Formula Sheets for Math 441

download Formula Sheets for Math 441

of 9

Transcript of Formula Sheets for Math 441

  • 7/27/2019 Formula Sheets for Math 441

    1/9

    Table 1: Special Discrete Distributions

    Notation and Parameters Discrete pdf f (x) Mean Variance MGF M X (t)Binomial

    X BIN (n, p ) nx px q n x np npq ( pet + q )n

    0 < p < 1 x = 0 , 1, . . . , nq = 1 p

    BernoulliX BIN (1, p) px q 1x p pq pet + q

    0 < p < 1 x = 0 , 1q = 1 p

    Negative Binomial

    X NB (r, p ) x1r 1 pr q xr r/p rq/p 2 pe

    t

    1qe tr

    0 < p < 1 x = r, r + 1 , . . .r = 1 , 2, . . .

    GeometricX GEO ( p) pq x1 1/p q/p 2 pe

    t

    1qe t0 < p < 1 x = 1 , 2, . . .

    q = 1 pHypergeometricX HY P (n,M,N ) M x

    N M n x /N n nM/N n

    M N 1 M N N nN 1 Not tractable

    n = 1 , 2, . . . , N x = 0 , 1, . . . , nM = 0 , 1, . . . , N

    PoissonX P OI () e

    xx ! e

    (e t 1)

    0 < x = 0 , 1, . . .Discrete Uniform

    X DU (N ) 1/N N +12N 2 112 1N e

    t e ( N +1)t

    1

    e t

    N = 1 , 2, . . . x = 1 , 2, . . . , N

    1

  • 7/27/2019 Formula Sheets for Math 441

    2/9

    Table 2: Special Continuous Distributions

    Notation and Parameters Continuous pdf f (x) Mean Variance MGF M X (t)Uniform

    X UNIF (a, b) 1baa + b

    2(ba ) 212 e

    bt eat(ba ) ta < b a < x < b

    NormalX N (, 2) 1 2 e

    [(x)/ ]2 / 2 2 et + 2 t 2 / 2

    0 < 2

    Gamma

    X GAM (, ) 1 ( ) x 1ex/ 2 11t

    0 < 0 < x0 <

    ExponentialX EXP () 1

    ex/ 2 1

    1t0 < 0 < xTwo-Parameter Exponential

    X EXP (, ) 1 e(x) / + 2 et

    1t0 < < x

    Double ExponentialX DE (, ) 12 e|x|/ 22 e

    t

    12 t 20 <

    2

  • 7/27/2019 Formula Sheets for Math 441

    3/9

    Normal distribution: X N (, 2)

    f (x) =1

    2 e1

    2 2(x) 2 ;< x < , < < , > 0

    Student t distribution: X t(v)

    f (x) = v+12 v v2

    1

    1 + x 2v(v+1) / 2 ; < x < , v = 1 , 2, . . .

    Chi-Square distribution: X 2(v)

    f (x) =1

    2v/ 2 v2xv/ 21ex/ 2 ; x > 0, v = 1 , 2, . . .

    F distribution: X F (v1 , v2)

    f (x) =

    v1 + v22 v12 v22

    v1v2

    v1 / 2

    xv1 / 2

    1

    ; x > 0, v1 = 1 , 2, . . . , v2 = 1 , 2, . . .

    3

  • 7/27/2019 Formula Sheets for Math 441

    4/9

    Table 3: Summary of Condence Intervals (Single Population)

    Parameter on Limits of CondenceNature of the Which Condence Procedure Interval with CondencePopulation Interval Is Set Coefficient 1 Quantitative data; , the population Draw a sample of size n and

    standard deviation mean compute the value of x, x z/ 2 n is known; the estimate of population normal

    Quantitative data; , the population Draw a sample of size n and

    standard deviation mean compute x and x tn 1,/ 2 s n is not known;

    population normal s = 1n 1 (x i x)2 tn 1,/ 2 is the value obtainedimportant when from the t distributionsample size is with n 1 degrees of small (n < 30) freedom.

