FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel...

132
COMMUNICATIONS SETUP FRICK ® QUANTUM™ LX EVAPORATOR Version 3.1x Form 090.610-CS (MAY 2016) COMUNICATIONS SETUP File: SERVICE MANUAL - Section 90 Replaces: 090.610-CS (DEC 2012) Dist: 3, 3a, 3b, 3c

Transcript of FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel...

Page 1: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

COMMUNICATIONS SETUP

FRICK® QUANTUM™ LXEVAPORATOR

Version 3.1x

Form 090.610-CS (MAY 2016) COMUNICATIONS SETUP

File: SERVICE MANUAL - Section 90Replaces: 090.610-CS (DEC 2012)Dist: 3, 3a, 3b, 3c

Please check www.johnsoncontrols.com/frick for the latest version of this publication.

Page 2: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 2

TABLE OF CONTENTS

SECTION 1INTRODUCTION TO THE QUANTUM™ EVAPORATOR CONTROL SYSTEM................................................................5

INTRODUCTION TO THE QUANTUM™ LX........................................................................................................6Quantum™ Description.......................................................................................................................................6How To Use This Manual......................................................................................................................................6

ETHERNET AND NETWORKING.........................................................................................................................7Description..........................................................................................................................................................7Cabling.................................................................................................................................................................7RJ-45 Connectors................................................................................................................................................8The Hub...............................................................................................................................................................8The Switch..........................................................................................................................................................8Ethernet Setup..................................................................................................................................................10IP Data...............................................................................................................................................................10Naming Data......................................................................................................................................................11E-Mail Data........................................................................................................................................................11Protocols............................................................................................................................................................11

SECTION 2SERIAL COMMUNICATIONS..................................................................................................................................13

SERIAL COMMUNICATION DESCRIPTION.........................................................................................................13RS-232 Description............................................................................................................................................13RS-422/RS-485 Description................................................................................................................................13Serial Communications Setup.............................................................................................................................14Using The Map File............................................................................................................................................15Serial Communication Setup Table......................................................................................................................17

SERIAL PROTOCOL........................................................................................................................................18Description........................................................................................................................................................18Quantum™ LX Communications Protocol List....................................................................................................18Checklist For Setting Up Communication............................................................................................................18Frick® Protocol.................................................................................................................................................19

Description.................................................................................................................................................19Frick® # Protocol Specifications.................................................................................................................19

SECTION 3QUANTUM™ LX ALLEN-BRADLEY COMMUNICATION............................................................................................25

Overview Of Half And Full Duplex Theory.................................................................................................................25SLC-500 - Suggested Setup......................................................................................................................................26

Channel Configuration.......................................................................................................................................26Read Message Setup Example............................................................................................................................26Write Message Setup Example...........................................................................................................................26

ALLEN-BRADLEY PROGRAMMING OVERVIEW........................................................................................................27Channel Configuration...............................................................................................................................................27General Configuration...............................................................................................................................................27System Configuration................................................................................................................................................28Message Sequence Logic..........................................................................................................................................28Message Read Logic.................................................................................................................................................29Message Read Setup Screen.....................................................................................................................................30Message Write Logic.................................................................................................................................................31Message Write Setup Screen.....................................................................................................................................33Allen-Bradley Data Access.........................................................................................................................................33Ethernet / IP...............................................................................................................................................................33

SECTION 4MODBUS® PROTOCOL.........................................................................................................................................35

General Description..................................................................................................................................................35Modbus® TCP/IP (Ethernet)......................................................................................................................................35Modbus® ASCII (Serial Communications)...................................................................................................................36Modbus® RTU (Serial Communications)....................................................................................................................36Serial Port Configuration Of The Master......................................................................................................................36

Page 3: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 3

Data Packet..............................................................................................................................................................36The Query.................................................................................................................................................................37The Response...........................................................................................................................................................37Data Field..................................................................................................................................................................37Error Checking..........................................................................................................................................................37

ASCII..................................................................................................................................................................37RTU...................................................................................................................................................................37

Framing.....................................................................................................................................................................38ASCII..................................................................................................................................................................38RTU...................................................................................................................................................................38

ASCII Query (Read) Example......................................................................................................................................39ASCII Write Example................................................................................................................................................40ASCII Response Example..........................................................................................................................................42RTU Query (Read) Example.......................................................................................................................................43RTU Response Example............................................................................................................................................43Modbus® Notes.......................................................................................................................................................44Modbus® Data Access............................................................................................................................................44

SECTION 5HYPERTERMINAL.................................................................................................................................................45

Description...............................................................................................................................................................45Setting up Hyperterminal..........................................................................................................................................45Testing Communications...........................................................................................................................................47General Notes...........................................................................................................................................................48Conversion Chart For Decimal / Hexadecimal / ASCII................................................................................................49

SECTION 6QUANTUM™ LX DATA TABLES..............................................................................................................................51

Analog Board Values.................................................................................................................................................52Digital Board Values..................................................................................................................................................53Calculated Values......................................................................................................................................................54Mode Values..............................................................................................................................................................56Warnings/Shutdown Values.......................................................................................................................................69Timer Values.............................................................................................................................................................72Setpoint Values.........................................................................................................................................................73

SECTION 7WARNING/SHUTDOWN MESSAGE CODES.............................................................................................................99

SECTION 8Q5 CONTROLLER.................................................................................................................................................103

Main Board History And Identification......................................................................................................................104Communications Connector Locations.....................................................................................................................104

SERIAL COMMUNICATIONS HARDWARE..............................................................................................................105General Description.................................................................................................................................................105COM-1 and COM-2 Description................................................................................................................................105COM-3 Description..................................................................................................................................................105COM-4 Description.................................................................................................................................................105

SERIAL COMMUNICATIONS PORT WIRING...........................................................................................................106General Note...........................................................................................................................................................106RS-232 Wiring And Jumpers....................................................................................................................................106RS-422/485 Wiring And Jumpers..............................................................................................................................106

RS-422 Signal Wiring........................................................................................................................................106RS-485 Signal Wiring........................................................................................................................................106

SERIAL COMMUNICATIONS TROUBLESHOOTING.................................................................................................107Troubleshooting RS-232..........................................................................................................................................107Troubleshooting RS-422.........................................................................................................................................107Troubleshooting RS-484.........................................................................................................................................107

COMMUNICATIONS DATA LOGGING SCREENS.....................................................................................................109Communications Log...............................................................................................................................................109Modbus TCP Log......................................................................................................................................................109

Page 4: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 4

SECTION 9Q4 CONTROLLER................................................................................................................................................111

Main Board History And Identification......................................................................................................................112Q4 SERIAL COMMUNICATIONS HARDWARE.........................................................................................................113

General Description.................................................................................................................................................113COM-1 and COM-2 Description................................................................................................................................113COM-3 Description..................................................................................................................................................113

SERIAL COMMUNICATIONS PORT WIRING...........................................................................................................114RS-232 Wiring And Jumpers...................................................................................................................................114RS-422/485 Wiring And Jumpers............................................................................................................................115

RS-422 Signal Wiring........................................................................................................................................115RS-485 Signal Wiring........................................................................................................................................116

SERIAL COMMUNICATIONS TROUBLESHOOTING.................................................................................................117Troubleshooting RS-232..........................................................................................................................................117Troubleshooting RS-422........................................................................................................................................117Troubleshooting RS-484........................................................................................................................................118

COMMUNICATIONS DATA LOGGING SCREENS......................................................................................................119Communications Log...............................................................................................................................................119Modbus TCP Log.....................................................................................................................................................119

COMMUNICATIONS LOOPBACK TEST.................................................................................................................120Description..............................................................................................................................................................120Hardware Setup For Testing

RS-232.............................................................................................................................................................120RS-422.............................................................................................................................................................120RS-485.............................................................................................................................................................121

SOFTWARE SETUP FOR THE COMMUNICATIONS LOOPBACK TEST.....................................................................121Performing The Communications Loopback Test....................................................................................................122

SECTION 10APPENDIX A.......................................................................................................................................................124

Frick® Serial Communications Converter Module...................................................................................................124Description......................................................................................................................................................124Setting The Dipswitch......................................................................................................................................124Mounting The Module.......................................................................................................................................124Wiring The Module..........................................................................................................................................125

RS-232 Connections..................................................................................................................................125RS-422 Connections..................................................................................................................................125RS-485 Connections..................................................................................................................................125

APPENDIX B.......................................................................................................................................................126Quantum™ LX Ethernet Communications Wiring....................................................................................................126

APPENDIX C.......................................................................................................................................................127Quantum™ LX Local Ethernet Configurations..........................................................................................................127

APPENDIX D.......................................................................................................................................................128Quantum™ LX Ethernet Network Configurations.....................................................................................................128

APPENDIX E.......................................................................................................................................................129Quantum™ LX Serial Communications Wiring.........................................................................................................129Serial Communications Wiring Diagrams.................................................................................................................132

To Customer Remote Computer/DCS...............................................................................................................132RS-485 Communications...........................................................................................................................132RS-422 Communications...........................................................................................................................132

The Quantum™ has the capability of being modified by the user/owner in order to obtain different performance character-istics. Any modification to the standard default settings may have a severe negative impact on the operation and perfor-

mance of the equipment. Any modification to these control settings is the sole responsibility of the user/owner and Johnson Controls disclaims any liability for the consequences of these modifications. It is possible that the modification of these

settings may cause improper operation and performance that result in property damage, personal injury or death. It is the responsibility of the user/owner to evaluate and assess the consequences of their actions prior to modifying the controls

for this unit.

Page 5: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 5

SECTION 1

INTRODUCTION TO THE QUANTUM™EVAPORATOR CONTROL SYSTEM

Page 6: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 6

INTRODUCTION TO THE QUANTUM™ LX

QUANTUM™ DESCRIPTION

The Quantum™ LX control panel currently utilizes two versions of microprocessor hardware, the Q4 and Q5 boards. The LX portion of the Quantum™ name actually refers to the operating system (soft-ware), and the operator interface (physical display and keypad). When you see the name Q4 or Q5, the physical hardware of the controller is being referred to (microprocessor), whereas Quantum™ LX refers to the software, and how the operator interacts with the software (through the display/keypad).

As an example, the Q4 and Q5 controllers contain the physical Ethernet and Serial connections that the user connects to, while the Quantum™ LX software deter-mines how those connections are used. These connec-tions are known as PROTOCOLS.

The Quantum™ LX software is based on a Web Brows-er format, and has the capability of communication through both Ethernet and Serial Ethernet protocols.

The following screen is representative of what the op-erator will see after the unit has been powered up. This is called the Home screen. Be aware that the content of this screen may differ from situation to situation, based upon the actual configuration and installed op-tions.

The Operating (or Home) screen

HOW TO USE THIS MANUAL

The purpose of this manual is provide the neces-sary information (protocols, data registers, wiring, etc.) to allow the end user to reliably communi-cate with the Quantum™ LX via various commu-nications methods (to be described later) for the purpose of obtaining and sending data and/or for Evaporator control.

The Quantum™ LX does NOT begin any communi-cations conversations on its own, it only responds to queries (requests) from external devices.

For Ethernet communications, refer to the section en-titled Ethernet and Networking. Ethernet does not re-quire any jumpers to be installed.

For serial communications connections, refer to the sections entitled Quantum™ Serial Communication for the correct wiring and jumper settings of RS-422, or RS-485. Also, refer to the drawings of the Q4 or Q5 Main Board section to identify wiring configurations.

For information on software protocols, refer to the section entitled Protocol Description.

To access specific data within the Quantum™ LX, refer to the Data Tables.

Page 7: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 7

ETHERNET AND NETWORKING

DESCRIPTION

Frick® Controls uses Ethernet as the primary method of connecting one or multiple Quantum™ LX panels to a common computer network. In the past, this interconnection would have been done by serial protocol wiring, such as RS-232/422/485. But with the capabilities of today’s technology, Ethernet is the quickest and most efficient way of providing this connectivity.

Whereas the old serial communications methods (RS232, etc.) were slow by today’s standards (ki-lobits per second transmission speed), Ethernet is available in two speeds: 10 Mbps and 100 Mbps.

NOTE: For connection examples, refer to the section of this manual entitled Quan-tum™ LX Local Ethernet Configurations and Quantum™ LX Ethernet Network Configu-rations.

Ethernet is a data and information sharing sys-tem. It is a method of connecting one computer to many others on a common network. This network can consist of both hardwired connections, and wireless devices, hence the name ETHERNET.

Any Windows or Linux based computer is capable of accessing this network. All that is needed is either a modem, USB port, or an Ethernet port. These devices provide the necessary point of con-nection for one end (branch) of the connection (a home computer for instance). The other point that completes the connection is usually provided by an Internet Service Provider (or ISP). The Internet Service Provider usually has a very large network router, or means of bring in many individual con-nections. The router then assigns a discrete and individual address to each connection (much like a street address). This address is known as an Inter-net Protocol address (IP). The IP address consists of a series of 4 to 12 digits, and is normally trans-parent to the end user.

For individuals familiar with using the internet, they are familiar that every time they activate their web browser (the software that allows your computer to connect), there is an address bar that appears near the top of the screen. This address bar is where you would enter the IP address of the computer or network that you would like to communicate with. To make this simpler, these numeric IP addresses are also coded to allow alpha-numeric names to be masked over them, so that rather than having to enter an address of 216.27.61.137, you can simply enter in www.jci.com, as an example. Although the actual process is more detailed and complicated than this basic explanation, the end result is that most of the work is being done invisibly.The following write up describes how to set up the Quantum™ LX to do this behind the scenes work,

so that it can communicate both at the Internet level, and at a local Ethernet level.

CABLING

Each Quantum™ LX Ethernet connection must be in-dividually cabled (known as a homerun) direct from a switch or computer. Unlike RS422/485 communications which allowed for cable daisy-chaining, Ethernet con-nections do not allow this.

This type of cabling is designed to handle the 100-Mbps speed needed by Ethernet. Both ends of each cable must have an RJ-45 connector attached. The RJ-45 connector looks similar to the RJ-11 connector on the end of a telephone cord but is slightly larger (and not compatible). You can buy Cat 5 cables in prede-termined lengths with the connectors already attached (for short runs), or you can buy the cable in rolls, cut it to length and install the RJ-45 connectors to the ends (up to 100 meters per each cable run).

Although Frick® Controls recommends the use of shielded, twisted pair Cat 5 cable, if the cable is not properly constructed and tested, it can actually be more detrimental to the network than unshielded ca-ble. As long as all of the cables that are used have been properly constructed AND tested, either shielded or unshielded are acceptable. This is mostly due to the excellent (electrical) noise immunity that is inherent with Ethernet componentry.

NOTE: Follow standard networking procedures for the interconnections of all components. For individual cable runs in excess of 300 feet (~100 meters), a Switch/Hub must be used for each additional run.

Cabling Do’s and Don’ts – Frick® Controls recom-mends the following guidelines when installing and us-ing CAT 5 Ethernet cable:

Do:

• Run all cables in a star (homerun) configuration.• Keep all individual cable lengths under 300 feet.

If greater distances are needed, use a switch/hub every 300 feet.

• Ensure that the twists of the wire pairs within the cable are maintained from end to end.

• Make gradual bends in the cable. Keep each bend radius over one inch.

• Keep all cables tie wrapped neatly.• Try to maintain parallel cable runs where possible.• Keep the cable as far away as possible from EMI

sources (motors, transformers, solenoids, lighting, etc.)

• Label the ends of each cable, to facility trouble-shooting and identifying in the future.

• Test each individual cable run with an approved CAT5 E cable tester. A TONING alone test is NOT acceptable.

• Use rubber grommets anywhere that the cable en-ters through a hole in a metal panel.

• ALWAYS obey local, national and fire building codes.

Page 8: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 8

Don’t:

• Don’t install cable taut, cables must always have some “play” or slack in them.

• Don’t over-tighten cable ties.• Don’t splice a cable. If a break occurs, or the

length is not long enough (under 300 feet), re-place the entire run with an intact length.

• Don’t tie cables to electrical conduits.• Don’t strip more than one inch from the end of

each cable when installing end connectors.• Don’t sharply bend or kink the cable.• Don’t mix 568A and 568B wiring at the same in-

stallation. 568B is the most common wiring.• Don’t use excessive force when pulling cable.

RJ-45 CONNECTORS

Ethernet network cables require the use of indus-try standard RJ-45 plugs as shown below, for the termination of all cables:

Typical RJ-45 Connector

THE HUB

A Hub is a common connection point for devices in a network. Hubs are commonly used to connect segments of a LAN (Local Area Network). They also contain multiple ports. When a data packet arrives at one port, it is copied to the other ports so that all segments of the LAN can see all pack-ets.

THE SWITCH

Network Switches look nearly identical to hubs, but a switch generally contains more intelligence than a hub. Unlike hubs, network switches are ca-pable of inspecting the data packets as they are received, determining the source and destination device of a packet, and forwarding that packet appropriately. By delivering messages only to the connected device that it was intended for, net-work switches conserve network bandwidth and offer generally better performance than hubs.

The Switch takes the signal from each computer/Quantum™ LX and sends it to all of the other com-puters/LX panels in your plant or office. Switches come in several sizes, noted by the number of ports available -- a four-port Switch can connect four computers, an eight-port Switch can connect

up to eight computers and so on. So, if you start with a four-port Switch but eventually add more panels, you can buy another Switch and connect it to the one you already have, increasing the potential number of panels on your network.

Typical Switch

Note: If you want to connect one computer to one Quantum™ LX, you can avoid the switch and use a crossover Cat 5 cable. With a crossover cable, you directly connect one Ethernet device to the other without a Switch. To connect more than two you need a Switch.

Refer to the following pictorial to construct a crossover cable:

2 4 6 8 1 3 5 7

Left (Not Crossed)

1 6 3 4 2 7 8 5

Right (Crossed)

Both Ends of a crossover-cable

CAT-5 Ethernet cable color codes

1 – White w/orange stripe 5 – White w/blue stripe2 – Orange w/white stripe 6 – Green w/white stripe3 – White w/green stripe 7 – White w/brown stripe4 – Blue w/white stripe 8 – Brown w/white stripeBecause of the large number of possible configurations in an Ethernet network, you most likely will not have any type of automated installation software. This means that you will need to manually configure all the options. To configure these options for the Quantum™ LX, please refer to the next section in this manual entitled Ethernet Setup.

Page 9: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 9

ETHERNET COMPONENT RECOMMENDATIONS

Component Description Part Number Manufacturer

Cable

Shielded solid 4-pair* (1000 Ft) BOXCAT5E-DSSO Cablesforless.com

Shielded solid 4-pair*E-PLG-SOLID-SH VPICR45-100S Cables Direct9504 CS

Alpha Wire Co.Un-shielded solid 4-pair**

9504 FE-PLG-SOLID VPI

Un-shielded solid 4-pair** (1000 Ft)345U5-1000BLK Ram Electronics0-5EPCS-BK Computercablestore.com

Crimp Tool RJ-45 Crimp tool

HT-210C Cablesforless.comP-15027 Stonewall Cable, Inc.S2307692 Computers4sure.com10-RJ1145 Computercablestore.com

Connectors

RJ-45 For Shielded 4-pair solid wire cable P-15007 Stonewall Cable, Inc.

RJ-45 For Un-shielded 4-pair solid wire cable5-554169-3 Tyco Electronics1-5E45-010 Computercablestore.comP-15029 Stonewall Cable, Inc.

Cable TesterEthernet Cable Tester – Continuity only

TST-5150 Cablesforless.comTS075A-R2 Black Box

Complete Cable I/O Qualification Tester N/A Fluke

Switches5 RJ-45 port SFN-5TX

Phoenix7 RJ-45 Port and 1 ST Fiber Optic Port SFN-7TX/FX ST8 RJ-45 port SFN-8TX

* STP = Shielded Twisted Pair** UTP = Unshielded Twisted Pair

Page 10: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 10

ETHERNET SETUP

Once all of the cabling has been run and all connec-tions have been made, it is now necessary to setup the Quantum™ LX software to recognize and handle the Ethernet connection.

The following section describes the suggested panel setup for connecting the Quantum™ LX panel to an existing Eth-ernet connection:

IP DATA

Address Type - The following drop-down menu is pro-vided:

• Fixed (Static) – A fixed address is usually as-signed by the network (LAN) administrator, and is normally always the same.

• DHCP (Dynamic) – Dynamic Host Configu-ration Protocol permits auto-assignment of temporary IP addresses for new devices con-necting to the network.

IP Address – (Internet Protocol) Four setpoint boxes are provided here. Every device on an Internet or Eth-ernet network must be assigned a unique identifying number, called an IP Address (this is similar in concept to the Quantum™ LX panel ID number). The IP address is how the network identifies each device that is at-tached. A typical IP address would look like this:

• 216.27.61.137

Gateway Address – Four setpoint boxes are provided here. This is the IP address for the computer or de-vice onto which your local network is connected to. This gateway device is how all of the devices attached to your local network are routed to other gateways and networks. A router is a Gateway device that routes packets between different physical networks. A gate-way is a network point that acts as an entrance to an-other network.

Subnet Mask - A TCP/IP number used to determine to which TCP/IP subnet a device belongs. Devices in the same subnet can be communicated with locally with-out going through a router When a TCP/IP device tries to communicate with another device the bits of the TCP/IP destination address are “ANDed” with the sub-net mask to determine whether the address is a local address (broadcastable) or must be reached through a router. A subnet mask of 255.255.255.0 used by a com-puter with a TCP/IP address of 10.10.10.1 would include the addresses 10.10.10.0 through 10.10.10.255 in the local network basically telling the computer to try a router if it’s transmitting to any other IP address. This is all part of the TCP/IP protocol

Web Server Port – This is the port, or channel, that a web server uses to communicate through. Just as a computer sends data to a printer through a printer port, a web server sends and receives data through the Web Server Port. By default, the port number for a Web server is 80.

NAMING DATA

NOTE: The IP Address Type must be set to DHCP (Dynamic) for this section to work.

Host Name – Enter a distinct name that you wish to be able to identify this particular Evaporator by (for example; Unit1). The Host Name must be fifteen char-acters or less in length, use no spaces and use only

Page 11: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 11

upper and lower case letters. It is similar in concept to the function of the Panel ID, and basically allows the network router to interpret the actual IP address of a particular unit as this host name. When using a web browser within the system network, this name can be entered as the web location that you wish to visit (in-stead of having to type in the IP address). After modi-fying a Host Name, you will be required to cycle power. The network router could take up to fifteen minutes to recognize the change.

Work Group – All of the Quantum™ LX units within a network may be grouped into different categories. These categories could be unit locations, or perhaps categorized by unit function. For instance, if you want-ed to group the units by function, and had 10 units, and three of them were Evaporators (located on the roof), then Evap1 could be the name of a work group. So name each unit by these functional Work Group names. The Work Group name must be fifteen characters or less in length, and can use numerals and upper and lower case letters. When using the network neighbor-hood feature of Windows® Explorer, by looking at your Network Neighborhood, you would see the name of the Work Group, and within that work group you would see the individual Host Names of each unit within that work group. After modifying a Work Group name, you will be required to cycle power. The network router could take up to fifteen minutes to recognize the change.

Server String – This is a comment area that can be used in conjunction with the Host Name. For example, if the Host Name is Booster1, you could set the Server String to print something like DockBooster, or some other additional information about the unit. The Server String has no control function; it is strictly an informa-tional area.

E-MAIL DATA

The purpose of the E-Mail data feature is to allow the controller to send a Warning or Shutdown message to defined listing of recipients.

Email Notification On Warning Or Shutdown – For the E-mail notification feature to work, it must be enabled (it is disabled as a default). The following drop-down menu is provided:

• Disabled• Enabled

Local Email Address - Use this setpoint box to enter

a valid E-mail address that has been assigned to the internet account.

Alias Name For Local Email Address – Enter here a custom name to identify more clearly the local Email address. When a message is sent to all recipients, this is the name that will appear in the Email FROM column.

Subject - Enter a custom subject that you would like to appear when a message failure is sent. When a mes-sage is sent to all recipients, this is the wording that will appear in the Email SUBJECT column.

SMTP Server Name OR IP Address - SMTP stands for Simple Mail Transfer Protocol. SMTP servers handle outgoing email, and accept email from other domains. When you set up an email client, you must specify an outgoing server (sometimes called an SMTP server). Often, this server is designated in the form of smtp.domain.com. But this can vary, so be sure to check with your email service provider or LAN administrator to find out their outgoing server.

SMTP Server Port Number - This value is in almost all cases going to be 25. This should be set by the network or LAN administrator.

Comma-Delimited List Of Email Recipients - This is simply the list of the Email addresses that you would like to have any messages sent to. Separate each e-mail address with a comma.

PROTOCOLS

The purpose of this section is to enable or disable the Modbus TCP and Ethernet/IP parameters.

Modbus TCP:

• Disabled• Enabled

Ethernet/IP:

• Disabled• Enabled

Page 12: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 12

Page 13: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 13

SECTION 2

SERIAL COMMUNICATIONS

SERIAL COMMUNICATIONS DESCRIPTION

RS-232 DESCRIPTION

NOTE: The Q5 board does not utilize RS-232.

Almost all laptop and desktop computers have at least one RS-232 serial communications port available. It was initially developed for the emerg-ing computer industry in the 1960’s. Originally, it was a method of sending data from a mini or main frame computer, to devices such as printers, punch card readers, teletypes, magnetic tape units and modems. In those early days, the maximum speed at which RS-232 was capable of transmit-ting (about 9600 bits per second), was quite sat-isfactory, as most of the receiving devices were mechanical in nature (except for modems), and barely able to keep up with these speeds.

RS-232 uses single ended TX (transmit data) and RX (receive data). This means a common ground wire is shared between TX and RX, so only 3 wires are needed for a data only serial channel: TX, RX, and GND.

Disadvantages of single ended signaling is that it is more susceptible to noise than differential sig-naling (RS-422/485), effective cable distances are shorter (typically about 50 ft total, due to low noise immunity) and data rates are slower. Additionally, there is the limitation that only two devices can communicate together (master and slave).

RS-422/RS-485 DESCRIPTION

When serial communications started moving into the industrial environment, it was quickly noted that be-cause of the high electrical noise potential from elec-tric motors, valves, solenoids, fluorescent lighting, etc., that the noise immunity characteristics of RS-232 pro-tocol was grossly lacking. Additionally, the distances between the communicating equipment on the factory floor was much greater than that within the typical of-fice environment. For these reasons, RS-422 and RS-485 was developed.

• RS-422 is a full duplex communications hardware protocol. This means that it data can be sent and received simultaneously. Frick® Controls uses a 4-wire system for RS-422 (two transmit wires and two receive wires). Advantages of RS-422 over RS-232 is that up to 30 Quantum™ controllers may be simultaneously connected using a daisy-chain wiring scheme (to be explained later), and that the distances involved can be much greater (typically up to 2000 ft. for the total cable run), much greater noise immunity than RS-232.

• RS-485 is a half duplex bus. This means that it can only send data, or receive data at any given time. It cannot do both at the same time. Frick® Con-trols uses a 2-wire system for RS-485 one positive transmit/receive wire and one negative transmit/receive wire). Up to 30 Quantum™ controllers may be simultaneously connected up to a total distance of 2000 ft. using a daisy-chain wiring scheme (to be explained later). One advantage to using RS-485 as opposed to RS-422 is that only a single twisted pair cable need to be run to all devices (while RS-422 requires a double twisted pair ca-ble), much greater noise immunity than RS-232.

Page 14: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 14

NOTE: This screen has no affect on Ethernet communi-cations.

The following setpoints are provided:

Panel ID - A number that is used by an external com-munications application, to converse to individual Evaporators. On interconnected systems, this number must be unique. Valid values are from 1 – 99.

Comm1 - (Setup parameter definitions for Com-1 and Com-2 are identical) Communications related informa-tion for the communications ports:

Status - Shows the current communications sta-tus of the port. The possible messages are:

• Off - No communications are currently taking place. NOTE: A delay of 15 sec-onds or more of inactive communica-tions (time between valid responses) will cause this message to display.

• Active - Valid communications are ac-tively occurring.

• Failed - An invalid command was re-ceived by the port. This could be due to a bad checksum value, a wiring issue, or hardware problem at either the transmit-ting (host) or receiving (Quantum™ LX) end.

Baud Rate - The baud rate defines the speed at which external communications can occur. The higher the baud rate, the faster the communications. It is best to start out using a lower baud rate, and increasing the value only after verifying that communications errors do not occur. If errors start to occur, drop the baud rate back down. A pull down menu is provided to se-lect from the following:

• 1200• 2400• 4800• 9600• 19200• 38400• 57600• 115200

Data Bits - Determines the number of bits in a trans-mitted data package. A pull down menu is provided to select from the following:

• 7• 8

Stop Bits - A bit(s) which signals the end of a unit of transmission on a serial line. A pull down menu is pro-vided to select from the following:

• 1• 2

Parity - In communications, parity checking refers to the use of parity bits to check that data has been transmitted accurately. The parity bit is added to every

SERIAL COMMUNICATIONS SETUPAfter the serial communications wiring has been connected, and jumpers correctly set, the LX software needs to be setup to match that of the device(s) that it is to communicate with. The following screen is where this information can be found:

Page 15: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 15

data unit (typically seven or eight data bits) that are transmitted. The parity bit for each unit is set so that all bytes have either an odd number or an even number of set bits. Parity checking is the most basic form of error detection in communica-tions. A pull down menu is provided to select from the following:

• None• Even• Odd

Protocol - A protocol is the special set of rules that each end of a communications connection use when they communicate. A pull down menu is provided to select from the following Frick recog-nized protocols:

• None• Frick• ModBus ASCII• ModBus RTU• AB DF1 Full Duplex• AB DF1 Half Duplex• DBS Motor Starter• Vyper

Map File - Because the addressing scheme between the Quantum™ version 3.0x and earlier software and the Quantum™ LX version 3.1x and later software is not the same, this file was created. The map file is a conversion utility that can be used to allow a commu-nications application that was previously written by the user to function properly with the Quantum™ LX by re-directing the old addresses to the new addresses (see the section entitled Using the MAP file for additional information). A pull down menu is provided to select from the following:

• No - Do not use map file. The user is either not going to be using external communica-tions, or they will be writing the communi-cation application based upon Quantum™ LX addresses.

• Yes - The user has an application that was previously written for the Quantum™ version 3.0x or earlier, and they want to utilize the same code for the Quantum™ LX.

I/O Comms - A status indicator is provided to show the current state of the internal communications of the I/O boards. The possible displayed states are:

• Off - Loss of or intermittent communications failures to the internal Quantum™ LX I/O boards.

• Active - Indicates that normal I/O communi-cations are occurring.

• Failed - Loss of communications, a shutdown message will be generated.

Redetect IO Comms - Select this key to detect all con-nected Analog and Digital boards. If a board has been removed, a communication error shutdown will be is-sued until this key is selected. Reference the About screen to view what has been detected.

Two keys are located at the bottom right hand side of the screen. The following describes there function:

Download MapFile.txt from Quantum™ LX – With a USB memory stick installed on the LX, pressing this key will cause the MapFile.txt file to be downloaded from the Quantum™ LX into the USB memory.

Upload MapFile.txt to Quantum™ LX – After the user has modified the MapFile.txt file to suit their needs, pressing this key will cause the file to be uploaded from the USB memory back into the Quantum™ LX.

USING THE MAP FILE

The MAP file is simply a text file (map.txt), which can be downloaded from the Quantum™ panel. The file can be used in its original format, which contains a limited number of addresses, or may be modified by the user, to incorporate additional addresses.

Downloading The Map File From The Quantum™ LX Through a Web Browser:

To download the map file from the Quantum™ LX controller, click the Download button. A new box will appear with a link labeled MapFile.txt. Right click on the link, and select Save Link Target As… from the menu. The web browser will then pres-ent a dialog box allowing the user select a location on their computer for the map file to be stored. (NOTE: This operation is not intended to be per-formed from the Operator Interface Panel. In-stead, a desktop computer should be used to ac-cess the Evaporator controller via a web browser).

Downloading the MAP File From the Panel Using a USB Memory Stick:

Two keys are located at the bottom right side of the screen. The following describes there func-tion:

Download MapFile.txt from Quantum™ LX – With a USB memory stick installed on the LX, pressing this key will cause the MapFile.txt file to be downloaded from the Quan-tum™ LX into the USB memory.

Upload MapFile.txt to Quantum™ LX – After the user has modified the MapFile.txt file to suit their needs, pressing this key will cause the file to be uploaded from the USB memory back into the Quantum™ LX.

Page 16: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 16

A sample of the original file appears in the following example:

;Quantum to Quantum LX MAP Addresses

;Q, LX , LX Description

0, 1026 ;Compressor Motor Start Signal

1, 1027 ;Compressor Motor Starter-Feedback/Compressor Interlock

2, 1028 ;Oil Pump Start Signal

3, 1029 ;Oil Pump Feedback

4, 1003 ;Capacity Increase

5, 1002 ;Capacity Decrease

6, 1005 ;Volume Increase

7, 1004 ;Volume Decrease

MapFile.txt ExampleQ4/Q5

Q5

USB Memory Stick location

Q4

Quantum™ earlieraddresses

Quantum™ LXaddresses

Quantum™ LXAddress Description

Page 17: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 17

SERIAL COMMUNICATION SETUP TABLE

Use the following form to record all settings:

Panel ID _______ (0 - 255)

Com 1 Com 2 Com 3

Baud Rate

• 1200 • 1200 • 1200

• 2400 • 2400 • 2400

• 4800 • 4800 • 4800

• 9600 • 9600 • 9600

• 19200 • 19200 • 19200

• 38400 • 38400 • 38400

• 57600 • 57600 • 57600

• 115200 • 115200 • 115200

Data Bits• 7 • 7 • 7

• 8 • 8 • 8

Stop Bits• 1 • 1 • 1

• 2 • 2 • 2

Parity

• None • None • None

• Even • Even • Even

• Odd • Odd • Odd

Protocol

• None • None • None

• Frick • Frick • Frick

• Modbus ASCII • Modbus ASCII • Modbus ASCII

• Modbus RTU • Modbus RTU • Modbus RTU

• AB DF1 Full Duplex • AB DF1 Full Duplex • AB DF1 Full Duplex

• AB DF1 Half Duplex • AB DF1 Half Duplex • AB DF1 Half Duplex

• DBS Motor Starter • DBS Motor Starter • DBS Motor Starter

• Vyper • Vyper • Vyper

• None • None • None

Map File• No • No • No

• Yes • Yes • Yes

Page 18: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 18

6. Wire to the first panel via RS-232 (Q4 only), RS-422, or RS-485 to the Quantum™ LX Comm Port.

• If you are communicating to more than one panel, then you will not be able to use RS-232. You can however, convert RS-232 to either RS-422 or RS-485 with an adapter card. Reference the Convert-ing an RS-232 Serial Port to RS-422 or RS-485 section for information about an adapter card.

• Refer to the drawing of the Quantum™ LX Main Board in this manual to iden-tify wiring and jumper locations for the Comm Ports.

• Refer to the Main Board Communica-tions section in this manual for the cor-rect jumpering of RS-232 (Q4), RS-422, or RS-485.

7. Send a single command to read data from this Quantum™ LX using its ID.

8. Check if you received a data response at your de-vice.

9. Troubleshooting when you don’t receive a data re-sponse:

• Check to see if the status of the Comm Port on the Communications screen is showing ACTIVE or OFF.

• ACTIVE is shown only when the Quan-tum™ LX understands it is receiving a properly composed message.

• Check that the RX I/O communication activity lamp on the Quantum™ LX Main Processor Board is blinking as it receives the instruction from your device.

• A steady lit RX LED or one that isn’t lighting, are signs of improper wiring.

• If the RX LED is properly blinking, then check if the TX LED is blinking in re-sponse.

• If the TX is not blinking then check the communication protocol setup at the panel, the panel’s ID and the Comm Port baud rate setting.

• If the TX is blinking, then check that the Comm Port communication jumpers are correct.

NOTE: A useful tool for troubleshooting is Windows HyperTerminal. Refer to the HyperTerminal Setup section in this manual for more information.

If you properly receive data and need to communicate to more than one panel, then setup and wire to an-other panel. Reference the wiring diagram drawings in the back of this manual. Send a single command to read data from this Quantum™ LX using its ID and troubleshoot as above, if necessary. To prevent noise feedback which is possible when communicating over a long distance, only the last panel should have the termination jumpers installed.

SERIAL PROTOCOL

DESCRIPTION

The use of serial communication protocols per-mits data transmission between devices. Protocol determines how contact is established and how the query (question) and response (answer) takes place. The information in a message command re-quires:

• The identity of the intended receiver (ID #)

• What the receiver is to do (read or write to a setpoint, etc.)

• Data needed to perform an action (the value of a setpoint to be changed)

• A means of checking for errors (check-sum).

When using any of the communications ports, check what communication protocol has been se-lected from the Communications screen. The baud rate, data bits, stop bits, parity and connection type of all comm. ports, as well as the panel ID number are also changed from this screen, and should coincide with the setup of the other device.

Note: The data communication protocols are continuously being expanded and improved. Therefore, you should consult Frick® Controls for the exact details on your particular unit(s) before developing system software to inter-face with the panel.

QUANTUM™ LX COMMUNICATIONS PROTO-COL LIST

The Quantum™ LX controller has the capability of communicating to the outside world through the following software protocols:

• Frick® • Allen-Bradley DF-1 Full Duplex• Allen-Bradley DF-1 Half Duplex• Modbus ASCII • Modbus RTU• Modbus TCP• Ethernet/IP

CHECKLIST FOR SETTING UP COMMUNICA-TION

1. Decide which Quantum™ protocol you can communicate with and want to use.

2. Setup your device’s communication port with the proper parameters and select a baud rate.

3. Next, setup the Quantum™ LX for the desired communication protocol. Select the protocol from the Communications screen.

