VII, gives a new family of generalized beta distributions based on the work of Eugene

et al. (2002) using the generator approach. It covers the beta generated distributions,

exponentiated generated distributions and the generalized beta generated distributions.

In Chapter VIII, the generalized beta distributions based on some special functions are covered.

In particular, the Confluent Hypergeometric function, the Gauss Hypergeometric function, the

Bessel and the Appell function.

In Chapter IX, a summary and concluding remark of the work is given followed by references

and an appendix.

9.2 Conclusion

This project has looked at both the two kinds of two parameter beta distributions. It has reviewed

various methods of constructing the beta distributions, their properties which include expressions

for the rth

moments, first four moments, mode, coefficient of variation, coefficient of skewness,

coefficient of kurtosis and their shapes. It has also presented the special or limiting cases.

However, there are other methods which can be explored in extending this work e.g. using

mixtures of distributions. Other areas of research which need to be looked at are: further

properties of the beta distributions, estimation and applications.

Page 231: From The Classical Beta Distribution To Generalized Beta ...

226

10 Appendix

A.1 Classical Beta Distribution

Pdf ๐‘“ ๐‘ฅ =

๐‘ฅ๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ)๐‘โˆ’1

๐ต(๐‘Ž, ๐‘), ๐‘Ž > 0, ๐‘ > 0,

0 < ๐‘ฅ < 1

Cumulative distribution function

๐น ๐‘ฅ =1

๐ต(๐‘Ž, ๐‘) ๐‘ก๐‘Žโˆ’1(1 โˆ’ ๐‘ก)๐‘โˆ’1

๐‘ฅ

0

๐‘‘๐‘ก

rth

order moment ฮ“(a + r) ฮ“(a + b)

ฮ“(a + b + r) ฮ“(a)

Mean a

a + b

Mode (๐‘Ž โˆ’ 1)

(๐‘Ž + ๐‘ โˆ’ 2)

Variance ab

a + b + 1 a + b 2

Skewness 2 b โˆ’ a

a + b + 2

a + b + 1

ab

Kurtosis a + b + 1

๐‘Ž๐‘

3[a2(b + 2) โˆ’ 2ab + b2(a + 2)]

a + b + 2 a + b + 3

A.2 Power Distribution (b=1 in table A.1)

Pdf ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ๐‘Žโˆ’1 , ๐‘Ž > 0, 0 < ๐‘ฅ < 1

Cumulative distribution function ๐น(๐‘ฅ) = ๐‘ฅ๐‘Ž

rth

order moment ๐‘Ž

a + r

Mean ๐‘Ž

a + 1

Mode 1

Variance ๐‘Ž

(a + 2)(a + 1)2

Skewness 2๐‘Ž(1 โˆ’ ๐‘Ž)

(a + 3)

(a + 2)

a

Kurtosis ๐‘Ž + 2

๐‘Ž

3 3๐‘Ž2 โˆ’ ๐‘Ž + 2

a + 3 a + 4

Page 232: From The Classical Beta Distribution To Generalized Beta ...

227

A.3 Uniform Distribution (a=b=1 in table A.1)

Pdf ๐‘“ ๐‘ฅ = 1, 0 < ๐‘ฅ < 1

rth

order moment 1

1 + r

Mean 1

2

Mode

Any value in the interval [0,1]

Variance 1

12

Skewness 0

Kurtosis 1.8

A.4 Arcsine Distribution (a=b= ๐Ÿ

๐Ÿ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

1

๐œ‹ ๐‘ฅ(1 โˆ’ ๐‘ฅ), 0 < ๐‘ฅ < 1

Cumulative distribution function F x =

2

๐œ‹arcsin ๐‘ฅ

rth

order moment ฮ“ 12 + ๐‘Ÿ

rฮ“ r ฮ“ 12

Mean 1

2

Mode 1

2

Variance 0.125

Skewness 0

Kurtosis 1.5

Page 233: From The Classical Beta Distribution To Generalized Beta ...

228

A.5 Triangular Shaped (a=1, b=2 in table A.1)

Pdf

๐‘“ ๐‘ฅ = 2 โˆ’ 2๐‘ฅ, 0 < ๐‘ฅ < 1

Cumulative distribution function

๐น ๐‘ฅ = 2๐‘ฅ โˆ’ ๐‘ฅ2

rth

order moment 2rฮ“ ๐‘Ÿ

ฮ“ r + 3

Mean

0.3333

Mode

0

Variance

0.0556

Skewness

0.5657

Kurtosis

2.4

A.6 Triangular Shaped (a=2, b=1 in table A.1)

Pdf ๐‘“ ๐‘ฅ = 2๐‘ฅ, 0 < ๐‘ฅ < 1

Cumulative distribution function ๐น ๐‘ฅ = ๐‘ฅ2

rth

order moment 2ฮ“ 2 + ๐‘Ÿ

ฮ“ r + 3

Mean 0.6667

Mode 1

Variance 0.0556

Skewness -0.5657

Kurtosis 2.4

A.7 Parabolic Shaped (a=b=2 in table A.1)

Pdf ๐‘“ ๐‘ฅ = 6๐‘ฅ 1 โˆ’ ๐‘ฅ , 0 < ๐‘ฅ < 1

Cumulative distribution function ๐น ๐‘ฅ = 3๐‘ฅ2 โˆ’ 2๐‘ฅ3

rth

order moment 6

r + 3 (r + 2)

Mean 0.5

Mode 0.5

Variance 0.05

Skewness 0

Kurtosis 2.1429

Page 234: From The Classical Beta Distribution To Generalized Beta ...

229

A.8 Wigner Semicircle (a=b=๐Ÿ‘

๐Ÿ, ๐š๐ง๐ ๐ฑ =

๐ฒ+๐‘

๐Ÿ๐‘ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

2 ๐‘…2 โˆ’ ๐‘ฅ2

๐‘…2๐œ‹, โˆ’๐‘… < ๐‘ฅ < ๐‘…

rth

order moment ๐‘…

2

2๐‘Ÿ 1

๐‘Ÿ + 1

2๐‘Ÿ

๐‘Ÿ

Mean 0

Mode 0

Variance ๐‘…2

4

Skewness

0

Kurtosis 2

A.9 Beta Distribution of the Second Kind (using ๐ฑ =๐ฒ

๐Ÿ+๐ฒ or

๐Ÿ

๐Ÿ+๐ฒ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘ฅ๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + x a+b, ๐‘Ž > 0, ๐‘ > 0, 0 < ๐‘ฅ < โˆž

rth

order

moment

ฮ“ ๐‘Ž + ๐‘Ÿ ฮ“ ๐‘ โˆ’ ๐‘Ÿ

ฮ“ ๐‘Ž ฮ“ ๐‘

Mean ๐‘Ž

๐‘ โˆ’ 1

Mode ๐‘ โˆ’ 1

๐‘Ž + 1

Variance ๐‘Ž(๐‘Ž + ๐‘ โˆ’ 1)

๐‘ โˆ’ 1 2(๐‘ โˆ’ 2)

Skewness 2๐‘Ž[2๐‘Ž2 + 3๐‘Ž ๐‘ โˆ’ 1 + (๐‘ โˆ’ 1)2]

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 (๐‘ โˆ’ 3)

Kurtosis 3a(ab3 + 2b3+2a2b2 + 5ab2 โˆ’ 6b2+a3b + 8a2b โˆ’ 13ab + 6b + 5a3 โˆ’ 10a2

+7a โˆ’ 2)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

Page 235: From The Classical Beta Distribution To Generalized Beta ...

230

A.10 Lomax (Pareto II) (a=1 in table A.9)

pdf ๐‘“ ๐‘ฅ =

๐‘

1 + x 1+b, ๐‘ > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ฮ“ 1 + ๐‘Ÿ ฮ“ ๐‘ โˆ’ ๐‘Ÿ

ฮ“ ๐‘

Mean 1

๐‘ โˆ’ 1

Mode ๐‘ โˆ’ 1

2

Variance ๐‘

(๐‘ โˆ’ 2)(๐‘ โˆ’ 1)2

Skewness 2๐‘ ๐‘ + 1

๐‘ โˆ’ 1 3 ๐‘ โˆ’ 2 ๐‘ โˆ’ 3

Kurtosis 3(3b3 + b2 + 2b)

b โˆ’ 1 4 b โˆ’ 2 b โˆ’ 3 b โˆ’ 4

A.11 Log Logistic (Fisk) (a=b=1 in table A.9)

pdf ๐‘“ ๐‘ฅ =

1

1 + ๐‘ฅ 2, 0 < ๐‘ฅ < โˆž

rth

order moment

rฯ€

sin rฯ€

Mean ฯ€

sin ฯ€

Mode 0

Variance 2ฯ€

sin 2ฯ€โˆ’

ฯ€

sin ฯ€

2

Skewness 3ฯ€

sin 3ฯ€โˆ’ 3

2ฯ€

sin 2ฯ€

ฯ€

sin ฯ€ + 2

ฯ€

sin ฯ€

3

Kurtosis 4ฯ€

sin 4ฯ€โˆ’ 4

ฯ€

sin ฯ€

3ฯ€

sin 3ฯ€+ 6

ฯ€

sin ฯ€

2 2ฯ€

sin 2ฯ€

โˆ’ 3 ฯ€

sin ฯ€

4

Page 236: From The Classical Beta Distribution To Generalized Beta ...

231

A.12 Libby and Novick (1982) Beta Distribution (๐ฑ =๐ฒ๐œ

๐Ÿโˆ’๐ฒ+๐ฒ๐œ in table A.1)

pdf ๐‘“ ๐‘ฅ =

1

B a, b

๐‘๐‘Ž๐‘ฆ๐‘Žโˆ’1 1 โˆ’ ๐‘ฆ ๐‘โˆ’1

1 โˆ’ 1 โˆ’ c y a+b,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < 1

A.13 McDonaldโ€™s (1995) beta distribution of the first kind (๐ฑ =๐ฒ

๐œ in table A.1)

Pdf

๐‘“ ๐‘ฅ =๐‘ฅ๐‘Žโˆ’1 1 โˆ’

๐‘ฅ๐‘

๐‘โˆ’1

๐‘๐‘ŽB a, b ,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < ๐‘

A.14 Three Parameter Beta Distribution (๐ฑ =๐œ๐ฒ

๐Ÿ+๐ฒ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘Ž๐‘ฅ๐‘Žโˆ’1 1 + (1 โˆ’ ๐‘)๐‘ฅ ๐‘โˆ’1

B a, b (1 + ๐‘ฅ)a+b,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < 1

A.15 Chotikapanich et.al (2010) Beta of the Second Kind Distribution (๐ฑ =๐ฒ

๐œ in

table A.9)

Pdf ๐‘“ ๐‘ฅ =

๐‘ฅ๐‘Žโˆ’1

๐‘๐‘ŽB a, b 1 + ๐‘ฅ๐‘

๐‘Ž+๐‘ ,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < โˆž

A.16 General Three Parameter Beta Distribution (๐ฑ = ๐œ๐ฒ in table A.9)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘Ž๐‘ฅ๐‘Žโˆ’1

B a, b 1 + ๐‘๐‘ฅ ๐‘Ž+๐‘,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < โˆž

Page 237: From The Classical Beta Distribution To Generalized Beta ...

