From Data to Action: Bridging Chemistry and Biology with Informatics at NCATS

49
From Data to Ac+on Bridging Chemistry and Biology with Informa+cs at NCATS Rajarshi Guha, Ph.D. BCHB597 February 2015

Transcript of From Data to Action: Bridging Chemistry and Biology with Informatics at NCATS

From  Data  to  Ac+on  Bridging  Chemistry  and  Biology    

with  Informa+cs  at  NCATS  

Rajarshi  Guha,  Ph.D.    

BCHB-­‐597  February  2015  

Faces  of  Transla+on  

What  is  Transla+on?  

Transla'on  is  the  process  of  turning  observaEons  in  

the  laboratory  and  clinic  into  intervenEons  that  

improve  the  health  of  individuals  and  the  public  -­‐  

from  diagnosEcs  and  therapeuEcs  to  medical  

procedures  and  behavioral  changes.  

What  is  Transla+onal  Science?  

Transla'onal  Science  is  the  field  of  invesEgaEon  

focused  on  understanding  the  scienEfic  and  

operaEonal  principles  underlying  each  step  of  the  

translaEonal  process.      

 

NCATS  studies  transla1on  as  a  scien1fic  and  

opera1onal  problem.  

NCATS  Mission  

       To  catalyze  the  generaEon  of  innovaEve  methods  and  technologies  that  will  enhance  the  development,  tesEng  and  implementaEon  of  intervenEons  that  tangibly  improve  human  health  across  a  wide  range  of  human  diseases  and  condiEons.    

NCATS  Scien+fic  Ini+a+ves  •  Clinical  Transla1onal  Science  

–  Clinical  and  TranslaEonal  Science  Awards  –  Rare  Disease  Clinical  Research  Network  –  New  TherapeuEc  Uses  program  

•  Preclinical  Transla1onal  Science  –  NCATS  Chemical  Genomics  Center  –  TherapeuEcs  for  Rare  and  Neglected  Diseases  program  –  Bridging  IntervenEonal  Development  Gaps  program  

•  Re-­‐engineering  Transla1onal  Sciences  –  Toxicology  in  the  21st  Century  – Microphysiological  Systems  (Tissue  Chip)  program  –  Office  of  Rare  Diseases  Research  

Preclinical  Development/TRND  

BrIDGs  

FDA  CollaboraEon  

Systems  Toxicology  (Tox21)  

RNAi  

Paradigm/Technology  Development  

Repurposing  

Lead Optimization

Preclinical Development

Probe/Lead Development

Target Validation Target

FDA approval Clinical Trials

I II III

Project  Entry  Point  

Deliverables  

Repurposing  

Unvalidated  target  

Validated  target  

Lead  compound  

Preclinical  development  candidate  

Genome-­‐wide  RNAi  systems  biology  data  

Chemical  genomics  

systems  biology  data  

Small  molecule  and  siRNA  research  probes  

More  efficient/faster/cheaper  translaEon  and  therapeuEc  development  

Leads  for  therapeuEc  development  

PredicEve  in  vitro  toxicology  profiles  

Approved  drugs  effecEve  for  new  

indicaEons  

New  drugs  for  untreatable  diseases  

Novel  clinical  trial  designs  

Drugs  suitable  for  adopEon  for  further  

development  

Assay Dev

Assay  ,  Chemistry  Technologies  

Target  assay  

DPI  Program  

NCGC/Probe  Dev  

NCATS DPI: A Collaborative Pipeline NCATS  DPI:  A  Collabora+ve  Pipeline  

NCATS  Chemical  Genomics  Center  •  Obligatory  collaboraEon  model    

•  Currently  >  250  collaboraEons  with  invesEgators  worldwide  

•  Assay  development,    HTS,  chemical  informaEcs,  medicinal  chemistry:  “target  to  POC”    

