Form-cue invariant second-order contrast envelope...

1
S"muli Challenges Background Methods Orientation Tuning Conclusion Form-cue invariant second-order contrast envelope responses in macaque V2 G. Li 1 , Z. Wang 2 , Z. Yao 2 , N. Yuan 2 , V. Talebi 1 , J. Tan 2 , Y. Wang 2 , Y. Zhou 2 , C.L. Baker 1 1 McGill Vision Research, Dept Ophthalmology, McGill University, Montreal, QC, Canada 2 School of Life Sciences, University of Science and Technology of China, Hefei, China Supported by CIHRNSFC ChinaCanada Joint Health Ini9a9ve Collabora9on grant (CCI92217; NSFC30811120423) to CB and to YZ. Introduction Natural images frequently contain oriented boundaries defined by differences of luminance (1 st order), or of contrast or texture (2 nd order). 1 st order s9muli are thought to be detected by neural mechanisms ac9ng like a conven9onal linear filter. Detec9on of 2 nd order s9muli could be explained by a ‘filterrec9fyfilter’ cascade. 1 st stage filters are tuned to the fine scale of the texture. rec9fied outputs drive a 2 nd stage, coarser scale linear filter. 2 nd order processing has been widely studied in human psychophysics (Landy & Graham, 2004). In primates the neural substrate s9ll remains unclear. Spatial Frequency Tuning Monkey vs. Cat Neurons In One Penetration Spatial Frequency Tuning Properties Orientation Tuning Properties Sinewave gra9ngs and contrast modula9on (CM) envelopes s9muli were presented on a gammacorrected CRT monitor, placed at a 114 cm distance. anesthe9zed and paralyzed monkeys (Macaca mula(a) (N 2 O, Propofol, Sufentanil) + (Gallamine triethiodide, Tubocurarine chloride) careful refrac9on and ar9ficial pupils. extracellular recording: glasscoated tungsten electrodes (FHC): V1 > white maeer > V2 Michigan Probes (NeuroNexus): near lunate sulcus. singleunit (SU): isolated using Plexon Offline Sorter, quan9fied as average firing rates. mul9unit ac9vity (MUA): defined as events that exceeded 3σ of the filtered raw data (300 – 5KHz), quan9fied as average firing rates. experiment protocol: luminance gra9ngs: spa9al frequency, orienta9on, RFmapping envelope (CM) s9muli: carrier spa9al frequency, orienta9on envelope spa9al frequency, orienta9on 51 visually responsive neurons, 22 were 2 nd order responsive. Reference: Mareschal I & Baker CL (1999), Visual Neuroscience 16:527540. Tanaka H and Ohzawa I (2009), J Neurophysiol 101:14441462. Landy MS and Graham N (2004), The Visual Neuroscience, Chapter 73:11061118 Hallum LE, Movshon JA (2011), SfN Abstr 694.19/NN14 SU MUA Op9mal Spa9al Frequency Op9mal Orienta9on 1. Ensure that responses to 2 nd order s9muli are not due to inadvertent ac9va9on of linear/ luminance mechanisms. 2. Use s9muli that provide the analy9cal power to analyze the tuning proper9es of both early and late stage filtering. CM envelopes were generated by mul9plica9on of two gra9ng paeerns: a sta9onary high spa9al frequency (f Carrier ) gra9ng as the ‘carrier’ and a driping low spa9al frequency (f Envelope ) gra9ng as the ‘envelope’. In Fourier frequency domain, such CM s9muli consist of components all close to the ‘carrier’ spa9al frequency, with no energy at the ‘envelope’ spa9al frequency. A neuron that responds to an envelope s9mulus in which all Fourier components are clearly outside its gra9ng frequencyselec9ve range, must have been responding to the envelope of the s9mulus as a result of nonlinear processing. The nonlinearity might occur: (1) aper the 1st stage filter (2 nd order processing, FRF model), or (2) because of an early nonlinearity (before filters, e.g. s9muli ar9fact). if so, the envelope response would not be selec9ve for the carrier spa9al frequency. Criteria for a “2 nd order responsive” neuron: responds to an envelope (CM) s"mulus (blue). all the Fourier components of s"mulus are clearly outside its luminance frequency selec"ve range (black). tuned to carrier spa"al frequency (red). Electrophysiology Recording: Spa9al frequency tuning curves of three envelope responsive neurons for luminance s9muli and CM s9muli (upper row SU, boeom row MUA). Each plot shows luminance spa9al frequency (black), envelope spa9al frequency (blue) and carrier spa9al frequency (red). Neurons are clearly tuned for luminance, envelope and carrier spa9al frequency. Different neurons exhibited different op9mal spa9al frequencies for luminance , envelope and carrier. The op9mal carrier spa9al frequencies were clearly dis9nct from the luminance gra9ng response range. Simple luminance gra9ngs produced liele or no response at such high frequencies. Neurons exhibited similar, but slightly different spa9al frequency tuning curves for luminance and envelope. MUA exhibited similar tuning curves as SUs. Orienta9on polar plots for the same three neurons (showed above). Orienta9on tuning curves for luminance (black), envelope (blue) and carrier (red) are shown in different columns. Neurons are clearly tuned for