Frame Element

download Frame Element

of 7

Transcript of Frame Element

  • 8/12/2019 Frame Element

    1/7

    Frame Element Stiffness Matrices

    CEE 421L. Matrix Structural Analysis

    Department of Civil and Environmental EngineeringDuke University

    Henri P. Gavin

    Fall, 2014

    Truss elements carry axial forces only. Beam elements carry shear forcesand bending moments. Frame elements carry shear forces, bending moments,and axial forces. This document picks up with the previously-derived trussand beam element stiffness matrices in local element coordinates and proceedsthrough frame element stiffness matrices in global coordinates.

    1 Frame Element Stiffness Matrix in Local Coordinates,k

    A frame element is a combination of a truss element and a beam element.The forces and displacements in the local axial direction are independent of theshear forces and bending moments.

    N1

    V1

    M1

    N2

    V2

    M2

    =

    q1

    q2

    q3

    q4

    q5

    q6

    =

    EAL

    0 12EI

    L3

    sym

    0 6EI

    L24EI

    L

    EAL

    0 0 EA

    L

    0 12EI

    L3

    6EIL2

    0 12EI

    L3

    0 6EI

    L22EI

    L 0

    6EIL2

    4EIL

    u1

    u2

    u3

    u4

    u5

    u6

  • 8/12/2019 Frame Element

    2/7

    2 CEE 421L. Matrix Structural Analysis Duke University Fall 2014 H.P. Gavin

    2 Relationships between Local Coordinates and Global Coordinates: T

    The geometric relationship between local displacements, u, and global dis-placements, v, is

    u1

    =v1

    cos +v2

    sin u2

    =

    v1

    sin +v2

    cos u3

    =v3

    or, u= T v.

    The equilibrium relationship between local forces, q, and global forces, f,is

    q1=f1 cos +f2 sin q2= f1 sin +f2 cos q3=f3

    or, q=T f, where, in both cases,

    T=

    c s 0

    s c 0 00 0 1

    c s 00 s c 0

    0 0 1

    c= cos = x2

    x1L

    s= sin =y2 y1

    L

    The coordinate transformation matrix, T, is orthogonal, T1 =TT.

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/
  • 8/12/2019 Frame Element

    3/7

    Frame Element Stiffness Matrices 3

    3 Frame Element Stiffness Matrix in Global Coordinates: K

    Combining the coordinate transformation relationships,

    q = k u

    T f = k T v

    f = TT k T v

    f = K v

    which provides the force-deflection relationships in global coordinates. Thestiffness matrix in global coordinates is K= TT k T

    K=

    EA

    L c2 EA

    L cs

    EA

    L c2

    EA

    L cs+12EI

    L3 s2 12EI

    L3 cs 6EI

    L2s 12EI

    L3 s2 +12EI

    L3 cs 6EI

    L2s

    EAL

    s2 EAL

    cs EAL

    s2

    +12EIL3

    c2 6EIL2

    c +12EIL3

    cs 12EIL3

    c2 6EIL2

    c

    4EIL

    6EIL2

    s 6EIL2

    c 2EIL

    EAL

    c2 EAL

    cs

    +12EIL3 s2 12EIL3 cs

    6EIL2 s

    sym

    EAL

    s2

    +12EIL3

    c2 6EIL2

    c

    4EIL

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/
  • 8/12/2019 Frame Element

    4/7

    4 CEE 421L. Matrix Structural Analysis Duke University Fall 2014 H.P. Gavin

    4 Frame Element Stiffness Matrices for Elements with End-Releases

    Some elements in a frame may not be fixed at both ends. For example,an element may be fixed at one end and pinned at the other. Or, the element

    may be guided on one end so that the element shear forces at that end are zero.Or, the frame element may be pinned at both ends, so that it acts like a trusselement. Such modifications to the frame element naturally affect the elementsstiffness matrix.

