For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For...

43
For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical Convergence Zone in an idealized coupled general circulation model Journal: Dynamics and Statistics of the Climate System: An Interdisciplinary Journal Manuscript ID Draft Manuscript Type: Research Article Date Submitted by the Author: n/a Complete List of Authors: Fuckar, Neven Stjepan; Barcelona Supercomputing Center, Earth Sciences Maroon, Elizabeth; University of Washington College of the Environment, Atmospheric Sciences Frierson, Dargan; University of Washington College of the Environment, Atmospheric Sciences Farneti, Riccardo; Abdus Salam International Centre for Theoretical Physics, Earth System Physics Keywords: Intertropical Convergence Zone, Meridional overturning circulation, Coupled climate general circulation model https://mc.manuscriptcentral.com/dscs Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Transcript of For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For...

Page 1: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

Tropical and extratropical sources of hemispheric

asymmetry of the Intertropical Convergence Zone in an idealized coupled general circulation model

Journal: Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Manuscript ID Draft

Manuscript Type: Research Article

Date Submitted by the Author: n/a

Complete List of Authors: Fuckar, Neven Stjepan; Barcelona Supercomputing Center, Earth Sciences

Maroon, Elizabeth; University of Washington College of the Environment, Atmospheric Sciences Frierson, Dargan; University of Washington College of the Environment, Atmospheric Sciences Farneti, Riccardo; Abdus Salam International Centre for Theoretical Physics, Earth System Physics

Keywords: Intertropical Convergence Zone, Meridional overturning circulation, Coupled climate general circulation model

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 2: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

Tropical and extratropical sources of hemispheric asymmetry of

the Intertropical Convergence Zone in an idealized coupled general circulation model

Neven S. Fučkar1*, Elizabeth A. Maroon2, Dargan M. W. Frierson 2

and Riccardo Farneti3

1 Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain

2 Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA

3 Earth System Physics Section, International Centre for Theoretical Physics, Trieste, Italy

____________________ Corresponding author address*: Neven S. Fučkar, Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS), Earth Sciences Department, C. Jordi Girona 29, 08034 Barcelona, Spain E-mail: [email protected]

Page 1 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 3: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

1  

ABSTRACT 1

 2

This  study  uses  an  idealized  coupled  climate  general  circulation  model  (GCM)  to  examine  3

the  role  of  ocean  basin  geometry  on  the  structure  of  tropical  precipitation.  The  north-­‐south  4

asymmetry  of  tropical  rainfall  is  governed  both  by  tropical  ocean-­‐atmosphere  interactions  5

due  to  the  shape  of  tropical  coastlines  and  by  cross-­‐equatorial  energy  transport  that  can  be  6

driven  by  the  ocean’s  meridional  overturning  circulation  (MOC).  We  compare  these  tropical  7

and  global  effects   in  a  coupled  GCM  with  simplified  atmospheric  physics  and  an  idealized  8

land-­‐ocean  geometry  that  examines  these  two  processes  in  competing  roles.    We  use  single  9

closed   ocean   basins   with   two   equatorially   mirrored   geometries,   one   with   tropical  10

coastlines  that  slant   from  southeast   to  northwest  (westward)  and  the  other  with  tropical  11

coastlines  that  slants  from  southwest  to  northeast  (eastward).    12

 13

When   the   MOC   has   no   significant   asymmetry,   a   slanted   tropical   coastline   on   the   ocean  14

basin’s  eastern  side   triggers  cross-­‐equatorial  surface   flow  in   the  atmosphere  towards  the  15

hemisphere  with  more   land   on   the   eastern   side   of   the   basin.   This   surface   flow   leads   to  16

higher   tropical   sea   surface   temperature   (SST)   and   more   precipitation   in   its   destination  17

hemisphere.   However,   on   long   time   scales   (decadal   and   longer)   when   the   deep   oceanic  18

MOC  develops  significant  asymmetry,  the  MOC’s  influence  on  energy  transport  and  tropical  19

circulation   outweighs   the   tropical   effect   of   the   eastern   slanted   coastlines.  We   show   that  20

MOC  evolution  places  the  main  deep-­‐water  source  in  the  hemisphere  with  less  tropical  land  21

on   the   eastern   side   of   ocean   basin;   as   a   result,   there   is   cross-­‐equatorial   ocean   heat  22

transport,  OHT(y=0),   towards  the  hemisphere  with  the  dominant  deep-­‐water  production.  23