4. Set the baud rate of the Comm Port to coin-cide with the setup of your device’s commu-nication port.

5. Enter the Quantum™ LX ID. This will be used to identify commands that are sent to it.

Page 19: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 19

FRICK® PROTOCOL

DESCRIPTION

All commands for Frick® protocols must be in ASCII to be recognized (see the Conversion Chart For Decimal / Hexadecimal / ASCII, lo-cated later in this manual). The commands can be in upper or lower case letters. An Evapo-rator with an ID code of [00] is considered disabled. ID codes from [01] through [99] are valid and recognized by the Quantum™.

FRICK® # PROTOCOL SPECIFICATIONS

Frick # protocol consists of commands that are available for Evaporator control panels. The Frick # protocol does not utilize a check-sum. It is better to use Frick Quantum™ ($) protocol when only communicating to Q4 or Q5 panels.

The following is a complete list of available Frick® Protocol # commands:

COMMAND CODE and DESCRIPTION

F1 = Alarms/Shutdowns Annunciation Page 1.

F2 = Alarms/Shutdowns Annunciation Page 2.

F3 = Alarms/Shutdowns Annunciation Page 3.EW = Read a value from the TableER = Change a setpoint in the Table. Z1 = Current Status (for units 1 – 11)Z2 = Current Status (for units 12 – 22)Z3 = Current Status (for units 23 – 30)

All data is returned as integer values. If decimal positions are assumed, then divide the data by the proper multiple of 10 to get the actual value.

Temperature data, except for Suction Temperature, is re-turned in the current temperature units as 3 characters with no decimal position (i.e. 032 would represent 32 degrees Fahrenheit if the panel temperature units are in Fahren-heit, or it would represent 32 degrees Celsius, if the panel temperature units are in Celsius). Suction Temperature is returned as 4 characters with a + or – as the leading char-acter (i.e. –010 would represent –10 degree). Pressure data is usually returned in the current pressure units. However, the Filter differential reading is always re-turned in PSIA. When in PSIG or in PSIA, the pressure data is returned as 3 characters with no decimal position. How-ever; in order to show the full transducer range, the #IDPS command returns 4 characters with one decimal position assumed. The #IDI, and #IDPA commands return 3 charac-ters that assume one decimal position; therefore, 99.9 is the highest value that can be returned. When in PSIG, suction pressure is returned in PSIA. When in Bar and BarA, the pressure data is returned as 4 characters with two decimal positions assumed. When in KpaA, the pressure data is re-turned as 4 characters with no decimal position.

The following is a detailed description of each command:

RETURN Alarms & Shutdowns - Page 1 data: $01F1

Command structure:

Command Description

$ Start of command sequence.xx Quantum ID code.F1 Failure Annunciation command Page 1.CS ChecksumCR Carriage Return

RETURNED ANSWER,

CharacterPosition

Description of returned data

1 A = Acknowledge

2-3 xx = Quantum ID code4-7 Message Code 18-15 Date 1 as mm/dd/yy16-23 Time 1 as hh:mm:ss

24 Space25-28 Message Code 229-36 Date 2 as mm/dd/yy

37-44 Time 2 as hh:mm:ss45 Space

46-49 Message Code 350-52 Date 3 as mm/dd/yy53-65 Time 3 as hh:mm:ss

66 Space67-70 Message Code 471-78 Date 4 as mm/dd/yy79-83 Time 4 as hh:mm:ss

84 Space85-91 Message Code 592-99 Date 5 as mm/dd/yy

100-107 Time 5 as hh:mm:ss108 Space

109-112 Message Code 6113-120 Date 6 as mm/dd/yy

121-128 Time 6 as hh:mm:ss

129 Space

130CS (Checksum followed by Carriage return, Line feed.)

RETURN Alarms & Shutdowns - Page 2 data: $01F2

Command structure:

Command Description

$ Start of command sequence.xx Quantum ID code.F2 Failure Annunciation command Page 2.CS ChecksumCR Carriage Return

Page 20: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 20

RETURN Alarms & Shutdowns - Page 3 data: $01F3

Command structure:

Command Description

$ Start of command sequence.xx Quantum ID code.F3 Failure Annunciation command Page 3.CS ChecksumCR Carriage Return

RETURNED ANSWER,

CharacterPosition

Description of returned data

1 A = Acknowledge2-3 xx = Quantum ID code4-7 Message Code 18-15 Date 1 as mm/dd/yy16-23 Time 1 as hh:mm:ss

24 Space25-28 Message Code 229-36 Date 2 as mm/dd/yy37-44 Time 2 as hh:mm:ss

45 Space46-49 Message Code 350-52 Date 3 as mm/dd/yy53-65 Time 3 as hh:mm:ss

66 Space67-70 Message Code 471-78 Date 4 as mm/dd/yy79-83 Time 4 as hh:mm:ss

84 Space85-91 Message Code 592-99 Date 5 as mm/dd/yy

100-107 Time 5 as hh:mm:ss108 Space

109-112 Message Code 6113-120 Date 6 as mm/dd/yy121-128 Time 6 as hh:mm:ss

129 Space

130CS (Checksum followed by Carriage return, Line feed.)

RETURNED ANSWER,

CharacterPosition

Description of returned data

1 A = Acknowledge2-3 xx = Quantum ID code4-7 Message Code 18-15 Date 1 as mm/dd/yy16-23 Time 1 as hh:mm:ss

24 Space25-28 Message Code 229-36 Date 2 as mm/dd/yy37-44 Time 2 as hh:mm:ss

45 Space46-49 Message Code 350-52 Date 3 as mm/dd/yy53-65 Time 3 as hh:mm:ss

66 Space67-70 Message Code 471-78 Date 4 as mm/dd/yy79-83 Time 4 as hh:mm:ss

84 Space85-91 Message Code 592-99 Date 5 as mm/dd/yy

100-107 Time 5 as hh:mm:ss108 Space

109-112 Message Code 6113-120 Date 6 as mm/dd/yy121-128 Time 6 as hh:mm:ss

129 Space

130CS (Checksum followed by Carriage return, Line feed.)

Page 21: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 21

RETURN DATA VALUE FROM TABLE $IDER

$ Start of command sequence

ID Quantum ID code.

ER Return the value of a Table address.

00000 Frick Address(s) of data value in Table up to 32 different addresses can be re-quested

CS Checksum

CR Carriage Return

RETURNED ANSWER,

StartingCharacterPosition

Description of returned data

1 A = Acknowledge

2-3 xx = Quantum ID code.

4Value(s) of requested data.CS (Checksum followed byCarriage return, Line feed.)

CHANGE SETPOINT COMMAND: $IDEW

$ Start of command sequence.

ID Quantum ID code.

EW Change Table address’s setpoint value.

00000 Frick’s Table address of the setpoint.

000000000New setting scaled x100. followed by the “CS”,”CR”

RETURNED ANSWER: - “A” followed by the “ID”, and 1 “CR”, “LF” if successful. and 0 “CR”, “LF” if unsuccessful.

Page 22: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 22

* Fan Status

CharacterPosition

Description of returned data

10, 17,24, 31,38, 45,52, 59,66, 73,

80

0 = Off

1 = Single Speed Running

2 = Two Speed Low

3 = Two Speed High

4 = Variable Speed Running

** Evaporator Status

CharacterPosition

Description of returned data

11, 18,25, 32,39, 46,53, 60,67, 74,

81

0 = Off

1 = Cooling/Dehumidification

2 = Satisfied

3 = Defrost

4 = Heating

5 = Start Delay

8 = Off-Alarm

9 = Cooling-Alarm

A = Satisfied-Alarm

B = Defrost-Alarm

C = Heating-Alarm

D = Start Delay-Alarm

*** Evaporator Mode

CharacterPosition

Description of returned data

12, 19,26, 33,40, 47,54, 61,68, 75,

82

0 = Off

1 = Mode 1

2 = Mode 2

3 = Mode 3 or Mode 4

4 = Pump Out

5 = Soft Hot Gas

6 = Hot Gas

7 = Bleed

8 = Fan Delay

RETURN CURRENT STATUS: $01Z1Command structure:Command Description

$ Start of command sequence.ID Quantum ID code.Z1 Current Status for Units 1 -11.CS ChecksumCR Carriage Return

RETURNED ANSWER,CharacterPosition

Description of returned data

1 [A] = Acknowledge2-3 [xx] = Quantum ID code4-5 [Z1] = Current Status for units 1-11.6-9 [+000] = Control or Return Air Temp.

Unit 1

10 [0] = Fan Status *11 [0] = Evaporator Status **12 [0] = Evaporator Mode ***

13-16 [+000] = Control or Return Air Temp.Unit

217 [0] = Fan Status *18 [0] = Evaporator Status **19 [0] = Evaporator Mode ***

20-23 [+000] = Control or Return Air Temp.Unit

324 [0] = Fan Status *25 [0] = Evaporator Status **26 [0] = Evaporator Mode ***

27-30 [+000] = Control or Return Air Temp.Unit

431 [0] = Fan Status *32 [0] = Evaporator Status **33 [0] = Evaporator Mode ***

34-37 [+000] = Control or Return Air Temp.Unit

538 [0] = Fan Status *39 [0] = Evaporator Status **40 [0] = Evaporator Mode ***

41-44 [+000] = Control or Return Air Temp.Unit

645 [0] = Fan Status *46 [0] = Evaporator Status **47 [0] = Evaporator Mode ***

48-51 [+000] = Control or Return Air Temp.Unit

752 [0] = Fan Status *53 [0] = Evaporator Status **54 [0] = Evaporator Mode ***

55-58 [+000] = Control or Return Air Temp.Unit

859 [0] = Fan Status *60 [0] = Evaporator Status **61 [0] = Evaporator Mode ***

62-65 [+000] = Control or Return Air Temp.Unit

966 [0] = Fan Status *67 [0] = Evaporator Status **68 [0] = Evaporator Mode ***

69-72 [+000] = Control or Return Air Temp.Unit 10

73 [0] = Fan Status *74 [0] = Evaporator Status **75 [0] = Evaporator Mode ***

76-79 [+000] = Control or Return Air Temp.Unit 11

80 [0] = Fan Status *81 [0] = Evaporator Status **82 [0] = Evaporator Mode ***

83-86CS (Checksum followed by Carriage return, Line feed.)

Page 23: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 23

RETURN CURRENT STATUS: $01Z2Command structure:Command Description

$ Start of command sequence.ID Quantum ID code.Z2 Current Status for Units 12 - 22.CS ChecksumCR Carriage Return

RETURNED ANSWER,CharacterPosition

Description of returned data

1 [A] = Acknowledge2-3 [xx] = Quantum ID code4-5 [Z1] = Current Status for units 12-22.6-9 [+000] = Control or Return Air Temp.

Unit 12

10 [0] = Fan Status *11 [0] = Evaporator Status **12 [0] = Evaporator Mode ***

13-16 [+000] = Control or Return Air Temp.Unit 13

17 [0] = Fan Status *18 [0] = Evaporator Status **19 [0] = Evaporator Mode ***

20-23 [+000] = Control or Return Air Temp.Unit 14

24 [0] = Fan Status *25 [0] = Evaporator Status **26 [0] = Evaporator Mode ***

27-30 [+000] = Control or Return Air Temp.Unit 15

31 [0] = Fan Status *32 [0] = Evaporator Status **33 [0] = Evaporator Mode ***

34-37 [+000] = Control or Return Air Temp.Unit 16

38 [0] = Fan Status *39 [0] = Evaporator Status **40 [0] = Evaporator Mode ***

41-44 [+000] = Control or Return Air Temp.Unit 17

45 [0] = Fan Status *46 [0] = Evaporator Status **47 [0] = Evaporator Mode ***

48-51 [+000] = Control or Return Air Temp.Unit 18

52 [0] = Fan Status *53 [0] = Evaporator Status **54 [0] = Evaporator Mode ***

55-58 [+000] = Control or Return Air Temp.Unit 19

59 [0] = Fan Status *60 [0] = Evaporator Status **61 [0] = Evaporator Mode ***

62-65 [+000] = Control or Return Air Temp.Unit 20

66 [0] = Fan Status *67 [0] = Evaporator Status **68 [0] = Evaporator Mode ***

69-72 [+000] = Control or Return Air Temp.Unit 21

73 [0] = Fan Status *74 [0] = Evaporator Status **75 [0] = Evaporator Mode ***

76-79 [+000] = Control or Return Air Temp.Unit 22

80 [0] = Fan Status *81 [0] = Evaporator Status **82 [0] = Evaporator Mode ***

83-86CS (Checksum followed by Carriage return, Line feed.)

* Fan Status

CharacterPosition

Description of returned data

10, 17,24, 31,38, 45,52, 59,66, 73,

80

0 = Off

1 = Single Speed Running

2 = Two Speed Low

3 = Two Speed High

4 = Variable Speed Running

** Evaporator Status

CharacterPosition

Description of returned data

11, 18,25, 32,39, 46,53, 60,67, 74,

81

0 = Off

1 = Cooling/Dehumidification

2 = Satisfied

3 = Defrost

4 = Heating

5 = Start Delay

8 = Off-Alarm

9 = Cooling-Alarm

A = Satisfied-Alarm

B = Defrost-Alarm

C = Heating-Alarm

D = Start Delay-Alarm

*** Evaporator Mode

CharacterPosition

Description of returned data

12, 19,26, 33,40, 47,54, 61,68, 75,

82

0 = Off

1 = Mode 1

2 = Mode 2

3 = Mode 3 or Mode 4

4 = Pump Out

5 = Soft Hot Gas

6 = Hot Gas

7 = Bleed

8 = Fan Delay

Page 24: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 24

* Fan Status

CharacterPosition

Description of returned data

10, 17,24, 31,38, 45,52, 59,66, 73,

80

0 = Off

1 = Single Speed Running

2 = Two Speed Low

3 = Two Speed High

4 = Variable Speed Running

** Evaporator Status

CharacterPosition

Description of returned data

11, 18,25, 32,39, 46,53, 60,67, 74,

81

0 = Off

1 = Cooling/Dehumidification

2 = Satisfied

3 = Defrost

4 = Heating

5 = Start Delay

8 = Off-Alarm

9 = Cooling-Alarm

A = Satisfied-Alarm

B = Defrost-Alarm

C = Heating-Alarm

D = Start Delay-Alarm

*** Evaporator Mode

CharacterPosition

Description of returned data

12, 19,26, 33,40, 47,54, 61,68, 75,

82

0 = Off

1 = Mode 1

2 = Mode 2

3 = Mode 3 or Mode 4

4 = Pump Out

5 = Soft Hot Gas

6 = Hot Gas

7 = Bleed

8 = Fan Delay

RETURN CURRENT STATUS: $01Z3Command structure:Command Description

$ Start of command sequence.ID Quantum ID code.Z3 Current Status for Units 23 - 30.CS ChecksumCR Carriage Return

RETURNED ANSWER,CharacterPosition

Description of returned data

1 [A] = Acknowledge2-3 [xx] = Quantum ID code4-5 [Z1] = Current Status for units 23-30.6-9 [+000] = Control or Return Air Temp.

Unit 23

10 [0] = Fan Status *11 [0] = Evaporator Status **12 [0] = Evaporator Mode ***

13-16 [+000] = Control or Return Air Temp.Unit 24

17 [0] = Fan Status *18 [0] = Evaporator Status **19 [0] = Evaporator Mode ***

20-23 [+000] = Control or Return Air Temp.Unit 25

24 [0] = Fan Status *25 [0] = Evaporator Status **26 [0] = Evaporator Mode ***

27-30 [+000] = Control or Return Air Temp.Unit 26

31 [0] = Fan Status *32 [0] = Evaporator Status **33 [0] = Evaporator Mode ***

34-37 [+000] = Control or Return Air Temp.Unit 27

38 [0] = Fan Status *39 [0] = Evaporator Status **40 [0] = Evaporator Mode ***

41-44 [+000] = Control or Return Air Temp.Unit 28

45 [0] = Fan Status *46 [0] = Evaporator Status **47 [0] = Evaporator Mode ***

48-51 [+000] = Control or Return Air Temp.Unit 29

52 [0] = Fan Status *53 [0] = Evaporator Status **54 [0] = Evaporator Mode ***

55-58 [+000] = Control or Return Air Temp.Unit 30

59 [0] = Fan Status *60 [0] = Evaporator Status **61 [0] = Evaporator Mode ***

83-86CS (Checksum followed by Carriage return, Line feed.)

Page 25: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 25

QUANTUM™ LX ALLEN-BRADLEY COMMUNICATION

This section contains programming examples for read-ing data from and writing data to the Frick Quantum control panel from an Allen Bradley (AB) SLC500 or PLC5 processor. Allen Bradley (AB) RSLogix500 programming software has been used for the following examples, however, these examples can also be used for the AB RSLogix5 software.

Overview Of Half And Full Duplex Theory

To provide for the reading and writing of data to Quantum™ LX panels using Allen-Bradley commu-nication, the Quantum™ LX has an Allen-Bradley DF1 communication driver that recognizes either half or full duplex SLC 500 protected typed logical read and write commands (either half or full duplex must be selected). Half-duplex simply means that data can only be sent in one direction at a time (the concept of how a walkie-talkie works). Using full-duplex, data can be sent and received simulta-neously (the concept of how a telephone works). This is a Master / Slave multi-drop communication method.

The Quantum™ LX talks Allen-Bradley SLC protocol and is programmed to resemble an Allen-Bradley SLC500 slave station. The customer’s PLC or DCS must be setup to initiate the reading and writing of data to a Quantum™ LX. The Quantum™ LX does not initiate any communications. The panel ID num-ber is used as its station address and the target node. With the AB PLC, the MSG (Message) instruc-tion is used to send read and write requests. A DCS (Distributed Control System) will use a SLC 500 DF1 protocol driver to send protected typed logical read with 3 address fields and protected typed logical write requests with 3 address fields to a Quantum™ LX. Fifty (50) data elements can be read with one read.

Setpoints are changed by sending a write command to one element. Changing a setpoint causes the Quantum™ LX to save the new setpoint to Flash memory (non-volatile memory).

Be careful not to continuously request a setpoint change. It is to be expected that communica-tions may slow down during the process of writ-ing setpoints or clearing alarms. Both of these processes involve writing to either EEPROM or Flash Memory and does take some time. If com-munication requests are being sent faster than once every couple of seconds, there will be tem-porary slowdowns during these processes.

SECTION 3

QUANTUM™ LX ALLEN-BRADLEY COMMUNICATION

Additionally, keeping the Quantum™ LX busy writing to Flash memory will interfere with the communications to its I/O Boards. A communication failure to an I/O board will cause the Evaporator to shutdown. Control commands are also sent with a write command. For more detail and a list of the data, reference the Quan-tum™ LX Data Table section. For details about the ac-tual protocol, reference the AB publication 1770-6.5.16 DF1 Protocol and Command Set Reference Manual.

Because overrun can occur, the baud rate and com-mands should be setup to produce the most desired throughput. The master station should have the Stop Bit and Parity set to match the Quantum™ LX, Dupli-cate Detect disabled, and Error Detect set for BCC or CRC.

When communication is between either your program-ming software and a Quantum™ LX or an Allen-Brad-ley PLC and a Quantum™ LX on a multi-drop link, the devices depend on a DF1 Master to give each of them polling permission to transmit in a timely manner. As the number of Quantum™ LX slaves increase on the link, the time between when each panel is polled also increases. This increase in time may become larger if you are using low baud rates. As these time periods grow, the timeouts such as the message timeout, poll timeout and reply timeout may need to be changed to avoid loss of communication.

ACK Timeout - The amount of time in 20 milliseconds increments that you want the processor to wait for an acknowledgment to the message it has sent before the processor retries the message or the message errors out.

Reply Message Wait Time - Define the amount of time in 20 millisecond increments that the master sta-tion will wait after receiving an ACK (to a master-ini-tiate message) before polling the remote station for a reply. Choose a time that is, at minimum, equal to the longest time that a remote station needs to format a reply packet. Some remote stations can format reply packets faster than others.

Message Timeout - Defines the amount of time in sec-onds that the message will wait for a reply. If this time elapses without a reply, the error bit is set, indicating that the instruction timed out. A timeout of 0 seconds means that there is no timer and the message will wait indefinitely for a reply. Valid range 0-255 seconds.

Note: Make sure the Allen-Bradley PLC and the pro-gramming software is the most recent software revi-sion. Some revisions have been made that do not allow the SLC Typed Logical Read/Write Message Command.

Page 26: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 26

READ MESSAGE SETUP EXAMPLE

Read/Write MessageType: Peer-To-PeerRead/Write: ReadTarget Device: 500 CPULocal/Remote: LocalControl Block: N11:0Control Block Length: 14Channel: 0Target Node: 2 (002) (this is the Quantum™ Panel ID)Local File Address: N12:0Target File Address/Offset: N10:0Message Length in Elements: 50Message Time-out (seconds): 15

(Refer to the Allen-Bradley Programming Over-view Section for more information)

WRITE MESSAGE SETUP EXAMPLE

Read/Write MessageType: Peer-To-PeerRead/Write: WriteTarget Device: 500 CPULocal/Remote: LocalControl Block: N11:0Control Block Length: 14Channel: 0Target Node: 2 (002) (this is the Quantum™ LX Panel ID)Local File Address: N12:0Target File Address/Offset: N55:3Message Length in Elements: 1Message Time-out (seconds): 15

(Refer to the Allen-Bradley Programming Over-view Section for more information)

SLC-500 - Suggested Setup

The following are representations of the channel con-figuration screens from the AB RSLogix500 program-ming software for the SLC500. Enter values as shown in order to establish communications via AB Protocol.

CHANNEL CONFIGURATION

Configure the communication channel – Chan-nel 0:Current Communication Mode: SystemCommunication Driver: DF1 Half-Duplex Master or DF1 Full-DuplexBaud Rate: 19200 (suggested)Stop Bits: 1 (suggested)Duplicate Detect: DisabledACK Timeout (x20ms): 30 Message Retries: 3 Parity: None (suggested)Station Address (Source ID): 5 (Master’s DF1 se-lected ID#) Error Detect: BCC / CRCRTS off Delay (x20ms): 0 RTS Send Delay (x20ms): 0Pre-Send Time Delay (x1 ms): 0Control Line: No HandshakingPolling Mode: Message Based (do not allow slave to initiate messages)Priority Polling Range - Low: 255, High: 0Normal Polling Range - Low: 255, High: 0Normal Poll Group Size: 0Reply Message Wait Time (x20ms): 20 System Mode Driver: DF1 Half-Duplex Master or DF1 Full-DuplexUser Mode Driver: Generic ASCIIWrite Protect: DISABLEDMode Changes: DISABLEDMode Attention Character: \0x1b (default)System Mode Character: S (default)User Mode Character: U (default)Edit Resource/File Owner Timeout (Sec): 60Passthru Link ID (decimal): 1

Page 27: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 27

ALLEN-BRADLEY PROGRAMMING OVERVIEW

This section contains programming examples for read-ing data from, and writing data to the Frick® Quan-tum™ LX control panel from an Allen Bradley (AB) SLC500 processor. AB RSLogix500 programming software has been used for the following examples, however, these examples can also be used for the AB RSLogix5 software.

CHANNEL CONFIGURATION

The following are representations of the channel con-figuration screens from the AB RSLogix500 program-ming software for the SLC500. Enter values as shown in order to establish communications via AB Protocol.

General Configuration

Page 28: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 28

Message Sequence Logic

Use the following logic to sequence read and write message to the Quantum™ LX panel. This logic prevents hang up due to lost communications or message errors.

System Configuration

Page 29: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 29

Message Read Logic

Use the following logic to read data from the Quan-tum™ LX panel. To read more data or to read data from several Evaporators, copy / paste these rungs as needed then modify the control block and setup screen parameters accordingly. The following message read instruction will be executed whenever counter 5:0 (logic shown above) is equal to 0.

Delay Between Messages

The delay timer on rung 3 must be used when commu-nicating to the Quantum™ LX with the 100ms preset as shown. This time delay may be decreased when com-municating to more than one Evaporator provided the messages are alternated between Evaporators.

Page 30: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 30

• This Controller: SLC500

• Data Table Address: Data file location in the SLC500

• Size in Elements: # of data file to read

• Channel: Port location on the SLC processor (Channel 0 is the RS-232 port)

• Target Device: Quantum™ Panel

• Data Table Address: Data file location in the Quantum™ LX controller.

• Local Node: Quantum™ LX ID# (Octal)

MESSAGE READ SETUP SCREEN

The following setup screen is programmed to obtain 28 consecutive data files from the Quantum™ LX (ID#1) N10:1 register and place them into the SLC500’s N10:1 through N10:28 register. The target address must be changed to for the Quantum™ LX.

Page 31: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 31

Message Write Logic

Use the following logic to write data from the Quan-tum™ LX panel. To write more data or to write data to several Evaporators, copy / paste these rungs as needed then modify the control block and setup screen parameters accordingly. The following write message

instruction will be executed when counter 5:0 (logic shown above) is equal to 1 and when called upon by the change Evaporator mode bit B3/2. When B3/2 is off, the counter will be incremented to execute the next message in the sequence.

- Continued on next page -

Page 32: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 32

- Continued from previous page -

Page 33: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 33

MESSAGE WRITE SETUP SCREEN

The following setup screen is programmed to write the Evaporator mode to the Quantum™ LX (ID#1) N55:3 data file from the SLC500’s N55:3 data file. The target address must be changed to for the Quantum™ LX.

• This Controller: SLC500

• Data Table Address: Data file location in the SLC500

• Size in Elements: # of data file to read• Channel: Port location on the SLC processor

(Channel 0 is the RS232 port)

• Target Device: Quantum™ Panel

• Data Table Address: Data file location in the Quantum™ controller.

• Local Node: Quantum™ ID# (Octal)

Allen-Bradley Data Access

Data passed to and from the Quantum™ are integer values with one decimal field assumed unless shown otherwise or the command is sent to select two deci-mal fields. For example, if the data’s value is 25.5 then the value 255 is sent. All temperatures are in degree C and all pressures are in PSIA unless the command is sent to select the units of the panel. A mode such as Slide Valve mode is sent as an integer value that represents the mode it is in. For example, a 0 is sent if it is in manual, or a 10 is sent if it is in automatic, or a 20 is sent if it is in Remote Communications.

The value zero (0) is used to represent an OFF status and a DISABLED option. The value one (1), which is received as a 10, is used to represent an ON status and an ENABLED option. Only data values that are designated as setpoints are modifiable. Read Only is used to help identify what data is not modifiable. The setpoint range is checked to see if it is an allowed setting. If it is not allowed, the setting is not changed. Reference the Quantum™ Data Tables in this manual for the address listing and description of data.

A command has been provided that selects whether data to and from the Quantum™ will be returned in the units that are the default (pressure in PSIA and temperature in Degree C) or in the units that are se-lected to display at the panel.

EtherNet/IP

Frick Controls supports the use of EtherNet/IP (as described on the ab.com website, under the Ether-Net/IP heading) with LX software 6.06 and later. Ad-dress mapping follows the Allen-Bradley N: format, as shown in the Data Tables under the heading of AB Address.

Page 34: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 34

Page 35: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 35

SECTION 4

MODBUS® PROTOCOLChanging a setpoint causes the Quantum™ to save the new setpoint to nonvolatile memory. Be careful not to continuously request a setpoint change. Keeping the Quantum™ busy writing to memory will interfere with the Quantum™ com-municating to its I/O boards. A communication failure to an I/O board will cause the Evapora-tor to shutdown. For more detail and a list of the data, reference the Quantum™ Data Table section of this manual. For details about the ac-tual protocol, reference the Modicon website at http://www.modbus.com.

MODBUS® TCP/IP (Ethernet)

TCP/IP is the common transport protocol of the Internet and is actually a set of layered proto-cols, providing a reliable data transport highway between Quantum™ LX panels and an Ethernet network. Ethernet has become the standard for factory networking, replacing many of the data-bus systems used in the past.

MODBUS® TCP/IP simply takes the MODBUS® instruction set and transparently wraps TCP/IP around it. Unlike MODBUS® ASCII and RTU, there no parameters that need to be set (such as baud rate, data bits, etc.).

NOTE: When using Modicon Setup Software, ensure that:

• Head number = Rack Position (position of Ethernet card in its rack)

• Socket # = 502

Frick® Controls utilizes function codes 3 (Read), 6 (Write) and 16 (Multiple Write) of the TCP/IP protocol. Use port 502 for Modbus TCP/IP com-munications. The value used for the Modbus ID must be greater than zero.

MODBUS® TCP LOG

MODBUS® Protocol

General Description

MODBUS® Protocol is a messaging structure de-veloped by Modicon in 1979, used to establish master-slave/client-server communication be-tween intelligent devices. It is a standard, truly open and the most widely used network protocol in the industrial manufacturing environment. The MODBUS® protocol provides an industry stan-dard method that MODBUS® devices use for parsing messages.

Since MODBUS® protocol is a messaging struc-ture, it is independent of the underlying physical layer. It is traditionally implemented using RS-232, RS-422, or RS-485 communications hard-ware. With the Quantum™ LX, MODBUS® TCP can also be utilized as it applies to Ethernet net-works.

The Quantum™ controller is setup to commu-nicate on standard MODBUS® networks using either ASCII (American Standard Code for Infor-mation Interchange), RTU or TCP/IP.

The Quantum™ provides the capability to inter-face with other devices that support serial data communications using the MODBUS® protocol. This is a Master / Slave multi-drop communica-tion method whereby the Quantum™ is setup to be a MODBUS® Slave. The customer’s PLC (Pro-grammable Logic Controller) or DCS (Data Com-munications System, such as a desktop or laptop computer) must be setup as a MODBUS® Master. The Master initiates the reading and writing of data (queries) to a Quantum™. The Quantum™ does not generate its own data, it will only reply to a request by the Master.

The Quantum™ ID number is used as the MOD-BUS® Slave address (for ASCII and RTU). The Master uses Function Code 3 (Read Holding Reg-isters) to send a request to read data from the Quantum™. The Master uses Function Code 6 (Load Register) to request to change a setpoint or to send a command. Up to one hundred and twenty-five (125) data elements can be read with one read request.

The address references are numbered rela-tive to the Frick® addresses in the Quantum™ Data Table (see MODBUS Addressing Note in the Quantum™ Data Table section of this manual for additional information). The Quantum™ only ac-cepts one value with a Load Register request.

Page 36: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 36

Byte Count in data returned

Data in register 2000

Data in register 2001

Response 01 Out: 00 . 00 00 . 00 00 . 07 01 03 04 00 . 20 00 . 16

Command 00 In: 00 . 00 00 . 00 00 . 06 01 03 07 . D0 00 . 02

# of registers to read

Address of first register (2000)

Read Holding register

Modbus ID

# of bytes in commandAlways 0 for Modbus TCP

Transaction Identifier

• The function code field of the message frame will contain 8 binary bits

• Word size is selectable.• Error checking is accomplished using

CRC (Cyclical Redundancy Check).• Hyperterminal cannot be used to test

communications.

Serial Port Configuration Of The Master

7 or 8 Bits per Character (Data Bits)Odd, Even or No Parity1 or 2 Stop BitsNo Handshake

Data Packet

The MODBUS® protocol establishes the format for the Master’s query by creating a message (data packet) as follows:

• Assign the device address (Quantum™ panel ID #). The address field of a mes-sage frame contains two characters for ASCII, or 8 bits for RTU. Valid Quan-tum™ device addresses are in the range of 01 – 99 decimal. A master addresses a Quantum™ by placing the Quantum™ address in the address field of the mes-sage. When the Quantum™ sends its response, it places its own address in this address field of the response to let

MODBUS® ASCII (Serial Communications)

In the ASCII Transmission Mode (American Stan-dard Code for Information Interchange), each character byte in a message is sent as 2 ASCII characters. This mode allows time intervals of up to a second between characters during transmission without generating errors. Some particulars about MODBUS® ASCII:

• The device address field of the mes-sage frame contains two characters (16 bits).

• The function code field of the message frame will contain two characters (16 bits).

• Word size is selectable.• Error checking is accomplished using

LRC (Longitudinal Redundancy Check).

MODBUS® RTU (Serial Communications)

In RTU (Remote Terminal Unit) Mode, each 8-bit message byte contains two 4-bit hexadecimal characters, and the message is transmitted in a continuous stream. The greater effective char-acter density increases throughput over ASCII mode at the same baud rate. Some particulars about MODBUS® RTU:

• The device address field of the mes-sage frame contains 8 binary bits.

The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Response or Command), and the actual data (in Hexadecimal format). This information can be used to compare against the data being sent and received at the other end of the communications link, to verify proper opera-tion.

Refer to the following table for an example of how the data packets are created, using the data that has been shown on the above screen.

The following user selectable button is provided:

• [Refresh]

This screen allows the technician to view the ModBus TCP data communications information that the Quantum™ LX is receiving and trans-mitting.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Refresh] button.

Page 37: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 37

the Master know which Quantum™ is responding.

• An 8-bit function code defining the re-quested action (Query):

• Function Code 3 - to read holding reg-isters (sends a request to read data from the Quantum™).

• Function Code 6 to load a register (to request to change a setpoint or to send a command, or a function code 16 (RTU only) to load multiple registers.

• Any data to be sent (Response). The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. These are to be made from a pair of ASCII charac-ters (ASCII), or one 8-bit for RTU. The data field of messages sent from a Master to the Quantum™ devices con-tains additional information which the Quantum™ must use to take the action defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the count of actual data bytes in the field. If no error occurs, the data field of a response from a Quan-tum™ to a Master contains the data requested. If an error occurs, the field contains an exception code that the Master application can use to deter-mine the next action to be taken.

• An error-checking field.

The Query

The function code in the query tells the ad-dressed Quantum™ what kind of action to per-form. The data bytes contain any additional infor-mation that the Quantum™ will need to perform the function. For example, function code 03 will query the Quantum™ to read holding registers and respond with their contents. The data field must contain the information telling the Quan-tum™ which register to start at and how many registers to read. The error check field provides a method for the Quantum™ to validate the in-tegrity of the message contents.

The Response

If the Quantum™ makes a normal response, the function code in the response is an echo of the function code in the query. The data bytes con-tain the data collected by the Quantum™, such as register values or status. If an error occurs, the function code is modified to indicate that the response is an error response, and the data bytes contain a code that describes the error. The er-ror check field allows the master to confirm that the message contents are valid.

Data Field

The data field is constructed using sets of two hexadecimal digits, in the range of 00 to FF hexadecimal. For ASCII, these can be made from a pair of ASCII characters. For RTU, this is one 8-bit number.

The data field of messages sent from a master to the Quantum™ devices contains additional in-formation which the Quantum™ must use to take the action defined by the function code. This can include items like discrete and register address-es, the quantity of items to be handled, and the count of actual data bytes in the field.

For example, if the master requests a Quan-tum™ to read a group of holding registers (func-tion code 03), the data field specifies the starting register and how many registers are to be read.

If no error occurs, the data field of a response from a Quantum™ to a Master contains the data requested. If an error occurs, the field contains an exception code that the Master application can use to determine the next action to be taken.

Error Checking

ASCII

In ASCII mode, when data is transmitted to and from the Quantum™ Controller, each message has an Error Checking value ap-pended to the end of the message. Longitu-dinal Redundancy Check, or LRC, is used as the method for verifying that the ASCII mes-sage sent from the transmitting device was properly received by the receiving device.

The Longitudinal Redundancy Check (LRC) field is one byte, containing an eight-bit bi-nary value. The LRC value is calculated by the transmitting device, by adding together successive eight-bit bytes of the message, discarding any carries, and then two’s com-plementing the result. It is performed on the ASCII message field contents excluding the colon character that begins the message, and excluding the CRLF pair at the end of the message. The LRC is then appended to the message as the last field preceding the CRLF (Carriage – Line Feed) characters. Each new addition of a character that would result in a value higher than 255 decimal simply rolls over the field’s value through zero. Because there is no ninth bit, the carry is discarded automatically.

The receiving device recalculates an LRC during receipt of the message, and com-pares the calculated value to the actual value it received in the LRC field. If the two values are not equal, an error results.

Page 38: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 38

ASCII

In ASCII mode, messages start with a co-lon ( : ) character (3A hex), and end with a carriage return-line feed (CRLF) pair (0D and 0A hex).

The allowable characters transmitted for all other fields are hexadecimal 0 - 9, A - F.

All Quantum™ panels connected to the network monitor the network bus con-tinuously for the colon character. When one is received, each Quantum™ de-codes the next field (the address field) to find out if it is the addressed device.

A MODBUS® message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows receiving devices to begin at the start of the message, read the ad-dress portion and determine which de-vice is addressed, and to know when the message is completed. Partial messages can be detected and errors can be set as a result.

A typical message frame as sent by the Master is shown below:

START ADDRESS FUNCTION DATALRC

CHECKEND

: 01 03 00870001 74 CRLF

1CHAR

2CHAR

2CHAR

8CHAR

2CHAR

2CHAR

RTU

In RTU mode, messages start with a si-lent interval of at least 3.5 character times. This is most easily implemented as a multiple of character times at the baud rate that is being used on the network (shown as T1–T2–T3–T4 in the figure below). The first field then transmitted is the device address.

