Formulations of Longitudinal Dispersion Coefficient

22
Formulations of Formulations of Longitudinal Dispersion Coefficient Longitudinal Dispersion Coefficient A A Review: Review:

description

A Review:. Formulations of Longitudinal Dispersion Coefficient. Outline. Introduction and Applications Historical background New Formulations Conclusions. Longitudinal ADVECTION + Vertical or Lateral DIFFUSION =. Dispersion Coefficient (K). DISPERSION. River Mixing Processes. - PowerPoint PPT Presentation

Transcript of Formulations of Longitudinal Dispersion Coefficient

Page 1: Formulations of Longitudinal Dispersion Coefficient

Formulations ofFormulations of

Longitudinal Dispersion Longitudinal Dispersion CoefficientCoefficient

A A Review:Review:

Page 2: Formulations of Longitudinal Dispersion Coefficient

OutlineOutline

1.1. Introduction and ApplicationsIntroduction and Applications

2.2. Historical backgroundHistorical background

3.3. New FormulationsNew Formulations

4.4. ConclusionsConclusions

Page 3: Formulations of Longitudinal Dispersion Coefficient

Longitudinal Longitudinal ADVECTIONADVECTION

++

Vertical or Lateral Vertical or Lateral DIFFUSIONDIFFUSION

==

Dispersion Coefficient (K)Dispersion Coefficient (K)

Page 4: Formulations of Longitudinal Dispersion Coefficient

River Mixing ProcessesRiver Mixing Processes

Page 5: Formulations of Longitudinal Dispersion Coefficient

Practical ApplicationsPractical Applications

Pollution ForecastingPollution Forecasting

Temperature Variations in a Temperature Variations in a RiverRiver

River Water Quality ControlRiver Water Quality Control

Re-aeration in Water BodiesRe-aeration in Water Bodies

Salt Intrusion in Tidal EstuariesSalt Intrusion in Tidal Estuaries

Page 6: Formulations of Longitudinal Dispersion Coefficient
Page 7: Formulations of Longitudinal Dispersion Coefficient
Page 8: Formulations of Longitudinal Dispersion Coefficient

' '

0 0 0

1 1 -

W y y

t

K hu hu dydydyA h

2 2

*

U W

KhU

1.5

*

2.0K W

hU h

1.5

* 0.18U

U

* 10.1K au

2 20

192

a uK

D

Laminar flow in a tube of radius Laminar flow in a tube of radius aa

Turbulent flow in a pipe of radius Turbulent flow in a pipe of radius aa

Historical BackgroundHistorical Background

* 5.93K hU

Taylor (1953 & 1954)Taylor (1953 & 1954) Elder (1959)Elder (1959)

2 2

*

0.011U W

KhU

Fischer (1966 & 1975)Fischer (1966 & 1975) Liu (1977)Liu (1977) Iwasa and Aya (1991)Iwasa and Aya (1991) Taylor (1953 & 1954)Taylor (1953 & 1954)

Elder (1959)Elder (1959)

Fischer (1966 & 1975)Fischer (1966 & 1975)

Liu (1977)Liu (1977)

Iwasa and Aya (1991)Iwasa and Aya (1991)

Page 9: Formulations of Longitudinal Dispersion Coefficient

Comparison of FormulaeComparison of Formulae

Discrepancy RatioDiscrepancy Ratio

AccuracyAccuracy

log p

m

KDiscrepancy Ratio

K

0.3 0.3Discrepancy Ratio

Page 10: Formulations of Longitudinal Dispersion Coefficient

Accuracy ComparisonAccuracy Comparison

ResearchersResearchers Accuracy (%)Accuracy (%)

Elder (1959)Elder (1959) 0.00.0

Fisher (1975)Fisher (1975) 37.337.3

Liu (1977)Liu (1977) 67.867.8

Iwasa & Aya Iwasa & Aya (1991)(1991) 54.554.5

Page 11: Formulations of Longitudinal Dispersion Coefficient

Seo & Cheong (1998)Seo & Cheong (1998)New FormulationNew Formulation

• Dimensional Analysis:Dimensional Analysis: Factors influencing dispersionFactors influencing dispersion

GroupsGroups FactorsFactors

11 Fluid PropertiesFluid Properties Fluid density, Fluid Fluid density, Fluid viscosityviscosity

22Hydraulic Hydraulic Characteristics Characteristics

Mean Velocity, Shear Mean Velocity, Shear Velocity, Width, DepthVelocity, Width, Depth

33Geometric Geometric ConfigurationsConfigurations Bed forms, SinuosityBed forms, Sinuosity

Page 12: Formulations of Longitudinal Dispersion Coefficient

Seo & Cheong (1998)Seo & Cheong (1998)