Southward  (northward)  OHT(y=0)  in  the  basin  with  westward  (eastward)  slanted  tropical  24

coastlines  induces  an  anomalous  cross-­‐equatorial  Hadley  circulation  with  a  surface  branch  25

in  the  same  direction  as  OHT(y=0).  Surface  moisture  transport  by  this  anomalous  Hadley  26

circulation  places  the  maximum  of  tropical  precipitation  -­‐  i.e.  the  intertropical  convergence  27

zone   (ITCZ)   -­‐   in   the   southern   (northern)   hemisphere.   We   further   test   this   relationship  28

between   the   MOC   and   tropical   precipitation   with   different   oceanic   initial   conditions  29

favoring   deep-­‐water   production   in   different   hemispheres.   On   long   time   scales,   they  30

demonstrate  a  very  close  dynamic  association  of  the  maximum  of  tropical  SST  and  the  ITCZ,  31

Page 2 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 4: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

2  

with  the  deep  MOC  asymmetry,  OHT(y=0)  and  anomalous  Hadley  circulation.  These  results  32

point   to   the   need   for   the   development   of   a   general   theory   of   tropical   circulation   and  33

precipitation  that  encompasses  both  local  and  global  mechanisms.         34

 35

1.  Introduction  36

 37

The   intertropical   convergence   zone   (ITCZ)   is   a   narrow   region   of   the   most   intense  38

precipitation   and   most   frequent   deep   convective   clouds   on   Earth   (Waliser   and   Gautier  39

1993,  Philander   et   al   1996,  Huffman  et   al.   2009).   Figure  1   shows   the   long-­‐term  mean  of  40

precipitation,  which  has   its  zonal  mean  maximum  located  near  6°N  (based  on  analysis  of  41

Xie  and  Arkin  1997).  The  ITCZ’s  precipitation  comes  from  convergence  and  ascent  of  warm,  42

moist   air   driven   by   the   surface   trade   winds   and,   in   specific   locations,   also   guided   by  43

topography   (Webster   2004,   Xie   2004,   Takahashi   and   Battisti   2007,  Maroon   et   al.   2015).  44

However,  the  location  of  the  intense  upward  flow  and  ITCZ  is  also  a  crucial  element  of  the  45

large-­‐scale   coupled   global   circulation   that   is   responsible   for   the   maintenance   of   the  46

planetary   energy   balance   (Liu   and   Alexander   2007,   Kang   et   al.   2008,   Chiang   2009,  47

Schneider  et  al.  2014).  A  general  theory  for  tropical  precipitation  that  would  combine  both  48

local  mechanisms  with  the  global  circulation  and  energetics  is  still  a  key  open  problem  in  49

climate  dynamics. 50

51

The   influence   of   the  meridional   overturning   circulation   (MOC)   and   the   associated   ocean  52

heat  transport  (OHT)  on  tropical  precipitation  is  an  active  area  of  research.  It  was  initiated  53

to  explain  large  and  abrupt  changes  in  the  northern  hemisphere  (NH)  climate  during  glacial  54

periods  in  the  late  Quaternary  (Dansgaard  et  al.  1993,  Grootes  and  Stuiver  1997,  Peterson  55

et   al.   2000,   Koutavas   and   Lynch-­‐Stieglitz   2004)   that   is   hypothesized   to   stem   from   a  56

weakening   of   the   Atlantic   MOC   (Broecker   et   al.   1985,   Broecker   2007).   This   led   to  57

investigation   of   “water-­‐hosing”   experiments   with   coupled   general   circulation   models  58

(GCM)  that  force  a  weakening  of  the  Atlantic  MOC  with  additional  freshwater  input  in  the  59

northern   Atlantic.   The   consequent   reduction   of   Atlantic   OHT   leads   to   NH   cooling   and  60

southward  displacement   of   the   ITCZ   (e.g.  Manabe   and   Stouffer   1995,  Vellinga   and  Wood  61

2002,  Zhang  and  Delworth  2005,  Cheng  et  al.  2007,  Chiang  et  al.  2008,  Drijfhout  2010). 62

Page 3 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 5: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

3  

  63

The   Southern   Ocean’s   zonally   unconstrained   Antarctic   circumpolar   current   creates   the  64

most   significant   difference   in   large-­‐scale   ocean   dynamics   between   the   two   hemispheres  65

and  has  a  profound  impact  on  global  climate.  Different  geometries  of  the  Drake  Passage,  a  66

narrow   body   of   water   between   South   America   and   the   Antarctic   Peninsula,   can   induce  67

ocean  states  with  rather  different  MOC  and  OHT  (e.g.  Toggweiler  and  Bjornsson  2000,  Sijp  68

and   England   2004).   Fučkar   et   al.   (2013)   show   that   different   modeled   sill   depths   of   the  69