232

A.17 Three Parameter Beta Distribution (๐ฑ = ๐ฒ๐œ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘ฅ๐‘Ž๐‘โˆ’1 1 โˆ’ ๐‘ฅ๐‘ ๐‘โˆ’1

B a, b ,

๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0, 0 < ๐‘ฅ < 1

A.18 Generalized Four Parameter Beta Distribution of the First Kind

(๐ฑ = ๐ฒ

๐ช ๐œ

๐ข๐ง ๐ญ๐š๐›๐ฅ๐ž ๐€. ๐Ÿ)

Pdf

๐‘“ ๐‘ฅ = ๐‘ ๐‘ฅ๐‘๐‘Žโˆ’1 1 โˆ’

๐‘ฅ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘๐ต ๐‘Ž, ๐‘ , ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0,

๐‘ž > 0, 0 โ‰ค ๐‘ฅ๐‘ โ‰ค ๐‘ž๐‘

rth

order moment ๐‘ž๐‘Ÿฮ“ a + b ฮ“ ๐‘Ž +๐‘Ÿ๐‘

ฮ“ ๐‘Ž + ๐‘ +๐‘Ÿ๐‘ ฮ“ a

Mean ๐‘žฮ“ a + b ฮ“ a +1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

Mode

๐‘ž๐‘ ๐‘๐‘Ž โˆ’ 1

๐‘๐‘Ž + ๐‘๐‘ โˆ’ 1 โˆ’ ๐‘

1๐‘

Variance

๐‘ž2 ฮ“ a +

2p ฮ“ b ฮ“ a + b

ฮ“ a + b +2p

โˆ’ฮ“2 a +

1p ฮ“2 b ฮ“2 a + b

ฮ“2 a + b +1p

Skewness

๐‘ž3

ฮ“ a + b ฮ“ a +

3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

โˆ’ 3ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

ฮ“ a + b ฮ“ a +2๐‘

ฮ“ a + b +2๐‘ ฮ“ a

+ 2 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

3

Page 238: From The Classical Beta Distribution To Generalized Beta ...

233

Kurtosis

q4

ฮ“ a + b ฮ“ a +

4๐‘

ฮ“ a + b +4๐‘ ฮ“ a

โˆ’ 4ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

ฮ“ a + b ฮ“ a +3๐‘

ฮ“ a + b +3๐‘ ฮ“ a

+ 6 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

2

ฮ“ a + b ฮ“ a +2๐‘

ฮ“ a + b +2๐‘ ฮ“ a

โˆ’ 3 ฮ“ a + b ฮ“ a +

1๐‘

ฮ“ a + b +1๐‘ ฮ“ a

4

A.19 Pareto Type I (b=1, p=-1 in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘Ž๐‘ž๐‘Ž

๐‘ฅ๐‘Ž+1 , ๐‘Ž > 0, ๐‘ž > 0,

0 < ๐‘ž โ‰ค ๐‘ฅ

Cumulative distribution function 1 โˆ’

๐‘ž

๐‘ฅ

๐‘Ž

rth

order moment ๐‘ž๐‘Ÿa

๐‘Ž โˆ’ ๐‘Ÿ

Mean ๐‘ž๐‘Ž

๐‘Ž โˆ’ 1

Mode

๐‘ž

Variance ๐‘ž2a

a โˆ’ 2 a โˆ’ 1 2

Skewness 2(1 + a)

a โˆ’ 3

a โˆ’ 2

a

Kurtosis 3(3a3 โˆ’ 5a2 โˆ’ 4)

a a โˆ’ 3 a โˆ’ 4

Page 239: From The Classical Beta Distribution To Generalized Beta ...

234

A.20 Stoppa (Generalized Pareto Type I) (a=1, p=-p in table A.1)

Pdf ๐‘“ ๐‘ฅ = p๐‘ž๐‘๐‘๐‘ฅโˆ’๐‘โˆ’1 1 โˆ’

๐‘ฅ

๐‘ž

โˆ’๐‘

bโˆ’1

, ๐‘ > 0, ๐‘ > 0, ๐‘ž > 0,

0 < ๐‘ž โ‰ค ๐‘ฅ

Cumulative

distribution function 1 โˆ’ ๐‘ฅ

๐‘ž

โˆ’๐‘

b

rth

order moment qr๐‘ฮ“ ๐‘ ฮ“ 1 โˆ’๐‘Ÿ๐‘

ฮ“ 1 + ๐‘ โˆ’๐‘Ÿ๐‘

Mean ๐‘žbฮ“ ๐‘ ฮ“ 1 โˆ’1๐‘

ฮ“ 1 + ๐‘ โˆ’1๐‘

Mode

๐‘ž 1 + ๐‘๐‘

1 + ๐‘

1๐‘

Variance

q2 ฮ“ 1 โˆ’

2p ฮ“ b ฮ“ 1 + b

ฮ“ 1 + b โˆ’2p

โˆ’ฮ“2 1 โˆ’

1p ฮ“2 b ฮ“2 1 + b

ฮ“2 1 + b โˆ’1p

Skewness

๐‘ž3

bฮ“ b ฮ“ 1 โˆ’

3๐‘

b โˆ’3๐‘ ฮ“ b โˆ’

3๐‘

โˆ’ 3bฮ“ b ฮ“ 1 โˆ’

1๐‘

b โˆ’1๐‘ ฮ“ b โˆ’

1๐‘

bฮ“ b ฮ“ 1 โˆ’2๐‘

b โˆ’2๐‘ ฮ“ b โˆ’

2๐‘

+ 2 bฮ“ b ฮ“ 1 โˆ’

1๐‘

b โˆ’1๐‘ ฮ“ b โˆ’

1๐‘

3

Kurtosis

q4

bฮ“ b ฮ“ 1 โˆ’

4๐‘

ฮ“ 1 + b โˆ’4๐‘

โˆ’ 4bฮ“ b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘ ฮ“ 1

bฮ“ b ฮ“ 1 โˆ’3๐‘

ฮ“ 1 + b โˆ’3๐‘

+ 6 ฮ“ 1 + b ฮ“ 1 โˆ’

1๐‘

ฮ“ 1 + b โˆ’1๐‘Ž

2

ฮ“ 1 + b ฮ“ 1 โˆ’2๐‘

ฮ“ 1 + b โˆ’2๐‘

โˆ’ 3 ฮ“ 1 + b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

4

Page 240: From The Classical Beta Distribution To Generalized Beta ...

235

A.21 Kumaraswamy (a=1, q=1 in table A.1)

Pdf

๐‘“ ๐‘ฅ = pb๐‘ฅ๐‘โˆ’1 1 โˆ’ ๐‘ฅ๐‘ bโˆ’1, ๐‘ > 0, ๐‘ > 0

rth

order moment bฮ“ ๐‘Ÿ๐‘ + 1 ฮ“(๐‘)

ฮ“(1 +๐‘Ÿ๐‘ + ๐‘)

Mean bฮ“ 1๐‘ + 1 ฮ“(๐‘)

ฮ“(1 +1๐‘ + ๐‘)

Mode

1 โˆ’ ๐‘

1 โˆ’ ๐‘๐‘

1๐‘

Variance

b! b โˆ’ 1 !

2p !

2p + b !

โˆ’ b! b โˆ’ 1 !

1p !

1p + b !

2

Skewness bฮ“ b ฮ“ a +3๐‘

ฮ“ 1 + b +3๐‘

โˆ’ 3bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

bฮ“ b ฮ“ 1 +2๐‘

ฮ“ 1 + b +2๐‘

+ 2 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

3

Kurtosis bฮ“ b ฮ“ 1 +4๐‘

ฮ“ 1 + b +4๐‘

โˆ’ 4bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

bฮ“ b ฮ“ 1 +3๐‘

ฮ“ 1 + b +3๐‘

+ 6 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

2

bฮ“ b ฮ“ 1 +2๐‘

ฮ“ 1 + b +2๐‘

โˆ’ 3 bฮ“ b ฮ“ 1 +

1๐‘

ฮ“ 1 + b +1๐‘

4

Page 241: From The Classical Beta Distribution To Generalized Beta ...

236

A.22 Generalized Power (b=1, p=1 in table A.1)

pdf ๐‘“ ๐‘ฅ =

๐‘Ž๐‘ฅ๐‘Žโˆ’1

๐‘ž๐‘Ž, ๐‘Ž > 0, ๐‘ž > 0, 0 < ๐‘ฅ < ๐‘ž

rth

order moment ๐‘ž๐‘Ÿa

a + r

Mean ๐‘ž๐‘Ž

a + 1

Variance ๐‘ž2

(a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

(a + 1)2 a + 2 2

Skewness 2๐‘Ž โˆ’a3 โˆ’ 3a2 + 4

a + 3

1

a + 1 2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

32

Kurtosis

(a + 1)2 a + 2 2

๐‘ž2(a + 1)2 a + 2 aฮ“ a โˆ’ a2ฮ“2 a

2

. q4 a

a + 4โˆ’

4a2

(a + 1)(a + 3)

+6a3

a + 1 2(a + 2)โˆ’

3a4

a + 1 4

Page 242: From The Classical Beta Distribution To Generalized Beta ...

237

A.23 Generalized Four Parameter Beta Distribution of the Second Kind

(๐ฑ = ๐ฑ

๐ช ๐ฉ

in table A.9)

Pdf ๐‘“ ๐‘ฅ =

๐‘ ๐‘ฅ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž๐ต ๐‘Ž, ๐‘ (1 + (๐‘ฅ๐‘ž)๐‘)a+b

, ๐‘Ž > 0, ๐‘ > 0, ๐‘ > 0,

๐‘ž > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ๐‘ž๐‘Ÿฮ“ ๐‘Ž +๐‘Ÿ๐‘ ฮ“ ๐‘ โˆ’

๐‘Ÿ๐‘

ฮ“(๐‘Ž)ฮ“(๐‘)

Mean ๐‘žฮ“ ๐‘Ž +1๐‘ ฮ“ ๐‘ โˆ’

1๐‘

ฮ“ ๐‘Ž ฮ“ ๐‘

Mode

๐‘ž ๐‘๐‘Ž โˆ’ 1

๐‘๐‘ + 1

1๐‘

Variance

๐‘ž2

๐ต ๐‘Ž +

2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘ โˆ’

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

Skewness

๐‘ž3

๐ต ๐‘Ž +

3๐‘ , ๐‘ โˆ’

3๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 3

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

๐ต ๐‘Ž +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘

+ 2 ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

3

Kurtosis

๐‘ž4

๐ต ๐‘Ž +

4๐‘ , ๐‘ โˆ’

4๐‘

๐ต ๐‘Ž, ๐‘ โˆ’ 4

๐ต ๐‘Ž +1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

๐ต ๐‘Ž +3๐‘ , ๐‘ โˆ’

3๐‘

๐ต ๐‘Ž, ๐‘

+ 6 ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

2

๐ต ๐‘Ž +2๐‘ , ๐‘ โˆ’

2๐‘

๐ต ๐‘Ž, ๐‘

โˆ’ 3 ๐ต ๐‘Ž +

1๐‘ , ๐‘ โˆ’

1๐‘

๐ต ๐‘Ž, ๐‘

4

Page 243: From The Classical Beta Distribution To Generalized Beta ...