luminance, envelope and carrier orienta9ons. Envelope response polar plots were usually very similar to the corresponding luminance polar plots (formcue invariance). Carrier orienta9on could be very narrowly tuned. No clear rela9onship between the carrier orienta9on tuning and the corresponding luminance tuning. MUA exhibited similar tuning curves as SUs. A par9cularly good penetra9on with many envelope responsive neurons recorded by tungsten electrode. V2 was iden9fied by gray maeer (V1)white maeergray maeer (V2) transi9on. Tuning proper9es changed significantly from V1 to V2. The recep9ve fields were at 612° eccentricity. S9muli were confined to the neurons’ classical recep9ve fields. There was no clear rela9onship between envelope responsivity and surround suppression. The op9mal value of carrier spa9al frequency and orienta9on varied with depth independently of luminance and envelope tuning. Scaeerplot of op9mal carrier spa9al frequency against the op9mal luminance spa9al frequency. 2 nd order envelope responsive neurons (filled squares) had a carrierluminance ra9o higher than 5:1. Some neurons (opened triangles) responded to CM’s with a carrierluminance ra9o around 2:1, probably due to surround modula9on (Tanaka & Ohzawa, 2009; Hallum & Movshon, 2011). Most enveloperesponsive neurons had higher op9mal spa9al frequency for envelopes than luminance. Scaeerplot of op9mal envelope spa9al frequency against op9mal luminance spa9al frequency. Scaeerplot of op9mal carrier spa9al frequency against op9mal envelope spa9al frequency. MUA MUA MUA Scaeerplot of op9mal envelope orienta9on against op9mal luminance orienta9on. Scaeerplot of op9mal carrier orienta9on against op9mal luminance orienta9on. Envelope responsive neurons with high carrierluminance ra9o (> 5:1, filled squares) cluster around the equality line (formcue invariance); low ra9o neurons (opened triangles) are randomly distributed. There is no fixed rela9onship between the op9mal carrier and luminance (envelope) orienta9ons. The op9mal carrier spa9al frequencies of monkey V2 are significantly higher than those for cat area 18 (p < 0.001, MannWhitney U test). The carrier orienta9on tuning bandwidth of monkey V2 neurons is significantly narrower than in cat area 18 (p < 0.001, MannWhitney U test). In monkey V2 neurons, the op9mal spa9al frequency is usually higher for envelopes than for luminance, but in cat area 18 it is usually lower. These results show that many macaque V2 neurons are selec9vely responsive to 2 nd order s9muli in a manner that cannot be explained by quasilinear recep9ve fields, but which implies a specialized nonlinear mechanism. Unlike responses shaped by surround modula9on, these neurons exhibit formcue invariant orienta9on selec9vity and also exhibit a high carrierluminance ra9o (> 5:1). Formcue invariant 2 nd order contrast envelope responsive neurons could provide a func9onally useful, explicit representa9on of segmenta9on boundaries. SU MUA Cell 1 Cell 2 Cell 3 A B C D E F MUA Carrier Orienta9on Envelope Orienta9on Luminance Orienta9on Cell 1 Cell 2 Cell 3 0.0 0.5 1.0 1.5 2.0 2.5 0 30 60 90 120 150 180 210 240 270 300 330 0.0 0.5 1.0 1.5 2.0 2.5 Z0514 Carrier Orientation Response (spikes/sec) 0 2 4 6 8 0 30 60 90 120 150 180 210 240 270 300 330 0 2 4 6 8 Z0514 Luminance Modulated Response (spikes/sec) 0 1 2 3 4 0 30 60 90 120 150 180 210 240 270 300 330 0 1 2 3 4 Z0514 Envelope Orientation Response (spikes/sec) 0.0 0.5 1.0 1.5 0 30 60 90 120 150 180 210 240 270 300 330 0.0 0.5 1.0 1.5 Z0504 Envelope Orientation Response (spikes/sec) 0.0 2.5 5.0 7.5 10.0 0 30 60 90 120 150 180 210 240 270 300 330 0.0 2.5 5.0 7.5 10.0 Z0504 Luminance Modulated Response (spikes/sec) 0 1 2 3 0 30 60 90 120 150 180 210 240 270 300 330 0 1 2 3 Z0504 Carrier Orientation Response (spikes/sec) 0 3 6 9 12 15 0 30 60 90 120 150 180 210 240 270 300 330 0 3 6 9 12 15 Z0517 Carrier Orientation Response (spikes/sec) 0 3 6 9 12 15 0 30 60 90 120 150 180 210 240 270 300 330 0 3 6 9 12 15 Z0517 Envelope Orientation Response (spikes/sec) 0 5 10 15 20 0 30 60 90 120 150 180 210 240 270 300 330 0 5 10 15 20 Z0517 Luminance Modulated Response (spikes/sec) 0 20 40 60 0 30 60 90 120 150 180 210 240 270 300 330 0 20 40 60 MultiUnit Response (spikes/sec) Contrast Modulated 0 60 120 180 180 120 60 Z0517 Lum. Carr. Env. MultiUnit Response (spikes/sec) Luminance Modulated 0 100 200 300 0 30 60 90 120 150 180 210 240 270 300 330 0 100 200 300 MultiUnit Response (spikes/sec) Contrast Modulated 0 50 100 150 150 100 50 Z0504 Lum. Carr. Env. MultiUnit Response (spikes/sec) Luminance Modulated 0 100 200 300 400 0 30 60 90 120 150 180 210 240 270 300 330 0 100 200 300 400 MultiUnit Response (spikes/sec) Contrast Modulated 0 25 50 75 100 100 75 50 25 Z0514 Z0514 Lum. Carr. Env. Illu. Con. MultiUnit Response (spikes/sec) Luminance Modulated MUA MUA 1 st order 2 nd order narrow broad cat data: Mareschal & Baker (1999)