Drake  Passage  can  force  different  levels  of  MOC  asymmetry.  OHT(y=0)  by  the  MOC  moves  70

heat  away  from  the  hemisphere  with  the  circumpolar  channel  and  towards  the  hemisphere  71

with   active   deep   water   production.   This   ocean   hemispheric   asymmetry   leads   to   cross-­‐72

equatorial  atmospheric  heat  transport  AHT(y=0)  in  the  opposite  direction  of  OHT(y=0).  At  73

the  equator,  the  Hadley  circulation  is  responsible  for  the  bulk  of  meridional  AHT.    Because  74

of   the   vertical   distribution   of   energy   in   the   atmosphere,   energy   is   transported   in   the  75

direction  of   the  Hadley  circulation’s  upper  branch,   and  moisture   transport  at   the   surface  76

must  then  move  in  the  opposite  direction  (e.g.  Schneider  et  al.  2014).  As  a  result,  there  is  77

more  tropical  precipitation  in  the  hemisphere  with  deep-­‐water  production. 78

79

Frierson   et   al.   (2013)   explores   the   link   between   the   ITCZ   position   and   interhemispheric  80

energetics  and  circulation  in  atmospheric  reanalysis  data  and  two  GCMs  with  slab  oceans.    81

They   claim   that   stronger   heating   of   the   NH   atmosphere   than   the   SH   atmosphere   is  82

necessary   to   place   the   maximum   of   tropical   precipitation   north   of   the   equator.   This  83

hemispheric  asymmetry  must  be  driven  by  the  northward  OHT(y=0)  because  the  SH  as  a  84

whole  receives  more  net  radiation  at  the  top  of  the  atmosphere  than  the  NH.  If  the  ocean  85

did   not   transport   sufficient   amount   of   heat,   having   greater   net   TOA   radiation   in   the   SH  86

would   cause   greater   SH   tropical   precipitation.   Frierson   et   al.   (2013)   also   show   the  87

dependence  of  the  ITCZ  on  OHT(y=0)  in  model  configurations  with  and  without  continents.  88

Marshall  et  al.  (2014)  also  demonstrate  the  key  role  of  OHT(y=0)  in  placing  the  maximum  89

of  tropical  precipitation  in  the  NH  with  observational  analysis  and  numerical  experiments  90

with  an  idealized  coupled  GCM  that  includes  a  dynamical  ocean. 91

92

Page 4 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 6: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

4  

Understanding  complex  systems  such  as  the  ones  governing  tropical  precipitation  requires  93

modeling   and   analysis   of   both   regional   and   global   climate   domains   at   different   levels   of  94

complexity   (Held   2005).   Realistic   configuration   of   continents   and   complex   physics  95

sometimes   obscure   important   processes   from   being   distinctly   identified.   Using   idealized  96

land-­‐ocean   geometries  with   simplified   boundary   conditions   and   physics   can   further   our  97

knowledge  at  a  more  fundamental  level.  As  these  processes  are  understood,  complexities  in  98

model   physics   and   topography   can   be   increased,   building   toward   a   fuller   picture   of   the  99

climate   system.   This   study   builds   on   the   research   of   Fučkar   et   al.   (2013)   on   coupling  100

tropical  and  global  climate  by  exploring  the  effect  of  slanted  tropical  coastlines  on  tropical  101

rainfall.  We  contrast  the  roles  of  local  atmosphere-­‐ocean  dynamics  with  the  remote  impact  102

of   the   deep  MOC.   Section   2   describes   our   simplified   coupled   GCM   and   its   two   idealized  103

ocean-­‐land  geometries.  Section  3  describes  the  key  aspects  of  the  transient  and  equilibrium  104

climate   states   in   five   coupled   simulations.   The   final   section   contains   conclusions   and  105

suggestions  for  future  research.         106

 107

2.  Idealized  coupled  climate  model  108

 109

We  use  a  coupled  intermediate  complexity  climate  model  (ICCM),  which  is  derived  from  the  110

Geophysical  Fluid  Dynamics  Laboratory  Climate  Model  version  2.0  (GFDL  CM2.0;  Delworth  111

et   al.   2006).   It   differs   from   CM2.0   through   its   simplifications   of   both   atmospheric  112

parameterizations   and   ocean-­‐land   geometry   (Farneti   and   Vallis   2009;   Vallis   and   Farneti  113

2009).  The  model  solves  the  three-­‐dimensional  primitive  equations  for  the  atmosphere  and  114

ocean  with  a  dynamically  consistent  surface  exchange  of  momentum,  heat,  and  freshwater  115

fluxes.  We  use   a   coarse-­‐resolution   configuration  with   a   sector   atmosphere   over   flat   land  116

and   a   closed   (no   circumpolar   channel)   single-­‐basin   flat-­‐bottom   ocean.   This   model’s  117

simplifications  allow  us  to  examine  key  elements  of  coupled  tropical  and  global  dynamics  118

in  a  more  revealing  geometrical  setting,  while  being  computationally  efficient. 119