238

A.24 Singh Maddala (Burr 12) (๐’‚ = ๐Ÿ in table A.23)

Pdf ๐‘“ ๐‘ฅ =

๐‘ ๐‘๐‘ฅ๐‘โˆ’1

๐‘ž๐‘ 1 + (๐‘ฅ๐‘ž)๐‘ 1+b

, ๐‘ > 0, ๐‘ > 0, ๐‘ž > 0

0 < ๐‘ฅ < โˆž

Cumulative

distribution function ๐น ๐‘ฅ = 1 โˆ’ 1 + (

๐‘ฅ

๐‘ž)๐‘ โ€“b

rth

order moment ๐‘ž๐‘Ÿฮ“ 1 +๐‘Ÿ๐‘ ฮ“ ๐‘ โˆ’

๐‘Ÿ๐‘

ฮ“ b

Mean ๐‘žฮ“ 1 +1๐‘ ฮ“ ๐‘ โˆ’

1๐‘

ฮ“ b

Mode

๐‘ž ๐‘ โˆ’ 1

๐‘๐‘ + 1

1๐‘

Variance

๐‘ž2 ฮ“(b)ฮ“ 1 +

2๐‘ ฮ“ ๐‘ โˆ’

2๐‘ โˆ’ ฮ“2(1 +

1๐‘)ฮ“2 ๐‘ โˆ’

1๐‘

ฮ“2(๐‘)

Skewness

๐‘ž3 ๐‘๐ต 1 +3

๐‘, ๐‘ โˆ’

3

๐‘ โˆ’ 3๐‘๐ต 1 +

1

๐‘, ๐‘ โˆ’

1

๐‘ ๐‘๐ต 1 +

2

๐‘, ๐‘ โˆ’

2

๐‘

+ 2 ๐‘๐ต 1 +1

๐‘, ๐‘ โˆ’

1

๐‘

3

Kurtosis

๐‘ž4 ๐‘๐ต 1 +4

๐‘, ๐‘ โˆ’

4

๐‘ โˆ’ 4๐‘2๐ต 1 +

1

๐‘, ๐‘ โˆ’

1

๐‘ ๐ต 1 +

3

๐‘, ๐‘ โˆ’

3

๐‘

+ 6 ๐‘๐ต 1 +1

๐‘, ๐‘ โˆ’

1

๐‘

2

๐‘๐ต 1 +2

๐‘, ๐‘ โˆ’

2

๐‘

โˆ’ 3 ๐‘๐ต ๐‘Ž +1

๐‘, ๐‘ โˆ’

1

๐‘

4

Page 244: From The Classical Beta Distribution To Generalized Beta ...

239

A.25 Generalized Lomax (Pareto II) (a=1, p=1, q = ๐Ÿ

๐›Œ in table A.23)

Pdf ๐‘“ ๐‘ฅ =

๐œ†๐‘

1 + ๐œ†๐‘ฅ 1+b, ๐‘ > 0, ๐œ† > 0, 0 < ๐‘ฅ < โˆž

Cumulative

distribution function ๐น ๐‘ฅ = 1 โˆ’ 1 + ๐œ†๐‘ฅ โˆ’b

rth

order moment

1๐œ†

๐‘Ÿ

ฮ“(1 + ๐‘Ÿ)ฮ“(๐‘ โˆ’ ๐‘Ÿ)

ฮ“(b)

Mean 1

๐œ† b โˆ’ 1

Mode 0

Variance b

๐œ†2 b โˆ’ 1 2 b โˆ’ 2

Skewness 2(b + 1)

(b โˆ’ 3)

b โˆ’ 2

b

Kurtosis

1

๐œ†

4

24

b โˆ’ 1 b โˆ’ 2 b โˆ’ 3 (b โˆ’ 4)โˆ’

24

(b โˆ’ 1)2 b โˆ’ 2 (b โˆ’ 3)

+12

(b โˆ’ 1)3(b โˆ’ 2)โˆ’

3

(b โˆ’ 1)4

Page 245: From The Classical Beta Distribution To Generalized Beta ...

240

A.26 Inverse Lomax (b=1, p=1 in table A.23)

Pdf ๐‘“ ๐‘ฅ =

๐‘Ž๐‘ฅ๐‘Žโˆ’1

๐‘ž๐‘Ž 1 +๐‘ฅ๐‘ž

1+a , ๐‘Ž > 0, ๐‘ž > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ๐‘ž ๐‘Ÿฮ“(๐‘Ž + ๐‘Ÿ)ฮ“(1 โˆ’ ๐‘Ÿ)

ฮ“(๐‘Ž)ฮ“(1)

Mode ๐‘ž

๐‘Ž โˆ’ 1

2

Variance ๐‘ž2 ๐‘Ž๐ต ๐‘Ž + 2, โˆ’1 โˆ’ ๐‘Ž๐ต ๐‘Ž + 1,0 2 Skewness

๐‘ž3 ๐ต ๐‘Ž + 3,1 โˆ’ 3

๐ต ๐‘Ž, 1 โˆ’ 3

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

๐ต ๐‘Ž + 2,1 โˆ’ 2

๐ต ๐‘Ž, 1

+ 2 ๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

3

Kurtosis ๐‘ž4

๐ต ๐‘Ž + 4,1 โˆ’ 4

๐ต ๐‘Ž, 1 โˆ’ 4

๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

๐ต ๐‘Ž + 3,1 โˆ’ 3

๐ต ๐‘Ž, 1

+ 6 ๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

2๐ต ๐‘Ž + 2,1 โˆ’ 2

๐ต ๐‘Ž, 1

โˆ’ 3 ๐ต ๐‘Ž + 1,1 โˆ’ 1

๐ต ๐‘Ž, 1

4

A.27 Dagum (Burr 3) (b=1 in table A.23)

Pdf ๐‘“ ๐‘ฅ =

๐‘ ๐‘Ž๐‘ฅ๐‘๐‘Žโˆ’1

๐‘ž๐‘๐‘Ž (1 + (๐‘ฅ๐‘ž)๐‘)1+a

, ๐‘Ž > 0, ๐‘ > 0, ๐‘ž > 0

0 < ๐‘ฅ < โˆž

rth

order moment ๐‘ž๐‘Ÿฮ“(๐‘Ž +๐‘Ÿ๐‘)ฮ“(1 โˆ’

๐‘Ÿ๐‘)

ฮ“(a)

Mean ๐‘žฮ“(๐‘Ž +1๐‘)ฮ“(1 โˆ’

1๐‘)

ฮ“(a)

Mode

๐‘ž ๐‘๐‘Ž โˆ’ 1

๐‘ + 1

1๐‘

Variance

๐‘ž2 ฮ“(a)ฮ“ ๐‘Ž +

2๐‘ ฮ“ 1 โˆ’

2๐‘ โˆ’ ฮ“2(๐‘Ž +

1๐‘)ฮ“2 1 โˆ’

1๐‘

ฮ“2(๐‘Ž)

Page 246: From The Classical Beta Distribution To Generalized Beta ...

241

A.28 Para-Logistic (a=1, b = p in table A.23)

Pdf ๐‘“ ๐‘ฅ =

๐‘2๐‘ฅ๐‘โˆ’1

๐‘ž๐‘(1 + (๐‘ฅ๐‘ž)๐‘)1+p

, ๐‘ > 0, ๐‘ž > 0

0 < ๐‘ฅ < โˆž

A.29 General Fisk (Log โ€“Logistic) (a=b=1, q = ๐Ÿ

๐€ in table A.23)

pdf ๐‘“ ๐‘ฅ =

๐œ† ๐‘ ๐œ†๐‘ฅ ๐‘โˆ’1

(1 + (๐œ†๐‘ฅ)๐‘)2, ๐‘ > 0, ๐œ† > 0, 0 < ๐‘ฅ < โˆž

rth

order moment

๐‘ž๐‘Ÿฮ“ 1 +๐‘Ÿ

๐‘ ฮ“ 1 โˆ’

๐‘Ÿ

๐‘

Mean ๐‘ž

1

๐‘ฮ“

1

๐‘ ฮ“ 1 โˆ’

1

๐‘

Mode

๐‘ž ๐‘ โˆ’ 1

๐‘ + 1

1๐‘

Variance ๐‘ž2 ฮ“ 1 +

2

๐‘ ฮ“ 1 โˆ’

2

๐‘ โˆ’ ฮ“2(1 +

1

๐‘)ฮ“2 1 โˆ’

1

๐‘

A.30 Fisher (F) (a=๐’–

๐Ÿ, b=

๐’—

๐Ÿ, q =

๐’—

๐’– in table A.23)

pdf

๐‘“ ๐‘ฅ =ฮ“

๐‘ข + ๐‘ฃ2

๐‘ข๐‘ฃ

๐‘ข2๐‘ฅ

๐‘ข2โˆ’1

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2 1 +

๐‘ฅ๐‘ข๐‘ฃ

๐‘ข+๐‘ฃ2

, ๐‘ข > 0, ๐‘ฃ > 0

0 < ๐‘ฅ < โˆž

rth

order moment ๐‘ฃ๐‘ข

๐‘Ÿ

ฮ“ ๐‘ข2 + ๐‘Ÿ ฮ“

๐‘ฃ2 โˆ’ ๐‘Ÿ

ฮ“ ๐‘ข2 ฮ“

๐‘ฃ2

Mean ๐‘ฃ

๐‘ฃ โˆ’ 2

Mode ๐‘ข โˆ’ 2

๐‘ข

๐‘ฃ

๐‘ฃ + 2

Variance 2๐‘ฃ2

๐‘ข + ๐‘ฃ โˆ’ 2

๐‘ข ๐‘ฃ โˆ’ 2 2 ๐‘ฃ โˆ’ 4

Page 247: From The Classical Beta Distribution To Generalized Beta ...