The allowable characters transmitted for all fields are hexadecimal 0–9, A–F. Net-worked devices monitor the network bus continuously, including during the ‘silent’ intervals. When the first field (the ad-

00 = H. O. Address87 = L. O. Address00 = H. O. # of data registers01 = L. O. # of data registers

End of message

CRC Error Correction

Code

Start of message

Quantum™ ID

Function

RTU

In RTU mode, messages include an error–checking field that is based on a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire mes-sage. It is applied regardless of any parity check method used for the individual char-acters of the message.

The CRC field is two bytes, containing a 16–bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message. The receiving de-vice recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal an error results.

The CRC is started by first preloading a 16–bit register to all 1’s. Then a process be-gins of applying successive 8–bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each 8–bit character is exclusive ORed with the regis-ter contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8–bit byte is exclusive ORed with the register’s current value, and the process repeats for eight more shifts as de-scribed above. The final contents of the reg-ister, after all the bytes of the message have been applied, is the CRC value.

When the CRC is appended to the message, the low-order byte is appended first, fol-lowed by the high-order byte.

Framing

A message frame is used to mark the beginning and ending point of a message allowing the re-ceiving device to determine which device is be-ing addressed and to know when the message is completed. It also allows partial messages to be detected and errors flagged as a result.

Page 39: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 39

dress field) is received, each device de-codes it to find out if it is the addressed device.

Following the last transmitted character, a similar interval of at least 3.5 character times marks the end of the message. A new message can begin after this inter-val. The entire message frame must be transmitted as a continuous stream. If a silent interval of more than 1.5 character times occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message.

Similarly, if a new message begins ear-lier than 3.5 character times following a previous message, the receiving device will consider it a continuation of the pre-vious message. This will set an error, as the value in the final CRC field will not be valid for the combined messages. A typi-cal message frame is shown below:

START ADDRESS FUNCTION DATALRC

CHECKEND

T1-T2-T3-T4 8 Bits 8 BitsN x 8 Bits

16 Bits T1-T2-T3-T4

ASCII Query (Read) Example

The examples that follow are based on compres-sor addresses, but may be modified using the Evaporator addresses that are shown in the Data Tables that appear later in this manual. To demon-strate how an address within the Quantum™ may be read, the following test can be performed us-ing Windows HyperTerminal (NOTE: Hyperterminal cannot be used to test RTU or TCP/IP):

As an example, a MODBUS® command will be created and sent to obtain the actual Discharge Pressure value of a compressor. Using the ad-dress tables found later in this manual, locate the address for Discharge Pressure. In this case, it is Frick® Address 2003 (decimal). Since this is the

only address we are interested in obtaining the value of, send the following message:

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Registers:L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

Look at this message on a more basic level, to understand how the address that we are re-questing is arrived at. We want to know the ac-tual value of the Discharge Pressure, Frick® Ad-dress 2003 (decimal).

The first part of the message will be a Colon (:). This represents a heads up alert that data is coming:

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

Any time that a message is sent, all of the Quan-tum™ panels on the MODBUS® network will become active, communications-wise, once the Colon appears. Next, the panels will look at the first byte following the Colon ( : ). If this byte equals the Panel ID # of the particular Quantum™ being queried, it will immediately finish reading the remainder of the message. If the byte does not equal its ID #, the message will be ignored.

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}00 = H. O. Address87 = L. O. Address00 = H. O. # of data registers01 = L. O. # of data registers

End of message

CRC Error Correction

Code

Start of message

Quantum™ ID

Function

Page 40: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 40

In order to ensure that the Quantum™ in ques-tion receives the data request accurately, we must append an Error Check byte to the end of the message. This is accomplished by adding each of the byte pairs (hex) that we have gener-ated thus far:

01 + 03 + 07 + D3 + 00 + 01 = DF hex

Next, subtract DF (hex) from 100 (hex):

100 (hex) - DF (hex) = 21 (hex)

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Registers:L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

}

After the entire data packet has been created, simply press the [Enter] key, a Line Feed will au-tomatically be sent also.

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Registers:L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

}ASCII Write Example

To demonstrate how an address within the Quantum™ LX may be written to, the following test can be performed using Windows HyperTer-minal (NOTE: Hyperterminal cannot be used to test RTU or TCP/IP communications).

As an example, a MODBUS® command will be created and sent to the Quantum™ to set Regu-lation Mode 1 Setpoint to 100.0 PSIA. First, be aware that data sent to and received by the Quantum™ has one decimal place assumed. This means that to send the value of 100.0, you actu-ally need to send 1000. Using the address tables found later in this manual, locate the address for the Regulation Mode 1 Setpoint. In this case, it would be Frick® Address 7150 (decimal).

In this particular example, we are strictly looking to request to view a data value, so we will be performing a read function (03):

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Registers:L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

}

2003 decimal equals 07D3 hex. Looking at our example, we see that we need a H.O. (High Or-der) address and a L.O. (Low Order) address. Since all data sent and received is in ASCII Hex Byte format, we need to look at D3 Hex as the Low Order portion of the address. The High Or-der portion is 07. Now our decimal 2003 is for-matted as 07D3 Hex.

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):

H. O. # of Data Registers:

L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

}

Since we are only looking for this one address, and no other, we can say that we are only look-ing for one Data Address. Our Data Address part of the data packet is also looking for a High and a Low Order value. Fortunately, the number one (1) is the same in decimal as it is in Hex, therefore, the Low Order Address is 01 (hex). The High Or-der Address is 00 (hex), so our decimal 1 is for-matted as 0001 (hex).

: 01 03 07 D3 00 01 21 CRLF

Where:Message Start:Quantum™ ID #:Read Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Registers:L. O. # of Data Registers:Error Correction Code:Carriage Return - Line Feed:

}

Page 41: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 41

Since this is the only address we are interested in writing to, send the following message:

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

Look at this message on a more basic level, to understand how the address that we are writing to is arrived at. We want to send the value of 1000 (100.0) to the Regulation Mode 1 Setpoint, Frick® Address 7150 (decimal).

The first part of the message will be a Colon (:). This represents a heads up alert that data is com-ing down the line.

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

Any time that a message is sent, all of the Quan-tum™ panels that are on the MODBUS® network will become active, communications wise, once the Colon appears. Next, all panels will look at the first byte following the Colon (:). If this byte equals the Panel ID # of the particular Quantum™ being queried, it will immediately finish reading the re-mainder of the message. If the byte does not equal its ID #, the message will be ignored.

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

In this particular example, we are strictly looking to write a data value, so we will be performing a write function (06):

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

7150 decimal equals 1BEE hex. Looking at our ex-ample we see that we need a H.O. (High Order) address and a L.O. (Low Order) address. Since all data sent and received is in ASCII Hex Byte format, we need to look at EE Hex as the Low Order por-tion of the address. The High Order portion is 1B. Now our decimal 7150 is formatted as 1BEE Hex.

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}The value that we wish to send is 100.0 (1000). The Data Value part of the data packet is looking for a High and a Low Order value. The number 1000 (dec) must be converted to hexadecimal. This conversion results in a value of 03E8 (hex). Separating 03E8 into two bytes results in the Low Order Value of E8 (hex) and the High Order Value of 03 (hex):

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

Page 42: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 42

In order to ensure that the Quantum™ in question receives the data request accurately, we must ap-pend an Error Check byte to the end of the mes-sage. This is accomplished by adding each of the byte pairs (hex) that we have generated thus far:

01 + 06 + 1B + EE + 03 + E8 = 1FB hex

Normally, we would subtract 1FB (hex) from 100 (hex), as in the previous read example. However, in this case we see that 1FB hex is greater than 100 hex. Since the math in this particular example would yield a negative number (FFFF FFFF FFFF FF05), we need to modify the value of 1FB in order to provide a positive result. This is accomplished quite simply by dropping the most left hand digit (1FB becomes FB), and then subtracting FB hex from 100 hex:

100 (hex) - FB (hex) = 05 (hex)

After the entire data packet has been created, simply press the [Enter] key, a Line Feed will au-tomatically be sent also.

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

: 01 06 1B EE 03 E8 05 CRLF

Where:Message Start:Quantum™ ID #:Write Function:H. O. address (hex):L. O. address (hex):H. O. # of Data Value:L. O. # of Data Value:Error Correction Code:Carriage Return - Line Feed:

}

ASCII Response Example

If the packet was properly received by the Quan-tum™, you should see an immediate response in Hy-perTerminal. In the Query Response (read function) example used earlier, a response of :01030205D025 (hex) was received.

Where:Message Start:Quantum™ ID #:Read Function:# of Bytes Returned:Data:Error Correction Code:

: 01 03 02 05 D0 25}

}

Once again, the first part of the message will be a Colon (:). This represents a heads up alert that data is coming down the line, but since the data is com-ing from the Quantum™ to the Master this time, the Master will accept it.

After having received the Colon (:), the Master will look at the two bytes that follows it, so that it may determine from which Quantum™ the message is coming from.

Now that the Master knows which panel is respond-ing, it needs to known which function the panel is responding to. In this case, it sees that it is a read function, and the Quantum™ is merely returning a value that was previously requested.

Where:Message Start:Quantum™ ID #:Read Function:# of Bytes Returned:Data:Error Correction Code:

}

: 01 03 02 05 D0 25}

Where:Message Start:Quantum™ ID #:Read Function:# of Bytes Returned:Data:Error Correction Code:

}: 01 03 02 05 D0 25}

Page 43: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 43

The next byte tells the Master how many bytes of information are being returned as a response. In this case, there are two (2) bytes of valid data.

: 01 03 02 05 D0 25}Where:Message Start:Quantum™ ID #:Read Function:# of Bytes Returned:Data:Error Correction Code:

}The next two bytes (in this case) are the actual data in response to our original request.

: 01 03 02 05 D0 25}Where:Message Start:Quantum™ ID #:Read Function:# of Bytes Returned:Data:Error Correction Code:

}

We need to know what this value means. To break it down, we must convert the pair of bytes from Hex to Decimal:

05DO (hex) = 1488 (decimal)

Data to and from the Quantum™ are integer values with one decimal field assumed unless shown other-wise or the command is sent to select two decimal fields.

From the previous paragraph, we can assume that there is one decimal place to be applied to the data value that was returned. Therefore:

1488 (decimal) = 148.8 (decimal)

All temperatures are in degrees C and all pressures are in PSIA unless the command is sent to select the units of the panel. Therefore:

148.8 (decimal) = 148.8 PSIA

RTU Query (Read) Example

NOTE: Hyperterminal cannot be used to test RTU:

In the following example, a MODBUS® command is sent to obtain the actual Discharge Pressure value of a compressor. Refer to the following ex-ample to see what this message packet would look like:

START ADD. FUNC.STARTING ADDRESS

# OFREGISTERS TO LOAD

CRC CHECK

END

T1-T2-T3-T4 01 03 07 D3 00 01 * * T1-T2-T3-T4

* The CRC value is calculated by the trans-mitting device, which appends the CRC to the message.

RTU Response Example

Using the RTU Read example just shown, a typi-cal response would look like:

START ADD. FUNC.BYTE

COUNT TO FOLLOW

ANSWERCRC

CHECKEND

T1-T2-T3-T4 01 03 02 04 23 * * T1-T2-T3-T4

The returned value in the above example is 0423 hex. Converting this to decimal equates to 1059, and assuming a decimal point gives an answer of 105.9 (PSIA or Panel units, depending on which has been selected).

End of message

Start of message

Quantum™ ID Function

03 = Read

07 = H. O. AddressD3 = L.O. Address

CRC Error Correction

Code

00 = H.O. # of Data Registers01 = L.O. # of Data Registers

End of message

Start of message

Quantum™ ID Function

03 = Read

02 = 2 Bytes

CRC Error Correction

Code

04 = H.O. Value23 = L.O. Value

Page 44: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 44

MODBUS® Data Access

Data passed to and from the Quantum™ are integer values with one decimal field assumed unless shown otherwise or the command is sent to select two deci-mal fields. For example, if the data’s value is 25.5 then the value 255 is sent. All temperatures are in degree C and all pressures are in PSIA unless the command is sent to select the units of the panel. A mode such as Slide Valve mode is sent as an integer value that rep-resents the mode it is in. For example, a 0 is sent if it is in manual, or a 10 is sent if it is in automatic, or a 20 is sent if it is in remote. The value zero (0) is used to rep-resent an OFF status and a DISABLED option. The value one (1), which is received as a 10, is used to represent an ON status and an ENABLED option. Only data values that are designated as setpoints are modifiable. Read Only is used to help identify what data is not modifi-able. The setpoint range is checked to see if it is an allowed setting. If it is not allowed, the setting is not changed. Reference the Quantum™ Data Tables in this manual for the address listing and description of data.

A command has been provided that selects whether data to and from the Quantum™ will be returned in the units that are the default (pressure in PSIA and tem-perature in Degree C) or in the units that are selected to display at the panel.

MODBUS® NOTES

This has been an example of how the Quantum™ Con-troller uses the MODBUS® Protocol. It is hoped that the information provided here will assist the end user in writing applications that will allow the Quantum™ to be implemented into networks that the customer may already have in use.

This information is subject to change at any time, and is provided as a reference only. Not all areas of the MODBUS® Protocol can be handled in this document. Some additional information regarding MODBUS® Protocol that the end user should be aware of:

• There are many versions of MODBUS® Protocol that are available, and an application that works properly on one system, may not function identi-cally on another.

• Some versions of MODBUS® Protocol may require the user to increment any referenced addresses by 1 (one). For instance, if you wanted to look at Frick® Address 2003, you may need to actually look at address 2004. The Quantum™ addressing begins at 0 (zero), whereas some MODBUS® Pro-tocols begin at 1 (one), therefore, you may need to compensate.

• 7 or 8 bits selectable.

• 1 or 2 Stop bits selectable.

• Parity can be set to None, Odd or Even

• When using MODBUS® protocol (other than the Hyperterminal example shown earlier), it is nec-essary to use the MODBUS® Address column as shown in the Quantum™ Data Tables. These ad-dresses should work for most applications.

• Follow the Frick® specifications for data commu-nications requirements.

• Hyperterminal can be used to test ASCII, but not RTU or TCP/IP communications.

NOTE: Be careful not to continuously request a set-point change. It is to be expected that communica-tions may slow down during the process of writing setpoints or clearing alarms. Both of these pro-cesses involve writing to either EEPROM or Flash Memory and does take some time. If communication requests are being sent faster than once every cou-ple of seconds, there will be temporary slowdowns during these processes.

Page 45: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 45

DESCRIPTION

HyperTerminal is a terminal emulation program which resides in the Microsoft Windows environment, and as such, will normally be found on any computer that is running Microsoft Windows. HyperTerminal provides a method by which the end user may verify conclusively that their Quantum™ controller is functioning properly, and as designed, with respect to external communica-tions to remote devices.

NOTE: Hyperterminal can only be used to test MODBUS® ASCII. It CANNOT be used to test Allen-Bradley or MODBUS® RTU or TCP/IP.

Many times, the Quantum™ controller will be installed into an environment whereby the end user wishes to communicate to it, either through a PLC (Programmable Logic Controller), a desktop computer for the purpose of monitoring/controlling plant operations through HMI (Human Machine Interface), or any number of other communications applications.

The purpose of this desired communications typically involves viewing and changing setpoints, viewing alarm and shutdown information, and viewing current oper-ating conditions.

When first connecting a Quantum™ panel to a com-munications network, it would be highly desirable to determine that all necessary parameters (jumper set-tings, panel setup, and cabling) are properly met so that communications may be established quickly with the Quantum™, so that time is not lost in trying to troubleshoot a potentially simple problem.

A connection from a Comm port of a computer running Microsoft Windows can be used to connect to a serial port of the Quantum™.

SETTING UP HYPERTERMINAL

• You will need to locate either a lap top or desktop computer that has Hyperterminal installed.

• Turn on the power for the lap top.

• After the laptop has fully booted, locate the Hy-perterminal program. (Hyperterminal is usually found in the Accessories folder). If Hyperterminal can’t be found there, try using the Find File com-mand, and search the entire hard drive.

• Be aware that the screens that are actually shown on the test computer may or may not appear ex-actly as shown here. Various versions of Windows can affect the appearance, as well as whether or not the screen has been maximized, or if it has been scaled to a smaller size. Regardless of how the screen work appears, the function of the screen work is what is important, and that func-tion is not affected by the way the screen looks.

• Once Hyperterminal has been located, execute it. A dialog box will appear. You will be prompted to enter a name for the New Connection. Type in whatever name you would like to use, Frick® was used in this example. This name will also create a file once you are finished, saving all of the setup parameters for future use. It is recommended that a name be chosen to reflect the type of Protocol that you will be using as you may wish to setup for various protocols. Once you have entered a name, click [OK].

A new dialog box will be shown asking to select a Com port (choose the Com port that your communications cable is attached to, this will normally be Com-1). The phone number box should be blank. Click on [OK].

SECTION 5

HYPERTERMINAL

Page 46: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 46

A pull down menu will appear. From this menu, locate and click on [Properties]. You will once again see the following screen. This time, click on the [Settings] tab.

The computer will need to be set up to match the doc-umentation as presented here, for everything to look and work as shown later. To do this, click on the [ASCII Setup…] button.

On the ASCII Setup screen, for best results, check the boxes according to the following chart:

The Com-1 properties dialog box will now appear. The parameters in this box must match the requirements of the protocol that you are wishing to use. The one box that normally would need to be changed from one protocol to the next is the Data Bits box.

For the purpose of this document, Frick® # protocol will be used. Refer to the MODBUS® ASCII section of this manual for information on MODBUS®.

Set the five boxes as follows, then click [OK].

• Bits per second: 9600 (must match the Quan-tum™)

• Data bits: 8

• Parity: None

• Stop Bits: 1

• Flow Control: None

The following screen will appear. This is the screen whereby all communications (out of the computer, and into it) will be shown. When valid data is typed in here, then sent, the connected device recognizes and responds to that data, and a response will be shown below the sent data. Click on [File].

Page 47: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 47

For MODBUS® ASCII:

• Send line ends with line feeds• Echo typed characters locally• Append line feeds to incoming line ends• Wrap lines that exceed terminal width

For Frick® protocols (# and $):

• Echo typed characters locally• Append line feeds to incoming line ends• Wrap lines that exceed terminal width

Leave everything else on this dialog box unchanged, then click on [OK].

The Properties screen will once again be shown. Click on the [OK] button to proceed.

You will now be back to the main Hyperterminal com-munications screen. This screen will be blank. All com-munications, both from the computer, and to the com-puter (from the Quantum™), will appear on this screen. Proceed to the Testing Communications section.

TESTING COMMUNICATIONS

Set the keyboard for CAPS (so that all capital letters will be typed). Type in the following command: #01I, then press [ENTER]. (This command will request the Quantum™ with ID 01 to send a packet of Information.)

If the communications is working properly, there should be an immediate response from the first Quantum™. The response should look something (but not neces-sarily exactly) like #01I000AOMN609.

If this portion of the test has passed, you can try to communicate to the next (or any Quantum™), by changing the value that you type into the HyperTermi-nal screen as follows:

Instead of [#01], replace the 01 portion with the ID that you would like to access. For instance, if you wanted to talk to a fourth Quantum™ (ID 4), type in [#04]. This should return a message from that Quantum™.

This has been just a brief description of how to check your communications and verify that it is working.

Greater detail can be found by consulting tables for each of the protocols in this manual.

Page 48: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 48

• Access the Communications screen and verify that the Quantum™ ID is set to the same value that you are trying to access. Also, check that the baud rate matches that of the setup in the properties section of the Hyperterminal example.

• Verify the position of the jumpers by comparing them with the section entitled Quantum™ Com-munications Jumpers.

• Ensure that the data that you have entered in Hy-perterminal, exactly matches the example.

• Go back through the Setting up Hyperterminal section, and ensure that it has been followed ex-actly. Repeat the process if necessary.

• If you are using a converter card (to convert the RS-232 signal from the computer to RS-422 or RS-485), then either verify that the converter card is working properly with a different piece of known functioning equipment, or eliminate it completely by tying into the Quantum™ directly through RS-232 (Quantum™ 4 only).

• The Communications port on the computer is bad. Try to verify this by communicating to a different piece of known good equipment.

• The Communications port on the Quantum™ is bad.

General Notes

Ensure that the Quantum™ communications param-eters are correct. This setup can be found on the Com-munications screen. This info must match that of the device that you are trying to talk to at the other end.

There are two red LED’s associated with the Comm port on the Quantum™ (TX & RX). Ensure that neither of these LED’s are on continuously. If one or the other (or both) are on constantly, disconnect the Com cable. If the status of the LED’s does not change, check the wiring connections to the comm port. Ensure that the wiring is not backwards. If the wiring is correct, power the Quantum™ down, then back up. If either or both of the LED’s is still on, a bad driver chip may be suspected on the Quantum™, and the board should be replaced.

Once everything has been inspected (cables, jump-ers, and setup), try to develop communications from the master. You should see the LED’s on the Comm port flickering as the Quantum™ talks to the master. If nothing happens, it would be best to consult the Hy-perTerminal section of this manual for more detailed troubleshooting.

If no data appears, or if the data does not match the specific protocol requirements that you are using, then check the following:

• Verify that the communications wiring match-es that shown in the drawings at the end of this manual.

Page 49: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 49

CONVERSION CHART FOR DECIMAL / HEXADECIMAL / ASCII

Decimal(DEC)

Hexadecimal(HEX)

ASCIIDecimal(DEC)

Hexadecimal(HEX)

ASCIIDecimal(DEC)

Hexadecimal(HEX)

ASCII

0 0 ctrl @ NUL 43 2B + 86 56 V

1 1 ctrl A SOH 44 2C , 87 57 W

2 2 ctrl B STX 45 2D - 88 58 X

3 3 ctrl C ETX 46 2E . 89 59 Y

4 4 ctrl D EOT 47 2F / 90 5A Z

5 5 ctrl E ENQ 48 30 0 91 5B [

6 6 ctrl F ACK 49 31 1 92 5C \

7 7 ctrl G BEL 50 32 2 93 5D ]

8 8 ctrl H BS 51 33 3 94 5E ^

9 9 ctrl I HT 52 34 4 95 5F _

10 A ctrl J LF 53 35 5 96 60 '

11 B ctrl K VT 54 36 6 97 61 a

12 C ctrl L FF 55 37 7 98 62 b

13 D ctrl M CR 56 38 8 99 63 c

14 E ctrl N SO 57 39 9 100 64 d

15 F ctrl O SI 58 3A : 101 65 e

16 10 ctrl P DLE 59 3B ; 102 66 f

17 11 ctrl Q DC1 60 3C < 103 67 g

18 12 ctrl R DC2 61 3D = 104 68 h

19 13 ctrl S DC3 62 3E > 105 69 i

20 14 ctrl T DC4 63 3F ? 106 6A j

21 15 ctrl U NAK 64 40 @ 107 6B k

22 16 ctrl V SYN 65 41 A 108 6C l

23 17 ctrl W ETB 66 42 B 109 6D m

24 18 ctrl X CAN 67 43 C 110 6E n

25 19 ctrl Y EM 68 44 D 111 6F o

26 1A ctrl Z SUB 69 45 E 112 70 p

27 1B ctrl [ ESC 70 46 F 113 71 q

28 1C ctrl \ FS 71 47 G 114 72 r

29 1D ctrl ] GS 72 48 H 115 73 s

30 1E ctrl ^ RS 73 49 I 116 74 t

31 1F ctrl _ US 74 4A J 117 75 u

32 20 SPACE 75 4B K 118 76 v

33 21 ! 76 4C L 119 77 w

34 22 " 77 4D M 120 78 x

35 23 # 78 4E N 121 79 y

36 24 $ 79 4F O 122 7A z

37 25 % 80 50 P 123 7B {

38 26 & 81 51 Q 124 7C |

39 27 ' 82 52 R 125 7D }

40 28 ( 83 53 S 126 7E

41 29 ) 84 54 T 127 7F DEL

42 2A * 85 55 U

Page 50: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 50

Page 51: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 51

SECTION 6

QUANTUM™ LX DATA TABLES

The following table shows the three protocol Address ranges that may be utilized for reading/writing data to and from the Quan-tum™ LX controller; Frick Addresses, Allen-Bradley (AB) Addresses, and Modbus Addresses. This table also shows the Data Table names, as well as the page numbers within this manual that the pertinent Data Tables may be found:

Frick Address Range AB Address Modbus Address Data Table Pages

100 - 729 N20:100 - N20:729 40101 - 40730 Analog Board Values 52

2000 - 3029 N10:0 - N10:1029 42001-43030 Digital Board Values 53

4017 - 5429 N30:17 - N30:1429 44018 - 45430 Calculated Values 54 – 55

8006 - 16139 N40:6 – N40:8139 48007 - 46140 Mode Values 56 – 68

20300 - 22759 N50:300 - N50:2759 60301 - 62760 Warning/Shutdown Values 69 - 71

24200 - 24889 N60:200 - N60:889 64201 - 64890 Timer Values 72

31900 - 51940N70:1900 - N70:21969

71901 - 91970 Setpoint Values 73 - 98

Page 52: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 52

ANALOG BOARD VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of DataModule

Type

100-129 N20:100-N20:129 40101-40130 Humidity Percent (Zones 1 – 30) Input

130-159 N20:130-N20:159 40131-40160 Ammonia Alarm Sensor (Zones 1 – 30) Input

160-189 N20:160-N20:189 40161-40190 Control Temperature 1 (Zones 1 -30) Input

220-249 N20:220-N20:249 40221-40250 Fan Variable Speed (Zones 1 – 30) Output

250-279 N20:250-N20:279 40251-40280 Liquid Modulating Valve Position (Zones 1 – 30) Output

280-309 N20:280-N20:309 40281-40310 Suction Modulating Valve Position (Zones 1 – 30) Output

310-339 N20:310-N20:339 40311-40340 Auxiliary Analog Output #1 (Zones 1 – 30) Output

340-369 N20:340-N20:369 40341-40370 Auxiliary Analog Output #2 (Zones 1 – 30) Output

370-399 N20:370-N20:399 40371-40400 Auxiliary Analog Output #3 (Zones 1 – 30) Output

400-429 N20:400-N20:429 40401-40430 Auxiliary Analog Output #4 (Zones 1 – 30) Output

430-459 N20:430-N20:459 40431-40460 Auxiliary Analog Input #1 (Zones 1 – 30) Input

460-489 N20:460-N20:489 40461-40490 Auxiliary Analog Input #2 (Zones 1 – 30) Input

490-519 N20:490-N20:519 40491-40520 Auxiliary Analog Input #3 (Zones 1 – 30) Input

520-549 N20:520-N20:549 40521-40550 Auxiliary Analog Input #4 (Zones 1 – 30) Input

550-579 N20:550-N20:579 40551-40580 Auxiliary Analog Input #5 (Zones 1 – 30) Input

580-609 N20:580-N20:609 40581-40610 Auxiliary Analog Input #6 (Zones 1 – 30) Input

610-639 N20:610-N20:639 40611-40640 Auxiliary Analog Input #7 (Zones 1 – 30) Input

640-669 N20:640-N20:669 40641-40670 Auxiliary Analog Input #8 (Zones 1 – 30) Input

670-699 N20:670-N20:699 40671-40700 Auxiliary Analog Input #9 (Zones 1 – 30) Input

700-729 N20:700-N20:729 40701-40730 Auxiliary Analog Input #10 (Zones 1 – 30) Input

Page 53: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 53

DIGITAL BOARD VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of DataModule

Type

2000 N10:0 42001 Hot Gas (Main) Out2001 N10:1 42002 Liquid (Main) Out2010 N10:10 42011 Alarm Panel A (Zones 1, 2, 3) Out2011 N10:11 42012 Alarm Panel B (Zones 4, 5, 6) Out2012 N10:12 42013 Alarm Panel C (Zones 7, 8, 9) Out2013 N10:13 42014 Alarm Panel D (Zones 10, 11, 12) Out2014 N10:14 42015 Alarm Panel E (Zones 13, 14, 15) Out2015 N10:15 42016 Alarm Panel F (Zones 16, 17, 18) Out2016 N10:16 42017 Alarm Panel G (Zones 19, 20, 21) Out2017 N10:17 42018 Alarm Panel H (Zones 22, 23, 24) Out2018 N10:18 42019 Alarm Panel I (Zones 25, 26, 27) Out2019 N10:19 42020 Alarm Panel J (Zones 28, 29, 30) Out2030 N10:30 42031 Global Ammonia Alarm Out2031 N10:31 42032 Global Ammonia Shutdown Out2032 N10:32 42033 Global System Alarm Out2033 N10:33 42034 Global System Shutdown Out2045 N10:45 42046 Panel Heater Status Out

2100-2129 N10:100-N10:129 42101-42130 Defrost Sensor (Zones 1 -30) In2130-2159 N10:130-N10:159 42131-42160 Smoke Detector (Zones 1- 30) In2160-2189 N10:160-N10:189 42161-42190 Liquid Valve (Zones 1 – 30) Out2190-2219 N10:190-N10:219 42191-42220 Suction Valve (Zones 1 -30) Out2220-2249 N10:220-N10:249 42221-42250 Hot Gas Valve (Zones 1 – 30) Out2250-2279 N10:250-N10:279 42251-42280 Soft Hot Gas Valve (Zones 1 – 30) Out2280-2309 N10:280-N10:309 42281-42310 Bleed Valve (Zones 1 – 30) Out2310-2339 N10:310-N10:339 42311-42340 Fan Low (Zones 1 – 30) Out2340-2369 N10:340-N10:369 42341-42370 Fan High (Zones 1 – 30) Out2370-2399 N10:370-N10:399 42371-42400 Reheat (Zones 1 – 30) Out2400-2429 N10:400-N10:429 42401-42430 Auxiliary Digital Output #1 (Zones 1 – 30) Out2430-2459 N10:430-N10:459 42431-42460 Auxiliary Digital Output #2 (Zones 1 – 30) Out2460-2489 N10:460-N10:489 42461-42490 Auxiliary Digital Output #3 (Zones 1 – 30) Out2490-2519 N10:490-N10:519 42491-42520 Auxiliary Digital Output #4 (Zones 1 – 30) Out2520-2549 N10:520-N10:549 42521-42550 Auxiliary Digital Output #5 (Zones 1 – 30) Out2550-2579 N10:550-N10:579 42551-42580 Auxiliary Digital Output #6 (Zones 1 – 30) Out2580-2609 N10:580-N10:609 42581-42610 Auxiliary Digital Output #7 (Zones 1 – 30) Out2610-2639 N10:610-N10:639 42611-42640 Auxiliary Digital Output #8 (Zones 1 – 30) Out2640-2669 N10:640-N10:669 42641-42670 Auxiliary Digital Output #9 (Zones 1 – 30) Out2670-2699 N10:670-N10:699 42671-42700 Auxiliary Digital Output #10 (Zones 1 – 30) Out2700-2729 N10:700-N10:729 42701-42730 Auxiliary Digital Input #1 (Zones 1 – 30) In2730-2759 N10:730-N10:759 42731-42760 Auxiliary Digital Input #2 (Zones 1 – 30) In2760-2789 N10:760-N10:789 42761-42790 Auxiliary Digital Input #3 (Zones 1 – 30) In2790-2819 N10:790-N10:819 42791-42820 Auxiliary Digital Input #4 (Zones 1 – 30) In2820-2849 N10:820-N10:849 42821-42850 Auxiliary Digital Input #5 (Zones 1 – 30) In2850-2879 N10:850-N10:879 42851-42880 Zone Activation (Zones 1 – 30) In2880-2909 N10:880-N10:909 42881-42910 Suction Valve (Vent) (Zones 1 30) Out2910-2939 N10:910-N10:939 42911-42940 Fan Auxiliary (Zones 1 – 30) In2940-2969 N10:940-N10:969 42941-42970 Alarm Zone (Zones 1 – 30) Out2970-2999 N10:970-N10:999 42971-43000 Mode Selector 1 (Zones 1 – 30) In3000-3029 N10:1000-N10:1029 43001-43030 Mode Selector 2 (Zones 1 – 30) In

Page 54: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 54

CALCULATED VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of Data Value Code

4017 N30:17 44018 Event Log Flag Integer

4038 N30:38 44039 Current Runtime Real(#.##)

4063 N30:63 44064 Panel Temperature Temp.

4082 N30:82 44083 Process Stopped Flag Integer

4094 N30:94 44095 Analog Output Test Value Integer

4100 N30:100 44101 Digital Board 1 Port 4 - Communications Fail Integer4101 N30:101 44102 Digital Board 2 Port 4 - Communications Fail Integer4102 N30:102 44103 Digital Board 3 Port 4 - Communications Fail Integer4103 N30:103 44104 Digital Board 4 Port 4 - Communications Fail Integer4104 N30:104 44105 Digital Board 5 Port 4 - Communications Fail Integer4105 N30:105 44106 Digital Board 6 Port 4 - Communications Fail Integer4106 N30:106 44107 Digital Board 7 Port 4 - Communications Fail Integer4107 N30:107 44108 Digital Board 8 Port 4 - Communications Fail Integer4108 N30:108 44109 Digital Board 9 Port 4 - Communications Fail Integer4109 N30:109 44110 Digital Board 10 Port 4 - Communications Fail Integer4110 N30:110 44111 Analog Board 1 Port 4 - Communications Fail Integer4111 N30:111 44112 Analog Board 2 Port 4 - Communications Fail Integer4112 N30:112 44113 Analog Board 3 Port 4 - Communications Fail Integer4113 N30:113 44114 Analog Board 4 Port 4 - Communications Fail Integer4114 N30:114 44115 Analog Board 5 Port 4 - Communications Fail Integer4115 N30:115 44116 Digital Board 1 Port 3 - Communications Fail Integer4116 N30:116 44117 Digital Board 2 Port 3 - Communications Fail Integer4117 N30:117 44118 Digital Board 3 Port 3 - Communications Fail Integer4118 N30:118 44119 Digital Board 4 Port 3 - Communications Fail Integer4119 N30:119 44120 Digital Board 5 Port 3 - Communications Fail Integer4120 N30:120 44121 Digital Board 6 Port 3 - Communications Fail Integer 4121 N30:121 44122 Digital Board 7 Port 3 - Communications Fail Integer

4122 N30:122 44123 Digital Board 8 Port 3 - Communications Fail Integer4123 N30:123 44124 Digital Board 9 Port 3 - Communications Fail Integer4124 N30:124 44125 Digital Board 10 Port 3 - Communications Fail Integer4125 N30:125 44126 Analog Board 1 Port 3 - Communications Fail Integer4126 N30:126 44127 Analog Board 2 Port 3 - Communications Fail Integer4127 N30:127 44128 Analog Board 3 Port 3 - Communications Fail Integer4128 N30:128 44129 Analog Board 4 Port 3 - Communications Fail Integer4129 N30:129 44130 Analog Board 5 Port 3 - Communications Fail Integer4130 N30:130 44131 Digital Board 1 Port 4 Reset Integer4131 N30:131 44132 Digital Board 2 Port 4 Reset Integer4132 N30:132 44133 Digital Board 3 Port 4 Reset Integer4133 N30:133 44134 Digital Board 4 Port 4 Reset Integer

4134 N30:134 44135 Digital Board 5 Port 4 Reset Integer

4135 N30:135 44136 Digital Board 6 Port 4 Reset Integer4136 N30:136 44137 Digital Board 7 Port 4 Reset Integer4137 N30:137 44138 Digital Board 8 Port 4 Reset Integer

Page 55: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 55

CALCULATED VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of Data Value Code

4138 N30:138 44139 Digital Board 9 Port 4 Reset Integer4139 N30:139 44140 Digital Board 10 Port 4 Reset Integer4140 N30:140 44141 Digital Board 1 Port 3 Reset Integer4141 N30:141 44142 Digital Board 2 Port 3 Reset Integer4142 N30:142 44143 Digital Board 3 Port 3 Reset Integer4143 N30:143 44144 Digital Board 4 Port 3Reset Integer4144 N30:144 44145 Digital Board 5 Port 3 Reset Integer4145 N30:145 44146 Digital Board 6 Port 3 Reset Integer4146 N30:146 44147 Digital Board 7 Port 3 Reset Integer4147 N30:147 44148 Digital Board 8 Port 3 Reset Integer4148 N30:148 44149 Digital Board 9 Port 3 Reset Integer4149 N30:149 44150 Digital Board 10 Port 3 Reset Integer

4200-4229 N30:200-N30:229 44201-44230 Defrost Last Time (Zones 1 – 30) Seconds

4290-4319 N30:290-N30:319 44291-44320 Defrost Warning Counter (Zones 1 – 30) None

4440-4469 N30:440-N30:469 44441-44470 Liquid On Time (Zones 1 – 30) Minutes

4530-4559 N30:530-N30:559 44531-44560 Oldest Uncleared Safety (Zone 1 – 30) Integer4560-4589 N30:560-N30:589 44561-44590 Suction Mod. Valve Accumulated Integral (Zones 1 – 30) Real (#.##)4590-4619 N30:590-N30:619 44591-44620 Liquid Modulating Valve PI Value (Zones 1 -30) Percent%4620-4649 N30:620-N30:649 44621-44650 Suction Modulating Valve PI Value (Zones 1 – 30) Percent%