120

The   atmospheric   component   of   ICCM   has   3.75°x3°   horizontal   resolution   and   7   vertical  121

levels   in  a   sector  geometry   that   is  120°  wide  and   spans  meridionally   from  84°S   to  84°N.    122

Our  atmospheric  GCM  is  based  on  a  moist  B-­‐grid  primitive  equation  dynamical  core  (GFDL  123

Page 5 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 7: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

5  

Global   Atmospheric   Model   Development   Team,   2004).   It   uses   a   gray   radiation   scheme,  124

which   calculates   the   radiative   transfer   of   a   single   longwave   band   through   prescribed  125

optical   depth   (Frierson   et   al.   2006).   As   a   result,   the   atmosphere’s   radiation   does   not  126

depend  on  water  vapor  or  clouds,  but  there  is  still  latent  heat  release.    A  simplified  Monin-­‐127

Obukhov   surface   flux   scheme   and   a   K-­‐profile   boundary   layer   scheme   are   used.   ICCM   is  128

forced  with   a   time-­‐independent,   zonally   uniform,   top-­‐of-­‐atmosphere   solar   radiation   that  129

analytically  fits  the  observed  mean  profile  of  insolation.  Absorption  of  shortwave  radiation  130

in   the   atmosphere   is   neglected.   A   large-­‐scale   condensation   scheme   is   applied   with   a  131

simplified   Betts–Miller   convection   scheme   (Betts   1986;   Frierson   2007).   By   eliminating  132

water  vapor  and  cloud  feedbacks  (since  radiative  fluxes  depend  only  on  temperature)  we  133

focus  mostly  on   the  dynamical   response  of   the   coupled   climate   system   to   changes   in   the  134

ocean. 135

136

The  oceanic  component  of  ICCM  is  the  Modular  Ocean  Model  (MOM)  version  4.0  (Griffies  et  137

al.  2004)  and  has  2°x2°  horizontal  resolution  and  24  vertical  levels.  The  ocean  basin  in  both  138

configurations  is  60°  wide,  spanning  from  70°S  to  70°N,  with  a  flat  bottom  at  3.9  km  depth.  139

In  the  first  geometry  (Exp  I)  the  ocean  basin  has  westward-­‐slanted  coastlines  equatorward  140

of  14°  latitude,  while  in  the  second  geometry  (Exp  II),  the  ocean  basin  has  the  same  tropical  141

coastline  angles,  but  slanted  eastward  (Figure  2).  The  ocean  physics  parameterizations  are  142

based   on   the   standard   free   surface   MOM4   model   incorporated   into   the   CM2.0.   We   use  143

constant  vertical  tracer  diffusivity  of  0.5  cm2  s-­‐1  and  the  Gent–McWilliams  (GM)  skew  flux  144

scheme  combined  with  a  downgradient  neutral  diffusion  that  parameterizes  the  effects  of  145

mesoscale   eddies   using   a   constant   eddy   tracer   diffusivity   of   800   m2   s-­‐1   (Gent   and  146

McWilliams  1990,  Griffies  1998). 147

148

The   dynamic–thermodynamic   sea   ice   simulator   (SIS:   Winton   2000)   is   computed   on   the  149

ocean   grid.   The   land   component,   LM2.0   (GFDL   Global   Atmospheric   Model   Development  150

Team,  2004),  is  configured  at  the  atmospheric  horizontal  resolution  and  is  implemented  as  151

a   collection  of   soil  water   reservoirs  with   constant  water  availability   and  heat   capacity  at  152

each  cell.  The  excess  precipitated  water   is  send  back  to   the  ocean  at  a  prescribed  nearby  153

point.  There  are  no  lakes,  mountains,  glaciers  or  ice  sheets  in  the  system,  and  because  there  154

Page 6 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 8: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

6  

are  no  clouds,  surface  albedo  is  adjusted  to  obtain  a  realistic  mean  climate.  For  more  details  155

of  ICCM  setup,  see  Farneti  and  Vallis  (2009).  The  latest  version  of  ICCM  is  publicly  available  156

from  GFDL  as   a  part  of  MOM5  distribution   (https://fms.gfdl.noaa.gov/modeling-­‐systems-­‐157

group-­‐public-­‐releases). 158

159

Four  Exp  I  simulations  use  the  same  basin  configuration  shown  in  Figure  2.a  (I.zu,  I.nh,  I.bl  160

and  I.sh)  but  they  differ  in  their  oceanic  no-­‐flow  initial  conditions  (IC).  Exp  I.zu  is  initialized  161

from  an  ocean  state  with  zonally  uniform  (zu)  and  hemispherically  symmetric  temperature  162