242

A.31 Half Studentโ€™s t (a=๐Ÿ

๐Ÿ, b=

๐’“

๐Ÿ, q = ๐’“ in table A.23)

pdf

๐‘“ ๐‘ฅ =2ฮ“

1 + ๐‘Ÿ2

rฯ€ฮ“ ๐‘Ÿ2 1 +

๐‘ฅ2

๐‘Ÿ

1+๐‘Ÿ2

, โˆ’โˆž < ๐‘ฅ < โˆž

A.32 Logistic (x = ๐’†๐’šin table A.23)

pdf ๐‘“ ๐‘ฅ =

๐‘ ๐‘’๐‘๐‘Ž(๐‘ฅโˆ’๐‘™๐‘œ๐‘” (๐‘ž)

๐ต ๐‘Ž, ๐‘ (1 + ๐‘’๐‘(๐‘ฅโˆ’log ๐‘ž ))๐‘Ž+๐‘, โˆ’โˆž < ๐‘ฅ < โˆž

A.33 Generalized Gamma (๐ช = ๐œท๐’ƒ๐Ÿ

๐’‘, ๐ฅ๐ข๐ฆ๐’ƒโ†’โˆž

in table A.23)

pdf ๐‘“ ๐‘ฅ =

๐‘ ๐‘ฅ๐‘๐‘Žโˆ’1

ฮฒ๐‘๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

, ๐‘Ž > 0, ๐‘ > 0, ฮฒ > 0,

0 < ๐‘ฅ < โˆž

rth

order moment ฮฒ๐‘Ÿฮ“ ๐‘Ž +

๐‘Ÿ๐‘

ฮ“ ๐‘Ž

Mean ฮฒฮ“ ๐‘Ž +

1๐‘

ฮ“ ๐‘Ž

Mode

๐›ฝ ๐‘Ž โˆ’1

๐‘

1๐‘

Variance ๐›ฝ2

ฮ“2 a ฮ“ a ฮ“ ๐‘Ž +

2

๐‘ โˆ’ ฮ“2 ๐‘Ž +

1

๐‘

Skewness ฮฒ

3ฮ“2 ๐‘Ž ฮ“ ๐‘Ž +

3๐‘ โˆ’ 3ฮฒ

3ฮ“ a ฮ“ ๐‘Ž +2๐‘ ฮ“ ๐‘Ž +

1๐‘ + 2ฮฒ

3ฮ“3 ๐‘Ž +

1๐‘

ฮ“3 ๐‘Ž

Kurtosis

ฮฒ4

ฮ“ ๐‘Ž +4๐‘

ฮ“ ๐‘Ž โˆ’

4ฮ“ ๐‘Ž +3๐‘ ฮ“ ๐‘Ž +

1๐‘

ฮ“2 ๐‘Ž +

6ฮ“ ๐‘Ž +2๐‘ ฮ“2 ๐‘Ž +

1๐‘

ฮ“3 ๐‘Ž

โˆ’ 3ฮ“4 ๐‘Ž +

1๐‘

ฮ“4 ๐‘Ž

Page 248: From The Classical Beta Distribution To Generalized Beta ...

243

A.34 Gamma (๐ฉ = ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

๐‘ฅ๐‘Žโˆ’1

ฮฒ๐‘Ž

ฮ“ ๐‘Ž ๐‘’

โˆ’ ๐‘ฅ

๐›ฝ , ๐‘Ž > 0, ฮฒ > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ฮฒ๐‘Ÿฮ“ ๐‘Ž + ๐‘Ÿ

ฮ“ ๐‘Ž

Mean ฮ’๐‘Ž

Mode ฮฒ a โˆ’ 1

Variance a๐›ฝ2

Skewness 2

๐‘Ž

Kurtosis 3 +

6

๐‘Ž

A.35 Inverse Gamma (๐ฉ = โˆ’๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

ฮฒ๐‘Ž

๐‘ฅ1+๐‘Žฮ“ ๐‘Ž ๐‘’

โˆ’ ๐›ฝ๐‘ฅ , ๐‘Ž > 0, ฮฒ > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ฮฒ๐‘Ÿฮ“ ๐‘Ž โˆ’ ๐‘Ÿ

ฮ“ ๐‘Ž

Mean ฮฒ

a โˆ’ 1

Mode ฮฒ

a + 1

Variance ๐›ฝ2

๐‘Ž โˆ’ 1 2 a โˆ’ 2

Skewness 4 (a โˆ’ 2)

a โˆ’ 3

Kurtosis 3(๐‘Ž โˆ’ 2)(๐‘Ž + 5)

๐‘Ž โˆ’ 3 ๐‘Ž โˆ’ 4

Page 249: From The Classical Beta Distribution To Generalized Beta ...

244

A.36 Weibull (๐š = ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

, ๐‘ > 0, ฮฒ > 0, 0 < ๐‘ฅ < โˆž

Cumulative

distribution function 1 โˆ’ ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

rth

order moment ฮฒ

๐‘Ÿฮ“ 1 +

๐‘Ÿ

๐‘

Mean ฮฒ

pฮ“

1

p

Mode

๐›ฝ ๐‘ โˆ’ 1

๐‘

1๐‘

Variance ฮฒ

2ฮ“ 1 +

2

๐‘ โˆ’ ฮผ2

A.37 Exponential (๐š = ๐ฉ = ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

1

ฮฒ ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

, ฮฒ > 0, 0 < ๐‘ฅ < โˆž

Cumulative

distribution function ๐น ๐‘ฅ = 1 โˆ’ ๐‘’

โˆ’(๐‘ฅ๐›ฝ

)

rth

order moment ฮฒ๐‘Ÿ rฮ“ ๐‘Ÿ

Mean ฮฒ

Mode 0

Variance ฮฒ2

A.38 Chi-Squared (๐š =๐ง

๐Ÿ, ๐ฉ = ๐Ÿ, ๐›ƒ = ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

1

2n2ฮ“

n2

๐‘ฅn2โˆ’1๐‘’โˆ’

๐‘ฅ2 , 0 < ๐‘ฅ < โˆž

rth

order moment 2๐‘Ÿฮ“ n2 + ๐‘Ÿ

ฮ“ n2

Mean n

Mode n โˆ’ 2

Variance 2n

Page 250: From The Classical Beta Distribution To Generalized Beta ...

245

A.39 Rayleigh (๐š = ๐Ÿ, ๐ฉ = ๐Ÿ, ๐›ƒ = ๐›‚ ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

๐‘ฅ

ฮฑ2 ๐‘’

โˆ’ ๐‘ฅ

ฮฑ 2

2

, ฮฑ > 0, 0 < ๐‘ฅ < โˆž

Cumulative

distribution function ๐น(๐‘ฅ) = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ2

2ฮฑ2

rth

order moment ฮฑ 2 ๐‘Ÿฮ“ 1 +

๐‘Ÿ

2

Mean ฮฑ

ฯ€

2

Mode ฮฑ

Variance ฮฑ2

4 โˆ’ ๐œ‹

2

A.40 Maxwell (๐š =๐Ÿ‘

๐Ÿ, ๐ฉ = ๐Ÿ, ๐›ƒ = ๐›‚ ๐Ÿ, in table A.33)

pdf

๐‘“ ๐‘ฅ = 2

ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3, ฮฑ > 0, 0 < ๐‘ฅ < โˆž

rth

order moment ฮฑ 2 ๐‘Ÿฮ“

32

+๐‘Ÿ2

12 ฯ€

Mean 2ฮฑ 2

ฯ€

Mode 2ฮฑ

Variance ฮฑ2

3ฯ€ โˆ’ 8

ฯ€

A.41 Half Standard Normal (๐š =๐Ÿ

๐Ÿ, ๐ฉ = ๐Ÿ, ๐›ƒ = ๐Ÿ, in table A.33)

pdf ๐‘“ ๐‘ฅ =

2

2ฯ€ ๐‘’โˆ’

๐‘ฅ2

2 , 0 < ๐‘ฅ < โˆž

rth

order moment 2 ๐‘Ÿฮ“

12 +

๐‘Ÿ2

ฮ“ 12

Mean

2

ฯ€

Mode 0

Variance 1

Page 251: From The Classical Beta Distribution To Generalized Beta ...

246

A.42 Half Normal (๐š =๐Ÿ

๐Ÿ, ๐ฉ = ๐Ÿ, ๐›ƒ = ๐›” ๐Ÿ, in table A.33)

pdf

๐‘“ ๐‘ฅ = 2

ฯ€

๐‘’โˆ’

๐‘ฅ2

2๐œ2

๐œ, 0 < ๐‘ฅ < โˆž

rth

order moment ฯ‚ 2 ๐‘Ÿฮ“

12 +

๐‘Ÿ2

ฮ“ 12

Mean ฯ‚ 2

ฯ€

Mode 0

Variance ฯ‚2 1 โˆ’

2

ฯ€

A.43 Half Log Normal (๐’™ = (๐’๐’ ๐’š โˆ’ ๐, ๐’‚ =๐Ÿ

๐Ÿ, ๐›ƒ = ๐ˆ ๐Ÿ in table A.33)

pdf ๐‘“ ๐‘ฅ =

2

ฯ‚๐‘ฅ 2ฯ€ ๐‘’

โˆ’ ln ๐‘ฅ โˆ’๐œ‡ 2

2ฯ‚2 , 0 < ๐‘ฅ < โˆž

rth

order moment e๐‘Ÿ๐œ‡+

12๐‘Ÿ2๐œ2

Mean e๐œ‡+

12๐œ2

Mode e๐œ‡ +๐œ2

Variance e2๐œ‡ +๐œ2 e๐œ2

โˆ’ 1

A.44 Four Parameter Generalized Beta Distribution (๐’™ =๐’šโˆ’๐’‘

๐’’โˆ’๐’‘ in table A.1)

pdf ๐‘“ ๐‘ฅ =

๐‘ฅ โˆ’ ๐‘ ๐‘Žโˆ’1 ๐‘ž โˆ’ ๐‘ฅ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐‘ž โˆ’ ๐‘ ๐‘Ž+๐‘โˆ’1, ๐‘Ž, ๐‘, ๐‘, ๐‘ž > 0, 0 < ๐‘ฅ < โˆž

Mean ๐‘Ž๐‘ž + ๐‘๐‘

๐‘Ž + ๐‘

Mode ๐‘Ž โˆ’ 1 ๐‘ž + (๐‘ โˆ’ 1)๐‘

๐‘Ž + ๐‘ โˆ’ 2

Variance ๐‘Ž๐‘(๐‘ž โˆ’ ๐‘)2

๐‘Ž + ๐‘ 2(๐‘Ž + ๐‘ + 1)

Page 252: From The Classical Beta Distribution To Generalized Beta ...

247

A.45 Five Parameter Generalized Beta Distribution (๐’™ =๐’š๐’‘

๐’’๐’‘+๐’„๐’š๐’‘ in table A.1)

pdf

๐‘“ ๐‘ฅ =๐‘๐‘ฅ๐‘Ž๐‘โˆ’1 1 โˆ’ 1 โˆ’ ๐‘

๐‘ฅ๐‘ž

๐‘

๐‘โˆ’1

๐‘ž๐‘Ž๐‘๐ต ๐‘Ž, ๐‘ 1 + ๐‘ ๐‘ฅ๐‘ž

๐‘

๐‘Ž+๐‘ , ๐‘Ž, ๐‘, ๐‘, ๐‘ž > 0, 0 < ๐‘ < 1

rth

order moment ๐‘ž๐‘Ÿ๐ต(๐‘Ž +

๐‘Ÿ๐‘ , ๐‘)

๐ต(๐‘Ž, ๐‘) 2๐น1

๐‘Ž +๐‘Ÿ

๐‘,

๐‘Ÿ

๐‘; ๐‘

๐‘Ž + ๐‘ +๐‘Ÿ

๐‘

Mean ๐‘ž๐ต(๐‘Ž +

1๐‘ , ๐‘)

๐ต(๐‘Ž, ๐‘) 2๐น1

๐‘Ž +

1

๐‘,

1

๐‘; ๐‘

๐‘Ž + ๐‘ +1

๐‘

Mode ๐‘Ž โˆ’ 1 ๐‘ž + (๐‘ โˆ’ 1)๐‘

๐‘Ž + ๐‘ โˆ’ 2

Variance q2B(a +

2p , b)

1 โˆ’ c a+

2pB(a, b)

2F1

a +

2

p,

2

p; c

a + b +2

p

โˆ’

qB(a +

1p

, b)

1 โˆ’ c a+

1p B(a, b)

2F1

a +

1

p,

1

p; c

a + b +1

p

2

Page 253: From The Classical Beta Distribution To Generalized Beta ...