•  Focus  is  unprecedented  targets,  rare/neglected  diseases  

•  Mission  Ø  Chemical  and  siRNA  probes/leads  Ø  New  technologies/paradigms  to  

improve  efficiency  and  success  rates  of  target-­‐to-­‐lead  stage  of  drug  development  

Ø  Chemical  genomics:  general  principles  of  siRNA  acEon,  small  molecule  –  target  interacEons  

NCATS  Chemical  Genomics  Center  

NCATS  MISSION  

•  To  catalyze  the  generaEon  of  innovaEve  methods  and  technologies  that  will  enhance  the  development,  tesEng  and  implementaEon  of  intervenEons  that  tangibly  improve  human  health  across  a  wide  range  of  human  diseases  and  condiEons.  

NCGC  MISSION  

•  To  develop  chemical  probes  that  fundamentally  change  our  understanding  of  the  molecular  basis  of  disease,  provide  chemical  biology  tools  able  to  validate  new  therapeuEc  and  disease  management  approaches  and  catalyze  innova+ve  transla+onal  research.  

Range  of  screening  assays  performed  

Phenotype (Image-based

HCS, GFP, etc)

Pathway (Reporters, e.g.,

luciferase, β-lactamase)

Protein (Enzyme readouts, interactions, etc)

Extent of reductionism

NCGC  Highlights  

Paradigms  &  Technologies  

Transla1onal  Events  

qHTS  Paradigm  

Chemical  Genomics  Drug  Repurposing  

2012  2006   2007   2008   2009   2014  2010   2011   2013  2005  

Novel  Probes  Novel  Biology  

NCATS  Pharmaceu1cal  Collec1on   Combina1on  Screening  

Novel  Combina1ons  Novel  Insights  

What  is  Transla+onal  Bioinforma+cs?  

•  From  the  AMIA  – “… the development of storage, analytic, and interpretive methods to

optimize the transformation of increasingly voluminous biomedical data into proactive, predictive, preventative, and participatory health. Translational bioinformatics includes research on the development of novel techniques for the integration of biological and clinical data and the evolution of clinical informatics methodology to encompass biological observations. The end product of translational bioinformatics is newly found knowledge from these integrative efforts that can be disseminated to a variety of stakeholders, including biomedical scientists, clinicians, and patients.”  

•  PLoS  “Book”  on  TranslaEonal  BioinformaEcs  gives  an  idea  of  the  range  &  variety  of  topics  under  TBI  

What  is  Transla+onal  Bioinforma+cs?  

•  Methods  and  data  that  allow  you  move  along  the  scale  from  molecular  to  phenotypic  to  clinical  – Not  necessarily  along  the  whole  sequence  

•  Methods  that  enable  us  to  go  from  raw  data  to  making  decisions  in  – Chemistry  –  what  compound  should  we  synthesize  next?  How  should  this  compound  be  modified?  

– Biology  –  is  this  target  relevant  to  the  disease?  Is  this  target  differenEally  modulated  under  this  condiEon?  

–  IntegraEve  –  can  we  gain  insight  by  linking  these  data  sources  or  data  types?  

RNAi  Screening  at  NCATS  

•  Perform  collaboraEve  genome-­‐wide  RNAi  (siRNA)  screening  projects  (assay  dev,  screening,  validaEon)    

•  Advance  the  science  of  RNAi  screening  and  informaEcs.  

•  Populate  a  public,  large-­‐scale  siRNA  screening  database.  •  Explore  new  technologies  for  the  illuminaEon  of  gene  funcEon.    

 

 

Range of Assays!

Pathways (Reporter assays, e.g., luciferase, β-lactamase)!

!

Complex Phenotypes (High-content imaging, cell cycle, translocation, etc)!

!

Simple Phenotypes (Viability, cytotoxicity, etc.)!

!