and   salinity   fields.   IC   at   the   surface   roughly   match   annual   and   zonal   mean   sea   surface  163

temperature  (SST)  and  salinity  from  the  World  Ocean  Atlas  2009  (WOA09:  Locarnini,  R.  A.  164

et   al.   2009,   Antonov,   J.   I.   et   al.   2009).   They   exponentially   decay   to   the   model’s   bottom  165

where  they  roughly  match  the  surface  IC  at  the  poleward  edges  of  the  ocean  basin.  Exp  I.zu  166

is  integrated  for  1000  years.  Temperature  and  salinity  from  Exp  I.zu  are  averaged  over  the  167

last  100  years  of  the  simulation  to  construct  oceanic  IC  for  the  other  Exp  I  simulations  and  168

for   the   Exp   II   simulation   (details   of   additional   simulations   are   in   the   following   section).    169

ICCM’s   atmosphere   and   land   are   initialized   from   a   default   uniform   IC   because   they  170

dynamically   equilibrate   with   the   rest   of   coupled   system   on   short   time   scales   (within   a  171

year).     172

173

3.  Results 174

  175

Westward   or   eastward   slanted   tropical   coastlines   are   the   only   boundary   condition  176

asymmetry  between  hemispheres  in  our  coupled  model.  As  such,  the  tropical  coastlines  are  177

forcing  any  aspect  of  hemispheric   climate  asymmetry,  directly  or   indirectly.  We   focus  on  178

the  coupled  ocean-­‐atmosphere  response  of  the  tropics  and  the  extratropics  (i.e.  the  global  179

system)  to  the  different  tilts  of  tropical  coastlines.  The  tropical  and  extratropical  responses  180

have  different  characteristic  time  scales  and  different  amplitudes  of  impact  on  the  tropical  181

atmospheric  circulation  and  precipitation. 182

183

3.1  Experiments  with  westward  slanted  tropical  coastlines 184

185

Page 7 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 9: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

7  

The   atmosphere   and   ocean   are   strongly   coupled   in   the   tropics   where   atmospheric  186

convection  and  precipitation  are  closely  associated  with  SST  and  the  most  active  part  of  the  187

variability  spectrum  is  on  time  scales  shorter  than  decadal  (e.g.,  Sarachik  and  Cane  2010).  188

The  average  of  the  first  20  years  of  Exp  I.zu  has  more  tropical  precipitation  in  the  NH  than  189

in   the   Southern   Hemisphere   (SH,   shading   in   Figure   3.a).   This   precipitation   anomaly   is  190

coupled   to   the   anomalous   southerly   cross-­‐equatorial   surface   wind   through   the   wind-­‐191

evaporation-­‐SST  (WES)  feedback  (Xie  and  Philander  1994).  The  cross-­‐equatorial  ‘‘C  shape’’  192

of   the   anomalous   surface   wind   on   the   eastern   side   of   the   ocean   basin   (Figure   3.a)   is   a  193

signature  of  the  WES  feedback  (Xie  2004,  Fučkar  et  al.  2013).  On  short  time  scales,  the  WES  194

feedback   connects   the   SH   tropics  with   its   stronger   easterlies,   stronger   evaporation,   and  195

lower  SST  to  the  weaker  easterlies,  weaker  evaporation,  and  higher  SST  in  the  NH  tropics.  196

This  tropical  asymmetry  is  induced  by  the  westward  slanted  coastline  on  the  eastern  side  197

of   the   ocean   basin   due   to   the   propagation   of   anomalies   by   the   trade   winds.   Because   of  198

ICCM’s  relatively  coarse  atmospheric  resolution,  annual  mean  insolation,  and  lack  of  water  199

vapor  and  cloud  feedbacks,  the  spatial  structure  of  tropical  precipitation  does  not  shift  very  200

far  from  the  equator.     201

  202

On  long  time  scales,  however,  the  sign  and  magnitude  of  anomalies  in  tropical  surface  wind,  203

SST   and   precipitation   in   our   model   is   not   predominantly   controlled   by   local   processes.  204

Figure  3.b   shows   that  on  multi-­‐decadal   to   centennial   time   scales,   zonal  mean  anomalous  205

SST  (shading),  anomalous  precipitation  (contours),  and  surface  wind  stress  (vectors)  in  the  206

tropics   reverse   sign,  which   places   the  maximum  of   precipitation   in   the   SH.   The   Exp   I.zu  207

simulation   reaches   equilibrium   after   approximately   300   years;   hence,   in   Figure   3.c,   we  208

examine   the  average  surface   tropical  conditions   from  years  381  to  400.  Figure  3.c  shows  209

that   the   WES   feedback   is   still   present   on   the   eastern   edge   of   the   basin,   forced   by   the  210

westward  slanted  tropical  coastline.  Nonetheless,  there  is  more  tropical  precipitation  in  the  211