Transcript of Form-cue invariant second-order contrast envelope...

  • S"muli  

    Challenges  

    Background  

    Methods Orientation Tuning

    Conclusion

    Form-cue invariant second-order contrast envelope responses in macaque V2 G. Li1, Z. Wang2, Z. Yao2, N. Yuan2, V. Talebi1, J. Tan2, Y. Wang2, Y. Zhou2, C.L. Baker1

    1McGill Vision Research, Dept Ophthalmology, McGill University, Montreal, QC, Canada 2School of Life Sciences, University of Science and Technology of China, Hefei, China

    Supported  by  CIHR-‐NSFC  China-‐Canada  Joint  Health  Ini9a9ve  Collabora9on  grant  (CCI-‐92217;  NSFC-‐30811120423)  to  CB  and  to  YZ.  

    Introduction •  Natural  images  frequently  contain  oriented  

    boundaries  defined  by  differences  of  luminance  (1st-‐order),  or  of  contrast  or  texture  (2nd-‐order).    

    •  1st-‐order  s9muli  are  thought  to  be  detected  by  neural  mechanisms  ac9ng  like  a  conven9onal  linear  filter.    

    •  Detec9on  of  2nd-‐order  s9muli  could  be  explained  by  a  ‘filter-‐rec9fy-‐filter’  cascade.  

                         -‐1st-‐stage  filters  are  tuned  to  the  fine  scale  of                              the  texture.                        -‐rec9fied  outputs  drive  a  2nd-‐stage,  coarser  scale                            linear  filter.    •  2nd-‐order  processing  has  been  widely  studied  in  

    human  psychophysics  (Landy  &  Graham,  2004).    •  In  primates  the  neural  substrate  s9ll  remains  unclear.      