248

A.46 Five Parameter Weighted Generalized Beta Distribution (๐’‚ = ๐’‚ +๐’Œ

๐’‘, ๐’ƒ =

๐’ƒ โˆ’๐’Œ

๐’’ in table A.18)

pdf ๐‘“ ๐‘ฅ =

๐‘๐‘ฅ๐‘Ž๐‘+๐‘˜โˆ’1

๐‘ž๐‘Ž๐‘ +๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 +

๐‘ฅ๐‘ž

๐‘

๐‘Ž+๐‘ , ๐‘Ž, ๐‘, ๐‘, ๐‘ž > 0,

0 < ๐‘ฅ < โˆž, โˆ’๐‘Ž๐‘ < ๐‘˜ < ๐‘๐‘

rth

order moment ๐‘ž๐‘Ÿ๐ต ๐‘Ž +๐‘˜๐‘ +

๐‘Ÿ๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

๐‘Ÿ๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

Mean ๐‘ž๐ต ๐‘Ž +๐‘˜๐‘ +

1๐‘ , ๐‘ โˆ’

๐‘˜๐‘ โˆ’

1๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

Variance

๐‘ž๐‘Ÿ

๐ต ๐‘Ž +

๐‘˜ + 2๐‘ , ๐‘ โˆ’

๐‘˜ + 2๐‘

๐ต ๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

โˆ’ ๐‘Ž +

๐‘˜ + 1๐‘ , ๐‘ โˆ’

๐‘˜ โˆ’ 1๐‘

๐‘Ž +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘

2

A.47 Weighted Beta of the Second Kind (๐’‘ = ๐’’ = ๐Ÿ in table A.46)

pdf ๐‘“ ๐‘ฅ =

๐‘ฅ๐‘Ž+๐‘˜โˆ’1

๐‘ž๐‘Ž+๐‘˜๐ต ๐‘Ž + ๐‘˜, ๐‘ โˆ’ ๐‘˜ 1 + ๐‘ฅ ๐‘Ž+๐‘, ๐‘Ž, ๐‘, > 0,

0 < ๐‘ฅ < โˆž, โˆ’๐‘Ž < ๐‘˜ < ๐‘

A.48 Weighted Singh-Maddala (Burr12) (๐’‚ = ๐Ÿ in table A.46)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘ฅ๐‘+๐‘˜โˆ’1

๐‘ž๐‘+๐‘˜๐ต 1 +๐‘˜๐‘ , ๐‘ โˆ’

๐‘˜๐‘ 1 +

๐‘ฅ๐‘ž

๐‘

1+๐‘ , ๐‘, ๐‘, ๐‘ž > 0,

0 < ๐‘ฅ < โˆž, โˆ’๐‘ < ๐‘˜ < ๐‘๐‘

A.49 Weighted Dagum (Burr3) (๐’ƒ = ๐Ÿ in table A.46)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘ฅ๐‘Ž๐‘+๐‘˜โˆ’1

๐‘ž๐‘Ž๐‘+๐‘˜๐ต ๐‘Ž +๐‘˜๐‘ , 1 โˆ’

๐‘˜๐‘ 1 +

๐‘ฅ๐‘ž

๐‘

๐‘Ž+1 , ๐‘Ž, ๐‘, ๐‘ž > 0,

0 < ๐‘ฅ < โˆž, โˆ’๐‘Ž๐‘ < ๐‘˜ < ๐‘

Page 254: From The Classical Beta Distribution To Generalized Beta ...

249

A.50 Weighted Generalized Fisk (Log-Logistic) (๐’‚ = ๐’ƒ = ๐Ÿ, ๐’’ =๐Ÿ

๐€ in table

A.46)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘ฅ๐‘+๐‘˜โˆ’1

1๐œ† ๐‘+๐‘˜

๐ต 1 +๐‘˜๐‘ , 1 โˆ’

๐‘˜๐‘ 1 + (๐œ†๐‘ฅ)๐‘ 2

, ๐‘, ๐‘ž, ๐œ† > 0,

0 < ๐‘ฅ < โˆž, โˆ’๐‘ < ๐‘˜ < ๐‘

A.51 Five Parameter Exponential Generalized Beta Distribution (๐’™ = ๐’†๐’š, ๐’‘ =

๐Ÿ

๐ˆ and ๐’’ = ๐’†๐œน in table A.18)

Pdf

๐‘“ ๐‘ฅ =๐‘’

๐‘Ž ๐‘ฅโˆ’๐›ฟ ๐œ 1 โˆ’ 1 โˆ’ ๐‘ ๐‘’

๐‘ฅโˆ’๐›ฟ ๐œ

๐‘โˆ’1

๐œ๐ต ๐‘Ž, ๐‘ 1 + ๐‘ ๐‘’๐‘ฅ

๐‘’๐›ฟ

1๐œ

๐‘Ž+๐‘ , ๐‘Ž, ๐‘, ๐‘, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< ln

1

1 โˆ’ ๐‘

A.52 Exponential Generalized Beta Distribution of the First Kind (๐’„ = ๐ŸŽ in

table A.51)

Pdf

๐‘“ ๐‘ฅ =๐‘’

๐‘Ž ๐‘ฅโˆ’๐›ฟ ๐œ 1 โˆ’ ๐‘’

๐‘ฅโˆ’๐›ฟ ๐œ

๐‘โˆ’1

๐œ๐ต ๐‘Ž, ๐‘ , ๐‘Ž, ๐‘, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< 0

A.53 Exponential Generalized Beta Distribution of the Second Kind (๐’„ = ๐Ÿ in

table A.51)

Pdf

๐‘“ ๐‘ฅ =๐‘’

๐‘Ž ๐‘ฅโˆ’๐›ฟ ๐œ

๐œ๐ต ๐‘Ž, ๐‘ 1 + ๐‘’๐‘ฅโˆ’๐›ฟ๐œ

๐‘Ž+๐‘ , ๐‘Ž, ๐‘, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< โˆž

Page 255: From The Classical Beta Distribution To Generalized Beta ...

250

A.54 Exponential Generalized Gamma (Generalized Gompertz) (๐’ƒ โ†’

โˆž ๐š๐ง๐ ๐œนโˆ— = ๐ˆ๐’๐’๐’’ + ๐œน in table A.51)

Pdf

๐‘“ ๐‘ฅ =๐‘’

๐‘Ž ๐‘ฅโˆ’๐›ฟ ๐œ ๐‘’โˆ’๐‘’ ๐‘ฅโˆ’๐›ฟ /๐œ

๐œฮ“ฮž๐‘, ๐‘Ž, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< โˆž

A.55 Generalized Gumbell (๐’„ = ๐Ÿ ๐š๐ง๐ ๐’‚ = ๐’ƒ in table A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘’๐‘Ž ๐‘ฅโˆ’๐›ฟ /๐œ

๐œ๐ต ๐‘Ž, ๐‘Ž 1 + ๐‘’๐‘ฅโˆ’๐›ฟ๐œ

2๐‘Ž , ๐‘Ž, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< โˆž

A.56 Exponential Power (๐’„ = ๐ŸŽ ๐š๐ง๐ ๐’ƒ = ๐Ÿ in table A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘Ž๐‘’๐‘Ž ๐‘ฅโˆ’๐›ฟ /๐œ

๐œ, ๐‘Ž, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< 0

A.57 Exponential (Two Parameter) (๐’„ = ๐ŸŽ, ๐’‚ = ๐Ÿ ๐š๐ง๐ ๐’ƒ = ๐Ÿ in table A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘’ ๐‘ฅโˆ’๐›ฟ /๐œ

๐œ, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< 0

Page 256: From The Classical Beta Distribution To Generalized Beta ...

251

A.58 Exponential (One Parameter) (๐’„ = ๐ŸŽ, ๐’‚ = ๐Ÿ, ๐’ƒ = ๐Ÿ ๐š๐ง๐ ๐œน = ๐ŸŽ in table

A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘’๐‘ฅ/๐œ

๐œ, ๐œ > 0,

โˆ’โˆž <๐‘ฅ

๐œ< 0

A.59 Exponential Fisk (Logistic) (๐’„ = ๐Ÿ, ๐’‚ = ๐Ÿ, ๐’ƒ = ๐Ÿ in table A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘’(๐‘ฅโˆ’๐›ฟ)/๐œ

๐œ(1 + ๐‘’(๐‘ฅโˆ’๐›ฟ)/๐œ )2, ๐œ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< โˆž

A.60 Standard Logistic (๐’„ = ๐Ÿ, ๐’‚ = ๐Ÿ, ๐’ƒ = ๐Ÿ, ๐œน = ๐ŸŽ in table A.51)

Pdf ๐‘“ ๐‘ฅ =

๐‘’๐‘ฅ/๐œ

๐œ(1 + ๐‘’๐‘ฅ/๐œ)2, ๐œ > 0,

โˆ’โˆž <๐‘ฅ

๐œ< โˆž

A.61 Exponential Weibull (๐’ƒ โ†’ โˆž, ๐œนโˆ— = ๐ˆ๐’๐’๐’’ + ๐œน ๐š๐ง๐ ๐’‚ = ๐Ÿ in table A.51)

Pdf

๐‘“ ๐‘ฅ =๐‘’

๐‘ฅโˆ’๐›ฟ ๐œ ๐‘’โˆ’๐‘’ ๐‘ฅโˆ’๐›ฟ /๐œ

๐œฮ“ฮž๐‘, ๐œ, ๐›ฟ > 0,

โˆ’โˆž <๐‘ฅ โˆ’ ๐›ฟ

๐œ< โˆž

Other Generalized Beta Distributions

A.62 Beta Generator (๐’™ = ๐‘ฎ ๐’š in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘”(๐‘ฅ) ๐บ ๐‘ฅ ๐‘Žโˆ’1

1 โˆ’ ๐บ ๐‘ฅ ๐‘โˆ’1

๐ต(๐‘Ž, ๐‘), ๐‘Ž > 0, ๐‘ > 0,

โˆ’โˆž < ๐‘ฅ < โˆž, 0 < ๐บ(๐‘ฅ) < 1

Page 257: From The Classical Beta Distribution To Generalized Beta ...

252

A.63 ith Order Statistics (a=i, b=n-i+1 in table A.62)

Pdf ๐‘“ ๐‘ฅ =

n!

