Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

73
Free Powerpoint Templates Page 1 KULIAH VIII - KULIAH VIII - IX IX MEKANIKA FLUIDA II MEKANIKA FLUIDA II Nazaruddin Sinaga Nazaruddin Sinaga

Transcript of Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Page 1: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Free Powerpoint TemplatesPage 1

KULIAH VIII - IXKULIAH VIII - IX

MEKANIKA FLUIDA IIMEKANIKA FLUIDA II

Nazaruddin SinagaNazaruddin Sinaga

Page 2: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Entrance LengthEntrance Length

2

Page 3: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Shear stress and velocity distribution in pipe for laminar flow

Page 4: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Typical velocity and shear distributions in turbulent flow near a wall: (a) shear; (b) velocity.

4

Page 5: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Solution of Pipe Flow ProblemsSolution of Pipe Flow Problems

• Single Path– Find p for a given L, D, and Q

Use energy equation directly

– Find L for a given p, D, and Q Use energy equation directly

Page 6: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Solution of Pipe Flow ProblemsSolution of Pipe Flow Problems

• Single Path (Continued)– Find Q for a given p, L, and D

1. Manually iterate energy equation and friction factor formula to find V (or Q), or

2. Directly solve, simultaneously, energy equation and friction factor formula using (for example) Excel

– Find D for a given p, L, and Q1. Manually iterate energy equation and friction factor

formula to find D, or2. Directly solve, simultaneously, energy equation and

friction factor formula using (for example) Excel

Page 7: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

7

Example 1Example 1 Water at 10C is flowing at a rate of 0.03 m3/s through a pipe. The

pipe has 150-mm diameter, 500 m long, and the surface roughness is estimated at 0.06 mm. Find the head loss and the pressure drop throughout the length of the pipe.

Solution: From Table 1.3 (for water): = 1000 kg/m3 and =1.30x10-3 N.s/m2

V = Q/A and A=R2

A = (0.15/2)2 = 0.01767 m2

V = Q/A =0.03/.0.01767 =1.7 m/sRe = (1000x1.7x0.15)/(1.30x10-3) = 1.96x105 > 2000 turbulent

flowTo find , use Moody Diagram with Re and relative roughness (k/D).

k/D = 0.06x10-3/0.15 = 4x10-4

From Moody diagram, 0.018The head loss may be computed using the Darcy-Weisbach equation.

The pressure drop along the pipe can be calculated using the relationship: ΔP=ghf = 1000 x 9.81 x 8.84ΔP = 8.67 x 104 Pa

.m84.881.9x2x15.0

7.1x500x018.0

g2

V

D

Lh

22

f

Page 8: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

8

Example 2Example 2 Determine the energy loss that will occur as 0.06 m3/s water

flows from a 40-mm pipe diameter into a 100-mm pipe diameter through a sudden expansion.

Solution: The head loss through a sudden enlargement is given by;

Da/Db = 40/100 = 0.4From Table 6.3: K = 0.70Thus, the head loss is

g2

VKh

2a

m

smA

QV

aa /58.3

)2/04.0(

06.02

m47.081.9x2

58.3x70.0h

2

Lm

Page 9: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

9

ExExample 3ample 3

Calculate the head added by the pump when the water system shown below carries a discharge of 0.27 m3/s. If the efficiency of the pump is 80%, calculate the power input required by the pump to maintain the flow.

Page 10: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Solution:Applying Bernoulli equation between section 1 and 2

(1)

P1 = P2 = Patm = 0 (atm) and V1=V2 0 Thus equation (1) reduces to:

(2)

HL1-2 = hf + hentrance + hbend + hexit

From (2):

21L

22

22

p

21

11 H

g2

Vz

g

PH

g2

Vz

g

P

21L12p HzzH

g2

V4.39

14.05.04.0

1000x015.0

g2

VH

2

2

21L

81.9x2

V4.39200230H

2

p

Page 11: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

The velocity can be calculated using the continuity equation:

Thus, the head added by the pump: Hp = 39.3 m

Pin = 130.117 Watt ≈ 130 kW.

s/m15.2

2/4.0

27.0

A

QV

2

in

pp P

gQH

8.0

3.39x27.0x81.9x1000gQHP

p

pin

Page 12: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• Energy equation

• All terms are in dimension of length (head, or energy per unit weight)

• HGL – Hydraulic Grade Line

• EGL – Energy Grade Line

• EGL=HGL when V=0 (reservoir surface, etc.)

• EGL slopes in the direction of flow

22

22

211

21

1 22z

p

g

Vhz

p

g

VL

zp

HGL

g

VHGLz

p

g

VEGL

22

22

Page 13: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• A pump causes an abrupt rise in EGL (and HGL) since energy is introduced here

Page 14: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• A turbine causes an abrupt drop in EGL (and HGL) as energy is taken out

• Gradual expansion increases turbine efficiency

Page 15: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• When the flow passage changes diameter, the velocity changes so that the distance between the EGL and HGL changes

• When the pressure becomes 0, the HGL coincides with the system

Page 16: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• Abrupt expansion into reservoir causes a complete loss of kinetic energy there

Page 17: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EGL & HGL for a Pipe System

• When HGL falls below the pipe the pressure is below atmospheric pressure

Page 18: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

FLOW MEASUREMENTFLOW MEASUREMENT• Direct Methods

– Examples: Accumulation in a Container; Positive Displacement Flowmeter

• Restriction Flow Meters for Internal Flows– Examples: Orifice Plate; Flow Nozzle; Venturi; Laminar

Flow Element

Page 19: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Definisi tekanan pada aliran di sekitar sayap

Page 20: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 21: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 22: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 23: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 24: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Flow Measurement

• Linear Flow Meters– Examples: Float Meter

(Rotameter); Turbine; Vortex; Electromagnetic; Magnetic; Ultrasonic

Float-type variable-area flow meter

Page 25: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Flow Measurement• Linear Flow Meters

– Examples: Float Meter (Rotameter); Turbine; Vortex; Electromagnetic; Magnetic; Ultrasonic

Turbine flow meter

Page 26: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Flow Measurement

• Traversing Methods– Examples: Pitot (or Pitot Static) Tube; Laser Doppler

Anemometer

Page 27: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 28: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 29: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 30: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

30

The measured stagnation pressure cannot of itself be used to determine the fluid velocity (airspeed in aviation).