    Quantitative data; , the population Draw a sample of size n andstandard deviation mean compute x and s x z/ 2 s n is not known;

    population not Condence interval isnecessarily normal approximatesample size islarge ( n 30)

    Quantitative data; p, the probability Draw a sample of size n and

    binomial case of success (the note x, the number of xn z/ 2 xn (1 xn )npopulation successes; obtain x/n , the Condence interval is basedproportion) estimate of p. Here on the central limit

    n is assumed large. theorem, thus, isapproximate.

    Quantitative data; 2 , the poplulation Draw a sample of size n and

    population normal variance compute s2 (n 1) s2

    X 2n 1 ,/ 2, (n 1) s

    2

    X 2n 1 , 1 / 2

    4

  • 7/27/2019 Formula Sheets for Math 441

    5/9

    Table 4: Summary of Tests of Hypotheses (Single Population)

    Nature of the Null Alternative Test Decision Rule: Reject H 0

    If Population Parameter Hypothesis Hypothesis Statistic the Computed Value Is

    Quantitative data; = 0 1. > 0 1. greater than zvariance 2 is 2. < 0 X 0/ n 2. less than zknown; 3. = 0 3. less than z/ 2 orpopulation greater than z/ 2normallydistributed

    Quantitative data; = 0 1. > 0 1. greater than tn 1,variance 2 is 2. < 0 X 0S/ n 2. less than tn 1,not known; 3. = 0 3. less than tn 1,/ 2 orpopulation greater than tn 1,/ 2normallydistributed;sample sizesmall (n < 30)

    Quantitative data; = 0 1. > 0 1. greater than zvariance 2 is 2. < 0 X 0S/ n 2. less than znot known; 3. = 0 3. less than z/ 2 orpopulation not greater than z/ 2necessarily The level of signicance isnormal; sample approximately 100 large (n 30) percent.

    Quantitative data; = 0 1. > 0 1. greater than 2n 1,population 2. < 0 (n 1) S

    2

    202. less than 2n 1,1

    normally 3. = 0 3. less than 2n 1,1/ 2 ordistributed greater than 2n 1,/ 2

    Quantitative data; p p = p0 1. p > p 0 1. greater than zbinomial case 2. p < p 0 (X/n ) p0 p 0 (1 p 0 )n

    2. less than z3. p = p0 3. less than z/ 2 orHere n is greater than z/ 2

    assumed The level of signicance islarge. approximately 100

    percent.

    5

  • 7/27/2019 Formula Sheets for Math 441

    6/9

    Table 5: Summary of Condence Intervals (two populations)

    Parameter on Limits of CondenceNature of the Which Condence Procedure Interval with Condence

    Population Interval Is Set Coefficient 1 Quantitative data; 1 2 , the Draw samples of sizes m and n

    variance 21 difference of from the two populations, get (x y) z/ 2 21m + 22nand 22 are the population the respective means x and y,known; both means and nd the value of x y,populations are an estimate of 1 2 .normallydistributed.

    Quantitative data; 1 2 , the Draw samples of sizes m and n21 and 22 are difference of from the two populations; (x y) tm + n 2,/ 2s p 1m + 1nnot known but the population compute x y andassumed equal; means

    both s p = (m 1) s 21 +( n 1) s 22m + n 2populations arenormallydistributed.

    Quantitative data; 1 2 , the Draw samples of sizes m and n;21 and 22 are not difference of the compute x y; compute s21 x y z/ 2

    s 21m +

    s 22n

    known and not population means and s22 . Condence interval is approximate.assumed equal;populations maynot be normal;sample sizes mand n are large.

    Quantitative data; p1 p2 , the Draw two samples, one from p1 is the difference of the each population, of sizes m xm yn proportion in population and n; nd x/m and y/n ,

    Population 1 and proportions the estimates of p1 and p2 z/ 2 xm (1 xm )m +

    yn (1 yn )n p2 in Population 2; respectively; then getsample sizes m x/m y/n . Condence interval is based on theand n are assumed central limit theorem, thus islarge. approximate.