๐‘– โˆ’ 1 ! ๐‘› โˆ’ ๐‘– !๐‘”(๐‘ฅ)[๐บ(๐‘ฅ)]๐‘–โˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐‘›โˆ’๐‘– , ๐‘– > 0,

๐‘› โˆ’ ๐‘– > 0, โˆ’โˆž < ๐‘ฅ < โˆž, 0 < ๐บ(๐‘ฅ) < 1

A.64 Beta-Normal (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ =๐œโˆ’1 ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ

๐‘Žโˆ’1

1 โˆ’ ฮฆ ๐‘ฅ โˆ’ ๐œ‡

๐œ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐œ™

๐‘ฅ โˆ’ ๐œ‡

๐œ

๐‘Ž > 0, ๐‘ > 0, ๐œ > 0, ๐œ‡ โˆˆ โ„ ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆˆ โ„

Parent cdf

๐บ ๐‘ฅ = ฮฆ x โˆ’ ฮผ

ฯ‚

Parent pdf ๐‘” ๐‘ฅ = ๐œ™ x โˆ’ ฮผ

ฯ‚

A.65 Beta-Exponential (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

ฮป exp(โˆ’๐‘ฮปx)[1 โˆ’ exp(โˆ’ฮปx)]๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘

๐‘Ž > 0, ๐‘ > 0, ฮป > 0, ๐‘ฅ >0

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ exp(โˆ’ฮปx)

Parent pdf ๐‘” ๐‘ฅ = ฮปexp(โˆ’ฮปx)

A.66 Beta-Weibull (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ =

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’๐‘ ๐‘ฅ๐›ฝ

๐‘

1 โˆ’ eโˆ’

xฮฒ

c

๐‘Žโˆ’1

๐ต ๐‘Ž, ๐‘ , ๐‘Ž, ๐‘, ๐‘, ฮฒ > 0

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ eโˆ’

xฮฒ

c

Parent pdf ๐‘” ๐‘ฅ =

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1e

โˆ’ xฮฒ

c

Page 258: From The Classical Beta Distribution To Generalized Beta ...

253

A.67 Beta-Hyperbolic Secant (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ = 2ฯ€ arctan ๐‘’๐‘ฅ

๐‘Žโˆ’1

1 โˆ’2ฯ€ arctan ๐‘’๐‘ฅ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฯ€ cosh x

๐‘Ž > 0, ๐‘ > 0 and ๐‘ฅ โˆˆ โ„

Parent cdf

๐บ ๐‘ฅ =2

ฯ€arctan ๐‘’๐‘ฅ

Parent pdf ๐‘” ๐‘ฅ =

1

ฯ€ cosh x

A.68 Beta-Gamma (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ =

๐‘ฅ๐œŒโˆ’1๐‘’โˆ’๐‘ฅ๐œ†ฮ“x

ฮป ฯ ๐‘Žโˆ’1 1 โˆ’

ฮ“xฮป ฯ

ฮ“ ฯ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฮ“ ฯ aฮปฯ

๐‘Ž, ๐‘, ฯ, ฮป, x > 0

Parent cdf

๐บ ๐‘ฅ =ฮ“xฮป ฯ

ฮ“ ฯ

Parent pdf ๐‘” ๐‘ฅ =

๐‘ฅ

๐œ† ๐œŒโˆ’1

๐‘’โˆ’

๐‘ฅ๐œ†

A.69 Beta-Gumbel (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ = exp โˆ’

x โˆ’ ฮผฯ‚

๐œ๐ต ๐‘Ž, ๐‘ eโˆ’๐‘Ž (exp โˆ’

xโˆ’ฮผฯ‚

) 1 โˆ’ eโˆ’ exp โˆ’xโˆ’ฮผฯ‚

bโˆ’1

๐‘Ž, ๐‘, ๐‘ข, ฯ‚, ๐‘ฅ > 0

Parent cdf

๐บ ๐‘ฅ = exp โˆ’ exp โˆ’x โˆ’ ฮผ

ฯ‚

Parent pdf

๐‘” ๐‘ฅ =exp โˆ’

x โˆ’ ฮผฯ‚

ฯ‚exp โˆ’(exp โˆ’

x โˆ’ ฮผ

ฯ‚ )

Page 259: From The Classical Beta Distribution To Generalized Beta ...

254

A.70 Beta-Frรจchet (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ = ฮป๐œฮป exp โˆ’a

xฯ‚

โˆ’ฮป

1 โˆ’ exp โˆ’ xฯ‚

โˆ’ฮป

bโˆ’1

๐‘ฅ1+ฮป๐ต ๐‘Ž, ๐‘

๐‘Ž, ๐‘, ฮป, ฯ‚, x > 0

Parent cdf

๐บ ๐‘ฅ = exp โˆ’ x

ฯ‚

โˆ’ฮป

Parent pdf ๐‘” ๐‘ฅ =

ฮป๐œฮป

๐‘ฅ1+ฮปexp โˆ’

x

ฯ‚ โˆ’ฮป

A.71 Beta-Maxwell (Substituting G(X) and g(X) in table A.62)

Pdf

๐‘“ ๐‘ฅ =1

๐ต ๐‘Ž, ๐‘

2

ฯ€ฮณ

3

2,๐‘ฅ2

2ฮฑ

aโˆ’1

1 โˆ’2

ฯ€ฮณ

3

2,๐‘ฅ2

2ฮฑ

bโˆ’1

2

ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3

๐‘Ž, ๐‘, ฮฑ, ๐‘ฅ > 0 ๐‘Ž๐‘›๐‘‘ ฮณ ๐‘Ž, ๐‘ is an incomplete gamma function

Parent cdf

๐บ ๐‘ฅ =2

ฯ€ฮณ

3

2,๐‘ฅ2

2ฮฑ

Parent pdf

๐‘” ๐‘ฅ = 2

ฯ€

๐‘ฅ2๐‘’โˆ’

๐‘ฅ2

2โˆ2

ฮฑ3

A.72 Beta-Pareto (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

๐‘˜

๐œƒ๐ต ๐‘Ž, ๐‘ 1 โˆ’

๐‘ฅ

๐œƒ โˆ’k

aโˆ’1

๐‘ฅ

๐œƒ

โˆ’๐‘˜๐‘โˆ’1

๐‘Ž, ๐‘, ๐‘˜, ๐œƒ, ๐‘ฅ > 0

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ ๐‘ฅ

๐œƒ

โˆ’k

Parent pdf ๐‘” ๐‘ฅ =

๐‘˜๐œƒ๐‘˜

๐‘ฅ๐‘˜+1

Page 260: From The Classical Beta Distribution To Generalized Beta ...

255

A.73 Beta-Rayleigh (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

๐‘ฅ

ฮฑ2๐ต ๐‘Ž, ๐‘ 1 โˆ’ ๐‘’

โˆ’๐‘ฅ2

2ฮฑ2

aโˆ’1

๐‘’โˆ’๐‘

๐‘ฅ

ฮฑ 2

2

๐‘Ž, ๐‘, ๐‘˜, ๐›ผ > 0

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ2

2ฮฑ2

Parent pdf ๐‘” ๐‘ฅ =

๐‘ฅ

ฮฑ2 ๐‘’

โˆ’ ๐‘ฅ

ฮฑ 2

2

A.74 Beta-Generalized-Logistic of Type IV (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

B a, b 1โˆ’aโˆ’b

B a, b

eqx

1 โˆ’ eโˆ’x p+q[B 1

1+eโˆ’x(p, q)]aโˆ’1[B eโˆ’x

1+eโˆ’x

(q, p)]bโˆ’1

๐‘Ž, ๐‘, p, q > 0, ๐‘ฅ > ๐‘…

Parent cdf

๐บ ๐‘ฅ =

B 11+eโˆ’x

(p, q)

B p, q

Parent pdf ๐‘” ๐‘ฅ =

eqx

1 + eโˆ’x p+q

A.75 Beta-Generalized-Logistic of Type I (Substituting q=1 in table A.74)

Pdf ๐‘“ ๐‘ฅ =

peโˆ’x[ 1 + eโˆ’ax p โˆ’ 1]bโˆ’1

B a, b 1 + eโˆ’x a+pb

๐‘Ž, ๐‘, p > 0, ๐‘ฅ > ๐‘…

A.76 Beta-Generalized-Logistic of Type II (Substituting q=1 in table A.74)

Pdf ๐‘“ ๐‘ฅ =

qeโˆ’bqx

B a, b 1 + eโˆ’x qb +1 1 โˆ’

eโˆ’qx

B a, b 1 + eโˆ’x q

p

๐‘Ž, ๐‘, q > 0, ๐‘ฅ > ๐‘…

A.77 Beta-Generalized-Logistic of Type III (Substituting q=1 in table A.74)

Pdf ๐‘“ ๐‘ฅ =

B q, q 1โˆ’aโˆ’b

B a, b

eโˆ’qx

1 + eโˆ’x 2q[B 1

1+eโˆ’x(q, q)]aโˆ’1[B eโˆ’x

1+eโˆ’x

(q, q)]bโˆ’1

๐‘Ž, ๐‘, q > 0, ๐‘ฅ > ๐‘…

Page 261: From The Classical Beta Distribution To Generalized Beta ...

256

A.78 Beta-Beta Prime (๐ฑ = ๐žโˆ’๐ฒ ๐ข๐ง ๐ญ๐š๐›๐ฅ๐ž ๐€. ๐Ÿ•๐Ÿ’)

Pdf ๐‘“ ๐‘ฅ =

๐ต ๐‘, ๐‘ž 1โˆ’๐‘Žโˆ’๐‘

๐ต ๐‘Ž, ๐‘

๐‘ฅ๐‘žโˆ’1

1 + ๐‘ฅ ๐‘+๐‘ž[๐ต ๐‘ฅ

1+๐‘ฅ(๐‘ž, ๐‘)]๐‘Žโˆ’1[๐ต 1

1+๐‘ฅ(๐‘, ๐‘ž)]๐‘โˆ’1

๐‘Ž, ๐‘, ๐‘ž, > 0, ๐‘ฅ > ๐‘…

A.79 Beta-F (Substituting G(X) and g(X) in table A.62) Pdf ๐‘“ ๐‘ฅ

=B a, b โˆ’1

B u2 ,

v2

vu

v2

xv2โˆ’1

1 + vu x

(u+v)/2

I

vu x

1+ vu x

v

2,u

2

aโˆ’1

I 1

1+ vu x

v

2,u

2

bโˆ’1

๐‘Ž, ๐‘, u, v, x > 0

Parent cdf

๐บ ๐‘ฅ =1

B ๐‘ข2 ,

๐‘ฃ2

B

vu x

1+ vu x

๐‘ฃ

2,๐‘ข

2

Parent pdf

๐‘” ๐‘ฅ =

vu

q2

B ๐‘ข2 ,

๐‘ฃ2

xv2โˆ’1

1 + vu x

(u+v)/2

A.80 Beta-Burr XII (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

๐‘๐‘˜๐‘žโˆ’๐‘๐‘ฅ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ 1 โˆ’ 1 +

๐‘ฅ

q

p

โˆ’๐‘˜

aโˆ’1

1 + ๐‘ฅ

q

p

โˆ’๐‘˜๐‘โˆ’1

๐‘Ž, ๐‘, ๐‘, ๐‘ž, ๐‘˜, ๐‘ฅ > 0.

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ 1 + ๐‘ฅ

q

p

โˆ’๐‘˜

Parent pdf ๐‘” ๐‘ฅ = ๐‘๐‘˜๐‘žโˆ’๐‘ 1 +

๐‘ฅ

q

p

โˆ’๐‘˜โˆ’1

๐‘ฅ๐‘โˆ’1

A.81 Beta-Dagum (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

1

๐ต ๐‘Ž, ๐‘ 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž aโˆ’1 1 โˆ’ 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž bโˆ’1

๐‘ ๐‘ž๐‘Ž๐‘ฅโˆ’๐‘โˆ’1

(1 + ๐‘ž๐‘ฅโˆ’๐‘)1+a

๐‘Ž, ๐‘, ๐‘, ๐‘ž, ๐‘ฅ > 0

Parent cdf

๐บ ๐‘ฅ = 1 + ๐‘ž๐‘ฅโˆ’๐‘ โˆ’๐‘Ž

Parent pdf ๐‘” ๐‘ฅ =

๐‘ ๐‘ž๐‘Ž๐‘ฅโˆ’๐‘โˆ’1

(1 + ๐‘ž๐‘ฅโˆ’๐‘)1+a

Page 262: From The Classical Beta Distribution To Generalized Beta ...