SH  than  in  the  NH  due  to  the  anomalous  northerly  cross-­‐equatorial  surface  wind  over  the  212

majority   of   the   ocean   basin.   Surface   winds   over   land   in   the   tropics   do   not   change  213

sufficiently   to   play   a   role   in   this   transition.   In   the   coupled   equilibrium   state,   the   cross-­‐214

equatorial  “C  shape”  of  anomalous  surface  winds  in  the  middle  of  the  basin  overpowers  a  215

smaller  cross-­‐equatorial  “C  shape”  of  anomalous  northward  winds  on  the  east  of  the  basin.  216

Page 8 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 10: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

8  

This  anomalous  surface  structure  and  time  evolution  in  the  tropics  agrees  with  the  results  217

of  Fučkar  et  al.  (2013);  in  that  study,  there  were  no  slanted  coastlines,  and  the  deep  MOC  218

asymmetry  alone  forced  the  tropical  hemispheric  symmetry. 219

220 Figure  4.a  examines   the  key   factor   in   the  slow  transition   in  Exp   I.zu,   the  evolution  of   the  221

deep  MOC.  Because  this  experiment  is  initialized  from  zonally  uniform  oceanic  IC,  the  MOC  222

behaves  erratically  over   the   first  50  years  as   it   adjusts;   afterwards,   the  main  deep-­‐water  223

source  becomes  firmly  anchored  in  the  SH  (blue  curve).  The  deep  MOC  in  Exp  I.zu  develops  224

a  stable  hemispheric  asymmetry  after  roughly  400  years  of  integration.     225

  226

OHT(y=0)  (Figure  4.b)  is  also  southward  when  SH  deep-­‐water  production  becomes  greater  227

than   NH   deep-­‐water   production   (Figure   4.a).   Southward   or   negative   OHT(y=0)  228

accompanies  the  deep  MOC’s  asymmetry  and  leads  to  greater  extratropical  heat  release  to  229

the   atmosphere   in   the   SH   than   in   the   NH   (not   shown).   An   increased   (decreased)  230

extratropical  heat  release  from  the  ocean  to  the  atmosphere  in  the  SH  (NH)  makes  the  SH  231

(NH)  the  warmer  (colder)  hemisphere.  The  extratropical  heat  release  decreases  (increases)  232

the   meridional   surface   temperature   gradient   between   the   equator   and   extratropics,  233

weakening   (strengthening)   transient   eddies.   The   affected   eddies   interact   with   the  234

poleward  edge  of  the  Hadley  circulation,  and  influence  its  strength  (Kang  et  al  2008).  The  235

Hadley   circulation   asymmetry   index   (blue   curve)   in   Figure   4.b   shows   that   MOC-­‐forced  236

hemispheric   asymmetry   strengthens   (weakens)   the   Hadley   cell   in   the   SH   (NH).   In  237

comparison  to  an  equatorially  symmetric  state,  an  anomalous  cross-­‐equatorial  Hadley  cell  238

develops  with  its  lower  (upper)  branch  transporting  moisture  (heat)  to  the  SH  (NH).  At  the  239

surface,  the  anomalous  Hadley  circulation  causes  the  mainly  northerly  anomalous  surface  240

winds  in  deep  tropics  over  the  ocean  (Figure  3c).               241

242

In  the  tropics,  SST  and  precipitation  anomalies  are  coupled  on  short  time  scales  (Philander  243

et  al.  1996,  Chang  et  al  2004,  Xie  2004).  However,  Figure  4.c  shows  that  the  evolution  of  the  244

interhemispheric   differences   of   precipitation   and   SST   on   long   time   scales   is   primarily  245

determined  by  the  deep-­‐MOC  asymmetry  and  OHT(y=0)  in  our  model.    This  extratropically-­‐246

forced  asymmetry  evolves  in  spite  of  the  persistent  forcing  of  moist  surface  air  towards  the  247

Page 9 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 11: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

9  

NH  at   the  eastern  edge  of   the  ocean  basin  by   the  WES   feedback   (Figure  3.c).  Despite   the  248

subtlety  of  the  precipitation  pattern  shifts,  there  is  distinct  hemispheric  asymmetry  in  the  249

amount  of  precipitation  that  develops.  This  relative  NH  versus  SH  precipitation  asymmetry,  250

not  the  absolute  ITCZ  position,  is  the  focus  of  our  work,  because  the  mechanisms  important  251

for  the  hemispheric  precipitation  asymmetry  are  relevant  for  the  observed  ITCZ. 252