•  Cancer –  Drug Enhancer/Resistance Screens

•  Immunotoxins •  TOP1 Poisons •  Platinum Drugs/Drug Resistance •  Kinase Inhibitors

–  Molecular Targets in Cancer •  Ewing Sarcoma •  Rhabdomyosarcoma •  Neuroblastoma •  Breast Cancer •  Melanoma •  Head and Neck

–  Cancer-Related Pathways •  NF-κB •  BRCA2-Mediated Tumorigenesis •  Tissue Remodeling

•  Infectious Disease –  Viral Infection and Replication

•  Poxvirus •  Respiratory Syncytial Virus •  HIV •  Cytomegalovirus •  Ebola Virus

–  Immune Response •  Other Disease-Related Phenotypes

–  Parkinson’s Disease –  Spinal Muscular Atrophy –  Lysosomal Storage Diseases –  Neuro-protection

•  Fundamental Cell Biology –  DNA Replication –  Reprogramming/Differentiation

•  And many more!

RNAi Screening at NCATS – Project Areas RNAi  Screening  at  NCATS  –  Project  Areas  

RNAi  in  Human  Cells  

miRNAs may regulate the majority of all human genes."

Small  Interfering  RNA  (siRNA)  

siRNAs provide an excellent way to conduct gene-specific loss of function studies."

Correla+on  –  The  Good  News  

Under optimized conditions, siRNAs yield highly reproducible assay responses."  

R  =  0.92  

Reproducibility-­‐  Same  siRNA  in  Replicate  

Z-­‐score  Test-­‐1  

Z-­‐score  Test-­‐2  

•  Different siRNA libraries exhibit virtually no correlation. Notably, if pooling leads to cleaner and truer data, then one would expect better correlation between screens conducted with pools. This is not the case."

-­‐5  

-­‐4  

-­‐3  

-­‐2  

-­‐1  

0  

1  

2  

3  

4  

5  

-­‐5   -­‐4   -­‐3   -­‐2   -­‐1   0   1   2   3   4   5  -­‐5  

-­‐4  

-­‐3  

-­‐2  

-­‐1  

0  

1  

2  

3  

4  

5  

-­‐5   -­‐4   -­‐3   -­‐2   -­‐1   0   1   2   3   4   5  

R  =  0.03  Dharmacon  Pool  vs.  Pool*  

Z-­‐score  Po

ol-­‐1  

Z-­‐score  Pool-­‐2  

R  =  0.06  Ambion  Single  vs.  Single  

Z-­‐score  siR

NA-­‐1  

Z-­‐score  siRNA-­‐2  

*All  pools  sharing  a  common  sequence  were  removed  from  this  analysis.  

Correla+on  –  The  Good  News  

If  you  plot  siRNAs  with  the  same  seed  (right)  you  get  much  beler  correlaEon  than  if  you  plot  different  siRNAs  designed  to  target  the  same  gene  (lem).  This  is  clear  evidence  of  what  we  already  know  –  seed  driven  off  target  effects  dominate  siRNA  screens.       Marine, S. et al (J. Biomol. Screen, 2012)"

Off-­‐Target  Effects  

0

50

100

150

ATCTGC TACTTC TCGTTCSeed Hexamer

Perc

ent P

ositi

ve (N

orm

alize

d to

Neg

ative

Con

trol)

TargetSCAMP5Other

Seed Type●

HeptamerHexamer

Biased  Seeds  

Screen  Median  

Likely  False  PosiEve  

0

50

100

150

ACGAGA CATAGT TAGAAGSeed Hexamer

Perc

ent P

ositi

ve (N

orm

alize

d to

Neg

ative

Con

trol)

TargetXRN1Other

Seed Type●

HeptamerHexamer

Likely  True  PosiEve  

Common  Seed  Analyis  

•  Common  Seed  Analysis,  disEnguishes  on  vs  off  target  effects  •  The  visualizaEon  and  analysis  of  seed  acEvity  allows  us  to  assess  

if  an  siRNA’s  acEvity  is  likely  due  to  on-­‐  or  off-­‐target  effects.  •  This  analysis  can  also  help  prioriEze  sequences  for  downstream  

studies.  