257

A.82 Beta-Fisk (Log-Logistic) (Substituting G(X) and g(X) in table A.62)

Pdf ๐‘“ ๐‘ฅ =

๐œ†๐‘ ๐œ†๐‘ฅ apโˆ’1

๐ต ๐‘Ž, ๐‘ 1 + ๐œ†๐‘ฅ p a+b

๐‘Ž, ๐‘, ๐‘, ๐œ†, ๐‘ฅ > 0

Parent cdf

๐บ ๐‘ฅ = ๐œ†๐‘ฅ p

1 + ๐œ†๐‘ฅ p

Parent pdf ๐‘” ๐‘ฅ =

๐œ†๐‘ ๐œ†๐‘ฅ pโˆ’1

1 + ๐œ†๐‘ฅ p 2

A.83 Beta-Generalized Half Normal (Substituting G(X) and g(X) in table A.62) Pdf

๐‘“ ๐‘ฅ = 2๐œ™

๐‘ฅ๐œ

ฮฑ

โˆ’ 1 aโˆ’1

2 โˆ’ 2๐œ™ ๐‘ฅ๐œ

ฮฑ

bโˆ’1

2ฯ€

ฮฑ๐‘ฅ

๐‘ฅ๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ ๐Ÿ๐œถ

๐ต ๐‘Ž, ๐‘

๐‘Ž, ๐‘, ฮฑ, ๐œ > 0

Parent cdf

๐บ ๐‘ฅ = 2๐œ™ ๐‘ฅ

๐œ

ฮฑ

โˆ’ 1

Parent pdf

๐‘” ๐‘ฅ = 2

ฯ€ ฮฑ

๐‘ฅ

๐‘ฅ

๐œ

ฮฑ

๐‘’โˆ’12 ๐‘ฅ๐œ ๐Ÿ๐œถ

A.84 Generalized Beta Generator (๐ฑ = ๐† ๐ฒ ๐›‚ in table A.1)

Pdf ๐‘“ ๐‘ฅ =

๐‘” ๐‘ฅ ๐›ผ ๐บ ๐‘ฅ ๐›ผโˆ’1 ๐บ ๐‘ฅ ๐›ผ ๐‘Žโˆ’1 1 โˆ’ ๐บ ๐‘ฅ ๐›ผ ๐‘โˆ’1

๐ต(๐‘Ž, ๐‘), ๐‘Ž > 0,

๐›ผ > 0, ๐‘ > 0, โˆ’โˆž < ๐‘ฅ < โˆž, 0 < ๐บ ๐‘ฅ ๐›ผ < 1

A.85 Exponentiated Exponential (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ =

1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐›ผ

1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐›ผ

๐‘Žโˆ’1

1 โˆ’ 1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐›ผ

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฅ๐›ฝ

๐›ผ

Parent pdf ๐‘” ๐‘ฅ =

๐›ผ

๐›ฝ 1 โˆ’ ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐›ผโˆ’1

๐‘’โˆ’

๐‘ฅ๐›ฝ

Page 263: From The Classical Beta Distribution To Generalized Beta ...

258

A.86 Exponentiated Weibull (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ =

๐‘ฮฒp ๐‘ฆ๐‘โˆ’1๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

[1 โˆ’ ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

]๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ ๐‘’โˆ’

๐‘ฆ๐›ฝ

๐‘

Parent pdf ๐‘” ๐‘ฅ =

๐‘

ฮฒp ๐‘ฆ๐‘โˆ’1๐‘’

โˆ’ ๐‘ฆ๐›ฝ

๐‘

A.87 Exponentiated Pareto (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ =

๐‘qp๐‘๐‘ฆโˆ’๐‘โˆ’1 1 โˆ’ ๐‘ฆ๐‘ž โˆ’๐‘

๐‘โˆ’1

[ 1 โˆ’ ๐‘ฆ๐‘ž โˆ’๐‘

๐‘

]๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ ๐‘ฆ๐‘ž

โˆ’๐‘

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ ๐‘ฆ

๐‘ž

โˆ’๐‘

๐‘

Parent pdf ๐‘” ๐‘ฅ = ๐‘qp๐‘๐‘ฆโˆ’๐‘โˆ’1 1 โˆ’

๐‘ฆ

๐‘ž

โˆ’๐‘

๐‘โˆ’1

A.88 Generalized Beta Exponential (Substituting G(X) and g(X) in table A.84)

Pdf ๐‘“ ๐‘ฅ =

๐‘ ฮป exp(โˆ’ฮปx)[1 โˆ’ exp(โˆ’ฮปx) ]๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ exp โˆ’ฮปx ๐‘ ๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ exp(โˆ’ฮปx) Parent pdf ๐‘” ๐‘ฅ = ฮป exp(โˆ’ฮปx)

A.89 Generalized Beta Weibull (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ =

๐‘ ๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

[1 โˆ’ eโˆ’

xฮฒ

c

]๐‘๐‘Žโˆ’1 1 โˆ’ 1 โˆ’ eโˆ’

xฮฒ

c

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = 1 โˆ’ eโˆ’

xฮฒ

c

Parent pdf ๐‘” ๐‘ฅ =

๐‘

ฮฒ๐‘ ๐‘ฅ๐‘โˆ’1 ๐‘’

โˆ’ ๐‘ฅ๐›ฝ

๐‘

Page 264: From The Classical Beta Distribution To Generalized Beta ...

259

A.90 Generalized Beta Hyperbolic Secant (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ = ๐‘

2ฯ€

arctan ๐‘’๐‘ฅโˆ’๐œ‡๐œ

๐‘Ž๐‘โˆ’1

1 โˆ’ 2ฯ€

arctan ๐‘’๐‘ฅโˆ’๐œ‡๐œ

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ฯ‚ฯ€ cosh ๐‘ฅ โˆ’ ๐œ‡

๐œ

Parent cdf

๐บ ๐‘ฅ =2

ฯ€arctan ๐‘’

๐‘ฅโˆ’๐œ‡๐œ

Parent pdf ๐‘” ๐‘ฅ =

1

ฯ‚ฯ€ cosh ๐‘ฅ โˆ’ ๐œ‡

๐œ

A.91 Generalized Beta Normal (Substituting G(X) and g(X) in table A.84) Pdf

๐‘“ ๐‘ฅ =๐‘๐œโˆ’1[ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ ]๐‘Ž๐‘โˆ’1 1 โˆ’ ฮฆ

๐‘ฅ โˆ’ ๐œ‡๐œ

p

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘ ๐œ™

๐‘ฅ โˆ’ ๐œ‡

๐œ

Parent cdf

๐บ ๐‘ฅ = ฮฆ ๐‘ฅ โˆ’ ๐œ‡

๐œ

Parent pdf ๐‘” ๐‘ฅ = ๐œ™

๐‘ฅ โˆ’ ๐œ‡

๐œ

A.92 Generalized Beta Log Normal (Substituting G(X) and g(X) in table A.84) Pdf

๐‘“ ๐‘ฅ =๐‘๐œ™ log ๐‘ฅ [ฮฆ log ๐‘ฅ ]๐‘Ž๐‘โˆ’1 1 โˆ’ ฮฆ log ๐‘ฅ ๐‘ ๐‘โˆ’1

๐‘ฅ๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = ฮฆ log ๐‘ฅ

Parent pdf ๐‘” ๐‘ฅ =

๐œ™ log๐‘ฅ

๐‘ฅ

A.93 Generalized Beta Gamma (Substituting G(X) and g(X) in table A.84) Pdf

๐‘“ ๐‘ฅ =

xฮป

ฯโˆ’1

eโˆ’xฮป

ฮ“xฮป ฯ

ฮ“ ฯ

๐‘Ž๐‘โˆ’1

1 โˆ’ ฮ“xฮป ฯ

ฮ“ ฯ

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = ฮ“xฮป ฯ

ฮ“ ฯ

Parent pdf ๐‘” ๐‘ฅ =

x

ฮป

ฯโˆ’1

eโˆ’

xฮป

Page 265: From The Classical Beta Distribution To Generalized Beta ...

260

A.94 Generalized Beta Frรจchet (Substituting G(X) and g(X) in table A.84)

Pdf

๐‘“ ๐‘ฅ =

๐‘ฮปฯ‚

exp โˆ’ xฯ‚

โˆ’ฮป ๐‘ฅ๐œ†โˆ’1 exp โˆ’

xฯ‚

โˆ’ฮป

๐‘Ž๐‘ โˆ’1

1 โˆ’ exp โˆ’ xฯ‚

โˆ’ฮป

๐‘

๐‘โˆ’1

๐ต ๐‘Ž, ๐‘

Parent cdf

๐บ ๐‘ฅ = exp โˆ’ x

ฯ‚ โˆ’ฮป

Parent pdf ๐‘” ๐‘ฅ =

ฮป

ฯ‚exp โˆ’

x

ฯ‚

โˆ’ฮป

๐‘ฅ๐œ†โˆ’1

A.95 Confluent Hypergeometric

Pdf ๐‘“ ๐‘ฅ =

1

๐ต(๐‘Ž,๐‘ โˆ’ ๐‘Ž) ๐‘ข๐‘Žโˆ’1 1 โˆ’ ๐‘ข ๐‘โˆ’๐‘Žโˆ’1๐‘’๐‘ฅ๐‘ข๐‘‘๐‘ข

1

0

A.96 Gauss Hypergeometric

Pdf ๐‘“ ๐‘ฅ =

ฮ“(c)

ฮ“(a)ฮ“(c โˆ’ a) ๐‘ข๐‘Žโˆ’1(1 โˆ’ ๐‘ข)

๐‘โˆ’๐‘Žโˆ’1(1 โˆ’ ๐‘ฅ๐‘ข)

โˆ’๐‘๐‘‘๐‘ข

1

0

A.97 Appell

Pdf ๐‘“ ๐‘ฅ =

๐ถ๐‘ฅ๐›ผโˆ’1 1 โˆ’ ๐‘ฅ ๐›ฝโˆ’1

1 โˆ’ ๐‘ข๐‘ฅ ๐œŒ 1 โˆ’ ๐‘ฃ๐‘ฅ ๐œ† ,

0 < ๐‘ฅ < 1, ๐›ผ > 0, ๐›ฝ > 0, ๐œŒ > 0, ๐œ† > 0, โˆ’1 < ๐‘ข < 1, โˆ’1 < ๐‘ฃ < 1 and C

is the normalizing constant given by 1

๐ถ= ๐ต ๐›ผ, ๐›ฝ ๐น1(๐›ผ, ๐œŒ, ๐œ†, ๐›ผ + ๐›ฝ; ๐‘ข, ๐‘ฃ)

Page 266: From The Classical Beta Distribution To Generalized Beta ...