253 After   1000   years   of   integration   the   asymmetry   of   the   climate   state   of   Exp   I.zu   did   not  254

switch  hemispheres  or  change  magnitude.  Figure  5.b  shows  the  year  801-­‐1000  average  of  255

the  MOC   streamfunction.   The   deep  MOC   asymmetry   controls   the   OHT   and   extratropical  256

surface   heat   flux   asymmetry.   This   surface   heat   flux   asymmetry,   in   turn,   drives   the  257

anomalous  Hadley  and  Ferrel  cells  shown  in  Figure  5.a.  through  changes  in  the  meridional  258

temperature  gradient  at  the  surface.  The  Hadley  circulation  is  thermally  direct  (Dima  and  259

Wallace  2003,  Webster  2004),   so  coupled   tropical  atmosphere–ocean  dynamics  place   the  260

ascending   branch   of   the   anomalous   Hadley   cell   in   the   hemisphere  warmed   by   the   OHT,  261

which  also  contains   the  main  source  of  deep-­‐water  production.  The  maximum  of   tropical  262

precipitation  accompanies  the  ascending  branch  of  the  Hadley  circulation. 263

264

We  can  further  test  this  relation  between  the  deep  MOC  and  tropical  precipitation  on  long  265

time   scales   suggested   by   the   Exp   I.zu   simulation   by   using   different   oceanic   IC   that   are  266

conducive  to  deep-­‐water  production  in  a  specific  hemisphere  or  in  neither  hemisphere.  We  267

use  the  average  ocean  temperature  and  salinity  from  Exp  I.zu  between  years  901  and  1000  268

and  as  a  zero-­‐flow  IC  that  favors  the  main  deep-­‐water  source  in  the  SH  from  year  1  (the  Exp  269

I.sh   simulation).  The   symmetric   component  with   respect   to   the   equator   and   the  western  270

boundary   of   the   basin   of   the   same   Exp   I.zu   temperature   and   salinity   fields   are   used   to  271

produce   a   hemispherically   balanced   (bl)   zero-­‐flow   IC   in   Exp   I.bl   simulation.   Finally,   we  272

mirror  the  IC  of  Exp  I.sh  across  the  equator  to  create  zero-­‐flow  IC  that   favors  placing  the  273

main  deep-­‐water  source  in  the  NH  at  the  start  of  the  integration  in  Exp  I.nh  simulation.       274

275

We  integrated  these  three  additional  IC  simulations  with  the  same  ocean-­‐land  geometry  as  276

Exp  I.zu  for  500  years.  Exp  I.nh  starts  with  vigorous  deep-­‐water  production  in  the  NH  and  it  277

takes  more  than  100  years  for  the  MOC  to  reorganize  its  structure  and  shift  the  main  deep-­‐278

Page 10 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 12: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

10  

water   source   into   the   SH   (Figure   6.a).   OHT(y=0)   and   the   Hadley   circulation   asymmetry  279

(Figure   6.c),   as  well   as   the   tropical   SST   and   precipitation   asymmetry,   (Figure   6.f)     again  280

closely  follow  the  evolution  of  deep  MOC  on  decadal  and  longer  time  scales.  In  the  first  100  281

years,   northward   cross-­‐equatorial   OHT   decreases   (increases)   the   surface   meridional  282

temperature   gradient   in   the   NH   (SH)   leading   to   a  weaker   (stronger)   Hadley   cell   in   that  283

hemisphere.   An   anomalous   cross-­‐equatorial   Hadley   cell   has   its   lower   (upper)   branch  284

transporting  moisture   (heat)   toward   the   NH   (SH);   this   leads   to   higher   tropical   SST   and  285

precipitation   in   the   NH.   However,   by   the   second   century   of   simulation,   the   deep   MOC  286

asymmetry   reverses   and   forces   the   associated   reversal   of   the   tropical   circulation   and  287

precipitation  asymmetries,  firmly  placing  the  maximum  of  tropical  precipitation  in  the  SH. 288

  289

The   IC   of   Exp   I.bl   are   in   an   interhemispheric   sense   closest   to   the   IC   of   Exp   I.zu,   but   are  290

dynamically  quasi-­‐balanced  to  avoid  the  random  unstable  MOC  behavior  that  occurred  at  291

the   beginning   of   Exp   I.zu   (Figure   4.a).   As   a   result,   the   deep   MOC   asymmetry   builds  292

gradually  in  Exp  I.bl  (Figure  6.b).  This  asymmetry  development  takes  more  than  100  years  293

for  asymmetry  to  favor  the  SH  over  the  NH.  Before  the  significant  MOC  asymmetry  occurs,  294

local   tropical   processes   place   the  maximum   of   tropical   SST   and   precipitation   in   the   NH  295