Marine, S. et al (J. Biomol. Screen, 2012)"

Turning  the  off-­‐target  problem  on  its  head  

•  Many  siRNA  strategies  (pooling,  raEonal  design,  chemical  modificaEons)  may  miEgate  off-­‐target  effects,  but  no  one  claims  that  they  can  be  eliminated.  

•  Rather  than  explore  new  methods  to  eliminate  off-­‐target  effects  we  decided  to  eliminate  on-­‐target  effects.  

•  This  may  be  achieved  by  changing  bases  9-­‐11,  which  maintains  the  seed  sequence  but  eliminates  on-­‐target  cleavage.  Thus.  if  the  “C911”  seed  control  is  sEll  acEve,  the  original  siRNA  phenotype  was  most  likely  due  to  seed-­‐driven  off-­‐target  effects.  

Buehler,  E.  et  al  (PLoS  ONE,  2012)  

Example  Selec+ons  for  Gold-­‐Standard  True  and  False  Posi+ves  

0

50

100

150

ATAGTA GCCGTT TGTTGGSeed Hexamer

Perc

ent A

ctiv

ity TargetPOLR2AOther

Seed Type●●

HeptamerHexamer

0

50

100

150

GAGTAG TTATAG TTGTCASeed Hexamer

Perc

ent A

ctiv

ity TargetPLXDC1Other

Seed Type●●

HeptamerHexamer

Selected   10   true   and   10   false   posiEves   from   a   genome-­‐wide   luciferase  reporter  screen  based  on  Common  Seed  Analysis  and  known  biology.    

Buehler,  E.  et  al  (PLoS  ONE,  2012)  

C911  siRNAs  Dis+nguish  Between  True  and  False  Posi+ves  

C911   modified   siRNAs   (inacEvated)   maintain   corresponding   seed  sequences   and  exhibit   acEvity   in   the   case  of   false  posiEves   (lem),  but  lose  acEvity  in  the  case  of  true  posiEves  (right).  

 

False Positive True Positive

0

50

100

150

** *

***

***

** *** **

*********

******

LOC

6455

04

LHX1

LOC

6465

70

PPAP

2C

ZFP3

6L2

hCG

_198

9844

B3G

NT7

C4o

rf21

hCG

_204

5830

PLXD

C1

RPL

36

POLR

2J3

EIF2

S3

POLR

2I

PCF1

1

RPS

27A

SON

POLR

2D

POLR

2B

POLR

2A

siRNA Targets

Perc

ent L

ucife

rase

Act

ivity

siRNAunmodifiedC911

Buehler,  E.  et  al  (PLoS  ONE,  2012)  