    Consider a frame element in which a set of end-coordinates r are released,and the goal is to find a stiffness matrix relation for the primary p retainedcoordinates. The element end forces at the released coordinates, qr are all zero.One can partition the element stiffness matrix equation as follows

    qp

    qr

    kpp kpr

    krp krr

    up

    ur

    The element displacement coordinates at the released coordinates do not equalthe structural displacements at the collocated structural coordinates, since thecoordinates r are released. Since the element end forces at the released coor-dinates are all zero (qr = 0), the element end displacements at the releasedcoordinates must be related to the displacements at the primary (retained)

    coordinates as:

    ur = k1

    rr krpup

    The element end forces at the primary coordinates The element stiffness matrixequation relating qp and up is

    qp=kpp kprk

    1

    rr krp

    up

    The rows and columns of the released element stiffness matrix correspondingto the released coordinates, r, are set to zero. The rows and columns of thereleased element stiffness matrix corresponding to the retained coordinates, p,are [kpp kprk

    1

    rr krp]. This is the element stiffness matrix that should assembleinto the structural coordinates collocated with the primary (retained) coordi-natesp. The following sections give examples for pinned-fixed and fixed-pinnedframe elements. Element stiffness matrices for many other end-release casescan be easily computed.

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/
  • 8/12/2019 Frame Element

    5/7

    Frame Element Stiffness Matrices 5

    4.1 Pinned-Fixed Frame Element in Local Coordinates,k . . . (r= 3)

    k=

    EAL

    0 0 EAL

    0 0

    3EIL3 0 0

    3EIL3

    3EIL2

    0 0 0 0

    EAL

    0 0sym

    3EIL3

    3EIL2

    3EI

    L

    4.2 Pinned-Fixed Frame Element in Global Coordinates,K= TTkT

    K=

    EAL

    c2 EAL

    cs 0 EAL

    c2 EAL

    cs 3EIL2

    s

    +3EIL3

    s2 3EIL3

    cs 3EIL3

    s2 +3EIL3

    cs

    EAL

    s2 0 EAL

    cs EAL

    s2 3EIL2

    c

    +3EI

    L3 c2

    +3EI

    L3 cs

    3EI

    L3 c2

    0 0 0 0

    EAL

    c2 EAL

    cs EIL2

    s

    +3EIL3

    s2 3EIL3

    cs

    sym

    EAL

    s2 3EIL2

    c3EIL3

    c2

    3EIL

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/
  • 8/12/2019 Frame Element

    6/7

    6 CEE 421L. Matrix Structural Analysis Duke University Fall 2014 H.P. Gavin

    4.3 Fixed-Pinned Frame Element in Local Coordinates,k . . . (r= 6)

    k=

    EAL 0 0

    EAL 0 0

    3EIL3

    3EIL2

    0 3EIL3

    0

    3EIL

    0 3EIL2

    0

    EAL

    0 0sym

    3EIL3

    0

    0

    4.4 Fixed-Pinned Frame Element in Global Coordinates,K= TTkT

    K=

    EAL

    c2 EAL

    cs 3EIL2

    s EAL

    c2 EAL

    cs 0+3EI

    L3s2 3EI

    L3cs 3EI

    L3s2 +3EI

    L3cs

    EAL

    s2 3EIL2

    c EAL

    cs EAL

    s2 0+3EI

    L3c2 +3EI

    L3cs 3EI

    L3c2

    3EIL

    3EIL2

    s 3EIL2

    c 0

    EAL

    c2 EAL

    cs 0+3EI

    L3s2 3EI

    L3cs

    sym

    EAL

    s2 0+3EI

    L3c2

    0

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/
  • 8/12/2019 Frame Element

    7/7

    Frame Element Stiffness Matrices 7

    5 Notation

    u = Element deflection vector in the Local coordinate systemq = Element force vector in the Local coordinate systemk = Element stiffness matrix in the Local coordinate system

    ... q=k uT = Coordinate Transformation Matrix

    ... T1 =TT

    v = Element deflection vector in the Global coordinate system... u= T v

    f = Element force vector in the Global coordinate system... q=T f

    K = Element stiffness matrix in the Global coordinate system

    ... K= TT

    k Td = Structural deflection vector in the Global coordinate systemp = Structural load vector in the Global coordinate system

    Ks = Structural stiffness matrix in the Global coordinate system... p= Ks d

    Local Global

    Element Deflection u v

    Element Force q fElement Stiffness k K

    Structural Deflection - d

    Structural Loads - p

    Structural Stiffness - Ks

    For frame element stiffness matrices including shear deformations, see:J.S. Przemieniecki, Theory of Matrix Structural Analysis, Dover Press, 1985.

    (... a steal at $12.95)

    CC BY-NC-ND H.P. Gavin

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/