4740-4769 N30:740-N30:769 44741-44770 Shutdown Text Index For Email Notification (Zones 1 – 30) Integer4770-4799 N30:770-N30:799 44771-44800 Fan Variable Accumulated Integral (Zones 1 – 30) Real (#.##)4800-4829 N30:800-N30:829 44801-44830 Liquid Mod. Valve Accumulated Integral (Zones 1 – 30) Real (#.##)4830-4859 N30:830-N30:859 44831-44860 Current Safety Number 1 (Zones 1 – 30) Integer4860-4889 N30:860-N30:889 44861-44890 Current Safety Number 2 (Zones 1 – 30) Integer4890-4919 N30:890-N30:919 44891-44920 Current Safety Number 3 (Zones 1 – 30) Integer4920-4949 N30:920-N30:949 44921-44950 Current Safety Number 4 (Zones 1 – 30) Integer4950-4979 N30:950-N30:979 44951-44980 Current Safety Number 5 (Zones 1 – 30) Integer4980-5009 N30:980-N30:1009 44981-45010 Current Safety Number 6 (Zones 1 – 30) Integer5010-5039 N30:1010-N30:1039 45011-45040 Current Safety Number 7 (Zones 1 – 30) Integer5040-5069 N30:1040-N30:1069 45041-45070 Current Safety Number 8 (Zones 1 – 30) Integer5070-5099 N30:1070-N30:1099 45071-45100 Current Safety Number 9 (Zones 1 – 30) Integer5100-5129 N30:1100-N30:1130 45101-45130 Current Safety Number 10 (Zones 1 – 30) Integer 5130-5159 N30:1130-N30-1159 45131-45160 Aux. Analog Out. #1 Accumulated Integral (Zones 1 – 30) Integer5160-5189 N30:1160-N30:1189 45161-45190 Aux. Analog Output #2 Accumulated Integral (Zones 1 – 30) Integer5190-5219 N30:1190-N30:1219 45191-45220 Aux. Analog Output #3 Accumulated Integral (Zones 1 – 30) Integer5220-5249 N30:1220-N30:1249 45221-45250 Aux. Analog Output #4 Accumulated Integral (Zones 1 – 30) Integer

5370-5399 N30:1370-N30:1399 45371-45400 Zone Run Time (Thousands of hours) (Zones 1 – 30) Integer5400-5429 N30:1400-N30:1429 45401-45430 Zone Run Time (Hours mod 1000) (Zones 1 – 30) Integer

Page 56: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 56

MODE VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

8006 N40:6 48007 Clear Safeties (All Zones)R/W

0 = No1 = Yes8007 N40:7 48008 Clean Safety History (All Zones)

8008 N40:8 48009 Global Alarm R0 = None1 = Warning2 = Shutdown

8012 N40:2 48013 Ammonia King Valve Shutdown R/W0 = Disabled1 = Enabled

8013 N40:13 48014 Global Ammonia Alarm R0 = None1 = Warning2 = Shutdown

8566 N40:566 48567 Communication Units Flag R/W0 = Celsius, PSIA1 = Panel Units

8700 - 8729

N40:700-N40:729

48701 - 48730

Liquid Timer Reset Req. (Zones 1 – 30) R/W0 = False1 = True

8760 - 8789

N40:760-N40:789

48761 - 48790

Current Zone Control (Zones 1 – 30) R

0 = Zone Stand-By1 = Zone Running3 = Zone Emergency Shutdown4 = Zone Shutdown Alarm5 = Zone Disabled

8790 - 8819

N40:790-N40:819

48791 - 48820

Current Mode (Zones 1 – 30) R

0 = Mode Stand By1 = 12 = 23 = 34 = 4

8880 - 8909

N40:880-N40:909

48881 - 48910

Current Cycle (Zones 1 – 30) R

0 = Cycle Stand By1 = Cycle Cooling2 = Cycle Defrost3 = Cycle Heating4 = Cycle Dehumidification

8970 - 8999

N40:970-N40:999

48971 - 49000

Cooling Stage (Zones 1 – 30) R0 = Cooling Start Up Stage1 = Cooling Liquid Stage2 = Cooling Clean Up Stage

9000-9029

N40:1000-N40:1029

49001 - 49030

Defrost Stage (Zones 1 – 30) R

0 = Defrost Start Up Stage1 = Defrost Pumpout Stage2 = Defrost Soft Hot Gas Stage3 = Defrost Hot Gas Stage4 = Defrost Bleed Stage5 = Defrost Refreeze Condensate Stage6 = Defrost Clean Up Stage

9030-9059

N40:1030-N40:1059

49031 - 49060

Heating Stage (Zones 1 – 30) R

0 = Heating Start Up Stage1 = Heating Pumpout Stage2 = Heating Soft Hot Gas Stage3 = Heating Hot Gas Stage4 = Heating Bleed Stage5 = Heating Refreeze Condensate Stage6 = Heating Clean Up Stage

Page 57: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 57

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

9060-9089

N40:1060 - N40:1089

49061 - 49090

Stand By Stage (Zones 1 – 30) R0 = Stand By Start Up Stage1 = Stand By Suction Stage2 = Stand By Clean Up Stage

9090-9119

N40:1090 - N40:1119

49091 - 49120

Bleed State (Zones 1 – 30) R0 = Switch Off1 = Switch On

9120-9149

N40:1120-N40:1149

49121-49150

Fan State (Zones 1 – 30) R0 = Fan Off1 = Fan Low2 = Fan High

9150-9179

N40:1150-N40:1179

49151-49180

Fan Cycling Active (Zones 1 – 30) R0 = False1 = True

9180-9209

N40:1180-N40:1209

49181-49210

Hot Gas State (Zones 1 – 30)

R0 = Switch Off1 = Switch On

9210-9239

N40:1210-N40:1239

49211-49240

Reheat State (Zones 1 – 30)

9240-9269

N40:1240-N40:1269

49241-49270

Liquid State (Zones 1 – 30)

9270-9299

N40:1270-N40:1299

49271-49300

Soft Hot Gas State (Zones 1 - 30)

9300-9329

N40:1300-N40:1329

49301-49330

Suction State (Zones 1 – 30)

9360-9389

N40:1360-N40:1389

49361-49390

Zone State (Zones 1 – 30) R0 = Zone Disabled1 = Zone Enabled

9450-9479

N40:1450-N40:1479

49451-49480

User Requested Mode (Zones 1 – 30) R/W

0 = Mode Stand By1 = 12 = 23 = 34 = 4

9480-9509

N40:1480-N40:1509

49481-49510

User Requested Defrost (Zones 1 – 30) R/W0 = False1 = True9510-

9539N40:1510-N40:1539

49511-49540

User Req. Defrost Abort (Zones 1 – 30) R/W

9540-9569

N40:1540-N40:1569

49541-49570

Cycle Status (Zones 1 – 30) R0 = Satisfied1 = Active

9570-9599

N40:1570-N40:1599

49571-49600

Defrost Initiator (Zones 1 – 30) R

0 = Defrost Inactive1 = Defrost Scheduled2 = Defrost Liquid Timer3 = Defrost Digital Input4 = Defrost User Request

9600- 9629

N40:1600- N40:1629

49601-49630

Defrosts by Digital Input Enabled (Zones 1 – 30) R0 = False1 = True

9630 - 9659

N40:1630 - N40:1659

49631-49660

Defrost Source (Zones 1 – 30) R

0 = None1 = Schedule2 = Liquid Timer3 = Scheduled Liquid Override

9690 - 9719

N40:1690 - N40:1719

49691-49720

Defrost Pumpout Two Speed Fan Speed (Zones 1 – 30)

R0 = Fan Off1 = Fan Low2 = Fan High

Page 58: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 58

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

9720 - 9749

N40:1720 - N40:1749

49721-49750

Dehumidification Stage (Zones 1 – 30) R0 = Dehumidification Start Up Stage1 = Dehumidification Liquid Stage2 = Dehumidification Clean Up Stage

9780 - 9809

N40:1780 - N40:1809

49781 - 49810

Humidity Sensor Configuration Status (Zones 1 – 30)

R0 = Disabled1 = Enabled

9810 - 9839

N40:1810 - N40:1839

49811 - 49840

Group Association (Zones 1 – 30) R

0 = Group A1 = Group B2 = Group C3 = Group D4 = Group E5 = Group F6 = Group G7 = Group H8 = Group I9 = Group J99 = None

10020 - 10049

N40:2020 - N40:2049

50021 - 50050

Fan Type (Zones 1 – 30) R

0 = Not Available1 = Single Speed2 = Two Speed Type I3 = Two Speed Type II4 = Variable Speed

10110 - 10139

N40:2110 - N40:2139

50110 - 50139

Clear Safeties (Zones 1 – 30) R/W0 = No1 = Yes

10170 - 10199

N40:2170 - N40:2199

50170 - 50199

Clear Safety History (Zones 1 – 30) R/W0 = No1 = Yes

Page 59: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 59

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

10290-10319N40:2290 - N40:2319

50290-50319 Defrost Cycle Enabled Mode 1 (Zones 1 – 30)

R0 = Disabled1 = Enabled

10320-10349N40:2320 - N40:2349

50320-50349 Defrost Cycle Enabled Mode 2 (Zones 1 – 30)

10350-10379N40:2350 - N40:2379

50350-50379 Defrost Cycle Enabled Mode 3 (Zones 1 – 30)

10380-10409N40:2380 - N40:2409

50380-50409 Defrost Cycle Enabled Mode 4 (Zones 1 – 30)

10410-10439N40:2410-N40:2439

50410-50439 Defrost Cycle Enabled Mode 5 (Zones 1 -30)

10440-10469N40:2440-N40:2469

50440-50469 Cooling Cycle Enabled Mode 1 (Zones 1 – 30)

10470-10499N40:2470-N40:2499

50470-50499 Cooling Cycle Enabled Mode 2 (Zones 1 – 30)

10500-10529N40:2500-N40:2529

50500-50529 Cooling Cycle Enabled Mode 3 (Zones 1 – 30)

10530-10559N40:2530-N40:2559

50530-50559 Cooling Cycle Enabled Mode 4 (Zones 1 – 30)

10560-10589N40:2560-N40:2589

50560-50589 Cooling Cycle Enabled Mode 5 (Zones 1 – 30)

10590-10619N40:2590-N40:2619

50590-50619 Heating Cycle Enabled Mode 1 (Zones 1 – 30)

10620-10649N40:2620-N40:2649

50620-50649 Heating Cycle Enabled Mode 2 (Zones 1 – 30)

10650-10679N40:2650-N40:2679

50650-50679 Heating Cycle Enabled Mode 3 (Zones 1 – 30)

10680-10709N40:2680-N40:2709

50680-50709 Heating Cycle Enabled Mode 4 (Zones 1 – 30)

10710-10739N40:2710-N40:2739

50710-50739 Heating Cycle Enabled Mode 5 (Zones 1 – 30)

10740-10769N40:2740-N40:2769

50740-50769 Dehumidification Cycle Enabled Mode 1 (Zones 1 – 30)

10770-10799N40:2770-N40:2799

50770-50799 Dehumidification Cycle Enabled Mode 2 (Zones 1 – 30)

10800-10829N40:2800-N40:2829

50800-50829 Dehumidification Cycle Enabled Mode 3 (Zones 1 – 30)

10830-10859N40:2830-N40:2859

50831-50860 Dehumidification Cycle Enabled Mode 4 (Zones 1 – 30)

10860-10889N40:2860 N40:2889

50861-50890 Dehumidification Cycle Enabled Mode 5 (Zones 1 – 30)

11040-11069N40:2940-N40:2969

51041-51070Dehumidification Two Speed Fan Speed Mode 1(Zones 1 – 30)

R0 = Fan Off1 = Fan Low2 = Fan High

11070-11099N40:2970-N40:2999

51071-51100Dehumidification Two Speed Fan Speed Mode 2(Zones 1 – 30)

11100-11129N40:3000-N40:3029

51101-51130Dehumidification Two Speed Fan Speed Mode 3(Zones 1 – 30)

11130-11159N40:3030-N40:3059

51131-51160Dehumidification Two Speed Fan Speed Mode 4(Zones 1 – 30)

11160-11189N40:3060-N40:3089

51161-51190Dehumidification Two Speed Fan Speed Mode 5(Zones 1 – 30)

Page 60: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 60

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

11190-11219

N40:3090-N40:3119

51191-51220Fan Cycling Function Enabled Cool Cycle Mode 1 (Zones 1 – 30)

R0 = False1 = True

11220-11249

N40:3120-N40:3149

51221-51250Fan Cycling Function Enabled Cool Cycle Mode 2 (Zones 1 – 30)

11250-11279

N40:3150-N40:3179

51251-51280Fan Cycling Function Enabled Cool Cycle Mode 3 (Zones 1 – 30)

11280-11309

N40:3180-N40:3209

51281-51310Fan Cycling Function Enabled Cool Cycle Mode 4 (Zones 1 – 30)

11310-11339

N40:3210-N40:3239

51311-51340Fan Cycling Function Enabled Cool Cycle Mode 5 (Zones 1 – 30)

11490-11519

N40:3290-N40:3319

51491-51520Heating Pumpout Two Speed Fan Speed (Zones 1 – 30)

R0 = Fan Off1 = Fan Low2 = Fan High

11520-11549

N40:3320-N40:3349

51521-51550 Ammonia Alarm A Mapping (Zones 1 – 30)

R

0 = None1 = Ammonia Alarm 12 = Ammonia Alarm 23 = Ammonia Alarm 34 = Ammonia Alarm 45 = Ammonia Alarm 56 = Ammonia Alarm 67 = Ammonia Alarm 78 = Ammonia Alarm 89 = Ammonia Alarm 910 = Ammonia Alarm 1011 = Ammonia Alarm 1112 = Ammonia Alarm 1213 = Ammonia Alarm 1314 = Ammonia Alarm 1415 = Ammonia Alarm 1516 = Ammonia Alarm 1617 = Ammonia Alarm 1718 = Ammonia Alarm 1819 = Ammonia Alarm 1920 = Ammonia Alarm 2021 = Ammonia Alarm 2122 = Ammonia Alarm 2223 = Ammonia Alarm 2324 = Ammonia Alarm 2425 = Ammonia Alarm 2526 = Ammonia Alarm 2627 = Ammonia Alarm 2728 = Ammonia Alarm 2829 = Ammonia Alarm 2930 = Ammonia Alarm 30

11550-11579

N40:3550-N40:3579

51551-51580 Ammonia Alarm B Mapping (Zones 1 – 30)

11580-11609

N40:3580-N40:3609

51581-51610 Ammonia Alarm C Mapping (Zones 1 – 30)

11610-11639

N40:3610-N40:3639

51611-51640 Ammonia Alarm D Mapping (Zone 1 – 30)

Page 61: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 61

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

11640-11669

N40:3640-N40:3669

51641-51670Cooling Suction Coupling (Zones 1 – 30)

R0 = Cooling Suction Always1 = Cooling Bound Suction2 = Cooling Suction Always Except Off

11670-11699

N40:3670-N40:3699

51671-51700 Defrost Abort Step (Zones 1 – 30) R/W0 = False1 = True

11880-11909

N40:3880-N40:3909

51881-51910Auxiliary Digital Input #1 Alarm Con-figuration (Zones 1 – 30)

R

0 = Auxiliary Input Disable1 = Aux. Input Shutdown When Running2 = Aux. Input Shutdown Always3 = Aux. Input Warning When Running4 = Aux. Input Warning Always

11910-11939

N40:3910-N40:3939

51911-51940Auxiliary Digital Input #2 Alarm Con-figuration (Zones 1 – 30)

11940-11969

N40:3940-N40:3969

51941-51970Auxiliary Digital Input #3 Alarm Con-figuration (Zones 1 – 30)

11970-11999

N40:3970-N40:3999

51971-52000Auxiliary Digital Input #4 Alarm Con-figuration (Zones 1 – 30)

12000-12029

N40:4000-N40:4029

52001-52030Auxiliary Digital Input #5 Alarm Con-figuration (Zones 1 – 30)

12030-12059

N40:4030-N40:4059

52031-52060Fan Cycling Function Enabled, Heat Cycle Mode 1 (Zones 1 – 30)

R0 = False1 = True

12060-12089

N40:4060-N40:4089

52061-52090Fan Cycling Function Enabled, Heat Cycle Mode 2 (Zones 1 – 30)

12090-12119

N40:4090-N40:4119

52091-52120Fan Cycling Function Enabled, Heat Cycle Mode 3 (Zones 1 – 30)

12120-12149

N40:4120-N40:4149

52121-52150Fan Cycling Function Enabled, Heat Cycle Mode 3 (Zones 1 -30)

12150-12279

N40:4150-N40:4279

52151-52280Fan Cycling Function Enabled, Heat Cycle Mode 5 (Zones 1 – 30)

12180-12209

N40:4180-N40:4209

52181-52210Fan Auxiliary Configuration State (Zones 1 – 30)

R

0 = Disabled1 = Enabled0 = Mode Stand By1 = Mode 12 = Mode 23 = Mode 34 = Mode 4

12210-12239

N40:4210-N40:4239

52211-52240 Sunday Schedule 1 (Zones 1 – 30)

12240-12269

N40:4240-N40:4269

52241-52270 Sunday Schedule 2 (Zones 1 – 30)

12270-12299

N40:4270-N40:4299

52271-52300 Sunday Schedule 3 (Zones 1 – 30)

12300-12329

N40:4300-N40:4329

52301-52330 Sunday Schedule 4 (Zones 1 – 30)

12330-12359

N40:4330-N40:4359

52331-52360 Sunday Schedule 5 (Zones 1 – 30)

12360-12389

N40:4360-N40:4389

52361-52390 Sunday Schedule 6 (Zones 1 – 30)

12390-12419

N40:4390-N40:4419

52391-52420 Sunday Schedule 7 (Zones 1 – 30)

12420-12449

N40:4420-N40:4449

52421-52450 Sunday Schedule 8 (Zones 1 – 30)

Page 62: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 62

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

12450-12479

N40:4450-N40:4479

52451-52480 Monday Schedule 1 (Zones 1 – 30)

R

0 = Mode Stand By1 = Mode 12 = Mode 23 = Mode 34 = Mode 4

12480-12509

N40:4480-N40:4509

52481-52510 Monday Schedule 2 (Zones 1 – 30)

12510-12539

N40:4510-N40:4539

52511-52540 Monday Schedule 3 (Zones 1 – 30)

12540-12569

N40:4540-N40:4569

52541-52570 Monday Schedule 4 (Zones 1 – 30)

12570-12599

N40:4570-N40:4599

52571-52600 Monday Schedule 5 (Zones 1 – 30)

12600-12629

N40:4600-N40:4629

52601-52630 Monday Schedule 6 (Zones 1 – 30)

12630-12659

N40:4630-N40:4659

52631-52660 Monday Schedule 7 (Zones 1 – 30)

12660-12689

N40:4660-N40:4689

52661-52690 Monday Schedule 8 (Zones 1 – 30)

12690-12719

N40:4690-N40:4719

52691-52720 Tuesday Schedule 1 (Zones 1 – 30)

12720-12749

N40:4720-N40:4749

52721-52750 Tuesday Schedule 2 (Zones 1 – 30)

12750-12779

N40:4750-N40:4779

52751-52780 Tuesday Schedule 3 (Zones 1 – 30)

12780-12809

N40:4780-N40:4809

52781-52810 Tuesday Schedule 4 (Zones 1 – 30)

12810-12839

N40:4810-N40:4839

52811-52840 Tuesday Schedule 5 (Zones 1 – 30)

12840-12869

N40:4840-N40:4869

52841-52870 Tuesday Schedule 6 (Zones 1 – 30)

12870-12899

N40:4870-N40:4899

52871-52900 Tuesday Schedule 7 (Zones 1 – 30)

12900-12929

N40:4900-N40:4929

52901-52930 Tuesday Schedule 8 (Zones 1 – 30)

12930-12959

N40:4930-N40:4959

52931-52960 Wednesday Schedule 1 (Zones 1 – 30)

12960-12989

N40:4960-N40:4989

52961-52990 Wednesday Schedule 2 (Zones 1 – 30)

12990-13019

N40:4990-N40:5019

52991-53020 Wednesday Schedule 3 (Zones 1 – 30)

13020-13049

N40:5020-N40:5049

53021-53050 Wednesday Schedule 4 (Zones 1 – 30)

13050-13079

N40:5050-N40:5079

53051-53080 Wednesday Schedule 5 (Zones 1 – 30)

13080-13109

N40:5080-N40:5109

53081-53110 Wednesday Schedule 6 (Zones 1 – 30)

13110-13139

N40:5110-N40:5139

53111-53140 Wednesday Schedule 7 (Zones 1 – 30)

13140-13169

N40:5140-N40:5169

53141-53170 Wednesday Schedule 8 (Zones 1 – 30)

Page 63: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 63

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

13170-13199

N40:5170-N40:5199

53171-53200 Thursday Schedule 1 (Zones 1 – 30)

R

0 = Mode Stand By1 = Mode 12 = Mode 23 = Mode 34 = Mode 4

13200-13229

N40:5200-N40:5229

53201-53230 Thursday Schedule 2 (Zones 1 – 30)

13230-13259

N40:5230-N40:5259

53231-53260 Thursday Schedule 3 (Zones 1 – 30)

13260-13289

N40:5260-N40:5289

53261-53290 Thursday Schedule 4 (Zones 1 – 30)

13290-13319

N40:5290-N40:5319

53291-53320 Thursday Schedule 5 (Zones 1 – 30)

13320-13349

N40:5320-N40:5349

53321-53350 Thursday Schedule 6 (Zones 1 – 30)

13350-13379

N40:5350-N40:5379

53351-53380 Thursday Schedule 7 (Zones 1 – 30)

13380-13409

N40:5380-N40:5409

53381-53410 Thursday Schedule 8 (Zones 1 – 30)

13410-13439

N40:5410-N40:5439

53411-53440 Friday Schedule 1 (Zones 1 – 30)

13440-13469

N40:5440-N40:5469

53441-53470 Friday Schedule 2 (Zones 1 – 30)

13470-13499

N40:5470-N40:5499

53471-53500 Friday Schedule 3 (Zones 1 – 30)

13500-13539

N40:5500-N40:5539

53501-53540 Friday Schedule 4 (Zones 1 – 30)

13530-13559

N40:5530-N40:5559

53531-53560 Friday Schedule 5 (Zones 1 – 30)

13560-13589

N40:5560-N40:5589

53561-53590 Friday Schedule 6 (Zones 1 – 30)

13590-13619

N40:5590-N40:5619

53591-53620 Friday Schedule 7 (Zones 1 – 30)

13620-13649

N40:5620-N40:5649

53621-53650 Friday Schedule 8 (Zones 1 – 30)

13650-13679

N40:5650-N40:5679

53651-53680 Saturday Schedule 1 (Zones 1 – 30)

13680-13709

N40:5680-N40:5709

53681-53710 Saturday Schedule 2 (Zones 1 – 30)

13710-13739

N40:5710-N40:5739

53711-53740 Saturday Schedule 3 (Zones 1 – 30)

13740-13769

N40:5740-N40:5769

53741-53770 Saturday Schedule 4 (Zones 1 – 30)

13770-13799

N40:5770-N40:5799

53771-53800 Saturday Schedule 5 (Zones 1 – 30)

13800-13829

N40:5800-N40:5829

53801-53830 Saturday Schedule 6 (Zones 1 – 30)

13830-13859

N40:5830-N40:5859

53831-53860 Saturday Schedule 7 (Zones 1 – 30)

13860-13889

N40:5860-N40:5889

53861-53890 Saturday Schedule 8 (Zones 1 – 30)

Page 64: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 64

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

14490-14519

N40:6490-N40:6519

14491-14520Aux. Analog Input #1, Alarm Configu-ration (Zones 1 – 30)

R0 = Auxiliary Analog Disable1 = Auxiliary Analog When Running2 = Auxiliary Analog Always

14520-14549

N40:6520-N40:6549

14521-14550Aux. Analog Input #2, Alarm Configu-ration (Zones 1 – 30)

14550-14579

N40:6550-N40:6579

14551-14580Aux. Analog Input #3, Alarm Configu-ration (Zones 1 – 30)

14580-14609

N40:6580-N40:6609

14581-14610Aux. Analog Input #4, Alarm Configu-ration (Zones 1 – 30)

14610-14639

N40:6610-N40:6639

14611-14640Aux. Analog Input #5, Alarm Configu-ration (Zones 1 – 30)

14640-14669

N40:6640-N40:6669

14641-14670Aux. Analog Input #6, Alarm Configu-ration (Zones 1 – 30)

14670-14699

N40:6670-N40:6699

14671-14700Aux. Analog Input #7, Alarm Configu-ration (Zones 1 – 30)

14700-14729

N40:6700-N40:6729

14701-14730Aux. Analog Input #8, Alarm Configu-ration (Zones 1 – 30)

14730-14759

N40:6730-N40:6759

14731-14760Aux. Analog Input #9, Alarm Configu-ration (Zones 1 – 30)

14760-14789

N40:6760-N40:6789

14761-14790Aux. Analog Input #10, Alarm Configu-ration (Zones 1 – 30)

Page 65: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 65

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

14790-14819

N40:6790-N40:6819

44791-44820Auxiliary Digital Output #1 Mapping (Zones 1 – 30)

R

None0 = Return Air Temperature2 = Humidity3 = User Defined Analog In #14 = User Defined Analog In #25 = User Defined Analog In #36 = User Defined Analog In #47 = User Defined Analog In #58 = User Defined Analog In #69 = User Defined Analog In #710 = User Defined Analog In #811 = User Defined Analog In #912 = User Defined Analog In #1021 = Ammonia Sensor 122 = Ammonia Sensor 223 = Ammonia Sensor 324 = Ammonia Sensor 425 = Ammonia Sensor 526 = Ammonia Sensor 627 = Ammonia Sensor 728 = Ammonia Sensor 829 = Ammonia Sensor 930 = Ammonia Sensor 1031 = Ammonia Sensor 1132 = Ammonia Sensor 1233 = Ammonia Sensor 1334 = Ammonia Sensor 1435 = Ammonia Sensor 1536 = Ammonia Sensor 1637 = Ammonia Sensor 1738 = Ammonia Sensor 1840 = Ammonia Sensor 2041 = Ammonia Sensor 2142 = Ammonia Sensor 2243 = Ammonia Sensor 2344 = Ammonia Sensor 2445 = Ammonia Sensor 2549 = Ammonia Sensor 2647 = Ammonia Sensor 2748 = Ammonia Sensor 2849 = Ammonia Sensor 2950 = Ammonia Sensor 30

14820-14849

N40:6820-N40:6849

44821-44850Aux. Digital Output #2 Mapping (Zones 1 – 30)

14850-14879

N40:6850-N40:6879

44851-44880Auxiliary Digital Output #3 Mapping (Zones 1 – 30)

14880-14909

N40:680-N40:6909

44881-44910Auxiliary Digital Output #4 Mapping (Zones 1 – 30)

14910-14939

N40:6910-N40:6939

44911-44940Auxiliary Digital Output #5 Mapping (Zones 1 – 30)

14940-14969

N40:6940-N40:6969

44941-44970Auxiliary Digital Output #6 Mapping (Zones 1 – 30)

14970-14999

N40:6970-N40:6999

44971-45000Auxiliary Digital Output #7 Mapping (Zones 1 – 30)

15000-15029

N40:7000-N40:7029

45001-45030Auxiliary Digital Output #8 Mapping (Zones 1 – 30)

15030-15059

N40:7030-N40:7059

45031-45060Auxiliary Digital Output #9 Mapping (Zones 1 – 30)

15060-15089

N40:7060-N40:7089

45061-45090Auxiliary Digital Output #10 Mapping (Zones 1 – 30)

15090-15119

N40:7090-N40:7119

45091-45120Auxiliary Digital Output #1 Configura-tion (Zones 1 – 30)

15120-15149

N40:7120-N40:7149

45121-45150Auxiliary Digital Output #2 Configura-tion (Zones 1 – 30)

15150-15179

N40:7150-N40:7179

45151-45180Auxiliary Digital Output #3 Configura-tion (Zones 1 – 30)

15180-15209

N40:7180-N40:7209

45181-45210Auxiliary Digital Output #4 Configura-tion (Zones 1 – 30)

15210-15239

N40:7210-N40:7239

45211-45240Auxiliary Digital Output #5 Configura-tion (Zones 1 – 30)

15240-15269

N40:7240-N40:7269

45241-45270Auxiliary Digital Output #6 Configura-tion (Zones 1 – 30)

15270-15299

N40:7270-N40:7299

45271-45300Auxiliary Digital Output #7 Configura-tion (Zones 1 – 30)

15300-15329

N40:7300-N40:7329

45301-45330Auxiliary Digital Output #8 Configura-tion (Zones 1 – 30)

15330-15359

N40:7330-N40:7359

45331-45360Auxiliary Digital Output #9 Configura-tion (Zones 1 – 30)

15360-15389

N40:7360-N40:7389

45361-45390Auxiliary Digital Output #10 Configura-tion (Zones 1 – 30)

Page 66: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 66

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

15390-15419

N40:7390-N40:7419

45391-45420Auxiliary Digital Output #1 Action (Zones 1 – 30)

R0 = Greater Than1 = Less Than

15420-15449

N40:7420-N40:7449

45421-45450Auxiliary Digital Output #2 Action (Zones 1 – 30)

15450-15479

N40:7450-N40:7479

45451-45480Auxiliary Digital Output #3 Action (Zones 1 – 30)

15480-15509

N40:7480-N40:7509

45481-45510Auxiliary Digital Output #4 Action (Zones 1 – 30)

15510-15539

N40:7510-N40:7539

45511-45540Auxiliary Digital Output #5 Action (Zones 1 – 30)

15540-15569

N40:7540-N40:7569

45541-45570Auxiliary Digital Output #6 Action (Zones 1 – 30)

15570-15599

N40:7570-N40:7599

45571-45600Auxiliary Digital Output #7 Action (Zones 1 – 30)

15600-15629

N40:7600-N40:7629

45601-45630Auxiliary Digital Output #8 Action (Zones 1 – 30)

15630-15659

N40:7630-N40:7659

45631-45660Auxiliary Digital Output #9 Action (Zones 1 – 30)

15660-15689

N40:7660-N40:7689

45661-45690Auxiliary Digital Output #10 Action (Zones 1 – 30)

Page 67: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 67

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

15690-15719

N40:7690-N40:7719

45691-45720Auxiliary Analog Output #1 Mapping (Zones 1 – 30)

R

None0 = Return Air Temperature2 = Humidity3 = User Defined Analog In #14 = User Defined Analog In #25 = User Defined Analog In #36 = User Defined Analog In #47 = User Defined Analog In #58 = User Defined Analog In #69 = User Defined Analog In #710 = User Defined Analog In #811 = User Defined Analog In #912 = User Defined Analog In #1021 = Ammonia Sensor 122 = Ammonia Sensor 223 = Ammonia Sensor 324 = Ammonia Sensor 425 = Ammonia Sensor 526 = Ammonia Sensor 627 = Ammonia Sensor 728 = Ammonia Sensor 829 = Ammonia Sensor 930 = Ammonia Sensor 1031 = Ammonia Sensor 1132 = Ammonia Sensor 1233 = Ammonia Sensor 1334 = Ammonia Sensor 1435 = Ammonia Sensor 1536 = Ammonia Sensor 1637 = Ammonia Sensor 1738 = Ammonia Sensor 1839 = Ammonia Sensor 1940 = Ammonia Sensor 2041 = Ammonia Sensor 2142 = Ammonia Sensor 2243 = Ammonia Sensor 2344 = Ammonia Sensor 2445 = Ammonia Sensor 2549 = Ammonia Sensor 2647 = Ammonia Sensor 2748 = Ammonia Sensor 2849 = Ammonia Sensor 2950 = Ammonia Sensor 30

15720-15749

N40:7720-N40:7749

45721-45750Auxiliary Analog Output #2 Mapping (Zones 1 – 30)

15750-15779

N40:7750-N40:7779

45751-45780Auxiliary Analog Output #3 Mapping (Zones 1 – 30)

15780-15809

N40:7780-N40:7809

45781-45810Auxiliary Analog Output #4 Mapping (Zones 1 – 30)

15810-15839

N40:7810-N40:7839

45811-45840Auxiliary Analog Output #1 PI Direc-tion (Zones 1 – 30

R0 = Positive Acting1 = Negative Acting

15840-15869

N40:7840-N40:7869

45841-45870Auxiliary Analog Output #2 PI Direc-tion (Zones 1 – 30

15870-15899

N40:7870-N40:7899

45871-458909

Auxiliary Analog Output #3 PI Direc-tion (Zones 1 – 30

15900-15929

N40:7900-N40:7929

45901-45930Auxiliary Analog Output #4 PI Direc-tion (Zones 1 – 30

Page 68: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 68

MODE VALUES: (Read Only, Continued)Frick®

AddressAB

AddressModbusAddress

Description of DataRead/Write

Value Codes

15930-15959

N40:7930-N40:7959

45931-45960Auxiliary Analog Output #1 Configura-tion (Zones 1 – 30)

R

0 = Disabled1 = When Running2 = Always3 = Heating4 = Cooling5 = Defrost

15960-15689

N40:7960-N40:7689

45961-45690Auxiliary Analog Output #2 Configura-tion (Zones 1 – 30)

15990-16019

N40:7990-N40:8019

45991-46020Auxiliary Analog Output #3 Configura-tion (Zones 1 – 30)

16020-16049

N40:8020-N40:8049

46021-46050Auxiliary Analog Output #4 Configura-tion (Zones 1 – 30)

16050-16079

N40:8050-N40:8079

46051-46080User Requested Zone On/Off (Zones 1 – 30)

R/W

0 = Zone Stand By1 = Zone Running

16080-16109

N40:8080-N40:8109

46081-46110User Requested Zone Active Mode (Zones 1 – 30)

0 = Manual1 = Automatic2 = Input Control

16110-16139

N40:8110-N40:8139

46111-46140User Requested Emergency Shutdown (Zones 1 – 30)

0 = False1 = True

Page 69: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 69

WARNING/SHUTDOWN VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of DataValue Codes

20300-20329 N50:300-N50:329 60301-60330 Control Temperature 1 Sensor Fault (Zones 1 – 30) 2364

20360-20389 N50:360-N50:389 60361-60390 Humidity Sensor Fault (Zones 1 – 30) 2365

20480-20509 N50:481-N50:509 60481-60510 Smoke Detector Shutdown (Zones 1 – 30) 1584

20510-20539 N50:510-N50:539 60511-60540 High Temperature Warning (Zones 1 – 30) 2369

20540-20569 N50:540-N50:569 60541-60570 Low Temperature Warning (Zones 1 – 30) 2370

20570-20599 N50:570-N50:599 60571-60600 High Humidity Warning (Zones 1 – 30) 2371

20600-20629 N50:600-N50:629 60601-60630 Consecutive Defrost Warning (Zones 1 – 30) 2372

20630-20659 N50:630-N50:659 60631-60660 Max Days Between Defrosts Exceeded Warning (Zones 1 – 30) 2373

20660-20689 N50:660-N50:689 60661-60690 Fan Auxiliary Shutdown (Zones 1 – 30) 2374

20720-20749 N50:721-N50:750 60722-60751 Auxiliary Digital Input #1 Warning (Zones 1 – 30) 386

20750-20779 N50:750-N50:779 60751-60780 Auxiliary Digital Input #2 Warning (Zones 1 – 30) 388

20780-20809 N50:780-N50:809 60781-60810 Auxiliary Digital Input #3 Warning (Zones 1 – 30) 390

20810-20839 N50:810-N50:839 60811-60840 Auxiliary Digital Input #4 Warning (Zones 1 – 30) 392

20840-20869 N50:840-N50:869 60841-60870 Auxiliary Digital Input #5 Warning (Zones 1 – 30) 394

20870-20899 N50:870-N50:899 60871-60900 Auxiliary Digital Input #1 Shutdown (Zones 1 – 30) 385

20900-20929 N50:900-N50:929 60901-60930 Auxiliary Digital Input #2 Shutdown (Zones 1 – 30) 387

20930-20959 N50:930-N50:959 60931-60960 Auxiliary Digital Input #3 Shutdown (Zones 1 – 30) 389

20960-20989 N50:960-N50:989 60961-60990 Auxiliary Digital Input #4 Shutdown (Zones 1 – 30) 391

20990-21019 N50:990-N50:1019 60991-61020 Auxiliary Digital Input #5 Shutdown (Zones 1 – 30) 393

21020-21049 N50:1020-N50:1049 61021-61050 Auxiliary Analog Input #1 Low Warning (Zones 1 – 30) 408

21050-21079 N50:1050-N50:1079 61051-61080 Auxiliary Analog Input #2 Low Warning (Zones 1 – 30) 412

21080-21109 N50:1080-N50:1109 61081-61110 Auxiliary Analog Input #3 Low Warning (Zones 1 – 30) 416

21110-21139 N50:1110-N50:1139 61111-61140 Auxiliary Analog Input #4 Low Warning (Zones 1 – 30) 420

21140-21169 N50:140-N50:1169 61141-61170 Auxiliary Analog Input #5 Low Warning (Zones 1 – 30) 424

21170-21199 N50:1170-N50:1199 61171-61200 Auxiliary Analog Input #6 Low Warning (Zones 1 – 30) 428

21200-21229 N50:1200-N50:1229 61201-61230 Auxiliary Analog Input #7 Low Warning (Zones 1 – 30) 432

21230-21259 N50:1230-N50:1259 61231-61260 Auxiliary Analog Input #8 Low Warning (Zones 1 – 30) 436

21260-21289 N50:1260-N50:1289 61261-61290 Auxiliary Analog Input #9 Low Warning (Zones 1 – 30) 440

21290-21319 N50:1290-N50:1319 61291-61320 Auxiliary Analog Input #10 Low Warning (Zones 1 – 30) 444