0

30

60

90

120

ARR

DC

2FG

F8M

KNK1

AVIL

FBF1

ACO

T13

USM

G5

RG

S3M

FAP3

LC

HR

NA3

TMEM

25M

RPL

12LO

C64

6279

CIR

H1A

ECE2

SSR

P1R

PLP1

P5M

PHO

SPH

10C

8orf3

4C

YP4A

22BM

P4R

PL23

NLR

P6D

IO1

CAS

P7R

PL14

SLC

27A3

PATE

4R

PL3

IRX6

RTN

4RPT

PRM

RPL

35A

SZT2

EIF3

DR

PL18

AR

PL34

P34

RPL

5P1

ACTA

1EH

D2

RPS

6KA5

KLH

L7C

11or

f70

LOC

3903

64PR

SS33

RPL

30ST

X6LO

C44

2448

CAM

KVR

PLP1

NIP

AL1

CR

ABP1

ASF1

BLO

C72

9380

FSH

BSP

TLC

1AM

D1

MAN

2B2

MEF

2BN

B−M

EF2B

MZB

1C

OX1

8PU

M1

MAP

3K11

TCEA

NC

EIF3

BZI

C1

MTA

1G

FER

CH

CH

D1

XRN

1M

APK1

0LM

LND

OK5

USP

48R

HO

HEE

F2TA

P2F2

RL1

OG

FREI

F1AX

PPW

D1

MLY

CD

MIC

AH

PNF8

A2O

DC

1PT

GS2

F2R

L3R

NF5

CC

L28

EEF1

A1SL

C45

A4DA

OA

FEM

1CPO

LR3C

NO

P58

TSPA

N33

ZNF7

75PT

TG1

IGFA

LS

Gene Symbol of siRNA Target

Vira

l Spr

ead

(as

perc

ent o

f neg

ative

con

trol)

siRNAOriginalC911

Large-­‐Scale  Valida+on  of  C911  

Vaccinia  Viral  Spread  Assay  Top  100  Sivan, G. et al (PNAS 2013)!

Large-­‐Scale  Valida+on  of  C911  

Hasson,  S.  et  al  (Nature,  2013)  

Leveraging  Gene  Expression  

Symbol   LOCUSID   Descrip1on   log2.fold_change   p_value   q_value   significant  IRF9   10379   interferon  regulatory  factor  9   1.87957   5.00E-­‐05   0.000319   yes  IRF2   3660   interferon  regulatory  factor  2   1.91502   5.00E-­‐05   0.000319   yes  

IRF2 (Gene ID: 3660)! IRF9 (Gene ID: 10379)!

siRNA" siRNA"

Z-Sc

ore"

Z-Sc

ore"

RNA-Seq Determination of Differential Expression +/- IFNα

RNA-Seq profiling identifies IFNα-stimulated changes in several top candidate genes that were identified through RNAi screening for modulators of IFNα-stimulated ISRE reporter activity. "

AND SEVERAL MORE…..!

Leveraging  Exome  Sequencing

Exome Sequencing of Drug-Resistant Line vs Parental

Exome  sequencing  revealed  mutaEons  in  several  top  candidate  genes  that  were  idenEfied  through  RNAi  screening  for  rescuing  parental  cells  to  drug  amer  knockdown.  

Symbol   LOCUSID   descripEon   chr_name   hom_het  type  EIF3A   8661  eukaryoEc  translaEon  iniEaEon  factor  3,  subunit  A   chr10   het   Resistant  Line  Only  EPPK1   83481  epiplakin  1   chr08   het   Resistant  Line  Only  NFKB2   4791  nuclear  factor  of  kappa  light  polypepEde  gene  enhancer  in  B-­‐cells  2   chr10   het   Resistant  Line  Only  

Conducted   a   screening   campaign   of  parental   and   drug-­‐resistant   cell   lines   for  genes   that   modulate   drug   acEvity.  Screening   of   the   parental   cells   at   a   high  dose   of   drug   produced   numerous  significant   candidates   (leW)   that   resulted  in   rescue   from   drug   amer   knockdown.  These   candidates   showed   an   enrichment  for   protein-­‐protein   interacEons   (STRING)  and   an   obvious   role   for   the   iniEaEon   of  translaEon.  

RNAi  Ac1ve  

Small  Molecule  

Both  

Leveraging  Small  Molecules  

Parallel  RNAi  and  focused  small  molecule  efforts  exhibit  some  of  the  same  targets,  connected  targets,  and  overlapping  pathways.    

Gene  Symbol   Gene  ID  AURKA   6790  CHEK1   1111  HDAC1   3065  KIF11   3832  NAMPT   10135  PLK1   5347  

POLR2A   5430  PSMD1   5707  RRM1   6240  RRM2   6241  TYMS   7298  WEE1   7465  

Targets  Iden1fied  in  Both  RNAi  and  Small  Molecule  Efforts  

Data  from  a  simple  viability  screen  in  a  rhabdomyosarcoma  cell  line.    