    Spatial Frequency Tuning

    Monkey vs. Cat

    Neurons In One Penetration

    Spatial Frequency Tuning Properties

    Orientation Tuning Properties

    Sinewave  gra9ngs  and  contrast  modula9on  (CM)  envelopes  s9muli  were  presented  on  a  gamma-‐corrected  CRT  monitor,  placed  at  a  114  cm  distance.    

    •  anesthe9zed  and  paralyzed  monkeys  (Macaca  mula(a)                      -‐  (N2O,  Propofol,  Sufentanil)  +  (Gallamine  triethiodide,  Tubocurarine  chloride)  •  careful  refrac9on  and  ar9ficial  pupils.  •  extracellular  recording:  

             -‐  glass-‐coated  tungsten  electrodes  (FHC):  V1  -‐>  white  maeer  -‐>  V2            -‐  Michigan  Probes  (NeuroNexus):  near  lunate  sulcus.  

    •  single-‐unit  (SU):      isolated  using  Plexon  Offline  Sorter,    quan9fied  as  average  firing  rates.  •  mul9-‐unit  ac9vity  (MUA):  defined  as  events  that  exceeded  3-‐σ  of  the  filtered  raw  data  

    (300  –  5KHz),  quan9fied  as  average  firing  rates.  •  experiment  protocol:  

               -‐  luminance  gra9ngs:  spa9al  frequency,  orienta9on,  RF-‐mapping              -‐  envelope  (CM)  s9muli:  carrier  spa9al  frequency,  orienta9on                                                                                                      envelope  spa9al  frequency,  orienta9on        

    •  51  visually  responsive  neurons,  22  were  2nd-‐order  responsive.      

    Reference:  Mareschal  I  &  Baker  CL  (1999),  Visual  Neuroscience  16:527-‐540.  Tanaka  H  and  Ohzawa  I  (2009),  J  Neurophysiol  101:1444-‐1462.    Landy  MS  and  Graham  N  (2004),  The  Visual  Neuroscience,  Chapter  73:1106-‐1118  Hallum  LE,  Movshon  JA  (2011),  SfN  Abstr  694.19/NN14      

    SU  

    MUA  

    Op9mal  Spa9al  Frequency   Op9mal  Orienta9on  

    1.  Ensure  that  responses  to  2nd-‐order  s9muli  are  not  due  to  inadvertent  ac9va9on  of  linear/luminance  mechanisms.    

    2.  Use  s9muli  that  provide  the  analy9cal  power  to  analyze  the  tuning  proper9es  of  both  early  and  late  stage  filtering.    

    CM  envelopes  were  generated  by  mul9plica9on  of  two  gra9ng  paeerns:  a  sta9onary  high  spa9al  frequency  (fCarrier)  gra9ng  as  the  ‘carrier’  and  a  driping  low  spa9al  frequency  (fEnvelope)  gra9ng  as  the  ‘envelope’.  In  Fourier  frequency  domain,  such  CM  s9muli  consist  of  components  all  close  to  the  ‘carrier’  spa9al  frequency,  with  no  energy  at  the  ‘envelope’  spa9al  frequency.    

    A  neuron  that  responds  to  an  envelope  s9mulus  in  which  all  Fourier  components  are  clearly  outside  its  gra9ng  frequency-‐selec9ve  range,  must  have  been  responding  to  the  envelope  of  the  s9mulus  as  a  result  of  nonlinear  processing.  The  nonlinearity  might  occur:  (1)  aper  the  1-‐st  stage  filter  (2nd-‐order  processing,  F-‐R-‐F  model),  or  (2)  because  of  an  early  nonlinearity  (before  filters,  e.g.  s9muli  ar9fact).                  -‐  if  so,  the  envelope  response  would  not  be  selec9ve  for  the  carrier  spa9al  frequency.    

    Criteria  for  a  “2nd-‐order  responsive”  neuron:  

    ü  responds  to  an  envelope  (CM)  s"mulus  (blue).  ü  all  the  Fourier  components  of  s"mulus  are  

    clearly  outside  its  luminance  frequency-‐selec"ve  range  (black).  

    ü  tuned  to  carrier  spa"al  frequency  (red).    