    6

  • 7/27/2019 Formula Sheets for Math 441

    7/9

    Table 6: Summary of Tests of Hypotheses (Two Populations)

    Nature of the Null Alternative Test Decision Rule: Reject H 0Population Parameter Hypothesis Hypothesis Statistic If the Computed Value Is

    Quantitative data; 1 2 1 = 2 1. 1 > 2 1. greater than zvariance 21 and 2. 1 < 2 2. less than z22 are known; 3. 1 = 2 3. less than z/ 2 orboth populations X Y

    21m + 22ngreater than z/ 2

    normallydistributed.

    Quantitative data; 1 2 1 = 2 1. 1 > 2 1. greater than z21 , 22 unknown 2. 1 < 2 2. less than zpopulations not 3. 1 = 2 3. less than

    z/ 2 or

    necessarily X Y S 21m + S 22n

    greater than z/ 2

    normal; samplesizes are large.

    Quantitative data; 1 2 1 = 2 1. 1 > 2 1. greater than tm + n 2,21 and 22 are not 2. 1 < 2 X Y S p 1m + 1n 2. less than tm + n 2,known but are 3. 1 = 2 3. less thanassumed to be where tm + n 2,/ 2 orequal; both S p = (m 1) S 21 +( n 1) S 22m + n 2 greater thanpopulations are tm + n 2,/ 2normallydistributed.

    Paired observations 1 2 D = 0 1. D > 0 1. greater than tn 1,( = 0) i.e., 2. D < 0 d

    ns d 2. less than tn 1,

    1 = 2 3. D = 0 where 3. less than tn 1,/ 2d = di /n or greater than

    and tn 1,/ 2sd = 1n 1 (di d)2

    Quantitative data; p1 p2 p1 = p2 1. p1 > p 2 1. greater than zbinomial case 2. p1 < p 2

    Xm

    Y n

    p(1 p)( 1m + 1n ) 2. less than z3. p1 = p2 where 3. less than z/ 2 or

    p = X + Y m + n greater than z/ 2Both m and n are The level of signicance is

    assumed large. approximately100 percent.

    7

  • 7/27/2019 Formula Sheets for Math 441

    8/9

    T a b

    l e

    7 : S u m m a r y o f t h e F o r m u l a s

    f o r I n f e r e n c e s a b o u t a M e a n

    ( ) , o r a D i ff e r e n c e o f t w o M e a n s

    ( 1 2

    )

    C o n

    d e n c e i n t e r v a l = P o i n t e s t i m a t o r

    ( T a b

    l e d v a

    l u e )

    ( E s t i m a t e d o r t r u e s t

    d . d e v .

    )

    T e s t s t a t i s t i c =

    P o i n t e s t i m a t o r

    P a r a m e t e r v a

    l u e a t H

    0

    ( n u

    l l h y p o t h e s i s )

    ( E s t i m a t e d o r t r u e ) s t

    d .

    d e v o

    f p o i n t e s t i m a t o r

    S i n g

    l e S a m p l e

    I n d e p e n

    d e n t

    S a m p l e s

    M a t c h e d P a i r s

    P o p u l a t i o n ( s )

    N o r m a l w i t h

    N o r m a l

    N o r m a l

    N o r m a l

    f o r t h e

    G e n e r a l

    u n k n o w n

    1 = 1 =

    1 = 2

    G e n e r a l

    d i ff e r e n c e

    D i =

    X i

    Y i

    I n f e r e n c e o n

    M e a n

    M e a n

    1 2 =

    1

    2 =

    1 2 =

    D

    S a m p l e ( s )

    X 1 , . . . , X n

    X 1 , . . . , X n

    X 1 , . . . , X n 1

    X 1 , . . . ,

    X n 1

    X 1 , . . . , X n 1

    D 1 =

    X 1

    Y 1

    . . .