21320-21349 N50:1320-N50:1349 61321-61350 Auxiliary Analog Input #1 Low Shutdown (Zones 1 – 30) 407

21350-21379 N50:1350-N50:1379 61351-61380 Auxiliary Analog Input #2 Low Shutdown (Zones 1 – 30) 411

21380-21409 N50:1380-N50:1409 21381-21410 Auxiliary Analog Input #3 Low Shutdown (Zones 1 – 30) 415

21410-21439 N50:1410-N50:1439 21411-21440 Auxiliary Analog Input #4 Low Shutdown (Zones 1 – 30) 419

21440-21469 N50:1440-N50:1469 21441-21470 Auxiliary Analog Input #5 Low Shutdown (Zones 1 – 30) 423

21470-21499 N50:1470-N50:1499 21471-21500 Auxiliary Analog Input #6 Low Shutdown (Zones 1 – 30) 427

21500-215029 N50:1500-N50:1529 21501-21530 Auxiliary Analog Input #7 Low Shutdown (Zones 1 – 30) 431

21530-21559 N50:1530-N50:1559 21531-21560 Auxiliary Analog Input #8 Low Shutdown (Zones 1 – 30) 435

21560-21589 N50:1560-N50:1589 21561-21590 Auxiliary Analog Input #9 Low Shutdown (Zones 1 – 30) 439

21590-21619 N50:1590-N50:1619 21591-21620 Auxiliary Analog Input #10 Low Shutdown (Zones 1 – 30) 443

21620-21649 N50:1620-N50:1649 21621-21650 Auxiliary Analog Input #1 High Warning (Zones 1 – 30) 406

21650-21679 N50:1650-N50:1679 21651-21680 Auxiliary Analog Input #2 High Warning (Zones 1 – 30) 410

21680-21709 N50:1680-N50:1709 21681-21710 Auxiliary Analog Input #3 High Warning (Zones 1 – 30) 414

21710-21739 N50:1710-N50:1739 21711-21740 Auxiliary Analog Input #4 High Warning (Zones 1 – 30) 418

Page 70: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 70

WARNING/SHUTDOWN VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of DataValue Codes

21740-21769 N50:1740-N50:1769 21741-21770 Auxiliary Analog Input #5 High Warning (Zones 1 – 30) 422

21770-21799 N50:1770-N50:1799 21771-21800 Auxiliary Analog Input #6 High Warning (Zones 1 – 30) 426

21800-21829 N50:1800-N50:1829 21801-21830 Auxiliary Analog Input #7 High Warning (Zones 1 – 30) 430

21830-21859 N50:1830-N50:1859 21831-21860 Auxiliary Analog Input #8 High Warning (Zones 1 – 30) 434

21860-21889 N50:1860-N50:1889 21861-21890 Auxiliary Analog Input #9 High Warning (Zones 1 – 30) 438

21890-21919 N50:1890-N50:1919 21891-21920 Auxiliary Analog Input #10 High Warning (Zones 1 – 30) 442

21920-21949 N50:1920-N50:1949 21921-21950 Auxiliary Analog Input #1 High Shutdown (Zones 1 – 30) 405

11950-21979 N111950-N50:1979 11951-21980 Auxiliary Analog Input #2 High Shutdown (Zones 1 – 30) 409

21980-22009 N50:1980-N50:2009 21981-22010 Auxiliary Analog Input #3 High Shutdown (Zones 1 – 30) 413

22010-22039 N50:2010-N50:2039 22011-22040 Auxiliary Analog Input #4 High Shutdown (Zones 1 – 30) 417

22040-22069 N50:2040-N50:2069 22041-22070 Auxiliary Analog Input #5 High Shutdown (Zones 1 – 30) 421

22070-22099 N50:2070-N50:2099 22071-22100 Auxiliary Analog Input #6 High Shutdown (Zones 1 – 30) 425

22100-22129 N50:2100-N50:2129 22101-22130 Auxiliary Analog Input #7 High Shutdown (Zones 1 – 30) 429

22130-22159 N50:2130-N50:2159 22131-22160 Auxiliary Analog Input #8 High Shutdown (Zones 1 – 30) 433

22160-22189 N50:2160-N50:2189 22161-22190 Auxiliary Analog Input #9 High Shutdown (Zones 1 – 30) 437

22190-22219 N50:2190-N50:2219 22191-22220 Auxiliary Analog Input #10 High Shutdown (Zones 1 – 30) 441

22220-22222 N50:2220-N50:2222 22221-22223 Digital Board 1, Port 4 Comm. Shutdown (Zones 1 – 3) 2375

22223-22225 N50:2223-N50:2225 22224-22226 Digital Board 2, Port 4 Comm. Shutdown (Zones 4 – 6) 2376

22226-22228 N50:2226-N50:2228 22227-22229 Digital Board 3, Port 4 Comm. Shutdown (Zones 7 – 9) 2377

22229-22231 N50:2229-N50:2231 22230-22232 Digital Board 4, Port 4 Comm. Shutdown (Zones 10 – 12) 2378

22232-22234 N50:2232-N50:2234 22233-22235 Digital Board 5, Port 4 Comm. Shutdown (Zones 13 – 15) 2379

22235-22237 N50:2235-N50:2237 62236-62238 Digital Board 1, Port 3 Comm. Shutdown (Zones 16 – 18) 2385

22238-22240 N50:2238-N50:2240 62239-62241 Digital Board 2, Port 3 Comm. Shutdown (Zones 19 – 21) 2386

22241-22243 N50:2241-N50:2243 62242-62244 Digital Board 3, Port 3 Comm. Shutdown (Zones 22 – 24) 2387

22244-22246 N50:2244-N50:2246 62245-62247 Digital Board 4, Port 3 Comm. Shutdown (Zones 25 – 27) 2388

22247-22249 N50:2247-N50:2249 62248-62250 Digital Board 5, Port 3 Comm. Shutdown (Zones 28 – 30) 2389

22250-22252 N50:2250-N50:2252 62251-62253 Digital Board 6, Port 4 Comm. Shutdown (Zones 1 – 3) 2380

22253-22255 N50:2253-N50:2255 62254-62256 Digital Board 7, Port 4 Comm. Shutdown (Zones 4 – 6) 2381

22256-22258 N50:2256-N50:2258 62257-62259 Digital Board 8, Port 4 Comm. Shutdown (Zones 7 – 9) 2382

22259-22261 N50:2259-N50:2261 62260-62262 Digital Board 9, Port 4 Comm. Shutdown (Zones 10 – 12) 2383

22262-22264 N50:2262-N50:2264 62263-62265 Digital Board 10, Port 4 Comm. Shutdown (Zones 13 – 15) 2384

22265-22267 N50:2265-N50:2267 62266-62268 Digital Board 6, Port 3 Comm. Shutdown (Zones 16 – 18) 2390

22268-22270 N50:2268-N50:2270 62269-62271 Digital Board 7, Port 3 Comm. Shutdown (Zones 19 – 21) 2391

22271-22273 N50:2271-N50:2273 62272-62274 Digital Board 8, Port 3 Comm. Shutdown (Zones 22 – 24) 2392

22274-22276 N50:2274-N50:2276 62275-62277 Digital Board 9, Port 3 Comm. Shutdown (Zones 25 – 27) 2393

22277-22279 N50:2277-N50:2279 62278-62280 Digital Board 10, Port 3 Comm. Shutdown (Zones 28 – 30) 2394

22280-22282 N50:2280-N50:2282 62281-62283 Analog Board 1, Port 4 Comm. Shutdown (Zones 1 – 3) 2395

22283-22285 N50:2283-N50:2285 62284-62286 Analog Board 2, Port 4 Comm. Shutdown (Zones 4 – 6) 2396

22286-22288 N50:2286-N50:2288 62287-62289 Analog Board 3, Port 4 Comm. Shutdown (Zones 7 – 9) 2397

22289-22291 N50:2289-N50:2291 62290-62292 Analog Board 4, Port 4 Comm. Shutdown (Zones 10 – 12) 2398

22292-22294 N50:2292-N50:2294 62293-62295 Analog Board 5, Port 4 Comm. Shutdown (Zones 13 – 15) 2399

22295-22297 N50:2295-N50:2297 62296-62298 Analog Board 1, Port 3 Comm. Shutdown (Zones 16 – 18) 2400

22298-22300 N50:2298-N50:2300 62299-62301 Analog Board 2, Port 3 Comm. Shutdown (Zones 19 – 21) 2401

Page 71: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 71

WARNING/SHUTDOWN VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of Data Value Codes

22301-22303 N50:2301-N50:2303 62302-62304 Analog Board 3, Port 3 Comm. Shutdown (Zones 22 – 24) 2402

22304-22306 N50:2304-N50:2306 62305-62307 Analog Board 4, Port 3 Comm. Shutdown (Zones 25 – 27) 2403

22307-22309 N50:2307-N50:2309 62308-62310 Analog Board 5, Port 3 Comm. Shutdown (Zones 28 – 30) 2404

22310-22312 N50:2310-N50:2312 62311-62313 Digital Board 1, Port 4 Reset (Zones 1 – 3) 2405

22313-22315 N50:2313-N50:2315 62314-62316 Digital Board 2, Port 4 Reset (Zones 4 – 6) 2406

22316-22318 N50:2316-N50:2318 62317-62319 Digital Board 3, Port 4 Reset (Zones 7 – 9) 2407

22319-22321 N50:2319-N50:2321 62320-62322 Digital Board 4, Port 4 Reset (Zones 10 – 12) 2408

22322-22324 N50:2322-N50:2324 62323-62325 Digital Board 5, Port 4 Reset (Zones 13 - 15) 2409

22325-22327 N50:2325-N50:2327 62326-62328 Digital Board 1, Port 3 Reset (Zones 16 – 17) 2415

22328-22330 N50:2328-N50:2330 62329-62331 Digital Board 2, Port 3 Reset (Zones 19 – 21) 2416

22331-22333 N50:2331-N50:2333 62332-62334 Digital Board 3, Port 3 Reset (Zones 22 – 24) 2417

22334-22336 N50:2334-N50:2336 62335-62337 Digital Board 4, Port 3 Reset (Zones 25 – 27) 2418

22337-22339 N50:2337-N50:2339 62338-62340 Digital Board 5, Port 3 Reset (Zones 28 – 30) 2419

22340-22342 N50:2340-N50:2342 62341-62343 Digital Board 6, Port 4 Reset (Zones 1 – 3) 2410

22343-22345 N50:2343-N50:2345 62344-62346 Digital Board 7, Port 4 Reset (Zones 4 – 6) 2411

22346-22348 N50:2346-N50:2348 62347-62349 Digital Board 8, Port 4 Reset (Zones 7 – 9) 2412

22349-22351 N50:2349-N50:2351 62350-62352 Digital Board 9, Port 4 Reset (Zones 10 – 12) 2413

22352-22354 N50:2352-N50:2354 62353-62355 Digital Board 10, Port 4 Reset (Zones 13 – 15) 2414

22355-22357 N50:2355-N50:2357 62356-62358 Digital Board 6, Port 3 Reset (Zones 16 – 18) 2420

22358-22360 N50:2358-N50:2360 62359-62361 Digital Board 7, Port 3 Reset (Zones 19 – 21) 2421

22361-22363 N50:2361-N50:2363 62362-623634 Digital Board 8, Port 3 Reset (Zones 22 – 24) 2422

22364-22366 N50:2364-N50:2366 62365-62367 Digital Board 9, Port 3 Reset (Zones 25 – 27) 2423

22367-22369 N50:2367-N50:2369 62368-62370 Digital Board 10, Port 3 Reset (Zones 28 – 30) 2424

22370-22399 N50:2370-N50:2399 62371-62400 Process Stopped (Zones 1 – 30) 2425

22400-22429 N50:2400-N50:2429 62401-62430 Ammonia Zone Sensor Fault, Map A (Zones 1 – 30) 12400-12429

22430-22459 N50:2430-N50:2459 62431-62460 Ammonia Zone Sensor Fault, Map B (Zones 1 – 30) 12430-12459

22460-22489 N50:2460-N50:2489 62461-62490 Ammonia Zone Sensor Fault, Map C (Zones 1 – 30) 12460-12489

22490-22519 N50:2490-N50:2519 62491-62520 Ammonia Zone Sensor Fault, Map D (Zones 1 – 30) 12490-12519

22520-22549 N50:2520-N50:2549 62521-62550 Ammonia Warning, Map A (Zones 1 – 30) 12520-12549

22550-22579 N50:2550-N50:2579 62551-62580 Ammonia Warning, Map B (Zones 1 – 30) 12550-12579

22580-22609 N50:2580-N50:2609 62581-62610 Ammonia Warning, Map C (Zones 1 – 30) 12580-12609

22610-22639 N50:2610-N50:2639 62611-62640 Ammonia Warning, Map D (Zones 1 – 30) 12610-12639

22640-22669 N50:2640-N50:2669 62641-62670 Ammonia Shutdown, Map A (Zones 1 – 30) 12640-12669

22670-22699 N50:2670-N50:2699 62671-62700 Ammonia Shutdown, Map B (Zones 1 – 30) 12670-12699

22700-22729 N50:2700-N50:2729 62701-62730 Ammonia Shutdown, Map C (Zones 1 – 30) 12700-12729

22730-22759 N50:2730-N50:2759 62731-62760 Ammonia Shutdown, Map D (Zones 1 – 30) 12730-12759

Page 72: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 72

TIMER VALUES: (Read Only)Frick®

AddressAB

AddressModbusAddress

Description of Data

24200-24229 N60:200-N60:229 64201-64230 Fan Cycling Timer - Time Remaining (Zones 1 – 30)

24380-24409 N60:380-N60:409 64381-64410 Defrost Stage Timer - Time Remaining (Zones 1 – 30)

24470-24499 N60:470-N60:499 64471-64500 Cooling Elapsed Time - Time Elapsed (Zones 1 – 30)

24500-24529 N60:500-N60:529 64501-64530 Heating Stage Timer - Time Remaining (Zones 1 – 30)

24620-24649 N60:620-N60:649 64621-64650 Dehumidification Elapsed Time - Time Remaining (Zones 1 – 30)

24860-24889 N60:860-N60:889 64861-64890 Liquid On Elapsed Time - Time Remaining (Zones 1 – 30)

Page 73: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 73

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

31900-31929 N70:1900-N70:1929 71901-71930Power Up Time Delay(Zones 1 - 30)

5 Sec. 0 1,000

31930-31959 N70:1930-N70:1959 71931-71960Liquid Time To Defrost(Zones 1 - 30)

200 Min. 0 100,000

31960-31989 N70:1960-N70:1989 71961-71990Defrost Repeat Warning Time(Zones 1 - 30)

10 Min. 0 1,000

31990-32019 N70:1990-N70:2019 71991-72020Defrost Pumpout Time(Zones 1 - 30)

3 Min. 2 100

32020-32049 N70:2020-N70:2049 72021-72050Defrost Soft Hot Gas Time(Zones 1 - 30)

2 Min. 2 100

32050-32079 N70:2050-N70:2079 72051-72080Defrost Hot Gas Time(Zones 1 - 30)

20 Min. 2 1,000

32080-32109 N70:2080-N70:2109 72081-72110Defrost Bleed Time(Zones 1 - 30)

3 Min. 2 100

32110-32139 N70:2110-N70:2139 72111-72140Defrost Refreeze CondensateTime (Zones 1 - 30)

3 Min. 2 100

32140-32169 N70:2140-N70:2169 72141-72170Defrost Pumpout Variable Fan Speed (Zones 1 - 30)

60Percent

%0 100

32170-32199 N70:2170-N70:2199 72171-72200Fan Speed High To Low Delay (Zones 1 - 30)

10 Sec. 0 100

32200-32229 N70:2200-N70:2229 72201-72230Ammonia Warning Level(Zones 1 - 30)

100 PPM 0 1,000,000

32260-32289 N70:2260-N70:2289 72261-72290Heating To Cooling Cycle Mode 1 (Zones 1 - 30)

36 Temp. -20 150

32290-32319 N70:2290-N70:2319 72291-72320Heating To Cooling Cycle Mode 2 (Zones 1 - 30)

36 Temp. -20 150

32320-32349 N70:2320-N70:2349 72321-72350Heating To Cooling Cycle Mode 3 (Zones 1 - 30)

36 Temp. -20 150

32350-32379 N70:2350-N70:2379 72351-72380Heating To Cooling Cycle Mode 4 (Zones 1 - 30)

36 Temp. -20 150

32410-32439 N70:2410-N70:2439 72411-72440Cooling To Heating Cycle Mode 1 (Zones 1 - 30)

34 Temp. -20 150

32440-32469 N70:2440-N70:2469 72441-72470Cooling To Heating Cycle Mode 2 (Zones 1 - 30)

34 Temp. -20 150

32470-32499 N70:2470-N70:2499 72471-72500Cooling To Heating Cycle Mode 3 (Zones 1 - 30)

34 Temp. -20 150

32500-32529 N70:2500-N70:2529 72501-72530Cooling To Heating Cycle Mode 4 (Zones 1 - 30)

34 Temp. -20 150

32560-32589 N70:2560-N70:2589 72561-72590Liquid On Temperature Mode 1 (Zones 1 - 30)

40 Temp. -20 150

32590-32619 N70:2590-N70:2619 72591-72620Liquid On Temperature Mode 2 (Zones 1 - 30)

40 Temp. -20 150

32620-32649 N70:2620-N70:2649 72621-72650Liquid On Temperature Mode 3 (Zones 1 - 30)

40 Temp. -20 150

32650-32679 N70:2650-N70:2679 72651-72680Liquid On Temperature Mode 4 (Zones 1 - 30)

40 Temp. -20 150

Page 74: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 74

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

32710-32739 N70:2710-N70:2739 72711-72740Liquid Off Temperature Mode 1 (Zones 1 - 30)

38 Temp. -20 150

32740-32769 N70:2740-N70:2769 72741-72770Liquid Off Temperature Mode 2 (Zones 1 - 30)

38 Temp. -20 150

32770-32799 N70:2770-N70:2799 72771-72800Liquid Off Temperature Mode 3 (Zones 1 - 30)

38 Temp. -20 150

32800-32829 N70:2800-N70:2829 72801-72830Liquid Off Temperature Mode 4 (Zones 1 - 30)

38 Temp. -20 150

32860-32889 N70:2860-N70:2889 72861-72890Dehumidification On Percent Mode 1 (Zones 1 - 30)

40Percent

%0 100

32890-32919 N70:2890-N70:2919 72891-72920Dehumidification On Percent Mode 2 (Zones 1 - 30)

40Percent

%0 100

32920-32949 N70:2920-N70:2949 72921-72950Dehumidification On Percent Mode 3 (Zones 1 - 30)

40Percent

%0 100

32950-32979 N70:2950-N70:2979 72951-72980Dehumidification On Percent Mode 4 (Zones 1 - 30)

40Percent

%0 100

33010-33039 N70:3010-N70:3039 73011-73040Dehumidification Off Percent Mode 1 (Zones 1 - 30)

20Percent

%0 100

33040-33069 N70:3040-N70:3069 73041-73070Dehumidification Off Percent Mode 2 (Zones 1 - 30)

20Percent

%0 100

33070-33099 N70:3070-N70:3099 73071-73100Dehumidification Off Percent Mode 3 (Zones 1 - 30)

20Percent

%0 100

33100-33129 N70:3100-N70:3129 73101-73130Dehumidification Off Percent Mode 4 (Zones 1 - 30)

20Percent

%0 100

33160-33189 N70:3160-N70:3189 73161-73190Fan On Temp. Cool Cycle Mode 1 (Zones 1 - 30)

40 Temp. -20 150

33190-33219 N70:3190-N70:3219 73191-73220Fan On Temp. Cool Cycle Mode 2 (Zones 1 - 30)

40 Temp. -20 150

33207-33249 N70:3220-N70:3249 73221-73250Fan On Temp. Cool Cycle Mode 3 (Zones 1 - 30)

40 Temp. -20 150

33250-33279 N70:3250-N70:3279 73251-73280Fan On Temp. Cool Cycle Mode 4 (Zones 1 - 30)

40 Temp. -20 150

33310-33339 N70:3310-N70:3339 73311-73340Fan Off Temp. Cool Cycle Mode 1 (Zones 1 - 30)

38 Temp. -20 150

33340-33369 N70:3340-N70:3369 73341-73370Fan Off Temp. Cool Cycle Mode 2 (Zones 1 - 30)

38 Temp. -20 150

33370-33399 N70:3370-N70:3399 73371-73400Fan Off Temp. Cool Cycle Mode 3 (Zones 1 - 30)

38 Temp. -20 150

33400-33429 N70:3400-N70:3429 73401-73430Fan Off Temp. Cool Cycle Mode 4 (Zones 1 - 30)

38 Temp. -20 150

Page 75: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 75

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

33460-33489 N70:3460-N70:3489 73461-73490Two Speed Fan High To Low Temp. Cool Cycle Mode 1 (Zones 1 – 30)

41 Temp. -20 150

33490-33519 N70:3490-N70:3519 73491-73520Two Speed Fan High To Low Temp. Cool Cycle Mode 2 (Zones 1 – 30)

41 Temp. -20 150

33520-33549 N70:3520-N70:3549 73521-73550Two Speed Fan High To Low Temp. Cool Cycle Mode 3 (Zones 1 – 30)

41 Temp. -20 150

33550-33579 N70:3550-N70:3579 73551-73580Two Speed Fan High To Low Temp. Cool Cycle Mode 4 (Zones 1 – 30)

41 Temp. -20 150

33610-33639 N70:3610-N70:3639 73611-73640Two Speed Fan Low To High Temperature Cool Cycle Mode 1 (Zones 1 - 30)

42 Temp. -20 150

33640-33669 N70:3640-N70:3669 73641-73670Two Speed Fan Low To High Temperature Cool Cycle Mode 2 (Zones 1 - 30)

42 Temp. -20 150

33670-33699 N70:3670-N70:3699 73671-73700Two Speed Fan Low To High Temperature Cool Cycle Mode 3 (Zones 1 - 30)

42 Temp. -20 150

33700-33729 N70:3700-N70:3729 73701-73730Two Speed Fan Low To High Temperature Cool Cycle Mode 4 (Zones 1 - 30)

42 Temp. -20 150

33760-33789 N70:3760-N70:3789 73761-73790Dehumidification Variable Speed Fan Speed Mode 1 (Zones 1 - 30)

60Percent

%0 100

33790-33819 N70:3790-N70:3819 73791-73820Dehumidification Variable Speed Fan Speed Mode 2 (Zones 1 - 30)

60Percent

%0 100

33820-33849 N70:3820-N70:3849 73821-73850Dehumidification Variable Speed Fan Speed Mode 4 (Zones 1 - 30)

60Percent

%0 100

33850-33879 N70:3850-N70:3879 73851-73880Dehumidification Variable Speed Fan Speed Mode 5 (Zones 1 - 30)

60Percent

%0 100

33880-33909 N70:3880-N70:3909 73881-73910Ammonia Warning Delay (Zones 1 - 30)

2 Seconds 0 1,000

33910-33939 N70:3910-N70:3939 73911-73940Ammonia Shutdown Delay (Zones 1 - 30)

2 Seconds 0 1,000

33940-33969 N70:3940-N70:3969 73941-73970Smoke Detector Shutdown Delay (Zones 1 - 30)

5 Seconds 0 1,000

34030-34059 N70:4030-N70:4059 74031-74060High Humidity Warning Delay (Zones 1 - 30)

60 Seconds 0 1,000

34120-34149 N70:4120-N70:4149 74121-74150High Humidity Warning Percent (Zones 1 - 30)

100Percent

%0 100

34150-34179 N70:4150-N70:4179 74151-74180Maximum Consecutive Defrosts (Zones 1 - 30)

3 Integer 2 99

34210-34239 N70:4210-N70:4239 74211-74240Dehumidification Exit Low Tem-perature Threshold Mode 1 (Zones 1 - 30)

28 Temp. -20 150

34240-34269 N70:4240-N70:4269 74241-74270Dehumidification Exit Low Tem-perature Threshold Mode 2 (Zones 1 - 30)

28 Temp. -20 150

Page 76: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 76

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

34270-34299 N70:4270-N70:4299 74271-74300Dehumidification Exit Low Temperature Threshold Mode 3 (Zones 1 - 30)

28 Temp. -20 150

34300-34329 N70:4300-N70:4329 74301-74330Dehumidification Exit Low Temperature Threshold Mode 4 (Zones 1 - 30)

28 Temp. -20 150

34330-34359 N70:4330-N70:4359 74331-74360Ammonia Shutdown Level (Zones 1 - 30)

500 PPM 0 1,000,000

34390-34419 N70:4390-N70:4419 74391-74420Variable Fan PI Setpoint Cool Cycle Mode 1 (Zones 1 - 30)

40 Temp. -20 150

34420-34449 N70:4420-N70:4449 74421-74450Variable Fan PI Setpoint Cool Cycle Mode 2 (Zones 1 - 30)

40 Temp. -20 150

34450-34479 N70:4450-N70:4479 74451-74480Variable Fan PI Setpoint Cool Cycle Mode 3 (Zones 1 - 30)

40 Temp. -20 150

34480-34509 N70:4480-N70:4509 74481-74510Variable Fan PI Setpoint Cool Cycle Mode 4 (Zones 1 - 30)

40 Temp. -20 150

24540-34569 N70:4540-N70:4569 74541-74570Variable Fan Proportional Band Cool Cycle Mode 1 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

34570-34599 N70:4570-N70:4599 74571-74600Variable Fan Proportional Band Cool Cycle Mode 2 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

34600-34629 N70:4600-N70:4629 74601-74630Variable Fan Proportional Band Cool Cycle Mode 3 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

34630-34659 N70:4630-N70:4659 74631-74660Variable Fan Proportional Band Cool Cycle Mode 4 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

34690-34719 N70:4690-N70:4719 74691-74720Variable Fan Integration Time Cool Cycle Mode 1 (Zones 1 - 30)

30 Seconds 0 999

34720-34749 N70:4720-N70:4749 74721-74750Variable Fan Integration Time Cool Cycle Mode 2 (Zones 1 - 30)

30 Seconds 0 999

34750-34779 N70:4750-N70:4779 74751-74780Variable Fan Integration Time Cool Cycle Mode 3 (Zones 1 - 30)

30 Seconds 0 999

34780-34809 N70:4780-N70:4809 74781-74810Variable Fan Integration Time Cool Cycle Mode 4 (Zones 1 - 30)

30 Seconds 0 999

34840-34869 N70:4840-N70:4869 74841-74870Variable Fan Maximum Speed Cool Cycle Mode 1 (Zones 1 - 30)

100 Percent % 0 100

34870-34899 N70:4870-N70:4899 74871-74900Variable Fan Maximum Speed Cool Cycle Mode 2 (Zones 1 - 30)

100 Percent % 0 100

Page 77: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 77

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

34900-34929 N70:4900-N70:4929 74901-74930Variable Fan Maximum Speed Cool Cycle Mode 3 (Zones 1 - 30)

100Percent

%0 100

34930-34959 N70:4930-N70:4959 74931-74960Variable Fan Maximum Speed Cool Cycle Mode 4 (Zones 1 - 30)

100Percent

%0 100

34990-35019 N70:4990-N70:5019 74991-75020Fan Cycling On Time Cool Cycle Mode 1 (Zones 1 - 30)

3 Minutes 0 1,000

35020-35049 N70:5020-N70:5049 75021-75050Fan Cycling On Time Cool Cycle Mode 2 (Zones 1 - 30)

3 Minutes 0 1,000

35050-35079 N70:5050-N70:5079 75051-75080Fan Cycling On Time Cool Cycle Mode 3 (Zones 1 - 30)

3 Minutes 0 1,000

35080-35109 N70:5080-N70:5109 75081-75110Fan Cycling On Time Cool Cycle Mode 4 (Zones 1 - 30)

3 Minutes 0 1,000

35140-35169 N70:5140-N70:5169 75141-75170Fan Cycling Off Time Cool Cycle Mode 1 (Zones 1 - 30)

27 Minutes 0 1,000

35170-35199 N70:5170-N70:5199 75171-75200Fan Cycling Off Time Cool Cycle Mode 2 (Zones 1 - 30)

27 Minutes 0 1,000

35200-35229 N70:5200-N70:5229 75201-75230Fan Cycling Off Time Cool Cycle Mode 3 (Zones 1 - 30)

27 Minutes 0 1,000

35230-35259 N70:5230-N70:5259 75231-75260Fan Cycling Off Time Cool Cycle Mode 4 (Zones 1 - 30)

27 Minutes 0 1,000

35290-35319 N70:5290-N70:5319 75291-75320Hot Gas On Temperature Mode 1 (Zones 1 - 30)

25 Temp. -20 150

35320-35349 N70:5320-N70:5349 75321-75350Hot Gas On Temperature Mode 2 (Zones 1 - 30)

25 Temp. -20 150

35350-35379 N70:5350-N70:5379 75351-75380Hot Gas On Temperature Mode 3 (Zones 1 - 30)

25 Temp. -20 150

35380-35409 N70:5380-N70:5409 75381-75410Hot Gas On Temperature Mode 4 (Zones 1 - 30)

25 Temp. -20 150

35440-35469 N70:5440-N70:5469 75441-75470Hot Gas Off Temperature Mode 1 (Zones 1 - 30)

32 Temp. -20 150

35470-35499 N70:5470-N70:5499 75471-75500Hot Gas Off Temperature Mode 2 (Zones 1 - 30)

32 Temp. -20 150

35500-35529 N70:5500-N70:5529 75501-75530Hot Gas Off Temperature Mode 3 (Zones 1 - 30)

32 Temp. -20 150

35530-35559 N70:5530-N70:5559 75531-75560Hot Gas Off Temperature Mode 4 (Zones 1 - 30)

32 Temp. -20 150

35590-35619 N70:5590-N70:5619 75591-75620Fan On Temperature Heat Cycle Mode 1 (Zones 1 - 30)

25 Temp. -20 150

35620-35649 N70:5620-N70:5649 75621-75650Fan On Temperature Heat Cycle Mode 2 (Zones 1 - 30)

25 Temp. -20 150

35650-35679 N70:5650-N70:5679 75651-75680Fan On Temperature Heat Cycle Mode 3 (Zones 1 - 30)

25 Temp. -20 150

35680-35709 N70:5680-N70:5709 75681-75710Fan On Temperature Heat Cycle Mode 4 (Zones 1 - 30)

25 Temp. -20 150

Page 78: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 78

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

35740-35769 N70:5740-N70:5769 75741-75770Fan Off Temperature Heat Cycle Mode 1 (Zones 1 - 30)

32 Temp. -20 150

35770-35799 N70:5770-N70:5799 75771-75800Fan Off Temperature Heat Cycle Mode 2 (Zones 1 - 30)

32 Temp. -20 150

35800-35829 N70:5800-N70:5829 75801-75830Fan Off Temperature Heat Cycle Mode 3 (Zones 1 - 30)

32 Temp. -20 150

35830-35859 N70:5830-N70:5859 75831-75860Fan Off Temperature Heat Cycle Mode 4 (Zones 1 - 30)

32 Temp. -20 150

35860-35889 N70:5860-N70:5889 75861-75890Heating Pumpout Time (Zones 1 - 30)

3 Min. 2 100

36010-36039 N70:6010-N70:6039 76011-76040Heating Soft Hot Gas Time (Zones 1 - 30)

2 Min. 2 100

36160-36189 N70:6160-N70:6189 76161-76190Heating Fan Delay Time (Zones 1 - 30)

0 Min. 0 100

36310-36339 N70:6310-N70:6339 76311-76340 Heating Bleed Time (Zones 1 - 30) 3 Min. 2 100

36460-36489 N70:6460-N70:6489 76461-76490Heating Refreeze Condensate Time (Zones 1 - 30)

3 Min. 2 100

36610-36639 N70:6610-N70:6639 76611-76640Heating Pumpout Variable Fan Speed (Zones 1 - 30)

60Percent

%0 100

36790-36819 N70:6790-N70:6819 76791-76820Two Speed Fan High To Low Temp. Heat Cycle Mode 1 (Zones 1 - 30)

30 Temp. -20 150

36820-36849 N70:6820-N70:6849 76821-76850Two Speed Fan High To Low Temp. Heat Cycle Mode 2 (Zones 1 - 30)

30 Temp. -20 150

36850-36879 N70:6850-N70:6879 76851-76880Two Speed Fan High To Low Temp. Heat Cycle Mode 3 (Zones 1 - 30)

30 Temp. -20 150

36880-36909 N70:6880-N70:6909 76881-76910Two Speed Fan High To Low Temp. Heat Cycle Mode 4 (Zones 1 - 30)

30 Temp. -20 150

36940-36969 N70:6940-N70:6969 76941-76970Two Speed Fan Low To High Temp. Heat Cycle Mode 1 (Zones 1 - 30)

27 Temp. -20 150

36970-36999 N70:6970-N70:6999 76971-77000Two Speed Fan Low To High Temp. Heat Cycle Mode 2 (Zones 1 - 30)

27 Temp. -20 150

37000-37029 N70:7000-N70:7029 77001-77030Two Speed Fan Low To High Temp. Heat Cycle Mode 3 (Zones 1 - 30)

27 Temp. -20 150

37030-37059 N70:7030-N70:7059 77031-77060Two Speed Fan Low To High Temp. Heat Cycle Mode 4 (Zones 1 - 30)

27 Temp. -20 150

37090-37119 N70:7090-N70:7119 77091-77120Auxiliary Digital Input # 1 Alarm Delay (Zones 1 - 30)

60 Sec. 0 1,000

37120-37149 N70:7120-N70:7149 77121-77150Auxiliary Digital Input # 2 Alarm Delay (Zones 1 - 30)

60 Sec. 0 1,000

37150-37179 N70:7150-N70:7179 77151-77180Auxiliary Digital Input # 3 Alarm Delay (Zones 1 - 30)

60 Sec. 0 1,000

Page 79: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 79

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

37180-37209 N70:7180-N70:7209 77181-77210Auxiliary Digital Input # 4 Alarm Delay (Zones 1 - 30)

60 Sec. 0 1,000

37210-37239 N70:7210-N70:7239 77211-77240Auxiliary Analog Input # 1 Low Warning Delay (Zones 1 - 30)

60 Sec. 0 1,000

37240-37269 N70:7240-N70:7269 77241-77270Auxiliary Analog Input # 2 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37270-37299 N70:7270-N70:7299 77271-77300Auxiliary Analog Input # 3 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37300-37329 N70:7300-N70:7329 77301-77330Auxiliary Analog Input # 4 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37330-37359 N70:7330-N70:7359 77331-77360Auxiliary Analog Input # 5 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37360-37389 N70:7360-N70:7389 77361-77390Auxiliary Analog Input # 6 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37390-37419 N70:7390-N70:7419 77391-77420Auxiliary Analog Input # 7 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37420-37449 N70:7420-N70:7449 77421-77450Auxiliary Analog Input # 8 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37450-37479 N70:7450-N70:7479 77451-77480Auxiliary Analog Input # 9 Low Warning Delay (Zones 1 - 30)

60 Sec. 0 1,000

37480-37509 N70:7480-N70:7509 77481-77510Auxiliary Analog Input # 10 Low Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

37510-37539 N70:7510-N70:7539 77511-77540Auxiliary Analog Input # 1 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37540-37569 N70:7540-N70:7569 77541-77570Auxiliary Analog Input # 2 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37570-37599 N70:7570-N70:7599 77571-77600Auxiliary Analog Input # 3 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37600-37629 N70:7600-N70:7629 77601-77630Auxiliary Analog Input # 4 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37630-37659 N70:7630-N70:7659 77631-77660Auxiliary Analog Input # 5 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37660-37689 N70:7660-N70:7689 77661-77690Auxiliary Analog Input # 6 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37690-37719 N70:7690-N70:7719 77691-77720Auxiliary Analog Input # 7 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37720-37749 N70:7720-N70:7749 77721-77750Auxiliary Analog Input # 8 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37750-37779 N70:7750-N70:7779 77751-77780Auxiliary Analog Input # 9 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37780-37809 N70:7780-N70:7809 77781-77810Auxiliary Analog Input # 10 Low Shutdown Delay (Zones 1 - 30)

60 Sec. 0 1,000

37810-37839 N70:7810-N70:7839 77811-77840Auxiliary Analog Input # 1 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

37840-37869 N70:7840-N70:7869 77841-77870Auxiliary Analog Input # 2 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

37870-37899 N70:7870-N70:7899 77871-77900Auxiliary Analog Input # 3 Low Warning Setpoint (Zones 1 - 30) (Zones 1 - 30)

20 None -10,000 10,000

37900-37929 N70:7900-N70:7929 77901-77930Auxiliary Analog Input # 4 Low Warning Setpoint

20 None -10,000 10,000

Page 80: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 80

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

37930-37959 N70:7930-N70:7959 77931-77960Auxiliary Analog Input # 5 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

37960-37989 N70:7960-N70:7989 77961-77990Auxiliary Analog Input # 6 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

37990-38019 N70:7990-N70:8019 77991-78020Auxiliary Analog Input # 7 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

38020-38049 N70:8020-N70:8049 78021-78050Auxiliary Analog Input # 8 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

38050-38079 N70:8050-N70:8079 78051-78080Auxiliary Analog Input # 9 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

38080-38109 N70:8080-N70:8109 78081-78110Auxiliary Analog Input # 10 Low Warning Setpoint (Zones 1 - 30)

20 None -10,000 10,000

38140-38169 N70:8140-N70:8169 78141-78170Variable Fan Setpoint Heat Cycle Mode 1 (Zones 1 - 30)

25 Temp. -20 150

38170-38199 N70:8170-N70:8199 78171-78200Variable Fan Setpoint Heat Cycle Mode 2 (Zones 1 - 30)

25 Temp. -20 150

38200-38229 N70:8200-N70:8229 78201-78230Variable Fan Setpoint Heat Cycle Mode 3 (Zones 1 - 30)

25 Temp. -20 150

38230-38259 N70:8230-N70:8259 78231-78260Variable Fan Setpoint Heat Cycle Mode 4 (Zones 1 - 30)

25 Temp. -20 150

38290-38319 N70:8290-N70:8319 78291-78320Variable Fan Proportional Band Heat Cycle Mode 1 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

38320-38349 N70:8320-N70:8349 78321-78350Variable Fan Proportional Band Heat Cycle Mode 2 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

38350-38379 N70:8350-N70:8379 78351-78380Variable Fan Proportional Band Heat Cycle Mode 3 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

38380-38409 N70:8380-N70:8409 78381-78410Variable Fan Proportional Band Heat Cycle Mode 4 (Zones 1 - 30)

2Temp.