However, Bernoulli's equation states:

Stagnation pressure = static pressure + dynamic pressure

Which can also be written

Page 31: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

31

Solving that for velocity we get:

Note: The above equation applies only to incompressible fluid.where:

V is fluid velocity;pt is stagnation or total pressure;ps is static pressure;and ρ is fluid density.

Page 32: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

32

The value for the pressure drop p2 – p1 or Δp to Δh, the reading on the manometer:

Δp = Δh(ρA-ρ)g

Where:ρA is the density of the fluid in the manometerΔh is the manometer reading

Page 33: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

EXTERNAL EXTERNAL INCOMPRESSIBLE INCOMPRESSIBLE VISCOUS FLOWVISCOUS FLOW

Page 34: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 35: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 36: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Main TopicsMain Topics• The Boundary-Layer Concept• Boundary-Layer Thickness• Laminar Flat-Plate Boundary Layer: Exact Solution• Momentum Integral Equation• Use of the Momentum Equation for Flow with Zero

Pressure Gradient• Pressure Gradients in Boundary-Layer Flow• Drag• Lift

Page 37: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

The Boundary-Layer Concept

Page 38: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

The Boundary-Layer Concept

Page 39: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Boundary Layer Thickness

Page 40: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Boundary Layer Thickness

• Disturbance Thickness, where

Displacement Thickness, *

Momentum Thickness,

Page 41: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 42: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 43: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 44: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.
Page 45: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Boundary Layer LawsBoundary Layer Laws

Page 46: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Laminar Flat-PlateBoundary Layer: Exact Solution

• Governing Equations

Page 47: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Laminar Flat-PlateBoundary Layer: Exact Solution

• Boundary Conditions

Page 48: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Laminar Flat-PlateBoundary Layer: Exact Solution

• Equations are Coupled, Nonlinear, Partial Differential Equations

• Blassius Solution:– Transform to single, higher-order, nonlinear, ordinary

differential equation

Page 49: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Laminar Flat-PlateBoundary Layer: Exact Solution

• Results of Numerical Analysis

Page 50: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Momentum Integral Equation

• Provides Approximate Alternative to Exact (Blassius) Solution

Page 51: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Momentum Integral Equation

Equation is used to estimate the boundary-layer thickness as a function of x:

1. Obtain a first approximation to the freestream velocity distribution, U(x). The pressure in the boundary layer is related to the freestream velocity, U(x), using the Bernoulli equation

2. Assume a reasonable velocity-profile shape inside the boundary layer

3. Derive an expression for w using the results obtained from item 2

Page 52: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Simplify Momentum Integral Equation(Item 1)

The Momentum Integral Equation becomes

Page 53: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow– Example: Assume a Polynomial Velocity Profile (Item 2)

• The wall shear stress w is then (Item 3)

Page 54: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow Results(Polynomial Velocity Profile)

Compare to Exact (Blassius) results!

Page 55: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow– Example: 1/7-Power Law Profile (Item 2)

Page 56: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow Results(1/7-Power Law Profile)

Page 57: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Pressure Gradients in Boundary-Layer Flow

Page 58: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag

• Drag Coefficient

with

or

Page 59: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag

• Pure Friction Drag: Flat Plate Parallel to the Flow

• Pure Pressure Drag: Flat Plate Perpendicular to the Flow

• Friction and Pressure Drag: Flow over a Sphere and Cylinder

• Streamlining

Page 60: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Flat Plate Parallel to the Flow: Friction

Drag

Boundary Layer can be 100% laminar, partly laminar and partly turbulent, or essentially 100% turbulent; hence several different drag coefficients are available

Page 61: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Flat Plate Parallel to the Flow: Friction

Drag (Continued)

Laminar BL:

Turbulent BL:

… plus others for transitional flow

Page 62: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag Coefficient

Page 63: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Flat Plate Perpendicular to the

Flow: Pressure Drag

Drag coefficients are usually obtained empirically

Page 64: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Flat Plate Perpendicular to the

Flow: Pressure Drag (Continued)

Page 65: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Sphere and Cylinder: Friction and

Pressure Drag

Page 66: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Drag• Flow over a Sphere and Cylinder: Friction and

Pressure Drag (Continued)

Page 67: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Streamlining• Used to Reduce Wake and Pressure Drag

Page 68: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Lift• Mostly applies to Airfoils

Note: Based on planform area Ap

Page 69: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Lift

• Examples: NACA 23015; NACA 662-215

Page 70: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Lift• Induced Drag

Page 71: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Lift• Induced Drag (Continued)

Reduction in Effective Angle of Attack:

Finite Wing Drag Coefficient:

Page 72: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Lift

• Induced Drag (Continued)

Page 73: Free Powerpoint Templates Page 1 KULIAH VIII - IX MEKANIKA FLUIDA II Nazaruddin Sinaga.

Free Powerpoint TemplatesPage 73

The EndThe End

Terima kasihTerima kasih

73