Buckingham PI TheoremBuckingham PI Theorem

* *

( , , , , )f n

K Uh U Wf S S

hU U h

Page 13: Formulations of Longitudinal Dispersion Coefficient

• Neglect irregularitiesNeglect irregularities

• Flow is fully turbulentFlow is fully turbulent

SimplificationsSimplifications

& f nS S

Reduced Reduced equation:equation:

Uh

* *

( , )K U W

fhU U h

Page 14: Formulations of Longitudinal Dispersion Coefficient

Regression AnalysisRegression Analysis

Nonlinear Multi-Regression EquationNonlinear Multi-Regression Equation

Linear Multiple FormLinear Multiple Form

1 2 3 pY X X X X

1 2ln ln ln ln

ln lnp

Y X X

X

Page 15: Formulations of Longitudinal Dispersion Coefficient

Final Equation:Final Equation:

Experimental data:Experimental data:• 59 streams, 26 states in US59 streams, 26 states in US• 35 used to model equation35 used to model equation• 24 used for verification24 used for verification

1.428 0.620

* *

5.915K U W

hU U h

Page 16: Formulations of Longitudinal Dispersion Coefficient

Accuracy: 79%Accuracy: 79%

Limitation:Limitation:

Seo & Cheong (1998)Seo & Cheong (1998)

ResearcherResearcherss

Accuracy Accuracy (%)(%)

Elder Elder (1959)(1959) 0.00.0

Fisher Fisher (1975)(1975) 37.337.3

Liu (1977)Liu (1977) 67.867.8

Iwasa & Iwasa & Aya (1991)Aya (1991) 54.554.5

Page 17: Formulations of Longitudinal Dispersion Coefficient

Deng et al. (2002)Deng et al. (2002)

• Lateral Dispersion CoefficientLateral Dispersion Coefficient

• Velocity Deviation ParameterVelocity Deviation Parameter

• Channel Shape EquationChannel Shape Equation

• Local Flow DepthLocal Flow Depth

• Channel SinuosityChannel Sinuosity

Page 18: Formulations of Longitudinal Dispersion Coefficient

Deng et al. (2002)Deng et al. (2002)

1 5/ 20 * * *0 0 0

5/ 2* *0 0

C

C/ x

I h F h h Fd d

Fh h d d d

x

2 2

* 0

* * *

I IK U W

U h M U h

1*

* **max 0

UI h d

u

1.38

* *

10.145

3520

U WM

U h

Page 19: Formulations of Longitudinal Dispersion Coefficient

ConclusionsConclusions

• Analytical solution by Taylor Analytical solution by Taylor (1954) available for regular cross (1954) available for regular cross sections.sections.

• Natural streams need empirical Natural streams need empirical means with field data.means with field data.

• Liu’s equation (1977) offers the Liu’s equation (1977) offers the best prediction followed by Iwasa best prediction followed by Iwasa & Aya (1991).& Aya (1991).

Page 20: Formulations of Longitudinal Dispersion Coefficient

ConclusionsConclusions

• Seo and Cheong’s new equation Seo and Cheong’s new equation (1998) with field data from 59 (1998) with field data from 59 streams across 26 states in the streams across 26 states in the US.US.

• Deng et al. (2002) incorporated Deng et al. (2002) incorporated the effect of vertical and the effect of vertical and transverse irregularities.transverse irregularities.

Page 21: Formulations of Longitudinal Dispersion Coefficient

ReferencesReferences

1.1. Seo, I. W., and Cheong, T. S. (1998). Seo, I. W., and Cheong, T. S. (1998). “Predicting Longitudinal Dispersion “Predicting Longitudinal Dispersion Coefficient in Natural Streams.” Coefficient in Natural Streams.” J. Hydr. J. Hydr. Engrg.Engrg., ASCE, 124(1), 25-32., ASCE, 124(1), 25-32.

2.2. Liu, H. (1977). “Predicting dispersion Liu, H. (1977). “Predicting dispersion coefficient of streams.” coefficient of streams.” J. Envir. Engrg. Div.J. Envir. Engrg. Div., , ASCE, 103(1), 59-69.ASCE, 103(1), 59-69.

3.3. Deng, Z.-Q., Bengtsson, L., Singh, V. P., and Deng, Z.-Q., Bengtsson, L., Singh, V. P., and Adrian, D. D (2002). “Longitudinal Dispersion Adrian, D. D (2002). “Longitudinal Dispersion Coefficient in Single-Channel Streams”, Coefficient in Single-Channel Streams”, J. J. Hydr. Engrg.Hydr. Engrg., ASCE, 128(10), 901-916., ASCE, 128(10), 901-916.

Page 22: Formulations of Longitudinal Dispersion Coefficient

Q & A ?Q & A ?