(Magnitude)0 100

38440-38469 N70:8440-N70:8469 78441-78470Variable Fan Integration Time Heat Cycle Mode 1 (Zones 1 – 30)

2 Seconds 0 999

38470-38499 N70:8470-N70:8499 78471-78500Variable Fan Integration Time Heat Cycle Mode 2 (Zones 1 – 30)

2 Seconds 0 999

38500-38529 N70:8500-N70:8529 78501-78530Variable Fan Integration Time Heat Cycle Mode 3 (Zones 1 – 30)

2 Seconds 0 999

38530-38559 N70:8530-N70:8559 78531-78560Variable Fan Integration Time Heat Cycle Mode 4 (Zones 1 – 30)

2 Seconds 0 999

Page 81: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 81

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

38590-38619 N70:8590-N70:8619 78591-78620Liquid Modulating Valve Maximum Open Mode 1 (Zones 1 – 30)

100 Percent % 0 100

38620-38649 N70:8620-N70:8649 78621-78650Liquid Modulating Valve Maximum Open Mode 2 (Zones 1 – 30)

100 Percent % 0 100

38650-38679 N70:8650-N70:8679 78651-78679Liquid Modulating Valve Maximum Open Mode 3 (Zones 1 – 30)

100 Percent % 0 100

38680-38709 N70:8680-N70:8709 78681-78709Liquid Modulating Valve Maximum Open Mode 4 (Zones 1 – 30)

100 Percent % 0 100

38740-38769 N70:8740-N70:8769 78741-78770Fan Cycling On Time Heat Cycle Mode 1 (Zones 1 – 30)

3 Minutes 0 1,000

38770-38799 N70:8770-N70:8799 78771-78800Fan Cycling On Time Heat Cycle Mode 2 (Zones 1 – 30)

3 Minutes 0 1,000

38800-38829 N70:8800-N70:8829 78801-78830Fan Cycling On Time Heat Cycle Mode 3 (Zones 1 – 30)

3 Minutes 0 1,000

38830-38859 N70:8830-N70:8859 78831-78860Fan Cycling On Time Heat Cycle Mode 4 (Zones 1 – 30)

3 Minutes 0 1,000

38890-38919 N70:8890-N70:8919 78891-78920Fan Cycling Off Time Heat Cycle Mode 1 (Zones 1 – 30)

27 Minutes 0 1,000

38920-38949 N70:8920-N70:8949 78921-78950Fan Cycling Off Time Heat Cycle Mode 2 (Zones 1 – 30)

27 Minutes 0 1,000

38950-38979 N70:8950-N70:8979 78951-78979Fan Cycling Off Time Heat Cycle Mode 3 (Zones 1 – 30)

27 Minutes 0 1,000

38980-39009 N70:8980-N70:9009 78981-79009Fan Cycling Off Time Heat Cycle Mode 4 (Zones 1 – 30)

27 Minutes 0 1,000

39040-39069 N70:9040-N70:9069 79041-79070Liquid Modulating Valve Setpoint Mode 1 (Zones 1 – 30)

40 Temp. -20 150

39070-39099 N70:9070-N70:9099 79071-79100Liquid Modulating Valve Setpoint Mode 2 (Zones 1 – 30)

40 Temp. -20 150

39100-39129 N70:9100-N70:9129 79101-79130Liquid Modulating Valve Setpoint Mode 3 (Zones 1 – 30)

40 Temp. -20 150

39130-39159 N70:9130-N70:9159 79131-79160Liquid Modulating Valve Setpoint Mode 4 (Zones 1 – 30)

40 Temp. -20 150

39190-39219 N70:9190-N70:9219 79191-79220Liquid Modulating Valve Propor-tional Band Mode 1 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

39220-39249 N70:9220-N70:9249 79221-79250Liquid Modulating Valve Propor-tional Band Mode 2 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

39250-39279 N70:9250-N70:9279 79251-79279Liquid Modulating Valve Propor-tional Band Mode 3 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

39280-39309 N70:9280-N70:9309 79281-79309Liquid Modulating Valve Propor-tional Band Mode 4 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

39340-39369 N70:9340-N70:9369 79341-79370Liquid Modulating Valve Integra-tion Time Mode 1 (Zones 1 – 30)

30 Seconds 0 999

39370-39399 N70:9370-N70:9399 79371-79400Liquid Modulating Valve Integra-tion Time Mode 2 (Zones 1 – 30)

30 Seconds 0 999

Page 82: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 82

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

39400-39429 N70:9400-N70:9429 79401-79430Liquid Modulating Valve Integra-tion Time Mode 3 (Zones 1 – 30)

30 Sec. 0 999

39430-39459 N70:9430-N70:9459 79431-79460Liquid Modulating Valve Integra-tion Time Mode 4 (Zones 1 – 30)

30 Sec. 0 999

39490-39519 N70:9490-N70:9519 79491-79520Suction Modulating Valve Maxi-mum Open Mode 1 (Zones 1 – 30)

100Percent

%0 100

39520-39549 N70:9520-N70:9549 79521-79550Suction Modulating Valve Maxi-mum Open Mode 2 (Zones 1 – 30)

100Percent

%0 100

39550-39579 N70:9550-N70:9579 79551-79579Suction Modulating Valve Maxi-mum Open Mode 3 (Zones 1 – 30)

100Percent

%0 100

39580-39609 N70:9580-N70:9609 79581-79609Suction Modulating Valve Maxi-mum Open Mode 4 (Zones 1 – 30)

100Percent

%0 100

39610-39639 N70:9610-N70:9639 79611-79639Auxiliary Analog Input # 1 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39640-39669 N70:9640-N70:9669 79641-79670Auxiliary Analog Input # 2 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39670-39699 N70:9670-N70:9699 79671-79700Auxiliary Analog Input # 3 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39700-39729 N70:9700-N70:9729 79701-79730Auxiliary Analog Input # 4 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39730-39759 N70:9730-N70:9759 79731-79760Auxiliary Analog Input # 5 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39760-39789 N70:9760-N70:9789 79761-79790Auxiliary Analog Input # 6 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39790-39819 N70:9790-N70:9819 79791-79820Auxiliary Analog Input # 7 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39820-39849 N70:9820-N70:9849 79821-79850Auxiliary Analog Input # 8 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39850-39879 N70:9850-N70:9879 79851-79879Auxiliary Analog Input # 9 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39880-39909 N70:9880-N70:9909 79881-79909Auxiliary Analog Input # 10 Low Shutdown Setpoint (Zones 1 – 30)

10 None -10,000 10,000

39910-39939 N70:9910-N70:9939 79911-79939Hour/Day 1 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

39940-39969 N70:9940-N70:9969 79941-79970Hour/Day 1 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

39970-39999 N70:9970-N70:9999 79971-80000Hour/Day 1 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

40000-40029 N70:10000-N70:10029 80001-80030Hour/Day 1 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

40030-40059 N70:10030-N70:10059 80031-80060Hour/Day 1 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

40060-40089 N70:10060-N70:10089 80061-80090Hour/Day 1 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

40090-40119 N70:10090-N70:10119 80091-80120Hour/Day 1 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

40180-40149 N70:10180-N70:10149 80181-80150Hour/Day 1 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

Page 83: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 83

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

40150-40179 N70:10150-N70:10179 80151-80179Hour/Day 2 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

40180-40209 N70:10180-N70:10209 80181-80209Hour/Day 2 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

40210-40239 N70:10210-N70:10239 80211-80239Hour/Day 2 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

40240-40269 N70:10240-N70:10269 80241-80270Hour/Day 2 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

40270-40299 N70:10270-N70:10299 80271-80300Hour/Day 2 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

40300-40329 N70:10300-N70:10329 80301-80330Hour/Day 2 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

40330-40359 N70:10330-N70:10359 80331-80360Hour/Day 2 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

40360-40389 N70:10360-N70:10389 80361-80390Hour/Day 2 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

40390-40419 N70:10390-N70:10419 80391-80420Hour/Day 3 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

40420-40449 N70:10420-N70:10449 80421-80450Hour/Day 3 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

40450-40479 N70:10450-N70:10479 80451-80479Hour/Day 3 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

40480-40509 N70:10480-N70:10509 80481-80509Hour/Day 3 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

40510-40539 N70:10510-N70:10539 80511-80539Hour/Day 3 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

40540-40569 N70:10540-N70:10569 80541-80570Hour/Day 3 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

40570-40599 N70:10570-N70:10599 80571-80600Hour/Day 3 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

40600-40629 N70:10600-N70:10629 80601-80630Hour/Day 3 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

40630-40659 N70:10630-N70:10659 80631-80660Hour/Day 3 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

40660-40689 N70:10660-N70:10689 80661-80690Hour/Day 4 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

40690-40719 N70:10690-N70:10719 80691-80720Hour/Day 4 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

40720-40749 N70:10720-N70:10749 80721-80750Hour/Day 4 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

40750-40779 N70:10750-N70:10779 80751-80779Hour/Day 4 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

40780-40809 N70:10780-N70:10809 80781-80809Hour/Day 4 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

40810-40839 N70:10810-N70:10839 80811-80839Hour/Day 4 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

40840-40869 N70:10840-N70:10869 80841-80870Hour/Day 4 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

40870-40899 N70:10870-N70:10899 80871-80900Hour/Day 5 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

Page 84: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 84

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

40900-40929 N70:10900-N70:10929 80901-80930Hour/Day 5 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

40930-40959 N70:10930-N70:10959 80931-80960Hour/Day 5 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

40960-40989 N70:10960-N70:10989 80961-80990Hour/Day 5 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

40990-41019 N70:10990-N70:11019 80991-81020Hour/Day 5 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

41020-41049 N70:11020-N70:11049 81021-81050Hour/Day 5 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

41050-41079 N70:11050-N70:11079 81051-81079Hour/Day 5 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

41080-41109 N70:11080-N70:11109 81081-81109Hour/Day 5 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

41110-41139 N70:11110-N70:11139 81111-81139Hour/Day 6 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

41140-41169 N70:11140-N70:11169 81141-81170Hour/Day 6 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

41170-41199 N70:11170-N70:11199 81171-81200Hour/Day 6 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

41200-41229 N70:11200-N70:11229 81201-81230Hour/Day 6 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

41230-41259 N70:11230-N70:11259 81231-81260Hour/Day 6 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

41260-41289 N70:11260-N70:11289 81261-81190Hour/Day 6 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

41290-41319 N70:11290-N70:11319 81291-81320Hour/Day 6 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

41320-41349 N70:11320-N70:11349 81321-81350Hour/Day 6 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

41350-41379 N70:11350-N70:11379 81351-81379Hour/Day 7 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 23

41380-41409 N70:11380-N70:11409 81381-81409Hour/Day 7 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 23

41410-41439 N70:11410-N70:11439 81411-81439Hour/Day 7 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 23

41440-41469 N70:11440-N70:11469 81441-81470Hour/Day 7 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 23

41470-41499 N70:11470-N70:11499 81471-81500Hour/Day 7 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 23

41500-41529 N70:11500-N70:11529 81501-81530Hour/Day 7 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 23

41530-41559 N70:11530-N70:11559 81531-81560Hour/Day 7 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 23

41560-41589 N70:11560-N70:11589 81561-81590Hour/Day 7 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 23

41590-41619 N70:11590-N70:11619 81591-81620Minute/Day 1 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

41620-41649 N70:11620-N70:11649 81621-81650Minute/Day 1 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

Page 85: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 85

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

41650-41679 N70:11650-N70:11679 81651-81679Minute/Day 1 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

41680-41709 N70:11680-N70:11709 81681-81709Minute/Day 1 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

41710-41739 N70:11710-N70:11739 81711-81739Minute/Day 1 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

41740-41769 N70:11740-N70:11769 81741-81770Minute/Day 1 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

41770-41799 N70:11770-N70:11799 81771-81800Minute/Day 1 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

41800-41829 N70:11800-N70:11829 81801-81830Minute/Day 1 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

41830-41859 N70:11830-N70:11859 81831-81860Minute/Day 2 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

41860-41889 N70:11860-N70:11889 81861-81890Minute/Day 2 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

41890-41919 N70:11890-N70:11919 81891-81920Minute/Day 2 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

41920-41949 N70:11920-N70:11949 81921-81950Minute/Day 2 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

41950-41979 N70:11950-N70:11979 81951-81979Minute/Day 2 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

41980-42009 N70:11980-N70:12009 81981-82009Minute/Day 2 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

42010-42039 N70:12010-N70:12039 82011-82039Minute/Day 2 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

42040-42069 N70:12040-N70:12069 82041-82070Minute/Day 2 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

42070-42099 N70:12070-N70:12099 82071-82100Minute/Day 3 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

42100-42129 N70:12100-N70:12129 82101-82130Minute/Day 3 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

42130-42159 N70:12130-N70:12159 82131-82160Minute/Day 3 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

42160-42189 N70:12160-N70:12189 82161-82190Minute/Day 3 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

42190-42219 N70:12190-N70:12219 82191-82220Minute/Day 3 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

42220-42249 N70:12220-N70:12249 82221-82250Minute/Day 3 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

42250-42279 N70:12250-N70:12279 82251-82279Minute/Day 3 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

42280-42309 N70:12280-N70:12309 82281-82309Minute/Day 3 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

42310-42339 N70:12310-N70:12339 82311-82339Minute/Day 4 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

42340-42369 N70:12340-N70:12369 82341-82370Minute/Day 4 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

42370-42399 N70:12370-N70:12399 82371-82400Minute/Day 4 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

Page 86: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 86

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

42400-42429 N70:12400-N70:12429 82401-82430Minute/Day 4 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

42430-42459 N70:12430-N70:12459 82431-82460Minute/Day 4 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

42460-42489 N70:12460-N70:12489 82461-82490Minute/Day 4 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

42490-42519 N70:12490-N70:12519 82491-82520Minute/Day 4 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

42520-42549 N70:12520-N70:12549 82521-82550Minute/Day 4 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

42550-42579 N70:12550-N70:12579 82551-82579Minute/Day 5 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

42580-42609 N70:12580-N70:12609 82581-82609Minute/Day 5 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

42610-42639 N70:12610-N70:12639 82611-82639Minute/Day 5 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

42640-42669 N70:12640-N70:12669 82641-82670Minute/Day 5 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

42670-42699 N70:12670-N70:12699 82671-82700Minute/Day 5 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

42700-42729 N70:12700-N70:12729 82701-82730Minute/Day 5 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

42730-42759 N70:12730-N70:12759 82731-82760Minute/Day 5 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

42760-42789 N70:12760-N70:12789 82761-82790Minute/Day 5 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

43030-43059 N70:13030-N70:13059 83031-83060Minute/Day 7 Mode Schedule 1 (Zones 1 – 30)

0 Integer 0 59

43060-43089 N70:13060-N70:13089 83061-83090Minute/Day 7 Mode Schedule 2 (Zones 1 – 30)

0 Integer 0 59

43090-43119 N70:13090-N70:13119 83091-83120Minute/Day 7 Mode Schedule 3 (Zones 1 – 30)

0 Integer 0 59

43120-43149 N70:13120-N70:13149 83121-83150Minute/Day 7 Mode Schedule 4 (Zones 1 – 30)

0 Integer 0 59

43150-43179 N70:13150-N70:13179 83151-83179Minute/Day 7 Mode Schedule 5 (Zones 1 – 30)

0 Integer 0 59

43180-43209 N70:13180-N70:13209 83181-83209Minute/Day 7 Mode Schedule 6 (Zones 1 – 30)

0 Integer 0 59

43210-43239 N70:13210-N70:13239 83211-83239Minute/Day 7 Mode Schedule 7 (Zones 1 – 30)

0 Integer 0 59

43240-43269 N70:13240-N70:13269 83241-83270Minute/Day 7 Mode Schedule 8 (Zones 1 – 30)

0 Integer 0 59

43270-43299 N70:13270-N70:13299 83271-83300Hour/Day 1 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

43300-43329 N70:13300-N70:13329 83301-83330Hour/Day 1 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

43330-43359 N70:13330-N70:13359 83331-83360Hour/Day 1 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

43360-43389 N70:13360-N70:13389 83361-83390Hour/Day 1 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

Page 87: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 87

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

43390-43419 N70:13390-N70:13419 83391-83420Hour/Day 1 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

43420-43449 N70:13420-N70:13449 83421-83450Hour/Day 1 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

43450-43479 N70:13450-N70:13479 83451-83479Hour/Day 1 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

43480-43509 N70:13480-N70:13509 83481-83509Hour/Day 1 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

43510-43539 N70:13510-N70:13539 83511-83539Hour/Day 2 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

43540-43569 N70:13540-N70:13569 83541-83570Hour/Day 2 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

43570-43599 N70:13570-N70:13599 83571-83600Hour/Day 2 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

43600-43629 N70:13600-N70:13629 83601-83630Hour/Day 2 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

43630-43659 N70:13630-N70:13659 83631-83660Hour/Day 2 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

43660-43689 N70:13660-N70:13689 83661-83690Hour/Day 2 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

43690-43719 N70:13690-N70:13719 83691-83720Hour/Day 2 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

43720-43749 N70:13720-N70:13749 83721-83750Hour/Day 2 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

43750-43779 N70:13750-N70:13779 83751-83779Hour/Day 3 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

43780-43809 N70:13780-N70:13809 83781-83809Hour/Day 3 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

43810-43839 N70:13810-N70:13839 83811-83839Hour/Day 3 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

43840-43869 N70:13840-N70:13869 83841-83870Hour/Day 3 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

43870-43899 N70:13870-N70:13899 83871-83900Hour/Day 3 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

43890-43919 N70:13890-N70:13919 83891-83920Hour/Day 3 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

43940-43969 N70:13940-N70:13969 83941-83970Hour/Day 3 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

43970-43999 N70:13970-N70:13999 83971-84000Hour/Day 3 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

44000-44029 N70:14000-N70:14029 84001-84030Hour/Day 4 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

44030-44059 N70:14030-N70:14059 84031-84060Hour/Day 4 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

44060-44089 N70:14060-N70:14089 84061-84090Hour/Day 4 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

44090-44119 N70:14090-N70:14119 84091-84120Hour/Day 4 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

44120-44149 N70:14120-N70:14149 84121-84150Hour/Day 4 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

Page 88: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 88

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

44150-44179 N70:14150-N70:14179 84151-84179Hour/Day 4 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

44180-44209 N70:14180-N70:14209 84181-84209Hour/Day 4 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

44210-44239 N70:14210-N70:14239 84211-84239Hour/Day 4 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

44240-44259 N70:14240-N70:14259 84241-84260Hour/Day 5 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

44260-44289 N70:14260-N70:14289 84261-84290Hour/Day 5 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

44290-44319 N70:14290-N70:14319 84291-84320Hour/Day 5 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

44320-44349 N70:14320-N70:14349 84321-84350Hour/Day 5 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

44350-44379 N70:14350-N70:14379 84351-84379Hour/Day 5 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

44380-44409 N70:14380-N70:14409 84381-84409Hour/Day 5 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

44410-44439 N70:14410-N70:14439 84411-84439Hour/Day 5 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

44440-44469 N70:14440-N70:14469 84441-84470Hour/Day 5 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

44470-44499 N70:14470-N70:14499 84471-84500Hour/Day 6 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

44500-44529 N70:14500-N70:14529 84501-84530Hour/Day 6 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

44530-44559 N70:14530-N70:14559 84531-84560Hour/Day 6 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

44560-44589 N70:14560-N70:14589 84561-84590Hour/Day 6 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

44590-44619 N70:14590-N70:14619 84591-84620Hour/Day 6 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

44620-44649 N70:14620-N70:14649 84621-84650Hour/Day 6 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

44650-44679 N70:14650-N70:14679 84651-84679Hour/Day 6 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

44680-44709 N70:14680-N70:14709 84681-84709Hour/Day 6 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

44710-44739 N70:14710-N70:14739 84711-84739Hour/Day 7 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 23

44740-44769 N70:14740-N70:14769 84741-84770Hour/Day 7 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 23

44770-44799 N70:14770-N70:14799 84771-84800Hour/Day 7 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 23

44800-44829 N70:14800-N70:14829 84801-84830Hour/Day 7 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 23

44830-44859 N70:14830-N70:14859 84831-84860Hour/Day 7 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 23

44860-44889 N70:14860-N70:14889 84861-84890Hour/Day 7 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 23

Page 89: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 89

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

44890-44919 N70:14890-N70:14919 84891-84920Hour/Day 7 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 23

44920-44949 N70:14920-N70:14949 84921-84950Hour/Day 7 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 23

44950-44979 N70:14950-N70:14979 84951-84979Minute/Day 1 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

44980-45009 N70:14980-N70:15009 84981-85009Minute/Day 1 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

45010-45039 N70:15010-N70:15039 85011-85039Minute/Day 1 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

45040-45069 N70:15040-N70:15069 85041-85070Minute/Day 1 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

45070-45099 N70:15070-N70:15099 85071-85100Minute/Day 1 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

45100-45129 N70:15100-N70:15129 85101-85130Minute/Day 1 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

45130-45159 N70:15130-N70:15159 85131-85160Minute/Day 1 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

45160-45189 N70:15160-N70:15189 85161-85190Minute/Day 1 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

45190-45219 N70:15190-N70:15219 85191-85220Minute/Day 2 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

45220-45249 N70:15220-N70:15249 85221-85250Minute/Day 2 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

45250-45279 N70:15250-N70:15279 85251-85279Minute/Day 2 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

45280-45309 N70:15280-N70:15309 85281-85309Minute/Day 2 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

45310-45339 N70:15310-N70:15339 85311-85339Minute/Day 2 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

45340-45369 N70:15340-N70:15369 85341-85370Minute/Day 2 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

45370-45399 N70:15370-N70:15399 85371-85400Minute/Day 2 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

45400-45429 N70:15400-N70:15429 85401-85430Minute/Day 2 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

45430-45459 N70:15430-N70:15459 85431-85460Minute/Day 3 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

45460-45489 N70:15460-N70:15489 85461-85490Minute/Day 3 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

45490-45519 N70:15490-N70:15519 85491-85520Minute/Day 3 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

45520-45549 N70:15520-N70:15549 85521-85550Minute/Day 3 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

45550-45579 N70:15550-N70:15579 85551-85579Minute/Day 3 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

45580-45609 N70:15580-N70:15609 85581-85609Minute/Day 3 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

45610-45639 N70:15610-N70:15639 85611-85639Minute/Day 3 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

Page 90: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 90

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

45640-45669 N70:15640-N70:15669 85641-85670Minute/Day 3 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

45670-45699 N70:15670-N70:15699 85671-85700Minute/Day 4 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

45700-45729 N70:15700-N70:15729 85701-85730Minute/Day 4 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

45730-45759 N70:15730-N70:15759 85731-85760Minute/Day 4 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

45760-45789 N70:15760-N70:15789 85761-85790Minute/Day 4 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

45790-45819 N70:15790-N70:15819 85791-85820Minute/Day 4 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

45820-45849 N70:15820-N70:15849 85821-85850Minute/Day 4 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

45850-45879 N70:15850-N70:15879 85851-85879Minute/Day 4 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

45880-45909 N70:15880-N70:15909 85881-85909Minute/Day 4 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

45910-45939 N70:15910-N70:15939 85911-85939Minute/Day 5 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

45940-45969 N70:15940-N70:15969 85941-85970Minute/Day 5 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

45970-45999 N70:15970-N70:15999 85971-86000Minute/Day 5 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

46000-46029 N70:16000-N70:16029 86001-86030Minute/Day 5 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

46030-46059 N70:16030-N70:16059 86031-86060Minute/Day 5 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

46060-46089 N70:16060-N70:16089 86061-86090Minute/Day 5 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

46090-46119 N70:16090-N70:16119 86091-86120Minute/Day 5 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

46120-46149 N70:16120-N70:16149 86121-86150Minute/Day 5 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

46150-46179 N70:16150-N70:16179 86151-86179Minute/Day 6 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

46180-46209 N70:16180-N70:16209 86181-86209Minute/Day 6 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

46210-46239 N70:16210-N70:16239 86211-86239Minute/Day 6 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

46240-46269 N70:16240-N70:16269 84241-86270Minute/Day 6 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

46270-46299 N70:16270-N70:16299 86271-86300Minute/Day 6 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

46300-46329 N70:16300-N70:16329 86301-86330Minute/Day 6 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

46330-46359 N70:16330-N70:16359 86331-86360Minute/Day 6 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

46360-46389 N70:16360-N70:16389 86361-86390Minute/Day 6 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

Page 91: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 91

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

46390-46419 N70:16390-N70:16419 86391-86420Minute/Day 7 Defrost Schedule 1 (Zones 1 – 30)

0 Integer 0 59

46420-46449 N70:16420-N70:16449 86421-86450Minute/Day 7 Defrost Schedule 2 (Zones 1 – 30)

0 Integer 0 59

46450-46479 N70:16450-N70:16479 86451-86479Minute/Day 7 Defrost Schedule 3 (Zones 1 – 30)

0 Integer 0 59

46480-46509 N70:16480-N70:16509 86481-86509Minute/Day 7 Defrost Schedule 4 (Zones 1 – 30)

0 Integer 0 59

46510-46539 N70:16510-N70:16539 86511-86539Minute/Day 7 Defrost Schedule 5 (Zones 1 – 30)

0 Integer 0 59

46540-46569 N70:16540-N70:16569 86541-86570Minute/Day 7 Defrost Schedule 6 (Zones 1 – 30)

0 Integer 0 59

46570-46599 N70:16570-N70:16599 86571-86600Minute/Day 7 Defrost Schedule 7 (Zones 1 – 30)

0 Integer 0 59

46600-46629 N70:16600-N70:16629 86601-86630Minute/Day 7 Defrost Schedule 8 (Zones 1 – 30)

0 Integer 0 59

46630-46659 N70:16630-N70:16659 86631-86660Zone Total Run Time (Zones 1 – 30)

0 Hours 0 -1

46660-46689 N70:16660-N70:16689 86661-86690Zone Off Suction Off Delay (Zones 1 – 30)

0 Minutes 0 100

46750-46779 N70:16750-N70:16779 86751-86779Variable Fan Range Floor (Zones 1 – 30)

0 Percent % 0 100

46780-46809 N70:16780-N70:16809 86781-86809Variable Fan Range Ceiling (Zones 1 – 30)

0 Percent % 0 100

46810-46839 N70:16810-N70:16839 86811-86839Liquid Modulating Valve Range Floor (Zones 1 – 30)

0 Percent % 0 100

46840-46869 N70:16840-N70:16869 86841-86870Liquid Modulating Valve Range Ceiling (Zones 1 – 30)

0 Percent % 0 100

46870-46899 N70:16870-N70:16899 86871-86900Suction Modulating Valve Range Floor (Zones 1 – 30)

0 Percent % 0 100

46900-46929 N70:16900-N70:16929 86901-86930Suction Modulating Valve Range Ceiling (Zones 1 – 30)

0 Percent % 0 100

46960-46989 N70:16960-N70:16989 86961-86990Variable Fan Minimum Speed Cool Cycle Mode 1 (Zones 1 – 30)

30 Percent % 0 100

46990-47019 N70:16990-N70:17019 86991-87020Variable Fan Minimum Speed Cool Cycle Mode 2 (Zones 1 – 30)

30 Percent % 0 100

47020-47049 N70:17020-N70:17049 87021-87050Variable Fan Minimum Speed Cool Cycle Mode 3 (Zones 1 – 30)

30 Percent % 0 100

47050-47079 N70:17050-N70:17079 87051-87079Variable Fan Minimum Speed Cool Cycle Mode 4 (Zones 1 – 30)

30 Percent % 0 100

47110-47139 N70:17110-N70:17139 87111-87139Variable Fan Minimum Speed Heat Cycle Mode 1 (Zones 1 – 30)

30 Percent % 0 100

47140-47469 N70:17140-N70:17469 87141-87470Variable Fan Minimum Speed Heat Cycle Mode 2 (Zones 1 – 30)

30 Percent % 0 100

47170-47199 N70:47470-N70:47199 87471-87200Variable Fan Minimum Speed Heat Cycle Mode 3 (Zones 1 – 30)

30 Percent % 0 100

Page 92: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 92

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

47200-47229 N70:47200-N70:47229 87201-87230Variable Fan Minimum Speed Heat Cycle Mode 4 (Zones 1 – 30)

30 Percent % 0 100

47260-47289 N70:47260-N70:47289 87261-87290Liquid Modulating Valve Minimum Open Mode 1 (Zones 1 – 30)

0 Percent % 0 100

47290-47319 N70:47290-N70:47319 87291-87320Liquid Modulating Valve Minimum Open Mode 2 (Zones 1 – 30)

0 Percent % 0 100

47320-47349 N70:47320-N70:47349 87321-87350Liquid Modulating Valve Minimum Open Mode 3 (Zones 1 – 30)

0 Percent % 0 100

47350-47379 N70:47350-N70:47379 87351-87379Liquid Modulating Valve Minimum Open Mode 4 (Zones 1 – 30)

0 Percent % 0 100

47410-47439 N70:47410-N70:47439 87411-87439Suction Modulating Valve Setpoint Mode 1 (Zones 1 – 30)

40 Temp. -20 150

47440-47469 N70:47440-N70:47469 87441-87470Suction Modulating Valve Setpoint Mode 2 (Zones 1 – 30)

40 Temp. -20 150

47470-47499 N70:47470-N70:47499 87471-87500Suction Modulating Valve Setpoint Mode 3 (Zones 1 – 30)

40 Temp. -20 150

47500-47529 N70:47500-N70:47529 87501-87530Suction Modulating Valve Setpoint Mode 4 (Zones 1 – 30)

40 Temp. -20 150

47560-47589 N70:47560-N70:47589 87561-87590Suction Modulating Valve Propor-tional Band Mode 1 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

47590-47619 N70:47590-N70:47619 87591-87620Suction Modulating Valve Propor-tional Band Mode 2 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

47620-47649 N70:47620-N70:47649 87621-87650Suction Modulating Valve Propor-tional Band Mode 3 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

47650-47679 N70:47650-N70:47679 87651-87679Suction Modulating Valve Propor-tional Band Mode 4 (Zones 1 – 30)

2Temp.

(Magnitude)0 100

47710-47739 N70:47710-N70:47739 87711-87739Suction Modulating Valve Integra-tion Time Mode 1 (Zones 1 – 30)

30 Seconds 0 999

47740-47769 N70:47740-N70:47769 87741-87770Suction Modulating Valve Integra-tion Time Mode 2 (Zones 1 – 30)

30 Seconds 0 999

47770-47799 N70:47770-N70:47799 87771-87800Suction Modulating Valve Integra-tion Time Mode 3 (Zones 1 – 30)

30 Seconds 0 999

47800-47829 N70:47800-N70:47829 87801-87830Suction Modulating Valve Integra-tion Time Mode 4 (Zones 1 – 30)

30 Seconds 0 999

47860-47889 N70:47860-N70:47889 87861-87890Suction Modulating Valve Mini-mum Open Mode 1 (Zones 1 – 30)

0 Percent % 0 100

47890-47919 N70:47890-N70:47919 87891-87920Suction Modulating Valve Mini-mum Open Mode 2 (Zones 1 – 30)

0 Percent % 0 100

47920-47949 N70:47920-N70:47949 87921-87950Suction Modulating Valve Mini-mum Open Mode 3 (Zones 1 – 30)

0 Percent % 0 100

47950-47979 N70:47950-N70:47979 87951-87979Suction Modulating Valve Mini-mum Open Mode 4 (Zones 1 – 30)

0 Percent % 0 100

Page 93: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 93

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

48010-48039 N70:18010-N70:18039 88011-88039Reheat On Temperature Mode 1 (Zones 1 – 30)

30 Temp. -20 150

48040-48069 N70:18040-N70:18069 88041-88070Reheat On Temperature Mode 2 (Zones 1 – 30)

30 Temp. -20 150

48070-48099 N70:18070-N70:18099 88071-88100Reheat On Temperature Mode 3 (Zones 1 – 30)

30 Temp. -20 150

48100-48129 N70:18100-N70:18129 88101-88130Reheat On Temperature Mode 4 (Zones 1 – 30)

30 Temp. -20 150

48130-48159 N70:18130-N70:18159 88131-88160Reheat Off Temperature Mode 1 (Zones 1 – 30)

32 Temp. -20 150

48460-48189 N70:18460-N70:18189 88461-88190Reheat Off Temperature Mode 2 (Zones 1 – 30)

32 Temp. -20 150

48190-48219 N70:48190-N70:48219 88191-88220Reheat Off Temperature Mode 3 (Zones 1 – 30)

32 Temp. -20 150

48220-48249 N70:48220-N70:48249 88221-88250Reheat Off Temperature Mode 4 (Zones 1 – 30)

32 Temp. -20 150

48250-48279 N70:48250-N70:48279 88251-88279Reheat Off Temperature Mode 5 (Zones 1 – 30)

32 Temp. -20 150

48280-48309 N70:48280-N70:48309 88281-88309Auxiliary Analog Input # 1 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48310-48339 N70:48310-N70:48339 88311-88339Auxiliary Analog Input # 2 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48340-48369 N70:48340-N70:48369 88341-88370Auxiliary Analog Input # 3 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48370-48399 N70:48370-N70:48399 88371-88400Auxiliary Analog Input # 4 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48400-48429 N70:48400-N70:48429 88401-88430Auxiliary Analog Input # 5 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48430-48459 N70:48430-N70:48459 88431-88460Auxiliary Analog Input # 6 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48460-48489 N70:48460-N70:48489 88461-88490Auxiliary Analog Input # 7 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48490-48519 N70:48490-N70:48519 88491-88520Auxiliary Analog Input # 8 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48520-48549 N70:48520-N70:48549 88521-88550Auxiliary Analog Input # 9 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48550-48579 N70:48550-N70:48579 88551-88579Auxiliary Analog Input # 10 High Warning Setpoint (Zones 1 – 30)

80 None -10,000 10,000

48580-48609 N70:48580-N70:48609 88581-88609Auxiliary Analog Input # 1 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48610-48639 N70:48610-N70:48639 88611-88639Auxiliary Analog Input # 2 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48640-48669 N70:48640-N70:48669 88641-88670Auxiliary Analog Input # 3 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48670-48699 N70:48670-N70:48699 88671-88700Auxiliary Analog Input # 4 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,00

Page 94: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 94

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

48700-48729 N70:48700-N70:48729 88701-88730Auxiliary Analog Input # 5 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48730-48759 N70:48730-N70:48759 88731-88760Auxiliary Analog Input # 6 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48760-48789 N70:48760-N70:48789 88761-88790Auxiliary Analog Input # 7 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48790-48819 N70:48790-N70:48819 88791-88820Auxiliary Analog Input # 8 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48820-48849 N70:48820-N70:48849 88821-88850Auxiliary Analog Input # 9 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48850-48879 N70:48850-N70:48879 88851-88879Auxiliary Analog Input # 10 High Shutdown Setpoint (Zones 1 – 30)

90 None -10,000 10,000

48880-48909 N70:48880-N70:48909 88881-88909Auxiliary Analog Input # 1 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

48910-48939 N70:48910-N70:48939 88911-88939Auxiliary Analog Input # 2 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

48940-48969 N70:48940-N70:48969 88941-88970Auxiliary Analog Input # 3 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

48970-48999 N70:48970-N70:48999 88971-89000Auxiliary Analog Input # 4 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49000-49029 N70:19000-N70:19029 89001-89030Auxiliary Analog Input # 5 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49030-49059 N70:19030-N70:19059 89031-89060Auxiliary Analog Input # 6 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49060-49089 N70:19060-N70:19089 89061-89090Auxiliary Analog Input # 7 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49090-49119 N70:19090-N70:19119 89091-89120Auxiliary Analog Input # 8 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49120-49149 N70:19120-N70:19149 89121-89150Auxiliary Analog Input # 9 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49150-49479 N70:19150-N70:19479 89151-89479Auxiliary Analog Input # 10 High Warning Delay (Zones 1 – 30)

60 Sec. 0 1,000

49480-49209 N70:19480-N70:19209 89481-89209Auxiliary Analog Input # 1 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49210-49239 N70:19210-N70:19239 89211-89239Auxiliary Analog Input # 2 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49240-49269 N70:19240-N70:19269 89241-89270Auxiliary Analog Input # 3 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49270-49299 N70:19270-N70:19299 89271-89300Auxiliary Analog Input # 4 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49300-49329 N70:19300-N70:19329 89301-89330Auxiliary Analog Input # 5 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49330-49359 N70:19330-N70:19359 89331-89360Auxiliary Analog Input # 6 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

