Fpga technology

27
FPGA Technology Overview Carl Lebsack ome slides are from the “Programmable Logic” lecture slides by Dr. Morris Ch

Transcript of Fpga technology

Page 1: Fpga technology

FPGA Technology Overview

Carl Lebsack

* Some slides are from the “Programmable Logic” lecture slides by Dr. Morris Chang

Page 2: Fpga technology

What’s an FPGA?

FPGA – Field Programmable Gate Array

Page 3: Fpga technology

Standard

Logic

Logic

ASIC

Full custom

ICs

Cell-Based

ICs

Gate

Arrays

Programmable

Logic Devices

FPGAsCPLDsSPLDs FPICs

Page 4: Fpga technology

How do you make a “Programmable” circuit?One time programmable Fuses (destroy internal links with current) Anti-fuses (grow internal links) PROM

Reprogrammable EPROM EEPROM Flash SRAM - volatile

} non-volatile

Page 5: Fpga technology

How do you program an FPGA?

Create a circuit design Graphic circuit toolVerilogVHDLAHDL

Compile the design for the selected deviceDownload the compiled configuration

Page 6: Fpga technology

FPGAs offer many advantages over ASICs

Small development overhead

No NRE (non-recurring engineering) costs

Quick time to market

No minimum quantity order

Reprogrammable

Page 7: Fpga technology

What are the Guts of an FPGA?

Basic ComponentsLUT (look-up-table)Flip-FlopsMultiplexors I/O BlocksProgrammable switching matrices InterconnectClocks

Page 8: Fpga technology

Configurable Logic Blocks

I/O Blocks

Programmable Interconnects

Xilinx FPGA Structure

Page 9: Fpga technology

CMOS SRAM Cell

Read orWrite

Data

QQ

Page 10: Fpga technology

3-LUT

01101001

input[0:2]

output

config_in

clock

config_out

Page 11: Fpga technology

2 Slice CLB

Page 12: Fpga technology

LE

Page 13: Fpga technology

LAB

Page 14: Fpga technology

DIBCKE

CLB0

X

Y

CE A

D R

DIBCKE

CLB1

X

Y

CE A

D R

DIBCKE

CLB2

X

Y

CE A

D R

DIBCKE

CLB3

X

Y

CE A

D R

SwitchingMatrix

Global Vertical

Long Line

GeneralPurpose Lines

Hor izontalLong Line

DirectConnections

Page 15: Fpga technology

IOB

Page 16: Fpga technology

More Guts

Additional componentsRAM blocksDedicated multipliersTri-state buffersTransceiversProcessor coresDSP blocks

Page 17: Fpga technology

Dedicated Arithmetic Structures in FPGAs

AlteraXilinx

QuickLogic

Page 18: Fpga technology

Power PC in Virtex-II Pro

• Embedded 300+ MHz Harvard Architecture Core• Low Power Consumption: 0.9 mW/MHz• Five-Stage Data Path Pipeline• Hardware Multiply/Divide Unit• Thirty-Two 32-bit General Purpose Registers• 16 KB Two-Way Set-Associative Instruction Cache• 16 KB Two-Way Set-Associative Data Cache• Memory Management Unit (MMU)

- 64-entry unified Translation Look-aside Buffers (TLB)- Variable page sizes (1 KB to 16 MB)

• Dedicated On-Chip Memory (OCM) Interface• Supports IBM CoreConnect™ Bus Architecture• Debug and Trace Support• Timer Facilities

Page 19: Fpga technology

Excalibur Embedded Solution

ExcaliburProcessor

Logic

HighPerformance

I/O

Memory

Complete SOPC Solution

• Integrates Embedded Processors With Programmable Logic Device

• Delivers System-on-a-Programmable-Chip (SOPC)─ Programmable Flexibility

• PLD Hardware

• Embedded Software

─ Compute Performance

• High Performance Processor

• Data Path Hardware

─ Customer Configuration

• Microprocessor Peripherals

• Hardware Logic

─ Faster Time-to-Market

Page 20: Fpga technology

ARM in Excalibur

• Industry-standard ARM922T 32-bit RISC processor core operating up to 200MHz

─ ARMv4T instruction set with Thumb extensions

─ Memory management unit (MMU) included for real-time operating systems (RTOS) support

─ Harvard cache architecture with 64-way set associative separate 8-Kbyte instruction and 8-Kbyte data caches

• Embedded programmable on-chip peripherals

─ ETM9 embedded trace module to assistant software debugging

─ Flexible interrupt controller

─ Universal asynchronous receiver/transmitter (UART)

─ General-purpose timer

─ Watchdog timer

Page 21: Fpga technology

Altera DSP-Block-Configuration Options and Features

Page 22: Fpga technology

FPGAs come in a wide variety

Xilinx Slices/CLBs PowerPC cores

Altera LEs/LABs ARM cores/Softcores

Numbers of subcomponents varies

Special features vary

Manufacturers use own terminology

Page 23: Fpga technology

Feature EP1S10 EP1S20 EP1S25 EP1S30 EP1S40 EP1S60 EP1S80 EP1S120

Logic Elements (LEs) 10,570 18,460 25,660 32,470 41,250 57,120 79,040 114,140

M512 RAM Blocks( 512 Bits + Parity)

94 194 224 295 384 574 767 1,118

M4K RAM Blocks(4 Kbits + Parity)

60 82 138 171 183 292 364 520

M512 RAM Blocks(512 Kbits + Parity)

1 2 2 4 4 6 9 12

Total RAM bits 920,448 1,669,248 1,944,576 3,317,184 3,423,744 5,215,104 7,427,520 10,118,016

DSP Blocks 6 10 10 12 14 18 22 28

Embedded Multipliers 48 80 80 96 112 144 176 224

PLLS 6 6 6 10 12 12 12 12

Maximum User I/O Pins 426 586 706 726 822 1,022 1,238 1,314

Engineering Sample Availability

NowUse

ProductionUse

ProductionN/A Now N/A Now 2003

Production Device Availability

March2003

Now Now NowMarch 2003

April

2003

January 2003

2003

Stratix Device Overview

Page 24: Fpga technology

FPGA Design

Main components are generally done as custom designs

Layout is very regular and automation could assist in cell placement

Page 25: Fpga technology

Stratix FPGA Layout

Page 26: Fpga technology

year 1995 1996 1997 2000 2003 2004 ?

Technology 0.6µ 0.35 µ 0.25 µ 0.18 µ 0.13 µ 0.07µ

Gate count 25K 100K 250K 1 M

100K LC*

8Mb RAM

400 18X18 multipliers

Transistor count

3.5M 12M 23M 75M 430M 1B

PLD device density and VLSI technology

*note: Xilinx Virtex-II Pro XC2VP100 (9/16/2003)

Page 27: Fpga technology

More Information

www.xilinx.com

www.altera.com