FP5A

download FP5A

of 10

description

drawing design

Transcript of FP5A

FoundationFOUNDATION FP-5ADIMENSION OF FOUNDATIONh1 :Footing thickness0.700mh2 :Pedestal height3.300mh3 :Soil cover depth3.300mh4 :Pedestal height above soil,0.000mhf :Foundation height , h1 + h24.000mpx :Pedestal width in x - direction0.500mpy :Pedestal width in y - direction2.000mwx :Footing width in x - direction1.400mwy :Footing width in y - direction2.400mMATERIAL PROPERTIESStrength designfc' :Concrete Strength Design208(kg/cm2)fy :Yield Strength of Steel4000(kg/cm2)q s maxSoil bearing capacity5kg/cm250000kg/m2Densitygs :Soil density1800kg/m3gc :Concrete density2400kg/m3Loading DataNoLoadingFzFxMykgkgkg.m1Dead Load (D)71595.15702.80.62Live Load (L)7863.9903.520.83Wind Load (W)3786.61405.93.14Earthquake(E)876.825946.140099.4STEP 1CALCULATE ADDITIONAL DEAD LOAD DUE TO FOUNDATION SELF WEIGHT & SOIL WEIGHTWf :Foundation weight, ((px*py*h2)+(wx*wy*h1))*gc=13564.8kgWs :Soil cover weight, ((wx*wy-px*py)*h3)*gs=14018.4kg27583.2kgSTEP 2ADD THE ADDITIONAL DEAD LOAD DUE TO FOUNDATION & SOIL WEIGHTNoLoadingFzFxMykgkgkg.m1Dead Load (D)99178.35702.80.62Live Load (L)7863.9903.520.83Wind Load (W)3786.61405.93.14Earthquake(E)876.825946.140099.4STEP 3UNFACTORED COMBINATION LOAD FOR STABILITY CHECKNoLoadingFzFxMykgkgkg.m1D + L107042.26606.321.42D + W102964.97108.73.73D + E/1.499804.624235.728643.040.9D + E/1.489886.823665.428643.05D + 0.75(L + W)107916.27434.8518.5256D + 0.75(L + E/1.4)113409.821183.621518.8113409.8STEP 4CHECK SOIL BEARING CAPACITY24235.7Af :Footing slab area, wx*wy=3.360m2Sy :Moment area of footing, Iy /(0.5*wx) = (1/12*wy*wx^3)/(0.5*wx)=0.784m3e max :maximum eccentricity , wx/6=0.233mLf :Length of footing, wx=1.400mNoLoadinge = My/FzStatusxnaq maxStatusq minme/wxmkg/m2kg/m21D + L0.000 qs max040.9D + E/1.40.319> 1/61.1442.44765475> qs max05D + 0.75(L + W)0.000 1/6q max = (Fz/Af)*(1+ 6*(e/Lf))q max = a * Fz/Afq min = (Fz/Af)*(1- 6*(e/Lf))q min = 0where :xn = 3*Lf*(0.5-e/Lf)a = 2*Lf/XnSTEP 5CHECK OVERTURNING RATIONoLoadingMoMrSFStatuskg.mkg.m1D + L26446.684429.13.19OK2D + W28438.581574.92.87OK3D + E/1.4125585.979362.70.63FAIL40.9D + E/1.4123304.872420.20.59FAIL5D + 0.75(L + W)29757.985040.82.86OK6D + 0.75(L + E/1.4)106253.388886.40.84FAILMo =My + Fx*hfMr =Wf*0.5*Wx + 0.5*(wx-px)*gs*0.25*wx + 0.5*(wx-px)*gs*0.75*wxSF =Mr/Mo>1.5STEP 6CHECK SLIDING RATIONoLoadingHsHrSFStatuskgkg1D + L6606.342816.96.48OK2D + W7108.741186.05.79OK3D + E/1.424235.739921.81.65FAIL40.9D + E/1.423665.435954.71.52FAIL5D + 0.75(L + W)7434.943166.55.81OK6D + 0.75(L + E/1.4)21183.645363.92.14OKHs =Sliding Force=FxHr =Resistance force against sliding=m*Fzm =surface coeffecient=0.4SF =Hr/Hs>2STEP 7CALCULATE FACTORED LOADNoLoadingFzFxMykgkgkg.m11.4 D138849.67983.90.821.2 D + 1.6 L131596.28289.034.031.2 D + 0.8 W122043.27968.13.241.2 D + 1.3 W123936.58671.04.851.2 D + 1.0 E119890.7632789.4640100.1260.9 D + E90137.2731078.6240099.9470.9 D + W93047.16538.43.6STEP 8CALCULATE SOIL PRESSURE DUE TO FACTORED LOADNoLoadinge = My/FzStatusxnaq maxq minme/wxmkg/m2kg/m211.4 D0.000 1/6qx =((wx-Lx + h1)/Xn)*q maxVs =0.5*(qx + q max)*(Lx-h1)*1Vrd =C*((Lx-h1)*h3*1)*gs + ((Lx-h1)*h1*1)*gcVu =Vs - VrdC =Load factorNoLoadingqxVsVrdVukg/m2kgkgkg11.4 D41325.75-10331.4-16380.0006048.61121.2 D + 1.6 L39224.39-9804.2-14040.0004235.83831.2 D + 0.8 W28543.30-8108.7-14040.0005931.27841.2 D + 1.3 W36894.10-9223.3-14040.0004816.74651.2 D + 1.0 E107378.82-24811.0-14040.000-10771.01660.9 D + E115666.37-26725.9-10530.000-16195.94170.9 D + W27698.88-6924.5-10530.0003605.487Note :The maximum shear forces at distance of h1 will be used for one way shear check of slabSTEP 11CALCULATE ULTIMATE SHEAR FORCE AT DISTANCE OF H1 FROM THE EDGE OF COLUMN (1 m length)wy =2.400mwx =1.400mh1 =0.700Lx =0.450mh3 =3.300Case : e/Lf < 1/6qx =q min + ((wx -Lx + 0.5h1)/wx)*(q max - q min)Case : e/Lf > 1/6qx =((wx-Lx + 0.5h1)/Xn)*q maxVs =0.5*(qx + q max)*(Lx-0.5h1)*1Vrd =C*((Lx-0.5h1)*h3*1)*gs + ((Lx-0.5h1)*h1*1)*gcVu =Vs - VrdC =Load factorNoLoadingqxVsVrdVukg/m2kgkgkg11.4 D41325.754132.61066.8003065.75521.2 D + 1.6 L41425.444031.7914.4003117.31731.2 D + 0.8 W28543.303243.5914.4002329.08941.2 D + 1.3 W41337.503911.5914.4002997.07251.2 D + 1.0 E148702.0511990.6914.40011076.16860.9 D + E156989.5912756.5685.80012070.73770.9 D + W41334.163451.6685.8002765.769Note :The maximum shear forces Vu at distance of h1 will be used for one way shear check of slabSTEP 12CALCULATE ULTIMATE BENDING MOMENT AT BOTTOM OF PEDESTAL (1 m length)NoLoadingMu1=Mu2 =Mu =Nu =Vu =MyFx*h2Mu1 + Mu2FzFxkg.mkg.mkg.mkgkg11.4 D0.8426346.9426347.78138849.627983.9221.2 D + 1.6 L34.0027353.5727387.57131596.208288.9631.2 D + 0.8 W3.2026294.6626297.86122043.247968.0841.2 D + 1.3 W4.7528614.4028619.15123936.548671.0351.2 D + 1.0 E40100.12108205.22148305.34119890.7632789.4660.9 D + E40099.94102559.45142659.3990137.2731078.6270.9 D + W3.6421576.7921580.4393047.076538.42Note :The maximum ultimate moment Mu & axial load Nu will be used for column design