Screening  for  Novel  Drug  Combina+ons  

•  Increased  efficacy  •  Delay  resistance  •  Alenuate  toxicity  

•  Inform  signaling  pathway  connecEvity  

•  IdenEfy  syntheEc  lethality  •  Highlight  polypharmacology  

Transla+onal  Interest   Basic  Interest  

Screening  for  Novel  Drug  Combina+ons  

•  Lots  of  ways  to  predict  synergisEc  combinaEons  – Li  et  al  (BioinformaEcs,  2014)  is  a  comprehensive  approach  

•  Efforts  to  link  combinaEon  screens  to  paEents  have  also  started  (Crystal  et  al,  Science,  2014)  

•  Robust  predicEons  require  mulEple  data  types  – Small  molecule  acEvity  (on-­‐  and  off-­‐target)  – Gene  expression  (and  other  genomic  data)  – Biological  connecEvity  

Mechanism  Interroga+on  PlateE  •  CollecEon  of  ~  2000  small  molecules  of  diverse  mechanism  of  acEon.  •  745  approved  drugs    •  420  phase  I-­‐III  invesEgaEonal  drugs    •  767  preclinical  molecules  

•  Diverse  and  redundant  MOAs  represented  

AMG-47a Lck inhibitor Preclinical

belinostat HDAC inhibitor Phase II

Eliprodil NMDA antagonist Phase III

JNJ-38877605 HGFR inhibitor Phase I

JZL-184 MAGL inhibitor Preclinical

GSK-1995010 FAS inhibitor Preclinical

Combina+on  Screening  Workflow  

Run  single  agent  dose  responses  

6x6  matrices  for    poten'al  synergies  

10x10  for  confirma'on  +  self-­‐cross  

Acoustic dispense, 15 min for 1260 wells, 14 min for

1200 wells"

Characterizing  Synergy  

•  Many  models  have  been  devised  to  describe  the  response  of  two  drugs  when  combined  – Highest  single  agent  (aka  Gaddum)  – Loewe  – Bliss  

•  Based  on  these  we  can  calculated  a  variety  of  metrics  that  will  indicate  whether  two  drugs  exhibit  a  synergisEc,  addiEve  or  antagonisEc  response    

Characterizing  Synergy  

Analysing  Combina+ons  in  Aggregate  

•  ComputaEons  on  individual  combinaEons  are  useful  –  IdenEfy  promising  candidates,  prioriEze  for  followup  

•  How  can  we  examine  combinaEons  in  aggregate?  •  What  can  we  find  if  we  look  at  combinaEons  in  aggregate?  – Similar  combinaEons  – CombinaEon  behavior  across  cell  lines  

Network  Representa+ons  

CombinaEon  screens  lend  themselves  naturally  to  network  representaEons                    

 

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

∆ Bliss+

−4.3

−3.8

−3.3

−2.9

−2.4

−1.9

−1.4

−1.0

−0.5

0.0

●●

● ●

●●●

●●

●●

●●

● ●

● ●

●●

●●

●●●

●●

● ●

●●

∆ Bliss+

−3.4−3.1

−2.7

−2.3

−1.9

−1.5−1.2

−0.8

−0.4

0.0

immune system process

apoptotic process

transcription from RNApolymerase II promoter

protein phosphorylation

cell communication

immune response

Network  Representa+ons  

•  Things  get  more    interesEng  when  we  have  n          m  screens  

•  Can  be  simplified  using  a  variety  of    methods  – Neighborhoods  – Minimum  Spanning  Tree  

●●

●●

●●

●●

●●

● ●

●●

×

Comparing  Neighborhoods  

CombinaEons  that  have  DBSumNeg  <  1st  quarEle  value  for  that  strain  

3D7 DD2 HB3

Comparing  Neighborhoods  

AlternaEvely,  consider  all  tested  combinaEons,  highlighEng  distribuEon  of  synergisEc  and  antagonisEc  combinaEons  