Page 95: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 95

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

49360-49389 N70:19360-N70:19389 89361-89390Auxiliary Analog Input # 7 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49390-49419 N70:19390-N70:19419 89391-89420Auxiliary Analog Input # 8 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49420-49449 N70:19420-N70:19449 89421-89450Auxiliary Analog Input # 9 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49450-49479 N70:19450-N70:19479 89451-89479Auxiliary Analog Input # 10 High Shutdown Delay (Zones 1 – 30)

60 Sec. 0 1,000

49480-49509 N70:19480-N70:19509 89481-89509Auxiliary Digital Output # 1 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49510-49539 N70:19510-N70:19539 89511-89539Auxiliary Digital Output # 2 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49540-49569 N70:19540-N70:19569 89541-89570Auxiliary Digital Output # 3 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49570-49599 N70:19570-N70:19599 89571-89600Auxiliary Digital Output # 4 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49600-49629 N70:19600-N70:19629 89601-89630Auxiliary Digital Output # 5 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49630-49659 N70:19630-N70:19659 89631-89660Auxiliary Digital Output # 6 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49660-49689 N70:19660-N70:19689 89661-89690Auxiliary Digital Output # 7 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49690-49719 N70:19690-N70:19719 89691-89720Auxiliary Digital Output # 8 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49720-49749 N70:19720-N70:19749 89721-89750Auxiliary Digital Output # 9 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49750-49779 N70:19750-N70:19779 89751-89779Auxiliary Digital Output # 10 On Setpoint (Zones 1 – 30)

90 Temp. -10,000 10,000

49780-49809 N70:19780-N70:19809 89781-89809Auxiliary Digital Output # 1 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49810-49839 N70:19810-N70:19839 89811-89839Auxiliary Digital Output # 2 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49840-49869 N70:19840-N70:19869 89841-89870Auxiliary Digital Output # 3 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49870-49899 N70:19870-N70:19899 89871-89900Auxiliary Digital Output # 4 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49900-49929 N70:19900-N70:19929 89901-89930Auxiliary Digital Output # 5 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49930-49959 N70:19930-N70:19959 89931-89960Auxiliary Digital Output # 6 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49960-49989 N70:19960-N70:19989 89961-89990Auxiliary Digital Output # 7 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

49990-50019 N70:19990-N70:20019 89991-90020Auxiliary Digital Output # 8 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

50020-50049 N70:20020-N70:20049 90021-90050Auxiliary Digital Output # 9 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

Page 96: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 96

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

50050-50079 N70:20050-N70:20079 90051-90079Auxiliary Digital Output # 10 Off Setpoint (Zones 1 – 30)

10 Temp. -10,000 10,000

50080-50109 N70:20080-N70:20109 90081-90109Auxiliary Analog Output # 1 PI Setpoint (Zones 1 – 30)

50 Temp. -10,000 10,000

50110-50139 N70:20110-N70:20139 90111-90139Auxiliary Analog Output # 2 PI Setpoint (Zones 1 – 30)

50 Temp. -10,000 10,000

50140-50469 N70:20140-N70:20469 90141-90470Auxiliary Analog Output # 3 PI Setpoint (Zones 1 – 30)

50 Temp. -10,000 10,000

50470-50199 N70:20470-N70:20199 90471-90200Auxiliary Analog Output # 4 PI Setpoint (Zones 1 – 30)

50 Temp. -10,000 10,000

50200-50229 N70:20200-N70:20229 90201-90230Auxiliary Analog Output # 1 Prop Band (Zones 1 – 30)

2Temp

(Magnitude)0 1,000

50230-50259 N70:20230-N70:20259 90231-90260Auxiliary Analog Output # 2 Prop Band (Zones 1 – 30)

2Temp

(Magnitude)0 1,000

50260-50289 N70:20260-N70:20289 90261-90290Auxiliary Analog Output # 3 Prop Band (Zones 1 – 30)

2Temp

(Magnitude)0 1,000

50290-50319 N70:20290-N70:20319 90291-90320Auxiliary Analog Output # 4 Prop Band (Zones 1 – 30)

2Temp

(Magnitude)0 1,000

50320-50349 N70:20320-N70:20349 90321-90350Auxiliary Analog Output # 1 Integration Time (Zones 1 – 30)

30 Sec. 0 1,000

50350-50379 N70:20350-N70:20379 90351-90379Auxiliary Analog Output # 2 Integration Time (Zones 1 – 30)

30 Sec. 0 1,000

50380-50409 N70:20380-N70:20409 90381-90409Auxiliary Analog Output # 3 Integration Time (Zones 1 – 30)

30 Sec. 0 1,000

50410-50439 N70:20410-N70:20439 90411-90439Auxiliary Analog Output # 4 Integration Time (Zones 1 – 30)

30 Seconds 0 1,000

50440-50469 N70:20440-N70:20469 90441-90470Auxiliary Analog Output # 1 Range Floor (Zones 1 – 30)

0 Percent % -10,000 10,000

50470-50499 N70:20470-N70:20499 90471-90500Auxiliary Analog Output # 2 Range Floor (Zones 1 – 30)

0 Percent % -10,000 10,000

50500-50529 N70:20500-N70:20529 90501-90530Auxiliary Analog Output # 3 Range Floor (Zones 1 – 30)

0 Percent % -10,000 10,000

50530-50559 N70:20530-N70:20559 90531-90560Auxiliary Analog Output # 4 Range Floor (Zones 1 – 30)

0 Percent % -10,000 10,000

50560-50589 N70:20560-N70:20589 90561-90590Auxiliary Analog Output # 1 Range Ceiling (Zones 1 – 30)

100 Percent % -10,000 10,000

50590-50619 N70:20590-N70:20619 90591-90620Auxiliary Analog Output # 2 Range Ceiling (Zones 1 – 30)

100 Percent % -10,000 10,000

50620-50649 N70:20620-N70:20649 90621-90650Auxiliary Analog Output # 3 Range Ceiling (Zones 1 – 30)

100 Percent % -10,000 10,000

50650-50679 N70:20650-N70:20679 90651-90679Auxiliary Analog Output # 4 Range Ceiling (Zones 1 – 30)

100 Percent % -10,000 10,000

50680-50709 N70:20680-N70:20709 90681-90709Auxiliary Analog Output # 1 Minimum Open (Zones 1 – 30)

0 Percent % -10,000 10,000

Page 97: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 97

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

50710-50739 N70:20710-N70:20739 90711-90739Auxiliary Analog Output # 2 Minimum Open (Zones 1 – 30)

0Percent

%-10,000 10,000

50740-50769 N70:20740-N70:20769 90741-90770Auxiliary Analog Output # 3 Minimum Open (Zones 1 – 30)

0Percent

%-10,000 10,000

50770-50799 N70:20770-N70:20799 90771-90800Auxiliary Analog Output # 4 Minimum Open (Zones 1 – 30)

0Percent

%-10,000 10,000

50800-50829 N70:20800-N70:20829 90801-90830Max Number of Zones in Defrost (Group 1)

3 None 1 100

50830-50859 N70:20830-N70:20859 90831-90860Number of Zones Currently in Defrost (Group 1)

0 None 0 100

50860-50889 N70:20860-N70:20889 90861-90890Max Hours Between Defrosts (Zones 1 – 30)

36 Hours 0 500

50920-50949 N70:20920-N70:20949 90921-90950Dehumidification Entry Low Temperature Threshold Mode 1 (Zones 1 – 30)

32 Temp. -20 150

50950-50979 N70:20950-N70:20979 90951-90979Dehumidification Entry Low Temperature Threshold Mode 2 (Zones 1 – 30)

32 Temp. -20 150

50980-51009 N70:20980-N70:21009 90981-91009Dehumidification Entry Low Temperature Threshold Mode 3 (Zones 1 – 30)

32 Temp. -20 150

51010-51039 N70:21010-N70:21039 91011-91139Dehumidification Entry Low Temperature Threshold Mode 4 (Zones 1 – 30)

32 Temp. -20 150

51040-51069 N70:21040-N70:21069 91041-91070Fan Auxiliary Shutdown Delay (Zones 1 – 30)

20 Sec. 0 1,000

51100-51129 N70:21100-N70:21129 91101-91130High Temperature Warning Delay Mode 1 (Zones 1 – 30)

60 Sec. 0 1,000

51130-51159 N70:21130-N70:21159 91131-91160High Temperature Warning Delay Mode 2 (Zones 1 – 30)

60 Sec. 0 1,000

51460-51489 N70:21460-N70:21489 91461-91490High Temperature Warning Delay Mode 3 (Zones 1 – 30)

60 Sec. 0 1,000

51190-51219 N70:21190-N70:21219 91191-91220High Temperature Warning Delay Mode 4 (Zones 1 – 30)

60 Sec. 0 1,000

51250-51279 N70:21250-N70:21279 91251-91279Low Temperature Warning Delay Mode 1 (Zones 1 – 30)

60 Sec. 0 1,000

51280-51309 N70:21280-N70:21309 91281-91309Low Temperature Warning Delay Mode 2 (Zones 1 – 30)

60 Sec. 0 1,000

51310-51339 N70:21310-N70:21339 91311-91339Low Temperature Warning Delay Mode 3 (Zones 1 – 30)

60 Sec. 0 1,000

51340-51369 N70:21340-N70:21369 91341-91370Low Temperature Warning Delay Mode 4 (Zones 1 – 30)

60 Sec. 0 1,000

51400-51429 N70:21400-N70:21429 91401-91430High Temperature Warning Temp Mode 1 (Zones 1 – 30)

100 Temp. -20 150

51430-51459 N70:21430-N70:21459 91431-91460High Temperature Warning Temp Mode 2 (Zones 1 – 30)

100 Temp. -20 150

Page 98: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 98

SETPOINT VALUES: (Read/Write)Frick®

AddressAB

AddressModbusAddress

Description of DataDefault Value

Units Min. Max.

51460-51489 N70:21460-N70:21489 91461-91490High Temperature Warning Temp Mode 3 (Zones 1 - 30)

100 Temp. -20 150

51490-51519 N70:21490-N70:21519 91491-91520High Temperature Warning Temp Mode 4 (Zones 1 - 30)

100 Temp. -20 150

51550-51579 N70:21550-N70:21579 91551-91579Low Temperature Warning Temp Mode 1 (Zones 1 - 30)

100 Temp. -20 150

51580-51609 N70:21580-N70:21609 91581-91609Low Temperature Warning Temp Mode 2 (Zones 1 - 30)

100 Temp. -20 150

51610-51639 N70:21610-N70:21639 91611-91639Low Temperature Warning Temp Mode 3 (Zones 1 - 30)

100 Temp. -20 150

51640-51669 N70:21640-N70:21669 91641-91670Low Temperature Warning Temp Mode 4 (Zones 1 - 30)

100 Temp. -20 150

51700-51729 N70:21700-N70:21729 91701-91730New Mode Warning Override Interval Mode 1 (Zones 1 - 30)

1 Min. 0 250

51730-51759 N70:21730-N70:21759 91731-91760New Mode Warning Override Interval Mode 2 (Zones 1 - 30)

1 Min. 0 250

51760-51789 N70:21760-N70:21789 91761-91790New Mode Warning Override Interval Mode 3 (Zones 1 - 30)

1 Min. 0 250

51790-51819 N70:21790-N70:21819 91791-91820New Mode Warning Override Interval Mode 4 (Zones 1 - 30)

1 Min. 0 250

51850-51879 N70:21850-N70:21879 91851-91879Variable Fan Max. Speed Heat Cycle Mode 1 (Zones 1 - 30)

100Percent

%0 100

51880-51909 N70:21880-N70:21909 91881-91909Variable Fan Max. Speed Heat Cycle Mode 2 (Zones 1 - 30)

100Percent

%0 100

51910-51939 N70:21910-N70:21939 91911-91939Variable Fan Max. Speed Heat Cycle Mode 3 (Zones 1 - 30)

100Percent

%0 100

51940-51969 N70:21940-N70:21969 91941-91970Variable Fan Max. Speed Heat Cycle Mode 4 (Zones 1 - 30)

100Percent

%0 100

Page 99: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 99

SECTION 7

WARNING/SHUTDOWN MESSAGE CODES

WARNING/SHUTDOWN MESSAGE LIST

ADDRESS RANGE WARNING/SHUTDOWN MESSAGE

300 - 329 Control Temperature 1 Sensor Fault (Zones 1 – 30)

360 - 389 Humidity Sensor Fault (Zones 1 – 30)

480 - 509 Smoke Detector Shutdown (Zones 1 – 30)

510 - 539 High Temperature Warning (Zones 1 – 30)

540 - 569 Low Temperature Warning (Zones 1 – 30)

570 - 599 High Humidity Warning (Zones 1 – 30)

600 - 629 Consecutive Defrost Warning (Zones 1 – 30)

630 – 659 Max Days Between Defrosts Exceeded Warning (Zones 1 – 30)

660 - 689 Fan Auxiliary Shutdown (Zones 1 – 30)

720 - 749 Auxiliary Digital Input #1 Shutdown (Zones 1 – 30)

750 - 779 Auxiliary Digital Input #1 Warning (Zones 1 – 30)

780 - 809 Auxiliary Digital Input #2 Shutdown (Zones 1 – 30)

810 - 839 Auxiliary Digital Input #2 Warning (Zones 1 – 30)

840 - 869 Auxiliary Digital Input #3 Shutdown (Zones 1 – 30)

870 - 899 Auxiliary Digital Input #3 Warning (Zones 1 – 30)

900 - 929 Auxiliary Digital Input #4 Shutdown (Zones 1 – 30)

930 - 959 Auxiliary Digital Input #4 Warning (Zones 1 – 30)

960 - 989 Auxiliary Digital Input #5 Shutdown (Zones 1 – 30)

990 - 1019 Auxiliary Digital Input #5 Warning (Zones 1 – 30)

1020 - 1049 Auxiliary Analog Input #1 High Shutdown (Zones 1 – 30)

1050 - 1079 Auxiliary Analog Input #1 High Warning (Zones 1 – 30)

1080 - 1109 Auxiliary Analog Input #1 Lo Shutdown (Zones 1 – 30)

1110 - 1139 Auxiliary Analog Input #1 Low Warning (Zones 1 – 30)

1140 - 1169 Auxiliary Analog Input #2 High Shutdown (Zones 1 – 30)

1170 - 1199 Auxiliary Analog Input #2 High Warning (Zones 1 – 30)

1200 - 1229 Auxiliary Analog Input #2 Low Shutdown (Zones 1 – 30)

1230 - 1259 Auxiliary Analog Input #2 Low Warning (Zones 1 – 30)

1260 - 1289 Auxiliary Analog Input #3 High Shutdown (Zones 1 – 30)

1290 - 1319 Auxiliary Analog Input #3 High Warning (Zones 1 – 30)

1320 - 1349 Auxiliary Analog Input #3 Low Shutdown (Zones 1 – 30)

1350 - 1379 Auxiliary Analog Input #3 Low Warning (Zones 1 – 30)

1380 - 1409 Auxiliary Analog Input #4 High Shutdown (Zones 1 – 30)

1410 - 1439 Auxiliary Analog Input #4 High Warning (Zones 1 – 30)

1440 - 1469 Auxiliary Analog Input #4 Low Shutdown (Zones 1 – 30)

1470 - 1499 Auxiliary Analog Input #4 Low Warning (Zones 1 – 30)

Page 100: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 100

WARNING/SHUTDOWN MESSAGE LIST (Continued)

ADDRESS RANGE WARNING/SHUTDOWN MESSAGE

1500 - 1529 Auxiliary Analog Input #5 High Shutdown (Zones 1 – 30)

1530 - 1559 Auxiliary Analog Input #5 High Warning (Zones 1 – 30)

1560 - 1589 Auxiliary Analog Input #5 Low Shutdown (Zones 1 – 30)

1590 - 1619 Auxiliary Analog Input #5 Low Warning (Zones 1 – 30)

1620 - 1649 Auxiliary Analog Input #6 High Shutdown (Zones 1 – 30)

1650 - 1679 Auxiliary Analog Input #6 High Warning (Zones 1 – 30)

1680 - 1709 Auxiliary Analog Input #6 Low Shutdown (Zones 1 – 30)

1710 - 1739 Auxiliary Analog Input #6 Low Warning (Zones 1 – 30)

1740 - 1769 Auxiliary Analog Input #7 High Shutdown (Zones 1 – 30)

1770 - 1799 Auxiliary Analog Input #7 High Warning (Zones 1 – 30)

1800 - 1829 Auxiliary Analog Input #7 Low Shutdown (Zones 1 – 30)

1830 - 1859 Auxiliary Analog Input #7 Low Warning (Zones 1 – 30)

1860 - 1889 Auxiliary Analog Input #8 High Shutdown (Zones 1 – 30)

1890 - 1919 Auxiliary Analog Input #8 High Warning (Zones 1 – 30)

1920 - 1949 Auxiliary Analog Input #8 Low Shutdown (Zones 1 – 30)

1950 - 1979 Auxiliary Analog Input #8 Low Warning (Zones 1 – 30)

1980 - 2009 Auxiliary Analog Input #9 High Shutdown (Zones 1 – 30)

2010 - 2039 Auxiliary Analog Input #9 High Warning (Zones 1 – 30)

2040 - 2069 Auxiliary Analog Input #9 Low Shutdown (Zones 1 – 30)

2070 - 2099 Auxiliary Analog Input #9 Low Warning (Zones 1 – 30)

2100 - 2129 Auxiliary Analog Input #10 High Shutdown (Zones 1 – 30)

2130 - 2159 Auxiliary Analog Input #10 High Warning (Zones 1 – 30)

2160 - 2189 Auxiliary Analog Input #10 Low Shutdown (Zones 1 – 30)

2190 - 2219 Auxiliary Analog Input #10 Low Warning (Zones 1 – 30)

2220 - 2222 Digital Board 1, Port 4 Communications Shutdown (Zones 1 – 30)

2223 - 2225 Digital Board 2, Port 4 Communications Shutdown (Zones 4 – 6)

2226 - 2228 Digital Board 3, Port 4 Communications Shutdown (Zones 7 – 9)

2229 - 2231 Digital Board 4, Port 4 Communications Shutdown (Zones 10 – 12)

2232 - 2234 Digital Board 5, Port 4 Communications Shutdown (Zones 13 – 15)

2235 - 2237 Digital Board 1, Port 3 Communications Shutdown (Zones 16 – 18)

2238 - 2240 Analog Board 2, Port 3 Communications Shutdown (Zones 19 – 21)

2241 - 2243 Analog Board 3, Port 3 Communications Shutdown (Zones 22 – 24)

2244 - 2246 Digital Board 4, Port 3 Communications Shutdown (Zones 25 – 27)

2247 - 2249 Digital Board 5, Port 3 Communications Shutdown (Zones 28 - 30)

2250 - 2252 Digital Board 6, Port 4 Communications Shutdown (Zones 1 – 3)

2253 - 2255 Digital Board 7, Port 4 Communications Shutdown (Zones 4 – 6)

2256 - 2258 Digital Board 8, Port 4 Communications Shutdown (Zones 7 – 9)

2259 - 2261 Digital Board 9, Port 4 Communications Shutdown (Zones 10 – 12)

2262 - 2264 Digital Board 10, Port 4 Communications Shutdown (Zones 13 – 15)

2265 - 2267 Digital Board 6, Port 3 Communications Shutdown (Zones 16 – 18)

2268 - 2270 Digital Board 7, Port 3 Communications Shutdown (Zones 19 – 21)

2271 - 2273 Digital Board 8, Port 3 Communications Shutdown (Zones 22 – 24)

2274 - 2276 Digital Board 9, Port 3 Communications Shutdown (Zones 25 – 27)

2277 - 2279 Digital Board 10, Port 3 Communications Shutdown (Zones 28 – 30)

Page 101: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 101

WARNING/SHUTDOWN MESSAGE LIST (Continued)

ADDRESS RANGE WARNING/SHUTDOWN MESSAGE

2280 - 2282 Analog Board 1, Port 4 Communications Shutdown (Zones 1 – 3)

2283 - 2285 Analog Board 2, Port 4 Communications Shutdown (Zones 4 – 6)

2286 - 2288 Analog Board 3, Port 4 Communications Shutdown (Zones 7 – 9)

2289 - 2291 Analog Board 4, Port 4 Communications Shutdown (Zones 10 – 12)

2292 - 2294 Analog Board 5, Port 4 Communications Shutdown (Zones 13 - 15)

2295 - 2297 Analog Board 1, Port 3 Communications Shutdown (Zones 16 – 18)

2298 - 2300 Analog Board 2, Port 4 Communications Shutdown (Zones 19 – 21)

2301 - 2303 Analog Board 3, Port 3 Communications Shutdown (Zones 22 – 24)

2304 - 2306 Analog Board 4, Port 3 Communications Shutdown (Zones 25 – 27)

2307 - 2309 Analog Board 5, Port 3 Communications Shutdown (Zones 28 – 30)

2310 - 2312 Digital Board 1, Port 4 Reset (Zones 1–3)

2313 - 2315 Digital Board 2, Port 4 Reset (Zones 4 – 6)

2316 - 2318 Digital Board 3, Port 4 Reset (Zones 7–9)

2319 - 2321 Digital Board 4, Port 4 Reset (Zones 10–12)

2322 - 2324 Digital Board 5, Port 4 Reset (Zones 13-15)

2325 - 2327 Digital Board 1, Port 3 Reset (Zones 1 –17)

2328 - 2330 Digital Board 2, Port 3 Reset (Zones 19–21)

2331 - 2333 Digital Board 3, Port 3 Reset (Zones 22–24)

2334 - 2336 Digital Board 4, Port 3 Reset (Zones 25–27)

2337 - 2339 Digital Board 5, Port 3 Reset (Zones 28–30)

2340 - 2342 Digital Board 6, Port 4 Reset (Zones 1–3)

2343 - 2345 Digital Board 7, Port 4 Reset (Zones 4–6)

2346 - 2348 Digital Board 8, Port 4 Reset (Zones 7–9)

2349 - 2351 Digital Board 9, Port 4 Reset (Zones 10–12)

2352 - 2354 Digital Board 10, Port 4 Reset (Zones 13–15)

2355 - 2357 Digital Board 6, Port 3 Reset (Zones 16–18)

2358 - 2360 Digital Board 7, Port 3 Reset (Zones 19–21)

2361 - 2363 Digital Board 8, Port 3 Reset (Zones 22–24)

2364 - 2366 Digital Board 9, Port 3 Reset (Zones 25–27)

2367 - 2369 Digital Board 10, Port 3 Reset (Zones 28–30)

2370 - 2399 Process Stopped (Zones 1–30)

2400 - 2429 Ammonia Shutdown, Map A (Zones 1–30)

2430 - 2459 Ammonia Shutdown, Map B (Zones 1–30)

2460 - 2489 Ammonia Shutdown, Map C (Zones 1–30)

2490 - 2519 Ammonia Shutdown, Map D (Zones 1–30)

2520 - 2549 Ammonia Warning, Map A (Zones 1–30)

2550 - 2579 Ammonia Warning, Map B (Zones 1–30)

2580 - 2609 Ammonia Warning, Map C (Zones 1–30)

2610 - 2639 Ammonia Warning, Map D (Zones 1–30)

2640 - 2669 Ammonia Zone Sensor Fault, Map A (Zones 1–30)

2670 - 2699 Ammonia Zone Sensor Fault, Map B (Zones 1–30)

2700 - 2729 Ammonia Zone Sensor Fault, Map C (Zones 1–30)

2730 - 2759 Ammonia Zone Sensor Fault, Map D (Zones 1–30)

Page 102: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 102

Page 103: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 103

SECTION 8

Q5 CONTROLLER

Page 104: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 104

Q5 CONTROLLER

MAIN BOARD HISTORY AND IDENTIFICATION

The processor board shown on this page is known as the Q5 board, and it is based on the Pentium micro-processor platform. The operating software that this board runs is known as Quantum™ LX software. This software displays graphic information and data on the LCD screen in a format that is similar to the way a Windows® desktop computer screen displays a Web browser (the Internet).

The Q5 board can be identified by the presence of a large aluminum heat sink located on the board. Ad-jacent to the processor board, is an Interface board which allows the user to attach local communications connections via the four orange connectors (RS-422 and RS-485 ports). There are also a number of jumpers present on both the Q5 and the Interface board. These jumpers MAY need to be modified by qualified personnel to configure the Q5 for specific applications.

The Q5 utilizes Flash Card technology. There is a Flash Card socket located on the under side of this main board. The Q5 board has the LX Operating System pre-loaded at the factory, so this Flash Card feature will primarily be utilized for future program updates.

The information that follows will primarily describe the jumper configuration for communications settings, as well as wiring diagrams for the different types of com-munications that are possible with the Q5.

Q5 COMMUNICATIONS CONNECTOR LOCATIONS

The following pictorial shows the customer connection points for both serial communications and the Ethernet connection. Note that COMM-4 is reserved for com-munications to the installed I/O boards, and cannot be used for customer applications.

Ethernet

COMM-4(Reserved)

COMM-3(RS-485)

COMM-1RS-422 /RS-485)

COMM-2RS-422 /RS-485

Page 105: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 105

COM-1 AND COM-2 DESCRIPTION

The board pictured on this page has two RS-422 serial communications ports, labeled P10 (Com-1) and P11 (Com-2). They can be used for external communica-tions to the outside world.

COM-3 DESCRIPTION

Com-3 is labeled as P16 and is used for RS-422/RS-485 hardware protocol, and can be used in addition to any of the other communications ports that may be being used.

COM-4 DESCRIPTION

Com-4 (RS-422/RS-485) is labeled as P17 and is dedi-cated to providing communications to the DIgital and Analog boards, and will be explained in the section en-titled Com-4 Description.

Q5 SERIAL COMMUNICATIONS HARDWARE

Q5 GENERAL DESCRIPTION

User connections for serial communications to and from the Q5 are located on the Interface board, and can use RS-422 and/or RS-485 hardware pro-tocol. These hardware protocols can be connected via Com-3 and Com-4 for RS-485, and Com-1 and Com-2 for RS-422/RS-485.

As mentioned in the previous paragraph, the user connections for the serial communications portion of the Q5 controller consists of an Interface board, mounted below and to the right of the main con-troller. In addition to external forms of serial com-munication (to be discussed shortly), the keypad also connects here:

Communications Ports on the Q5 InterfaceBoard

COM-4(RS-485)

COM-3(RS-485)

COM-2(RS-422/RS-485)

Keypad

COM-1(RS-422/RS-485)

Page 106: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 106

Q5 SERIAL COMMUNICATIONS PORT WIRING

GENERAL NOTEThe information that is presented here and on the following pages, refers to the Interface board and not the Q5 board. The Interface board was devel-oped to make customer connections to the pro-cessor easier, as the Q5 use connections that are too small and delicate to easily utilize in the field.

RS-232 WIRING AND JUMPERSWith the introduction of the Q5/Interface board, customer connections to RS-232 have been elimi-nated. If RS-232 communications IS required, these signals may be converted to RS-422/485, and the appropriate available port(s) utilized.

RS-422/485 WIRING AND JUMPERSAll four Interface board serial communications ports are capable of RS-485, and COMM-1 (P10) and COMM-2 (P11) can additionally be configred as either RS-422 or RS-485.

The following table describes the Interface board RS-422 connector pinouts and their associated communications signals:

RS-422 Signal Wiring

Connector Pin #

Signal

COMM-1(P10)

COMM-2(P11)

5 GND GND

4 TX+ TX+

3 TX- TX-

2 RX+ RX+

1 RX- RX-

RS-485 Signal Wiring

Connector Pin #

Signal

COMM1

(P10)

COMM2

(P11)

COMM3

(P17)

COMM4

(P16)

3 GND

2 +TX/+RX

1 -TX/-RX

The following pictorial shows a cutaway view of the Interface board, as well as the jumpers, LED’s and signal pinouts to allow the end user to com-municate to COMM-1 (P10) and COMM-2 (P11) using RS-422/485 protocol, and to use COMM-3 (P16) to communicate via RS-485. NOTE: COMM-3 and COMM-4 do not have any associated jumpers, and COMM-4 (P17) is reserved for I/O board communications. Refer to the tables in this section for the specifics on the jumper set-tings RS-422/485:

COMM-1(P10)

RS-422GND+RX-RX+TX-TX

RS-485N/CN/CGND

+TX/+RX-TX/-RX

COMM-2(P11)

RS-422GND+RX-RX+TX-TX

RS-485N/CN/CGND

+TX/+RX-TX/-RX

COMM-4(P17)RS-485

(RESERVED)

COMM-3(P16)RS-485

GND

+TX/+RX

-TX/-RX

RS-422/485 Connectors, Jumpers and LED Location

RS-422/485 (COMM-1, & COMM-2, P11) Board Jumpers

Jumper TitleFunction Jumper SettingCOMM-1

(P10COMM-2

(P11)

J1 J7

RS-422 (4-Wire)Default

3

2

1

1 - 2 Closed

RS-485(2-Wire)

3

2

1

2 - 3 Closed

J2 J13Pull DownDefault

1 Pin Only

J3 J16Pull UpDefault

1 Pin Only

J5 J17

RS-422Default

1 Pin Only

RS-4851 - 2

Closed

J6 J18

RS-422Default

1 Pin Only

RS-4851 - 2

Closed

J4 J22High Speed TargetDefault

1 - 2 Closed

NOTE: The triangle symbol (

) denotes Pin 1 on con-nectors.

Page 107: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 107

SERIAL COMMUNICATIONS TROUBLESHOOTING

WIRING NOTE: See the chapter entitled Serial Com-munications Port Wiring, for the pictorials and tables referred to in the following paragraphs. Always ensure that the wiring matches these pictorials before pro-ceeding.

JUMPER NOTE: Some of the jumpers in the previous tables may need to be modified for RS-422/485 to en-sure optimum communications performance. Typically, the termination jumper should be installed in the last Quantum™ in the communications daisy chain only.

TROUBLESHOOTING RS-232

The Q5 does not use RS-232.

TROUBLESHOOTING RS-422

COMM-1 (P10)

COMM-1 may be used for either RS-422 or RS-485, depending on the setting of jumper J1. If pins 1-2 are shorted (closed) on J1, then RS-422 is selected.

Notice in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are six jumpers associated with COMM-1. Refer to the table entitled RS-422/485 (COMM-1, P10 & COMM-2, P11) Board Jumpers for the function of each of the jumpers associated with COMM-1. Notice also the two LED indi-cators that are pointed out. D8 LED will flash each time that the Quantum™ transmits (TX) data. D9 LED will flash each time that data is received (RX).

If communications cannot be established us-ing COMM-1, then note the status of these two LED’s (D8 and D9). If D8 is constantly lit, it may indicate an external wiring issue (TX and RX possibly swapped). Also verify the po-sition of J1, and ensure that it is set for pins 1-2 closed.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol has been setup at the Quantum™, and matches that of the initiating device (see the section entitled COMMUNICA-TIONS SETUP for further details).

COMM-2 (P11)

COMM-2 may be used for either RS-422 or RS-485, depending on the setting of jumper J7. If pins 1-2 are shorted (closed) on J7, then RS-422 is selected.

Notice in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are six jumpers associated with COMM-2. Refer to the ta-ble entitled RS-422/485 (COMM-1, P10 & COMM-2, P11) Board Jumpers for the function of each of the jumpers associated with COMM-2. Notice also the two LED indicators that are pointed out. D26 LED will flash each time that the Quantum™ trans-mits (TX) data. D25 LED will flash each time that data is received (RX).

If communications cannot be established using COMM-2, then note the status of these two LED’s (D25 and D26). If D25 is constantly lit, it may indi-cate an external wiring issue (TX and RX possibly swapped). Also verify the position of J7, and en-sure that it is set for pins 1-2 closed.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol has been setup at the Quantum™, and matches that of the initiating de-vice (see the section entitled COMMUNICATIONS SETUP for further details).

TROUBLESHOOTING RS-485

COMM-1 (P10)

COMM-1 may be used for either RS-422 or RS-485, depending on the setting of jumper J1. If pins 2-3 are shorted (closed) on J1, then RS-485 is se-lected.

Notice in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are six jumpers associated with COMM-1. Refer to the ta-ble entitled RS-422/485 (COMM-1, P10 & COMM-2, P11) Board Jumpers for the function of each of the jumpers associated with COMM-1. Notice also the two LED indicators that are pointed out. D8 LED will flash each time that the Quantum™ trans-mits (TX) data. D9 LED will flash each time that data is received (RX).

If communications cannot be established using COMM-1, then note the status of these two LED’s (D8 and D9). If D8 is constantly lit, it may indi-cate an external wiring issue (TX and RX possibly swapped). Also verify the position of J1, and en-sure that it is set for pins 1-2 closed.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol has been setup at the Quantum™, and matches that of the initiating de-vice (see the section entitled COMMUNICATIONS SETUP for further details).

Page 108: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 108

COMM-2 (P11)

COMM-2 may be used for either RS-422 or RS-485, depending on the setting of jumper J7. If pins 2-3 are shorted (closed) on J7, then RS-485 is se-lected.

Notice in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are six jumpers associated with COMM-2. Refer to the ta-ble entitled RS-422/485 (COMM-1, P10 & COMM-2, P11) Board Jumpers for the function of each of the jumpers associated with COMM-2. Notice also the two LED indicators that are pointed out. D26 LED will flash each time that the Quantum™ trans-mits (TX) data. D25 LED will flash each time that data is received (RX).

If communications cannot be established using COMM-2, then note the status of these two LED’s (D25 and D26). If D25 is constantly lit, it may indi-cate an external wiring issue (TX and RX possibly swapped). Also verify the position of J7, and en-sure that it is set for pins 1-2 closed.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol has been setup at the Quantum™, and matches that of the initiating de-vice (see the section entitled COMMUNICATIONS SETUP for further details).

COMM-3 (P16)

Notice that in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are no jumpers associated with COMM-3.

If communications with the Q5 cannot be estab-lished using COMM-3, then access the Commu-nications Setup screen, and verify that the proper Panel ID, Baud rate, data bits, and protocol has been setup, and matches that of the initiating de-vice.

COMM-4 (P17)

NOTE: Although COMM-4 is used for RS-485 communications, this port is reserved for the purpose of communicating to the internal Digi-tal and Analog boards. It can still be diagnosed with the following procedure.

Notice that in the figure entitled RS-422/485 Con-nectors, Jumpers and LED Location, there are no jumpers associated with COMM-4.

If communications with the Q5 cannot be es-tablished using COMM-4, then access the About screen, and verify that all available I/O boards are shown. If any boards are physically present, yet do not show on this screen, check to ensure that the addressing DIP switches for the board(s) is prop-erly set.

Page 109: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 109

COMMUNICATIONS DATA LOGGING SCREENS

SERVICE – Communications Log

DESCRIPTION: This screen allows the technician to view the status of all serial communications ports. or the status of all Modbus TCP communications. Refer to the section entitled Modbus TCP Log in the Modbus Protocol chapter.

The following user selectable buttons are provided:

• [Show Comm1]• [Show Comm2]• [Show Comm3]• [Show Comm4]

This screen allows the technician to view all of the serial communications information that the Quantum™ LX is re-ceiving and transmitting, one port at a time. Simply select the button at the upper right side of the screen that corre-sponds to the port that you wish to view. The selected port name (in this case Comm4) will appear in the upper left side of the screen.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Show CommX] button (where X is replaced with the comm port number).

The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Receive or Send), and the actual data (in Hexadecimal for-mat). This information can be used to compare against the data being sent and received at the other end of the com-munications link, to verify proper operation. Refer to the section on Hyperterminal for some examples of how this screen may be used.

SERVICE – ModBus TCP Log

DESCRIPTION: This screen allows the technician to view the status of all Modbus TCP communications. Refer to the section entitled Modbus TCP Log in the Modbus Pro-tocol chapter.

The following user selectable button is provided:

• [Refresh]

This screen allows the technician to view all of the Modbus TCP communications information that the Quantum™ LX is receiving and transmitting.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Refresh] button.

The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Receive or Send), and the actual data (in Hexadecimal for-mat). This information can be used to compare against the data being sent and received at the other end of the com-munications link, to verify proper operation.

NOTE: Refer to the section entitled Modbus TCP Log in the Modbus Protocol chapter for additional information.

Page 110: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 110

Page 111: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 111

SECTION 9

Q4 CONTROLLER

Page 112: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 112

Q4 CONTROLLER

MAIN BOARD HISTORY AND IDENTIFICATION

The processor board shown on this page is known as the Q4 board, and it is based on the Pentium micro-processor platform. The operating software that this board runs is known as Quantum™ LX software. This software displays graphic information and data on the LCD screen in a format that is similar to the way a Windows® desktop computer screen displays a Web browser (the Internet).

The Q4 board can be identified by the presence of a daughter board mounted to the main board. This daughter board is the communications portion of the Q4, and it can be identified by the presence of an 8 po-sition DIP switch. There are also a number of jumpers (or links) present on this smaller board, as well as three green connectors (RS-232, RS-422 and RS-485 ports). The jumpers are used to set up the communications parameters that are listed on the next page.

The main board (larger of the two) has a number of jumpers (or links) also. The links on this board MAY need to be modified by qualified personnel to configure the Quantum™ 4 for specific applications.

The Q4 utilizes Flash Card technology, as did the Q3. There is a Flash Card socket located on the under side of this main board. The Q4 board has the LX Operating System pre-loaded at the factory, so this Flash Card feature will primarily be utilized for future program up-dates.