&L&G&R&9&P/&NLxq maxq minqxwxh3h1q maxq minqxxnLxq maxq minqxwxh3h1q maxq minqxxnh1Berat Pondasi = (volume footing slab + volume pedestal)*berat jenis betonBerat Tanah = (luas footing slab - luas pedestal) * tebal tanah * berat jenis tanahDead Load Total = Dead Load + Berat Pondasi + Berat TanahVs = Gaya geser akibat soil pressure = Luas trapesium = 0.5*(qx + q max)*(Lx-h1)Vd = Gaya geser reduksi dari berat tanah & beton, bersifat mengurangi gaya geser akibat tanahVu = Vs - VrdFzpxwxpywyXYZh1h3h4F.G.Lh2hfMyFxLxq maxq minqxwxh3h1q maxq minqxxn0.5h1Vs = Gaya geser akibat soil pressure pada jarak 0.5h1 dari sisi pedestal = Luas trapesium = 0.5*(qx + q max)*(Lx-0.5h1)Vd = Gaya geser reduksi dari berat tanah & beton, bersifat mengurangi gaya geser akibat tanahVu = Vs - Vrd

Foundation (no formula)BASIC DESIGN OF SPREAD FOUNDATIONDIMENSION OF FOUNDATIONh1 :Footing thickness0.400mh2 :Pedestal height0.600mh3 :Soil cover depth0.300mh4 :Pedestal height above soil,0.300mhf :Foundation height , h1 + h21.000mpx :Pedestal width in x - direction0.350mpy :Pedestal width in y - direction0.400mwx :Footing width in x - direction2.500mwy :Footing width in y - direction2.000mMATERIAL PROPERTIESStrength designfc' :Concrete Strength Design245(kg/cm2)fy :Yield Strength of Steel4000(kg/cm2)q s maxSoil bearing capacity20kg/cm2200000kg/m2Densitygs :Soil density1800kg/m3gc :Concrete density2400kg/m3Loading DataNoLoadingFzFxMykgkgkg.m1Dead Load (D)120020010002Live Load (L)100012025003Wind Load (W)100020030004Earthquake(E)20003005000STEP 1CALCULATE ADDITIONAL DEAD LOAD DUE TO FOUNDATION SELF WEIGHT & SOIL WEIGHTWf :Foundation weight, ((px*py*h2)+(wx*wy*h1))*gc=5001.6kgWs :Soil cover weight, ((wx*wy-px*py)*h3)*gs=2624.4kg7626.0kgSTEP 2ADD THE ADDITIONAL DEAD LOAD DUE TO FOUNDATION & SOIL WEIGHTNoLoadingFzFxMykgkgkg.m1Dead Load (D)8826.020010002Live Load (L)100012025003Wind Load (W)100020030004Earthquake(E)20003005000STEP 3UNFACTORED COMBINATION LOAD FOR STABILITY CHECKNoLoadingFzFxMykgkgkg.m1D + L9826.0320.03500.02D + W9826.0400.04000.03D + E/1.410254.6414.34571.440.9D + E/1.49372.0394.34471.45D + 0.75(L + W)10326.0440.05125.06D + 0.75(L + E/1.4)11647.4570.78053.6STEP 4CHECK SOIL BEARING CAPACITYAf :Footing slab area, wx*wy=5.000m2Sy :Moment area of footing, Iy /(0.5*wx) = (1/12*wy*wx^3)/(0.5*wx)=2.083m3e max :maximum eccentricity , wx/6=0.417mLf :Length of footing, wx=2.500mNoLoadinge = My/FzStatusxnaq maxStatusq minme/wxmkg/m2kg/m21D + L0.356 1/62.3192.1564041.9< qs max0.0005D + 0.75(L + W)0.496> 1/62.2612.2114566.9< qs max0.0006D + 0.75(L + E/1.4)0.691> 1/61.6762.9846950.9< qs max0.000Where :Case Ie/Lf < 1/6Case IIe/Lf > 1/6q max = (Fz/Af)*(1+ 6*(e/Lf))q max = a * Fz/Afq min = (Fz/Af)*(1- 6*(e/Lf))q min = 0where :xn = 3*Lf*(0.5-e/Lf)a = 2*Lf/XnSTEP 5CHECK OVERTURNING RATIONoLoadingMoMrSFStatuskg.mkg.m1D + L3820.018536.14.85OK2D + W4400.018536.14.21OK3D + E/1.44985.719071.83.83OK40.9D + E/1.44865.717970.63.69OK5D + 0.75(L + W)5565.019161.13.44OK6D + 0.75(L + E/1.4)8624.320812.92.41OKMo =My + Fx*hfMr =Wf*0.5*Wx + 0.5*(wx-px)*gs*0.25*wx + 0.5*(wx-px)*gs*0.75*wxSF =Mr/Mo>1.5STEP 6CHECK SLIDING RATIONoLoadingHsHrSFStatuskgkg1D + L320.03930.412.28OK2D + W400.03930.49.83OK3D + E/1.4414.34101.89.90OK40.9D + E/1.4394.33748.89.51OK5D + 0.75(L + W)440.04130.49.39OK6D + 0.75(L + E/1.4)570.74659.08.16OKHs =Sliding Force=FxHr =Resistance force against sliding=m*Fzm =surface coeffecient=0.4SF =Hr/Hs>2STEP 7CALCULATE FACTORED LOADNoLoadingFzFxMykgkgkg.m11.4 