    Electrophysiology  Recording:  

    Spa9al  frequency  tuning  curves  of  three  envelope  responsive  neurons  for  luminance  s9muli  and  CM  s9muli  (upper  row  à  SU,  boeom  row  à  MUA).  Each  plot  shows  luminance  spa9al  frequency  (black),  envelope  spa9al  frequency  (blue)  and  carrier  spa9al  frequency  (red).      •  Neurons  are  clearly  tuned  for  luminance,  

    envelope  and  carrier  spa9al  frequency.  •  Different  neurons  exhibited  different  op9mal  

    spa9al  frequencies  for  luminance  ,  envelope  and  carrier.    

    •  The  op9mal  carrier  spa9al  frequencies  were  clearly  dis9nct  from  the  luminance  gra9ng  response  range.  Simple  luminance  gra9ngs  produced  liele  or  no  response  at  such  high  frequencies.    

    •  Neurons  exhibited  similar,  but  slightly  different  spa9al  frequency  tuning  curves  for  luminance  and  envelope.  

    •  MUA  exhibited  similar  tuning  curves  as  SUs.    

    Orienta9on  polar  plots  for  the  same  three  neurons  (showed  above).  Orienta9on  tuning  curves  for  luminance  (black),  envelope  (blue)  and  carrier  (red)  are  shown  in  different  columns.        •  Neurons  are  clearly  tuned  for  luminance,  

    envelope  and  carrier  orienta9ons.  •  Envelope  response  polar  plots  were  

    usually  very  similar  to  the  corresponding  luminance  polar  plots  (form-‐cue  invariance).  

    •  Carrier  orienta9on  could  be  very  narrowly  tuned.  

    •  No  clear  rela9onship  between  the  carrier  orienta9on  tuning  and  the  corresponding  luminance  tuning.  

    •  MUA  exhibited  similar  tuning  curves  as  SUs.  

    A  par9cularly  good  penetra9on  with  many  envelope  responsive  neurons  recorded  by  tungsten  electrode.          •  V2  was  iden9fied  by  gray  maeer  (V1)-‐white  

    maeer-‐gray  maeer  (V2)  transi9on.  Tuning  proper9es  changed  significantly  from  V1  to  V2.  

    •  The  recep9ve  fields  were  at  6-‐12°  eccentricity.  •  S9muli  were  confined  to  the  neurons’  classical  

    recep9ve  fields.  There  was  no  clear  rela9onship  between  envelope  responsivity  and  surround  suppression.  

    •  The  op9mal  value  of  carrier  spa9al  frequency  and  orienta9on  varied  with  depth  independently  of  luminance  and  envelope  tuning.    

    Scaeerplot  of  op9mal  carrier  spa9al  frequency  against  the  op9mal  luminance  spa9al  frequency.    

    •  2nd-‐order  envelope  responsive  neurons  (filled  squares)  had  a  carrier-‐luminance  ra9o  higher  than  5:1.  •  Some  neurons  (opened  triangles)  responded  to  CM’s  with  a  carrier-‐luminance  ra9o  around  2:1,  probably  due  

    to  surround  modula9on  (Tanaka  &  Ohzawa,  2009;  Hallum  &  Movshon,  2011).    •  Most  envelope-‐responsive  neurons  had  higher  op9mal  spa9al  frequency  for  envelopes  than  luminance.      

    Scaeerplot  of  op9mal  envelope  spa9al  frequency  against  op9mal  luminance  spa9al  frequency.    

    Scaeerplot  of  op9mal  carrier  spa9al  frequency  against  op9mal  envelope  spa9al  frequency.    

    MUA   MUA   MUA  

    Scaeerplot  of  op9mal  envelope  orienta9on  against  op9mal  luminance  orienta9on.    

    Scaeerplot  of  op9mal  carrier  orienta9on  against  op9mal  luminance  orienta9on.    

    •  Envelope  responsive  neurons  with  high  carrier-‐luminance  ra9o  (>  5:1,  filled  squares)  cluster  around  the  equality  line  (form-‐cue  invariance);  low  ra9o  neurons  (opened  triangles)  are  randomly  distributed.  

    •  There  is  no  fixed  rela9onship  between  the  op9mal  carrier  and  luminance  (envelope)  orienta9ons.  