When calling Frick® Company for service or help, it will greatly assist us if the type of board is known, ei-ther Q1, 2, 3 or 4. Additionally, Frick® will request the Sales Order number, and the Operating System version number (this can be found on the About… screen). The more information available at the time of the call, the better able we will be to assist you.

The information that follows will primarily describe the jumper configuration for communications settings, as well as wiring diagrams for the different types of com-munications that are possible with the Q4.

Keypad

PL8

LK1

PL9

PL1

LK2

Flash Card Socket (Located under board)

PL3

PL13

PL7 PL17

PL12

PL19

PL18

PL14 PL10 PL6

PL2

PL4

PWR

SUSP FL

ASH

LK11

LK12

PL24

PL3

PL4

LK9 LK8

LK10 PL16

PL5

PL11

LK3 A B

LK4

PL15

TB1

TB2

LK2

COM-2

TB3

RS-232

3 2 1

COM2 (TX)

D3

LK16

A B

A B

COM-2

LK6

B A

LK5

LK7

PL2

COM1

(TX)

3 4 5 6 7 0 1 2

D8 D10 D11

D12

PORT 80H

D4 D5 D7 D13 SW1 ON

8

7 6

5 4

3 2

1 COM-1

1

2

3

4

1

2

4 RS-

422

RS-

485

LK4 LK3

LK6

LK5

D1

D8

LK17

RS-

422

RS-485

LK8 LK7

LK10

LK9

D6

D2

LK11 B A

PL1

COM1

(RX) COM2

(RX)

KB

3

LK1

CAT-5 Ethernet

Connector

Com-3

RS-232 Connector

USB Connector (Depending on board version, USB could be

located in either of these two places).

Com-1

(TB1) RS-422/485

Connector

Com-2

(TB2) RS-422/485

Connector

Com-2

(TB3) RS-232

Connector

LK11 Selects

between using RS-422/485 on

Com-2 (TB2) OR

RS-232 on Com-2 (TB3)

LK16 selects

between RS-422 and

RS-485 for Com-1 (TB1).

LK17 selects

between RS-422 and

RS-485 for Com-2 (TB2).

Page 113: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 113

Q4 SERIAL COMMUNICATIONS HARDWARE

Q4 GENERAL DESCRIPTION

Serial communications to and from the Q4 can use RS-232, RS-422 and/or RS-485 hardware protocol. These three hardware protocols can be connected via Com-1 and Com-2 for RS-422/485, and Com-2 for RS-232. The reason that Com-2 can be either RS-232 or RS-422/485 will be explained in the sec-tion entitled Com-1 and Com-2 Description.

The Com-1 and Com-2 serial communications portion of the Q4 controller consists of a daughter board, mounted to the main controller. In addition to external forms of serial communication (to be discussed shortly), the keypad also connects here.

Com-3 is another serial port (RS-485) that is dedi-cated to providing communications to the DIgital and Analog boards. The location of Com-3 is on the main processor board and will be explained in the section entitled Com-3 Description.

RS-232 signals cannot be connected directly to ei-ther an RS-422 or RS-485 device. These signals must first be conditioned (converted). See the section entitled Converting an RS-232 Signal to RS-422/485 for details.

Communications Ports on the Q4 Daughter Board

PL6

Com-3 RS-485

TB1

Com-1 RS-422/485

TB2

Com-2

RS-422/485

TB3 Com-2

RS-232

COM-1 AND COM-2 DESCRIPTION

The board pictured in the previous column actually has three serial communications ports (labeled as TB1, TB2 and TB3). TB1 is known as Com-1, and is re-served solely for RS-422/485 communications. It can be used for external communications to the outside world.

TB2 is known as Com-2. However, TB3 is also known as Com-2. The difference here is that TB2 is for RS-422/485 whereas TB3 is for RS-232. TB2 can be used in the same manner as TB1.

When TB2 (Com-2) is setup to be used for RS-422/485, then TB3 cannot be used for RS-232, and vice-versa. The reason for this is that there is a jumper (LK11) that needs to be properly set that will tell the controller which of the two ports will be used (either TB2 as RS-422/285 OR TB3 as RS-232).

RS-422/RS-485 signals cannot be connected directly to an RS-232 device. These signals must first be con-ditioned (converted). See the section entitled Con-verting an RS-232 Signal to RS-422/485 for details.

COM-3 DESCRIPTION

Com-3 (PL6) is used for RS-232 hardware protocol only, and can be used in addition to any of the other communications ports that may be being used. So it is possible to have two RS-232 ports active (Com-2 AND Com-3) at the same time, as well as Com-1 for RS-422/485.

Page 114: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 114

SERIAL COMMUNICATIONS PORT WIRING

RS-232 WIRING AND JUMPERS

COM-2 (TB3)

The following pictorial shows the communi-cations board, as well as the jumpers, LED’s and signal pinouts to allow the end user to communicate to Com-2 (TB3) using RS-232 protocol. Refer to the tables in this section for the specifics on the jumper settings and wiring convention for RS-232.

A B

COM TX RX

LK17

D1

RS-232 TB3 3-Pin Connector

PC or PLC 9-Pin

D-Connector

6 7 8 9

1 2 3 4 5

TX RX COM

D

11

D

8

D

10

D

12

PORT 80H

D

13

0 1 2 3 4 5 6 7 D6

D3

D2

LK1

LK4

LK3

LK6

LK5

COM-2

1

2

3

4

RS-422

RS-485

COM-1

1

2

3

4

RS-422

RS-485

TB1

TB2

LK16

A B

LK7

LK10

LK9

LK8

LK2

PL2

SW1 ON

1 2 3 4 5 6 7 8

PL3

KB

D8

COM-2

TB3 RS-232

3 2 1

PL1

Transmit Data (TX) LED

Receive Data (RX) LED

Jumper B A

LK11

RS-232 Com-2 (TB3) Communications Wiring

RS-232 Com-2, TB3 Communications Board Jumpers

LINK POSITION FUNCTION

LK11A *B

RS-232 for COM2 (TB3)RS-422 for COM2 (TB2)

* Standard Setting

RS-232 Com-2, TB3 Communications Signals

TB3 Connector Pin # Signal

1 2 3

Transmit Data (TX)Received Data (RX)

Ground (COM)

COM-3 (PL6)

The following pictorial shows the communications board, as well as the jumpers, LED’s and signal pin-outs to allow the end user to communicate to Com-3 (PL6) using RS-232 protocol. Refer to the table entitled Com-3, PL6 Communications Signals for the specifics on the jumper settings and wiring convention for RS-232. NOTE: There are NO jumper settings associated with this connector (Com-3).

D1

LK11 B A

PL16 LK12

LK11

B A

TB2 COM2 (TX)

LK4

LK3

PL11

PL15

PL5

Flash Card Socket

(Located under board)

PL3

PL4

PL1 PWR

SUSP

FLASH

LK2

LK8 LK9 LK10

PL19 PL18

PL24

PL17

PL8

LK1

PL7 PL9

PL13

PL12

PL10 PL14

RS-422

RS-485

1

2

3

4

COM-1

LK6

B A

LK5

LK7

PL3

PL4

TB3

COM-2

RS-232

3 2 1

KB D8

PL1

LK6

LK4

LK1 LK3

LK17 LK5 A B

1

2

3

4

RS-422

RS-485

TB1

LK2

A B

LK7

D6 COM2 (RX)

D2

LK16

LK8

SW1 ON

1 2 3 4 5 6 7 8 LK10 D3

PL2

0 1 2 3 4 5 6 7

LK9

PL6

PC or PLC

9-Pin D-Connector

5 1

9 6

COM TX RX

RS-232 Com-3 (PL6) Wiring To 9-Pin D-Connector

RS-232 Com-3, PL6 Communications Signals

PL6 Connector Pin #

Signal

3 Received Data (RX)

5 Transmit Data (TX)

9 Ground (COM)

Page 115: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 115

RS-422 WIRING AND JUMPERS

The following table describes the RS-422 connec-tor pinouts and their associated communications signals:

RS-422 (TB1) Signal Wiring

TB1 Connector Pin # Signal

4 TX+

3 TX-

2 RX+

1 RX-

COM-1 (TB1)

The following pictorial shows the communi-cations board, as well as the jumpers, LED’s and signal pinouts to allow the end user to communicate to Com-1 (TB1) using RS-422 protocol. Refer to the tables in this section for the specifics on the jumper settings and wiring convention for RS-422:

LK1

LK4

LK3

D

8

D

10

D

11

D

12

PORT 80H

D

13

0 1 2 3 4 5 6 7

D6

TB1

TB2

+TX -TX +RX -RX

KB

D8

D3

D2

Transmit Data (TX) LED

Receive Data (RX) LED

Jumpers

D1 LK6

LK5

LK17

A B

COM-1

COM-2

PL2

SW1 ON

1 2 3 4 5 6 7 8

PL3

1

2

3

4

COM-2

TB3

3 2 1

PL1

1

2

3

4

RS-422 Com-1 (TB1)

RS-422 Connector

LK11

B A

LK10

LK9

LK16

A B LK7

LK8

LK2

RS-422 Com-1 (TB1) Connector, Jumpers and LED Location

RS-422 (TB1) Board Jumpers

LINK POSITION FUNCTION

LK2In

Out*Terminate COM1No termination

RS-422

LK7In

Out*Pull down COM1No pull down

RS-422 (-RX)

LK8In

Out*Pull up COM1No pull up

RS-422 (+RX)

LK9In

Out*Pull down COM1No pull down

RS-422 (-TX)

LK10In

Out*Pull up COM1No pull up

RS-422 (+TX)

LK16A *B

COM1 RS-422 (TB1)COM1 RS-485 (TB1)

* Standard Setting

COM-2 (TB2)

The following pictorial shows the communi-cations board, as well as the jumpers, LED’s and signal pinouts to allow the end user to communicate to Com-2 (TB2) using RS-422 protocol. Refer to the tables in this section for the specifics on the jumper settings and wiring convention for RS-422:

KB

D8

TB2

+TX -TX +RX -RX

Com-2 (TB2) RS-422 Connector

D

8

D

10

D

11

LK2

PORT 80H

D

13

0 1 2 3 4 5 6 7

COM-1

COM-2

PL2

SW1 ON

1 2 3 4 5 6 7 8

PL3

1

2

3

4

RS-422

COM-2

TB3

3 2 1

PL1

1

2

3

4

TB1

D3

D2

LK10

LK9

LK16

A B LK7

LK8

LK1

LK4

LK3

A

LK6

LK5

LK17 B

Receive Data (RX) LED

D6

LK11

B A D1 Transmit Data (TX)

LED

Jumpers

RS-422 Com-2 (TB2) Connector, Jumpers and LED Location

RS-422 (TB2) Board Jumpers

LINK POSITION FUNCTION

LK 1In

Out*Terminate COM2No termination

RS-422

LK 3In

Out*Pull down COM2No pull down

RS-422 (Rx-)

LK 4In

Out*Pull up COM2No pull up

RS-422 (Rx+)

LK 5In

Out*Pull down COM2No pull down

RS-422 (Tx-)

LK 6In

Out*Pull up COM2No pull up

RS-422 (Tx+)

LK 11

AB*

Select RS-232 for COM2 (TB3)Select RS-422 for COM2 (TB2)

LK 17

A * COM2 RS-422 (TB2)

B COM2 RS-485 (TB2) * Standard Setting

Page 116: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 116

COM-2 (TB2)

The following pictorial shows the communi-cations board, as well as the jumpers, LED’s and signal pinouts to allow the end user to communicate to Com-2 (TB2) using RS-485 protocol. Refer to the tables in this section for the specifics on the jumper settings and wiring convention for RS-485:

Com-2 (TB2) RS-485 Connector

D6

TB2

Receive Data (RX) LED

D

8

D

10

D

11

D

12

PORT 80H

D

13

0 1 2 3 4 5 6 7

COM-1

COM-2

PL2

SW1 ON

1 2 3 4 5 6 7 8

PL3

1

2

3

4

RS-485

COM-2

TB3

3 2 1

PL1

1

2

3

4

TB1

D3

D2

LK10

LK9

LK16

A B LK7

LK8

LK2

A B

KB

D8

Jumpers

D1

LK1

LK4

LK3

LK6

LK5

LK17

LK11

B A

Transmit Data (TX) LED

+TX/+RX -TX/-RX

RS-485 Com-2 (TB2) Connector, Jumpers and LED Location

RS-485 (TB2) Communications Board Jumpers

LINK POSITION FUNCTION

LK 1In

Out*Terminate COM2No termination

RS-485

LK 3In

Out*Pull down COM2No pull down

RS-485(-TX /-RX)

LK 4In

Out*Pull up COM2 No pull up

RS-485(+TX /+RX)

LK 11AB*

Select RS-232 for COM2 (TB3)

Select RS-485 for COM2 (TB2)

LK 17A

B *COM2 RS-422 (TB2)

COM2 RS-485 (TB2)

* Standard Setting

RS-485 WIRING AND JUMPERS

The following table describes the RS-485 connector pinouts and their associated communications signals:

RS-422 (TB1) Communications Signal Wiring

TB1 Connector Pin # Signal

2 +TX / +RX

1 -TX / -RX

COM-1 (TB1)

The following pictorial shows the communi-cations board, as well as the jumpers, LED’s and signal pinouts to allow the end user to communicate to Com-1 (TB1) using RS-485 protocol. Refer to the tables on this page for the specifics on the jumper settings and wir-ing convention for RS-485:

LK1

LK4

LK3

D

8

D

10

D

11

D

12

PORT 80H

D

13

0 1 2 3 4 5 6 7

D6

Jumpers

LK11

B A LK2 TB1

TB2

KB

D8

D1 LK6

LK5

LK17

A B

D3

Transmit Data (TX) LED

Receive Data (RX) LED

COM-1

COM-2

PL2

SW1 ON

1 2 3 4 5 6 7 8

PL3

1

2

3

4

COM-2

TB3

3 2 1

PL1

1

2

3

4

RS-485 Com-1 (TB1) RS-

485 Connector

LK10

LK9

LK7

LK8 LK16

A B

D2 +TX/+RX -TX/-RX

RS-485 Com-1 (TB1) Connector, Jumpers and LED Location

RS-485 (TB1) Communications Board Jumpers

LINK POSITION FUNCTION

LK2In

Out*Terminate COM1No termination

RS-485

LK7In

Out*Pull down COM1No pull down

RS-485(-TX / -RX)

LK8In

Out*Pull up COM1

No pull up

RS-485(+TX / +RX)

LK16A

B *COM1 RS-422 (TB1)

COM1 RS-485 (TB1)

* Standard Setting

Page 117: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 117

SERIAL COMMUNICATIONS TROUBLESHOOTING

WIRING NOTE: See the chapter entitled Serial Com-munications Port Wiring, for the pictorials and tables referred to in the following paragraphs. Always ensure that the wiring matches these pictorials before pro-ceeding.

JUMPER NOTE: Some of the jumpers in the previous tables may need to be modified for RS-422/485 to en-sure optimum communications performance. Typically, the termination jumper should be installed in the last Quantum™ in the communications daisy chain only.

TROUBLESHOOTING RS-232

Com-2 (TB3)

Notice in the figure entitled RS-232 Com-2 (TB3) Communications Wiring, the only jumper associated with TB3 Com-2 is jumper LK11. LK11 must be set to the A position. No-tice the LED indicators that are pointed out. D4 LED will flash each time that the Quan-tum™ transmits (TX) data. D6 LED will flash each time that data is received (RX).

If communications cannot be established us-ing TB3, then note the status of these two LED’s (D4 and D6). If D6 is constantly lit, it may indicate an external wiring issue (TX and RX possibly swapped). Also verify the position of LK11, and ensure that it is in position A.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol matches that of the initiating device (see the section entitled COMMUNICATIONS SETUP for further details).

Com-3 (PL6)

Notice in the figure entitled RS-232 Com-3 (PL6) Wiring to 9-Pin D-Connector, there are no jumpers or LED’s associated with PL6 Com-3.

If communications cannot be established us-ing PL6, verify that the wiring is per the figure when wired direct from a remote RS-232 port.

Also verify that the proper Panel ID, Baud rate, data bits, and protocol matches that of the initiating device (see the section entitled COMMUNICATIONS SETUP for further details).

TROUBLESHOOTING RS-422

Com-1 (TB1)

Notice that in the table entitled RS-422 Com-1 (TB1) Board Jumpers that there are six jumpers associated with TB1. NOTE: LK11 must be set to position B, and LK17 must be set to position A. Notice also the two LED indicators that are in the figure. D3 LED will flash each time that the Quantum™ 4 transmits (TX) data. D2 LED will flash each time that data is received (RX).

If communications with the Q4 cannot be estab-lished using TB1, then note the status of these two LED’s (D2 and D3). If D2 is constantly lit, it may indicate an external wiring issue (TX and RX pos-sibly swapped). If D2 never flashes, then the LX is not receiving any data. If D2 does flash each time a data bit is received, but D3 never flashes, this may indicate that the LX has received a data command, but that the protocol package is not properly for-matted, and the LX cannot respond.

On the Communications Setup screen, verify that the proper Panel ID, Baud rate, data bits, and pro-tocol matches that of the initiating device.

Com-2 (TB2)

Notice that in the table entitled RS-422 Com-2 (TB2) Board Jumpers, there are seven jumpers as-sociated with TB2. NOTE: LK11 must be set to position B, and LK17 must be set to position A. Notice also the two LED indicators that are pointed out in the figure. D1 LED will flash each time that the Q4 transmits (TX) data. D6 LED will flash each time that data is received (RX).

If communications with the Q4 cannot be estab-lished using TB2, then note the status of these two LED’s (D1 and D6). If D1 is constantly lit, it may indicate an external wiring issue (TX and RX pos-sibly swapped). If D6 never flashes, then the LX is not receiving any data. If D6 does flash each time a data bit is received, but D1 never flashes, this may indicate that the LX has received a data command, but that the protocol package is not properly for-matted, and the LX cannot respond.

On the Communications Setup screen, verify that the proper Panel ID, Baud rate, data bits, and pro-tocol has been setup, and matches that of the ini-tiating device.

Page 118: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 118

TROUBLESHOOTING RS-485

Com-1 (TB1)

Notice that in the figure entitled RS-485 Com-1 (TB1) Connector, Jumpers & LED Location, there are seven jumpers associated with TB1. Refer to the table entitled RS-485 (TB1) Board Jumpers for the function of each of these jumpers. Note: LK16 must be set to position B. Notice also the two LED indicators that are pointed out in the figure. D3 LED will flash each time that the Q4 transmits (TX) data. D2 LED will flash each time that data is re-ceived (RX).

If communications with the Q4 cannot be estab-lished using TB1, then note the status of these two LED’s (D2 and D3). If D2 is constantly lit, it may indicate an external wiring issue (TX and RX pos-sibly swapped). If D2 never flashes, then the LX is not receiving any data. If D2 flashes each time a data bit is received, but D3 never flashes, this may indicate that the LX has received a data command, but that the protocol package is not properly for-matted, and the LX cannot respond.

On the Communications Setup screen, verify that the proper Panel ID, Baud rate, data bits, and pro-tocol matches that of the initiating device.

Com-2 (TB2)

Notice that in the figure entitled RS-485 Com-2 (TB2) Connector, Jumpers & LED Location, there are seven jumpers associated with TB2. Refer to table entitled RS-485 (TB2) Board Jumpers for the function of each of these jumpers. Note: LK11 must be set to position B, and LK17 must be set to position B. Notice also the two LED indicators that are pointed out in the figure. D1 LED will flash each time that the Q4 transmits (TX) data. D6 LED will flash each time that data is received (RX).

If communications with the Q4 cannot be estab-lished using TB2, then note the status of these two LED’s (D1 and D6). If D1 is constantly lit, it may indicate an external wiring issue (TX and RX pos-sibly swapped). If D6 never flashes, then the LX is not receiving any data. If D6 does flash each time a data bit is received, but D1 never flashes, this may indicate that the LX has received a data command, but that the protocol package is not properly for-matted, and the LX cannot respond.

On the Communications Setup screen, verify that the proper Panel ID, Baud rate, data bits, and pro-tocol matches that of the initiating device.

Page 119: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 119

COMMUNICATIONS DATA LOGGING SCREENS

SERVICE – Communications Log

DESCRIPTION: This screen allows the technician to view the status of all serial communications ports. or the status of all Modbus TCP communications. Refer to the section entitled Modbus TCP Log in the Modbus Protocol chapter.

The following user selectable buttons are provided:

• [Show Comm1]• [Show Comm2]• [Show Comm3]• [Show Comm4]

This screen allows the technician to view all of the serial communications information that the Quantum™ LX is re-ceiving and transmitting, one port at a time. Simply select the button at the upper right side of the screen that corre-sponds to the port that you wish to view. The selected port name (in this case Comm4) will appear in the upper left side of the screen.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Show CommX] button (where X is replaced with the comm port number).

The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Receive or Send), and the actual data (in Hexadecimal for-mat). This information can be used to compare against the data being sent and received at the other end of the com-munications link, to verify proper operation. Refer to the section on Hyperterminal for some examples of how this screen may be used.

SERVICE – ModBus TCP Log

DESCRIPTION: This screen allows the technician to view the status of all Modbus TCP communications. Refer to the section entitled Modbus TCP Log in the Modbus Protocol chapter.

The following user selectable button is provided:

• [Refresh]

This screen allows the technician to view all of the Modbus TCP communications information that the Quantum™ LX is receiving and transmitting.

Each time a new command is sent or received, the screen will need to be refreshed by selecting the [Refresh] button.

The top line of data is the most recent activity. At the left of each line, you should see whether the data is IN or OUT (Receive or Send), and the actual data (in Hexadecimal for-mat). This information can be used to compare against the data being sent and received at the other end of the com-munications link, to verify proper operation.

NOTE: Refer to the section entitled Modbus TCP Log in the Modbus Protocol chapter for additional information.

Page 120: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 120

COMMUNICATIONS LOOPBACK TEST

DESCRIPTION

NOTE: Communications Loopback testing is not yet available for the Q5.

The purpose of this section is to verify the proper operation of the following communications ports:

Comms 1 (TB1) and 2 (TB2) - RS-422Comms 1 (TB1) and 2 (TB2) - RS-485Comms 2 (TB2) and 3 (PL6) – RS-232

By utilizing a loopback test harness (as shown on the following pages), the technician has the abil-ity to locally test the Quantum™ communications hardware and jumper configuration.

HARDWARE SETUP FOR TESTING RS-232

To create the communications loopback harness for RS-232 testing, use the following example(s):

Q4 RS-232 Test Harness

Set the communications jumpers as follows:

• Set LK11 to position A• Plug the RS-232 test harness (as shown

above) into the Com ports at TB3 and PL6.

LK10

LK9

D3

D1 COM2 (TX)

Flash Card Socket (Located under

board)

PL6

LK11 B A

D6 COM2 (RX)

LK16 A B

LK7

D2 LK8

PL3

PL4

PL11

PL15

LK4

LK3

PL5

COM-2

RS-232

3 2 1

KB D8

PL1

PL2

SW1 ON

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

RS-422

RS-485

1

2

3

4

COM-1

LK6

B A

LK5

LK7 LK6

LK4

LK1 LK3

LK17 LK5 A B

1

2

3

4

RS-422

RS-485

TB1

TB2

LK2

LK1

PL3

PL4

LK2

PL1

PL8

PL7 PL9

PL13

PL12

PWR

SUSP

FLASH

LK12

LK11

PL24 PL18

PL19

PL17

LK8 LK9 LK10

PL16 PL10 PL14

TB3

Verify that LK11 is set to A

position.

B A

Com-2 (TB3) & Com-3 (PL6) RS-232 Connector & Jumper Location

TX

RX

COM

TX RX

COM

3-Pin Connector 10-Pin Connector

1

9

3 5 7

2

10

4 6 8

1

3

HARDWARE SETUP FOR TESTING RS-422

To create the communications loopback harness for RS-422 testing, use the following example(s):

Q4 RS-422 Test Harness

Set the communications jumpers as follows:

1. Set LK11 to position B2. Set LK16 to position A3. Set LK17 to position A4. Plug the RS-422 test harness (as shown

above) into the com ports at TB1 and TB2 as shown here:

LK8

LK10

LK9

LK7 LK2

LK1

LK4

LK3

LK6

LK5

Verify the jumpers in these locations

LK17 A B

LK11 B A

LK16 A B

1 2 3 COM-2

RS-232

TB3 D8

D1

D6

D2

D3

PL2

SW1

TB2

1

2

3

4

COM

-2

RS-4

22/R

S-48

5 TB1

1

2

3

4

COM

-1

RS-4

22/R

S-48

5

Q4 RS-422 Test Configuration

4-Pin Connector 4

1

-TX +TX

+RX -RX

+RX -RX

-TX +TX

1

4

4-Pin Connector

Page 121: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 121

HARDWARE SETUP FOR TESTING RS-485

To create the communications loopback harness for RS-422 testing, use the following example:

RS-485 Test Harness

Set the communications jumpers as follows:

1. Set LK11 to position B2. Set LK16 to position B3. Set LK17 to position B4. Plug the RS-485 test harness (as shown

above) into the com ports at TB1 and TB2 as shown here:

LK8

LK10

LK9

LK7 LK2

LK1

LK4

LK3

LK6

LK5

1 2 3 COM-2

RS-232

TB3 D8

D1

D6

D2

D3

PL2

SW1

TB2

1

2

3

4

COM

-2

RS-4

22/R

S-48

5

TB1

1

2

3

4

COM

-1

RS-4

22/R

S-48

5

LK17 A B

LK11 B A

LK16 A B

Verify the jumpers in these locations

RS-485 Test Configuration

4-Pin Connector 4

1

+RX/+TX -RX/-TX

-RX/-TX +RX/+TX

1

4

4-Pin Connector

SOFTWARE SETUP FOR THE COMMUNICATIONS LOOP-BACK TEST

On the Communications screen (shown below), ensure that the settings are as follows:

• Panel ID: 0 - 255 (does not matter)

• Comm Baud Rate: Does not matter, but all Comms to be tested must be set the same.

• Data Bits: Does not matter, but all Comms to be tested must be set the same.

• Stop Bits: Does not matter, but all Comms to be tested must be set the same.

• Parity: Does not matter, but all Comms to be tested must be set the same.

• Protocol: Set all Comms to be tested to Frick.

Page 122: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 122

PERFORMING THE COMMUNICATIONS LOOPBACK TEST

NOTE: Session must be set to at least user level 2 to access this feature.

Upon properly setting up the Communications screen, press the [Submit Changes] key. Access the Com-munications Loop Back Test Screen by pressing the [Menu] key, then the [Service…] key, and finally the [Communications Loop Back Test] key.

Three buttons appear on this screen:

1. Test Comm 1 – Comm 22. Test Comm 1 – Comm 33. Test Comm 2 – Comm 3

Ensure that the proper test harness is installed and the associated jumpers are in their correct positions for the particular test to be performed.

Pressing the appropriate test key will initiate the test. A dialog box will appear with one of the following mes-sages:

1. Testing - This will appear as the test is run-ning. NOTE: The test occurs so quickly that It may be possible that the word Testing will not appear if the test passes.

2. Passed - If the test passes, the word Passed will appear.

3. Failed - If the test does not pass, this will ap-pear.

Page 123: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 123

SECTION 10

APPENDICES

Page 124: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 124

APPENDIX AFRICK® SERIAL COMMUNICATIONS CONVERTER MODULE

(Part Number 639B0086H01)

DESCRIPTION

Frick® Controls has developed a DIN-rail mountable communications module for the purpose of converting typical RS-232 serial protocol to either RS-422 or RS-485 serial protocols. The module will also work con-verting RS-422 or RS-485 to RS-232 (bi-directional). Due to the tight mounting restrictions in many existing control panels, this module provides the ultimate solu-tion for field communications upgrades or modifica-tions. No drilling is required, and minimal space is lost. The only requirement is an external source of 24 volt DC power.

Frick® Communications Converter Module

SETTING THE DIPSWITCH

Inside the module is a circuit board which contains a DIP switch. This switch must be set according to the necessary protocol parameters that you are trying to achieve. It is recommended to set or verify the set-tings of this DIP switch before mounting and wiring the module. The circuit board must be removed from its housing in order to access this DIP switch. Each end of the housing has a small tab, located just below the bottom most terminal block of each end. Hold the module as shown in the following pictorial:

Locking Tabs

Disassembling the module

Press the tabs using the thumb and finger, and with your other hand carefully slide the circuit board out of the housing. Ensure that proper anti-static guidelines are followed while handling the circuit board.

The following diagram shows the circuit board:

Module circuit board

For easy reference, the DIP switch position functions are provided on the board. For the purpose of clarity however, refer to the following table:

MODULE DIP SWITCH SETTINGS

Switch Position

ON Function OFF Function

1 RS-485 RS-422

2 RS-422 RS-485

3 RS-422 RS-485

4 RS-422 Pull up No pull up

5 RS-485 Pull up No pull up

6 RS-422 Pull down No pull down

7 RS-485 Pull down No pull down

8 RS-485 termination No termination

MOUNTING THE MODULE

This module can be mounted on the standard din rail that is available in most control panels.

• Find an open area of the din rail (5/8 inch mini-mum, for the width of the module), and preferably as far away from any inductive loads (relays, con-tactors, etc.) as possible.

• Module orientation is not critical, however, try to mount it so that all wiring connections can be made neatly, and according to any applicable local codes.

Page 125: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 125

• Catch one end of the DIN rail latch (at the bottom of the module, under one edge of the DIN rail, then snap the other latch onto the opposite side of the DIN rail, as shown below:

Module mounted to DIN rail

WIRING THE MODULE

There are twelve total wire terminal points on this module. Refer to the following table for the pin-out:

Wire terminal connections

Terminal Position

Module Power

RS-232 RS-422 RS-485

1 -RX

2 +RX

3 (Not Used)

4 -TX -RX/-TX

5 +TX +RX/+TX

6 (Not Used)

7 -24 VDC

8 (Not Used)

9 +24 VDC

10 GND

11 TX

12 RX

• Locate a suitable source for the +24 volt DC power. Using a minimum of 18 AWG stranded wire, connect the MINUS wire to terminal # 7. Connect the PLUS wire to terminal # 8.

• All remaining connections will be based upon the particular protocols that you have decid-ed to use. Simply match the SIGNAL NAME from the source device to match the SIGANAL NAME of the module. All external communi-cations wiring must conform with the Frick® Proper Installation of Electronic Equipment in an Industrial Environment publication.

RS-232 CONNECTIONS (Q4 and earlier only)

Refer to the following figure for the pin connections showing how to wire a standard 9-Pin RS-232 connec-tor directly to the Frick® Communications Converter Module:

RS-232 Connections

Refer to the following figure for the pin connections showing how to wire the Converter Module (converts from RS-232 to RS-422/485) to the 10-pin Com-3 (PL6) connector on the Quantum™:

Com-3 (PL6) RS-232 Wiring To Frick® Communications Converter Module

RS-422 CONNECTIONS

Refer to the following figure for the pin connections showing how to attach a 4-wire RS-422 cable directly to the Frick® Communications Converter Module:

-RX -TX +TX +RX

RS-422 Connections

RS-485 CONNECTIONS

Although typical RS-485 communications requires a control signal to change the state of the RX/TX driver lines to establish handshaking, this board incorporates a smart feature that handles this handshaking inter-nally, without the user needing to provide it. It is a true two-wire system. Refer to following figure for the pin connections showing how to attach a 2-wire RS-485 cable directly to the Frick® Communications Converter Module:

-RX/TX +RX/TX

RS-485 Connections

TX

RX

TX

RX

RS-232 9-Pin Connector

9

8

7

6

5

4

3

2

1

1

9

3 5 7

2

10

4 6 8

Quantum™ LX RS-232 PL6

10-Pin Connector RS-232 to RS-422/485

Frick® Communications Converter Module Connection

(639B0086H01)

TX

RX

COM

COM

TX

RX

Page 126: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 126

APPENDIX B

QUANTUM™ LX ETHERNET COMMUNICATIONS WIRING

Page 127: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 127

APPENDIX C

QUANTUM™ LX LOCAL ETHERNET CONFIGURATIONS

Typical Small Local Quantum™ LX Ethernet Configuration

Typical Large Local Quantum™ LX Ethernet Configuration

Switch Switch Switch

Computer

Computer

Quantum™ LX

Quantum™ LX

Quantum™ LX

Quantum™ LX Quantum™ LX Quantum™ LX Quantum™ LX

Switch

Computer

Quantum™ LX Quantum™ LX

Page 128: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 128

APPENDIX D

QUANTUM™ LX ETHERNET NETWORK CONFIGURATIONS

Computer

Computer

Typical Small Quantum™ LX Ethernet Network Configuration

Quantum™ LX Quantum™ LX

Ethernet Network

Internet

Switch

Computer

Typical Large Quantum™ LX Ethernet Network

Switch Switch Switch

Internet

Ethernet Network

Quantum™ LX

Quantum™ LX

Quantum™ LX

Quantum™ LX Quantum™ LX Quantum™ LX Quantum™ LX

Page 129: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 129

APPENDIX EQUANTUM™ LX SERIAL COMMUNICATIONS WIRING

Page 130: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 130

SERIAL CONNECTIONS PICTORIAL

Qua

ntum

Qua

ntum

RS-4

22 /

RS-4

85

RS-4

22 /

RS-4

85

Mod

icon

PLC

with

a

MO

DBU

S co

mm

unic

atio

ns p

ort

Typi

cal M

OD

BUS

(ASC

II) S

etup

DCS

(Dist

ribut

ed Co

ntro

l Sy

stem

) OR

PLC

With

seria

l int

erfa

ce

adap

ter c

ard

that

su

ppor

ts o

ur M

ODB

US

and/

or o

ur A

B SL

C 50

0 DF

1 pr

otoc

ol (S

EE

ABO

VE)

Gen

eric

DCS

/PLC

Set

up

RS-2

32

RS-4

22

RS-4

85

Dire

ct to

one

Q

uant

um™

RS-4

22 /

RS-4

85

RS-2

32 to

422

/485

Co

nver

ter

RS-2

32

RS-2

32 to

422

/485

Co

nver

ter

Qua

ntum

RS-2

32

Dire

ct to

one

RS-2

32

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Page 131: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 131

SERIAL CONNECTIONS PICTORIAL (Continued)

RS-4

22 /

RS-4

85

RS-2

32 to

422

/485

Co

nver

ter

RS-2

32

RS-2

32

Dire

ct to

one

Qua

ntum

Typi

cal A

llen-

Brad

ley

(DF1

) Set

up

PLC-

5

SLC

504

SLC

5/04

DH+

PLC-

5

DH+ Pa

nel V

iew

Ope

rato

r In

terf

ace

RS-2

32 to

422

/485

Co

nver

ter

RS-4

22 /

RS-4

85

SLC

5/04

DH+

DCS

(Dist

ribut

ed Co

ntro

l Sy

stem

) with

PLC

-5

com

mun

icat

ion

driv

er

AB S

peci

al A

pplic

atio

n Ex

ampl

es AS

CII R

S-23

2 Se

rial

Card

Inst

alle

d in

the

DCS

RS-2

32

KF2

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Qua

ntum

Page 132: FRICK QUANTUM™ LX EVAPORATOR - frickcontrols.com€¦ · quantum™ lx evaporator control panel communications setup 090.610-cs (may 2016) page 2 table of contents section 1 introduction

QUANTUM™ LX EVAPORATOR CONTROL PANELCOMMUNICATIONS SETUP

090.610-CS (MAY 2016)Page 132

COMMUNICATIONS WIRING DIAGRAMS

TO CUSTOMER REMOTE COMPUTER/DCS

RS-485 COMMUNICATIONS

-RX/-TX

+RX/+TX

- Cable - Belden #9841

#24 AWG or Equal

To Customer Remote

Computer / DCS System

BLK

CLR

Q4 COM-2 (TB2)

EVAPORATOR #1

1

2 3

4

BLK

CLR

Q4 COM-2 (TB2)

EVAPORATOR #2

1

2 3

4

BLK

CLR

Q5 COM-4 (P17)

EVAPORATOR #3

1

2 3

BLK

CLR

Q4 COM-4 (P17)

EVAPORATOR #4

1

2 3

RS-422 COMMUNICATIONS

-TX

+TX

- Cable - Belden #9829

#24 AWG or Equal

To Customer Remote

Computer / DCS System

Q5 COM-1 or 2 (P10 or P11)

-RX

+RX -TX

+TX

EVAPORATOR #4

Q4 COM-2 (TB2)

EVAPORATOR #1

1

2

3 4

1

2

3 4

-RX

+RX

EVAPORATOR #2

1

2

3 4

Q4 COM-2 (TB2)

EVAPORATOR #3

1

2

3 4

Q5 COM-1 or 2 (P10 or P11)

BLK

GRN

BLK

RED

BLK

GRN

BLK

RED

BLK

GRN

BLK

RED

BLK

GRN

BLK

RED

Form 090.610-CS (2016-05)Supersedes: 090.610-CS (2012-12)

Subject to change without noticePrinted In USA • 05/16 • PDF

2016 Johnson Controls Inc. - ALL RIGHTS RESERVED

JOHNSON CONTROLS100 CV AvenueWaynesboro, PA 17268-1206 USAPhone: 717-762-2121 • FAX: 717-762-8624www.johnsoncontrols.com/frick

May 2016 Form Revisions

– Updated page format throughout – Updated Frick Industrial Refrigeration logo throughout