261

SUMMARY: FRAMEWORK FOR CLASSICAL TO GENERALIZED BETA DISTRIBUTIONS

Power

Beta of the first Kind Beta of the Second Kind Arcsine

Triangular Shaped

Parabolic

Wigner SemiCircle

3 Parameter generalized beta

Chotikapanich, McDonaldโ€˜s

Kum

araswam

y

3 Parameter generalized beta

Libby&Novickโ€˜s, McDonaldโ€˜s,

Beta type 3

4 Parameter generalized beta

of the first kind

4 Parameter generalized beta

of the second kind

Gen

eralized P

ow

er

Unit G

amm

a

Pareto

(Type I)

Generalized Gamma

Gam

ma

Weib

ull

Exponen

tial

Chi-S

quared

Ray

leigh

Half-N

orm

al

Max

well

Half L

og

-Norm

al

Uniform Lomax

(Pareto Type II)

Log-logistic

(Fisk)

Sto

pp

a

Sin

gh

-Mad

dala

Gen

eralized L

om

ax

(Pareto

Type II)

Inverse L

om

ax

Dag

um

Para-L

og

istic

Gen

eral Fisk

(Log-lo

gistic)

Fish

er (F)

Inverse G

amm

a

Logistic

5 Parameter generalized beta

Page 267: From The Classical Beta Distribution To Generalized Beta ...

262

11 References

1. Akinsete, Alfred, Felix Famoye, and Carl Lee. โ€•The beta Pareto distribution.โ€–

Statistics 42.6 (2008):547-563.

2. Akinsete,A., and C. Lowe. โ€•Beta Rayleigh distribution in reliability

measure.Section on Physical and Engineering Sciences.โ€– Proceedings of the

American Statistical Association. (2009).

3. Alexander C., Cordeiro, G.M., Ortega, E.M.M., and Josรจ M.S (2010)

โ€•Generalized Beta Generated Distributionsโ€–

4. Amusan, Grace Ebunoluwa, โ€•The Beta Maxwell Distribution (2010)โ€.

5. Barreto-Souza, W., Cordeiro, G. M., and Simas, A. B. Some results for beta

Frรจchet distribution, (2008).

6. C. Armero and M.J. Bayarri, Prior assessments for prediction in queues, The

Statistician 43, 139-153, (1994).

7. Catherine, F., Merran, E., Nicholas, H., and Brian, P., Statistical distributions, 4th

ed., Wiley, (2011)

8. Chen, J.C. and Novick, M.R., (1984), Bayesian analysis for binomial models

with generalized beta prior distributions. Journal of Educational Statistics, 9,

163-175.

9. Chotikapanich, D., W.E. Griffiths, D.S.P Rao, and V. Valecia (2010). Global

Income Distribution and Inequality, 1993 and 2000: Incorporating Country-

Level Inequality Modeled with Beta Distributions. Forthcoming in The Review of

economics and Statistics

10. Christian, C., and Samuel, K. (2003). Statistical Size Distributions in Economics

and Actuarial Sciences. New Jersey: John Wiley.

11. Condino, Francesca, and Filippo Domma. โ€•The beta-Dagum distribution.โ€– 45th

Scientific Meeting of the Italian Statistical Society, University of Padua. (2010).

12. Cummins, J. D., Dionne, G., McDonald, J. B., and Pritchett, B. M. (1990).

Applications of the GB2 family of distributions in modeling insurance loss

processes. Insurance: Mathematics & Economics, 9, 257โ€“272.

Page 268: From The Classical Beta Distribution To Generalized Beta ...

263

13. DE MORAIS, ALICE LEMOS. A class of generalized beta distributions, Pareto

power series and Weibull power series. Diss. Universidade Federal de

Pernambuco, (2009).

14. Dutka, J. (1981). The incomplete beta functionโ€”a historical profile. Archive for

the History of Exact Sciences, 24, 11โ€“29.

15. Eugene, N., C. Lee, and F. Famoye, (2002). Beta-normal Distribution and its

applications. Communication in Statistics โ€“ Theory and Methods, 31:497-512.

16. Famoye, F. , Lee, C. & Olugbenga Olumolade, (2005). The Beta-weibull

distribution. Journal of Statistical Theory and Applications, 121-138.

17. Famoye, F., Lee, C., and Eugene, N. Beta-Normal Distribution: Bimodality

Properties and Application. Journal of Modern Applied Statistical Methods 2

(Nov.2003), 314โ€“326.

18. Fischer, Matthias J.; Vaughan, David (2004) : The Beta-Hyperbolic Secant

(BHS) Distribution, Diskussionspapiere // Friedrich-Alexander-Universitรคt

Erlangen-Nรผrnberg, Lehrstuhl fรผr Statistik und ร–konometrie, No. 64/2004,

http://hdl.handle.net/10419/29617

19. Gordy, M.B., (1988a), Computationally convenient distributional assumptions

for common-value auctions, Computational Economics 12, 61-78.

20. Gordy, M.B., (1988b), A generalization of generalized beta distributions. Paper

No. 1998-18, Finance and Economics Discussion Series. The Federal Reserve

Boeard.

21. Grassia, A., (1977), On a family of distributions with argument between 0 and 1

obtained by transformation of the gamma and derived compound distributions,

Australian Journal of Statistics 19, 108-114.

22. Gupta, A. K. and Nadarajah, S. (2004). On the moments of the beta normal

distribution. Communication in Statistics โ€“ Theory and Methods, 31: 1-13.

23. Gupta, A. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its

Applications. New York: Marcel Dekker.

24. Gupta, A. K. and Nadarajah, S.. Beta Bessel Distribution. International Journal

of Mathematics and Mathematical Sciences, (2006): 1-14.

25. Gupta, R.D., Kundu, D. (1999). Generalized exponential distributions.

Page 269: From The Classical Beta Distribution To Generalized Beta ...

264

Australian and New Zealand Journal of Statistic 41, 173-188

26. J.H. Sepanski and L.Kong, A Family of Generalized Beta Distribution For

Income, International Business, 1(10), (2007), 129-145.

27. Jones, M.C. โ€•Families of distributions arising from distributions of order

statistics.โ€– Test 13.1 (2004):1-43.

28. Kalbfleisch, J. D., and Prentice, R. L. (1980). The Statistical Analysis of Failure

Time Data. New York: John Wiley.

29. Klugman, S. A., Panjer, H. H., and Willmot, G. E. (1998). Loss Models. New

York: John Wiley.

30. Kong, L., Lee, C., and Sepanski, J. H. On the Properties of Beta-Gamma

Distribution. Journal of Modern Applied Statistical Methods 6, 1 (2007), 187โ€“

211.

31. L.Cardeล„o, D.K Nagar and L.E Sรกnchez, Beta Type 3 Distribution and Its

Multivariate Generalization, Tamsui Oxford Journal of Mathematical Sciences

21(2)(2005).225-241 Aletheia University

32. Lee, C., Famoye, F., and Olumolade, O. Beta-Weibull Distribution: Some

Properties and Applications to Censored Data. Journal Of Modern Applied

Statistical Methods 6 (May 2007), 173โ€“186.

33. Leemis, L. and Mcqueston, J., Univariate Distribution Relationships The

American Statistician, February (2008), vol.62, No.1 45

34. Libby, D.L and Novick, M., (1982), Multivariate generalized beta-distributions

with applications to utility assessment. Journal of Educational Statistics, 7, 271-

294.

35. McDonald, J. B., and Ransom, M. (1979a). Functional forms, estimation

techniques, and the distribution of income. Econometrica, 47, 1513โ€“1526.

36. McDonald, J. B., and Richards, D. O., (1987a), Model selection: some

generalized distributons. Communications in Statistics (volume A), 16, 1049-

1074.

37. McDonald, J. B., and Richards, D. O., (1987b), Some generalized models with

applications to reliability. Journal of Statistical Planning and Inference, 16, 365-

376.

Page 270: From The Classical Beta Distribution To Generalized Beta ...

265

38. McDonald, J. B., and Y.J.Xu, A Generalization of the Beta Distribution with

Application, Journal of Econometrics, 69(2), (1995), 133-152.

39. McDonald, J.B., (1984), Some generalized functions for the size distribution of

income. Econometrica, 52, 647-664.

40. Mudholkar, G.S., Srivastava, D.K., Freimer, M. (1995). The exponentiated

Weibull family. Technometrics 37 436-445.

41. Nadarajah, S. (2005). Exponentiated beta distributions. Computers

&Mathematics with Application. 49, 1029-1035.

42. Nadarajah, S. and Kotz, S., (2004): A generalized beta distribution. The

Mathematical Scientist, 29, 36-41.

43. Nadarajah, S., and Gupta, A. K. The Beta Frรจchet Distribution. Far East Journal

of Theoretical Statistics 14 (2004), 15โ€“24.

44. Nadarajah, S., and Kotz, S. The Beta Exponential Distribution. Reliability

Engineering and System Safety 91 (2006), 689-697.

45. Nadarajah, S., and Kotz, S. (2006), An F1 beta distribution with bathtub failure

rate function. American Journal of Mathematical and Management Sciences, 26,

113-131.

46. Nadarajah, S., and Kotz, S. (2007): Multitude of beta distributions with

applications, Statistics: A Journal of Theoretical and Applied Statistics, 41:2,

153-179

47. Nadarajah, S., and Kotz, S. The Beta Gumbel Distribution. Mathematical

Problems in Engineering 4 (2004), 323โ€“332.

48. Paranaiba P.F, Ortega E.M.M, Cordeiro G.M, Pescim R.R.,The beta Burr XII

distribution with application to lifetime data, Computational Statistics and Data

Analysis (2010)

49. Patil, G.P., M.T.Boswell, and M.V. Ratnaparkhi, (1984), Dictionary and

classified bibliography of statistical distributions in scientific work: Continuous

univariate models (International cooperative Publishing House, Burtonsville,

MD).

50. Pescim,R.R.,Demรจtrio C.G., Cordeiro, G.M., Ortega, E.M., and Urbano, M.R.

(2009). The beta generalized half-normal distribution. Computational Statistics

Page 271: From The Classical Beta Distribution To Generalized Beta ...

266

and data analysis, 54(4), 945-957.

51. Thurow, L. C. (1970). Analyzing the American Income Distribution. Papers and

proceedings, American Economics Association, 60, 261-269.

52. Vartia, P. L. I., and Vartia, Y. O. (1980). Description of the income distribution

by the scaled F distribution model. In: N. A. Klevmarken and J. A. Lybeck

(eds.): The Statics and Dynamics of Income. Clevedon, UK: Tieto, pp. 23โ€“36.

53. Venter, G. (1983). Transformed beta and gamma distributions and aggregate

losses. Proceedings of the Casualty Actuarial Society, 70, 156โ€“193.

54. Walck, C. (1996). Handbook on Statistical Distributions for Experimetalists.

Internal Report SUFโ€“PFY/96โ€“01, Particle Physics Group, Fysikum, Stockholm

University, 11 December 1996.

55. Yuan; Ye, Broderick, O. Oluyede; Mavis, Pararai (2012) : Weighted generalized

beta distribution of the second kind and related distributions, Journal of

Statistical and Econometric Methods, ISSN 2241-0376, International Scientific

Press, Vol 1, Iss. 1, 13-31.