    The  op9mal  carrier  spa9al  frequencies  of  monkey  V2  are  significantly  higher  than  those  for  cat  area  18  (p  <  0.001,  Mann-‐Whitney  U  test).

    The  carrier  orienta9on  tuning  bandwidth  of  monkey  V2  neurons  is  significantly  narrower  than  in  cat  area  18  (p  <  0.001,  Mann-‐Whitney  U  test).

    In  monkey  V2  neurons,  the  op9mal  spa9al  frequency  is  usually  higher  for  envelopes  than  for  luminance,  but  in  cat  area  18  it  is  usually  lower.  

    l  These  results  show  that  many  macaque  V2  neurons  are  selec9vely  responsive  to  2nd-‐order  s9muli  in  a  manner  that  cannot  be  explained  by  quasi-‐linear  recep9ve  fields,  but  which  implies  a  specialized  nonlinear  mechanism.  

    l  Unlike  responses  shaped  by  surround  modula9on,  these  neurons  exhibit  form-‐cue  invariant  orienta9on  selec9vity  and  also  exhibit  a  high  carrier-‐luminance  ra9o  (>  5:1).  

    l  Form-‐cue  invariant  2nd-‐order  contrast  envelope  responsive  neurons  could  provide  a  func9onally  useful,  explicit  representa9on  of  segmenta9on  boundaries.

    SU  

    MUA  

    Cell  1   Cell  2   Cell  3  A  

    B  

    C  

    D  

    E  

    F  

    MUA  Carrier  Orienta9on  Envelope  Orienta9on  Luminance  Orienta9on  

    Cell  1  

    Cell  2  

    Cell  3  

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Z0514

    Car

    rier O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0

    2

    4

    6

    8

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    2

    4

    6

    8

    Z0514

    Lum

    inan

    ce M

    odul

    ated

    Res

    pons

    e (s

    pike

    s/se

    c)

    0

    1

    2

    3

    4

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    1

    2

    3

    4

    Z0514

    Env

    elop

    e O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0.0

    0.5

    1.0

    1.5

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0.0

    0.5

    1.0

    1.5Z0504

    Env

    elop

    e O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0.0

    2.5

    5.0

    7.5

    10.0

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0.0

    2.5

    5.0

    7.5

    10.0

    Z0504

    Lum

    inan

    ce M

    odul

    ated

    Res

    pons

    e (s

    pike

    s/se

    c)

    0

    1

    2

    3

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    1

    2

    3

    Z0504

    Car

    rier O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0

    3

    6

    9

    12

    15

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    3

    6

    9

    12

    15

    Z0517

    Car

    rier O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0

    3

    6

    9

    12

    15

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    3

    6

    9

    12

    15

    Z0517

    Env

    elop

    e O

    rient

    atio

    nR

    espo

    nse

    (spi

    kes/

    sec)

    0

    5

    10

    15

    20

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0

    5

    10

    15

    20

    Z0517

    Lum

    inan

    ce M

    odul

    ated

    Res

    pons

    e (s

    pike

    s/se

    c)

    0

    20

    40

    60

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0

    20

    40

    60

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)C

    ontra

    st M

    odul

    ated

    0

    60

    120

    180

    180

    120

    60

    Z0517

    Lum. Carr. Env.

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)Lu

    min

    ance

    Mod

    ulat

    ed

    0

    100

    200

    300

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0

    100

    200

    300

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)C

    ontra

    st M

    odul

    ated

    0

    50

    100

    150

    150

    100

    50

    Z0504

    Lum. Carr. Env.

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)Lu

    min

    ance

    Mod

    ulat

    ed

    0

    100

    200

    300

    400

    0

    30

    60

    90

    120

    150

    180

    210

    240

    270

    300

    330

    0

    100

    200

    300

    400

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)C

    ontra

    st M

    odul

    ated

    0

    25

    50

    75

    100

    100

    75

    50

    25

    Z0514

    Z0514

    Lum. Carr. Env. Illu. Con.

    Mul

    tiUni

    t Res

    pons

    e (s

    pike

    s/se

    c)Lu

    min

    ance

    Mod

    ulat

    ed

    MUA   MUA  

    1st-‐order   2nd-‐order  

    narrow  broad  

    cat  data:  Mareschal  &  Baker  (1999)