D12356.4280.01400.021.2 D + 1.6 L12191.2432.05200.031.2 D + 0.8 W11391.2400.03600.041.2 D + 1.3 W11891.2500.05100.051.2 D + 1.0 E12591.2540620060.9 D + E9943.4480590070.9 D + W8943.4380.03900.0STEP 8CALCULATE SOIL PRESSURE DUE TO FACTORED LOADNoLoadinge = My/FzStatusxnaq maxq minStatusme/wxmkg/m2kg/m211.4 D0.113 1/62.4702.0244934.90.000< q max31.2 D + 0.8 W0.316 1/62.4632.0304827.30.000< q max51.2 D + 1.0 E0.492> 1/62.2732.2005540.00.000< q max60.9 D + E0.593> 1/61.9702.5385047.60.000< q max70.9 D + W0.436> 1/62.4422.0483662.70.000< q maxWhere :Case Ie/Lf < 1/6Case IIe/Lf > 1/6q max = (Fz/Af)*(1+ 6*(e/Lf))q max = a * Fz/Afq min = (Fz/Af)*(1- 6*(e/Lf))q min = 0where :xn = 3*Lf*(0.5-e/Lf)a = 2*Lf/XnSTEP 9CALCULATE ULTILMATE BENDING MOMENT AT FOOTING SLAB (1 m lenght)wy =2.000mh1 =0.400mwx =2.500mh3 =0.300mLx =0.5*(wx-px)=1.075mCase : e/Lf < 1/6qx =q min + ((wx -Lx)/wx)*(q max - q min)Mu =Ms - MrdMs =0.5*1*qx*Lx^2 + 1/3*1*(q max - qx)*Lx^3)Mrd =C*(Lx*h3*1)*gs* 0.5*Lx + (Lx*h1*1)*gc*0.5*LxC =Load factorCase : e/Lf > 1/6qx =((wx-Lx)/Xn)*q maxNoLoadingqxMsMrdMukg/m2kg.mkg.mkg.m11.4 D21.2 D + 1.6 L31.2 D + 0.8 W41.2 D + 1.3 W51.2 D + 1.0 E60.9 D + E70.9 D + WNote :The maximum Factored Bending Moment (Ultimate Moment) will be used for concrete designSTEP 10CALCULATE ULTIMATE SHEAR FORCE AT DISTANCE OF H1 FROM THE EDGE OF COLUMN (1 m lenght)wy =2.000mwx =2.500mh1 =0.400Lx =1.075mh3 =0.300Case : e/Lf < 1/6qx =q min + ((wx -Lx + h1)/wx)*(q max - q min)Case : e/Lf > 1/6qx =((wx-Lx + h1)/Xn)*q maxVs =0.5*(qx + q max)*(Lx-h1)*1Vrd =C*((Lx-h1)*h3*1)*gs + ((Lx-h1)*h1*1)*gcVu =Vs - VrdC =Load factorNoLoadingqxVsVrdVukg/m2kgkgkg11.4 D21.2 D + 1.6 L31.2 D + 0.8 W41.2 D + 1.3 W51.2 D + 1.0 E60.9 D + E70.9 D + WNote :The maximum shear forces at distance of h1 will be used for one way shear check of slabSTEP 11CALCULATE ULTIMATE SHEAR FORCE AT DISTANCE OF H1 FROM THE EDGE OF COLUMN (1 m length)wy =2.000mwx =2.500mh1 =0.400Lx =1.075mh3 =0.300Case : e/Lf < 1/6qx =q min + ((wx -Lx + 0.5h1)/wx)*(q max - q min)Case : e/Lf > 1/6qx =((wx-Lx + 0.5h1)/Xn)*q maxVs =0.5*(qx + q max)*(Lx-0.5h1)*1Vrd =C*((Lx-0.5h1)*h3*1)*gs + ((Lx-0.5h1)*h1*1)*gcVu =Vs - VrdC =Load factorNoLoadingqxVsVrdVukg/m2kgkgkg11.4 D21.2 D + 1.6 L31.2 D + 0.8 W41.2 D + 1.3 W51.2 D + 1.0 E60.9 D + E70.9 D + WNote :The maximum shear forces Vu at distance of h1 will be used for one way shear check of slabSTEP 12CALCULATE ULTIMATE BENDING MOMENT AT BOTTOM OF PEDESTAL (1 m length)NoLoadingMu1=Mu2 =Mu =Nu =Vu =MyFx*h2Mu1 + Mu2FzFxkg.mkg.mkg.mkgkg11.4 D21.2 D + 1.6 L31.2 D + 0.8 W41.2 D + 1.3 W51.2 D + 1.0 E60.9 D + E70.9 D + WNote :The maximum ultimate moment Mu & axial load Nu will be used for column design

&L&G&R&9&P/&NLxq maxq minqxwxh3h1q maxq minqxxnLxq maxq minqxwxh3h1q maxq minqxxnh1Berat Pondasi = (volume footing slab + volume pedestal)*berat jenis betonBerat Tanah = (luas footing slab - luas pedestal) * tebal tanah * berat jenis tanahDead Load Total = Dead Load + Berat Pondasi + Berat TanahVs = Gaya geser akibat soil pressure = Luas trapesium = 0.5*(qx + q max)*(Lx-h1)Vd = Gaya geser reduksi dari berat tanah & beton, bersifat mengurangi gaya geser akibat tanahVu = Vs - VrdFzpxwxpywyXYZh1h3h4F.G.Lh2hfMyFxLxq maxq minqxwxh3h1q maxq minqxxn0.5h1Vs = Gaya geser akibat soil pressure pada jarak 0.5h1 dari sisi pedestal = Luas trapesium = 0.5*(qx + q max)*(Lx-0.5h1)Vd = Gaya geser reduksi dari berat tanah & beton, bersifat mengurangi gaya geser akibat tanahVu = Vs - Vrd