    Y 1 , . . . , Y n 2

    Y 1 , . . . ,

    Y n 2

    Y 1 , . . . , Y n 2

    D n

    = X

    n

    Y n

    S a m p l e s i z e n

    L a r g e

    n 2

    n 1

    2

    n 1

    2

    n 1

    3 0

    n 2

    n 3 0

    n 2

    2

    n 2

    2

    n 2

    3 0

    P o i n t e s t i m a t o r

    X

    X

    X

    Y

    X

    Y

    X

    Y

    D

    = X

    Y

    V a r i a n c e o f P o i n t e s t i m

    a t o r

    2 n

    2 n

    2

    1 n

    1

    + 1 n

    2

    2 1 n 1 +

    2 2 n 2

    2 1 n 1

    + 2 2 n

    2

    2 D n

    E s t i m a t e d s t

    d . d e v

    .

    S n

    S n

    S P

    1 n

    1

    + 1 n

    2

    S 2 1

    n 1

    + S

    2 2 n 2

    S

    2 1 n 1

    + S

    2 2 n 2

    S D

    n

    D i s t r i b u t i o n

    N o r m a l

    t w i t h

    t w i t h

    t w i t h

    N o r m a l

    t w i t h

    d . f

    . = n

    1

    d . f

    . = n 1

    + n 2

    2

    d . f

    . e s t i m a t e d

    d . f

    . = n

    1

    T e s t s t a t i s t i c

    X 0

    S / n

    X 0

    S / n

    ( X

    Y ) 0

    S P

    1 n

    1

    + 1 n

    2

    ( X

    Y ) 0

    S

    2 1 n 1

    + S

    2 2 n 2

    ( X

    Y ) 0

    S

    2 1 n 1

    + S

    2 2 n 2

    D D

    , 0

    S D

    / n

    S D =

    s a m p l e s t

    d .

    S 2 P =

    ( n 1

    1 ) S

    2 1

    + ( n

    2

    1 ) S

    2 2

    n 1

    + n 2

    2

    d e v .

    o f t h e

    D i s

    d . f

    . =

    [ ( s 2 1 n

    1

    ) + ( s

    2 2 n 2

    ) ] 2 / [ ( n 1

    1 )

    1 ( s

    2 1 n 1

    ) 2 + ( n

    2

    1 )

    1 ( s

    2 2 n 2 )

    2 ]

    8

  • 7/27/2019 Formula Sheets for Math 441

    9/9

    Table 8: Condence intervals, tests of hypotheses, and prediction intervals for straight-line regression analysis.

    DistributionParameter 100(1 )% Condence Interval H 0 Test Statistic( T ) Under H 0 1 1 tn 2,1/ 2S 1 1 =

    (0)1 T =

    ( 1

    (0)

    1)

    S 1 tn 2 0 0 tn 2,1/ 2S 0 0 =

    (0)0 T =

    ( 0 (0)0 )

    S 0tn 2

    Y |X 0 Y + 1(X 0 X ) tn 2,1/ 2S Y X 0 Y |X 0 = (0)Y |X 0 T =

    Y + 1 (X 0 X )(0)Y | X 0

    S Y X 0tn 2

    Y X 0 Y + 1(X 0 X )tn 2,1/ 2S Y |X 1 + 1n + (X 0 X ) 2(n 1) S 2X

    Note: Y |X = 0 + 1X is the assumed true regression model. 1 =

    n1 (X i X )( Y i Y )n

    1 (X i X ) 2 0 = Y 1X Y =

    0 +

    1X =

    Y +

    1(X

    X )tn 2,1/ 2 is the 100(1 / 2)% point of the t distribution with n 2 degrees of freedom.

    S 2Y |X =1

    n 2n1 (Y i Y i )2 S 1 =

    S Y | XS X n 1

    S 2Y =1

    n 1n1 (Y i Y )2 S 0 = S Y |X 1n + X 2(n 1) S 2X

    S 2X =1

    n 1n1 (X i X )2 S Y X 0 = S Y |X 1n + (X 0 X ) 2(n 1) S 2X

    9