3D7 DD2 HB3

Iden+fying  the  Most  Synergis+c  Pairs  

● ●

●●

●●

●●

●●

●●

● ●

●●

Clustering  Response  Surfaces  

Clustering  Response  Surfaces  0.0

0.2

0.4

0.6

0.8

C1  (24)  

C2(47)  

C3(35)  

C4(24)  

Cluster  C4  

•  Focus  on  sugar  metabolism    

•  Ruboxistaurin,  cycloheximide,  2-­‐methoxyestradiol,  …  

•  PI3K/Akt/mTOR  signalling  pathways  glycogen metabolic process

regulation of glycogen biosynthetic process

glucan biosynthetic process

glucan metabolic process

cellular polysaccharide metabolic process

regulation of generation of precursor metabolites and energy

peptidyl-serine phosphorylation

cellular macromolecule localization

regulation of polysaccharide biosynthetic process

cellular carbohydrate biosynthetic process

0 1 2 3-log10(Pvalue)

0.00

0.02

0.04

0.06

0.08

361

254

215

164

143 82 125

327

241

194

145

116

139

371

163

165

384

339

322

217

184

150 52 136

Combina+ons  across  Cell  Lines  

•  Cellular  background  affects  responses  •  Can  we  group  cell  lines  based  on  combinaEon  response?    

•  Or  find  “fingerprints”  that  characterize  cell  lines?  

Many  Choices  to  Make  0

12

34

KMS-34

INA-6

L363

OPM-1

XG-2

FR4

AMO-1

XG-6

MOLP-8

ANBL-6

KMS-20

XG-7

OCI-MY1

XG-1

8226

EJM

U266

KMS-11LB

SKMM-1

MM-MM1

sum

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L363

OPM-1

XG-2

KMS-20

XG-1

XG-7

ANBL-6

OCI-MY1

U266

XG-6

INA-6

MOLP-8

AMO-1

KMS-34

KMS-11LB

SKMM-1

MM-MM1

EJM FR4

8226

max

0.00

0.05

0.10

0.15

0.20

0.25

INA-6

MM-MM1

8226

XG-1

U266

ANBL-6

SKMM-1

EJM

OPM-1

XG-2

OCI-MY1

KMS-20

L363

KMS-11LB

AMO-1

XG-6

FR4

KMS-34

MOLP-8

XG-7

min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L363

OPM-1

XG-2

KMS-34

INA-6

KMS-11LB

SKMM-1

EJM

U266

MM-MM1

FR4

AMO-1

XG-6

8226

MOLP-8

ANBL-6

OCI-MY1

XG-1

KMS-20

XG-7

euc

•  Vargatef  exhibited  anomalous  matrix  response  compared  to  other  VEGFR  inhibitors            

Exploi+ng  Polypharmacology  

Vargatef  

Linifanib Axitinib Sorafenib Vatalanib

Motesanib Tivozanib Brivanib Telatinib

Cabozantinib Cediranib BMS-794833 Lenvatinib

OSI-632 Foretinib Regorafenib

Exploi+ng  Polypharmacology  

•  PD-­‐166285  is  a  SRC  &  FGFR  inhibitor  

•  Lestaurnib  has    acEvity  against  FLT3  

Vargatef DCC-2036 PD-166285 GDC-0941

PI-103 GDC-0980 Bardoxolone methyl AT-7519AT7519

SNS-032 NCGC00188382-01 Lestaurtinib CNF-2024

ISOX Belinostat PF-477736 AZD-7762

Chk1 IC50 = 105 nM

VEGFR-1

VEGFR-2

VEGFR-3

FGFR-1

FGFR-2

FGFR-3

FGFR-4

PDGFRa

PDGFRb

Flt-3

Lck

Lyn

Src

0 200 400 600Potency (nM)

Hilberg,  F.  et  al,  Cancer  Res.,  2008,  68,  4774-­‐4782  

Acknowledgements  

•  Ajit  Jadhav    •  Scol  MarEn  •  Matrix  Screening  Group  •  NCATS  InformaEcs