(Figure  6.h).  However,  once  the  MOC  anchors  the  main  source  of  deep  water  in  the  SH,  the  296

asymmetry   in   the   Hadley   circulation   (Fig.   6e),   tropical   SST,   and   tropical   precipitation  297

follows   the   MOC   asymmetry.   Again,   the   ITCZ   moves   to   the   SH   once   the   deep   MOC  298

asymmetry   fully   develops   (Figure   6.h).   The   oceanic   IC   in   Exp   I.sh   favor   and   produce   a  299

vigorous   deep-­‐water   production   in   the   SH   from   the   beginning   of   the   simulation   (Figure  300

6.c).     This   extratropical   asymmetry   forces   an   anomalous   Hadley   circulation   that   very  301

quickly  overpowers  the  local  tropical  processes  driven  by  the  slanted  coastline  (Figure  6.f).  302

The  Hadley  circulation  asymmetry  anchors  the  ITCZ  in  the  SH  in  the  first  decade  of  model  303

integration  (Figure  6.i).                     304

305

Figure  7  shows  the  time  evolution  of  tropical  adjustment  in  Exp  I.nh,  Exp  I.bl  and  Exp  I.sh.    306

The   long   time   scales   involved   are   uncharacteristic   for   the   tropical   coupled   ocean-­‐307

atmosphere   and   follow   the   asymmetry   in   global   circulation   driven   by   the   deep   MOC  308

evolution  (Figure  6).  The  equilibrium  state  with  southward  “C  shaped”  mean  wind  stress  in  309

Page 11 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 13: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

11  

deep   tropics,   SH   maximum   tropical   SST,   and   SH   maximum   precipitation   occurs   at  310

substantially  different   times   in  each   these   simulation.  The  overturning   streamfunction   in  311

the  atmosphere  and  ocean   from  the   last  100  years  of  Exp   I.nh,  Exp   I.bl  and  Exp   I.sh   (not  312

shown)   all   match   the   equilibrium   state   of   Exp   I.zu   shown   in   Figure   5.   Overall,   the   time  313

evolution  of  all  Exp  I  simulations  shows  that   the  deep  MOC  asymmetry   forces  southward  314

OHT(y=0),  southward  anomalous  surface  moisture  transport  by  the  Hadley  circulation,  and  315

the  maximum  of  tropical  precipitation  in  the  SH  in  equilibrium  state  regardless  of  which  IC  316

were  used. 317

318

3.2 Experiment with eastward slanted tropical coastlines 319

320

As  compared  to  the  Exp  I.  simulations,  the  Exp  II.bl  simulation  uses  equatorially  mirrored  321

ocean-­‐land   geometry.   Exp   II.bl’s   oceanic   IC   are   aligned   with   respect   to   the   western  322

boundary   of   the   ocean   basin   but   are   otherwise   the   same   as   those   used   in   the   Exp   I.bl  323

simulation.     With   this   simulation,   we   additionally   verify   if   the   hemispheric   asymmetry  324

discussed  in  the  previous  section  consistently  switches  sign  with  the  reversed  coastlines. 325

  326

With  this  additional  ocean-­‐land  configuration,   the  mean  surface  conditions   in   the   first  20  327

years  show  more  tropical  precipitation  in  the  SH  than  in  the  NH  (shading  in  Figure  8.a):  the  328

greater   SH   precipitation   in   this   transient   state   is   due   to   anomalous   northerly   equatorial  329

surface   wind   on   the   eastern   side   of   the   ocean   basin.   WES   feedback   is   initiated   by   the  330

eastern   tropical   coastline,   but   in   this   simulation   it   is   slanted   eastward   with   increasing  331

latitude,   the  opposite  direction   from  all   the  Exp   I   simulations.  On   the  eastern   side  of   the  332

basin   in   Exp   II.bl,   ocean-­‐land   geometry   induces   an   anomalous   interhemispheric   surface  333

pressure  gradient  due  to  anomalous  interhemispheric  surface  temperature  differences.    In  334

this  case  higher  surface  pressure  over  the  colder  ocean  in  the  NH  tropics  and  lower  surface  335

pressure   over   the   warmer   land   in   the   SH   tropics   around   90°E   forces   northerly   cross-­‐336

equatorial  surface  wind  there.  This  anomalous  wind  obtains  easterly  (westerly)  component  337

north   (south)   of   the   equator   due   to   the   Coriolis   force   leading   to   westward   increase  338

(decrease)   of   the   trade   winds.   This   wind   speed   increase   (decrease)   causes   further  339

intensification   (reduction)   of   evaporative   cooling,   which,   in   turn,   further   decreases  340

Page 12 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 14: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

12  

(increases)   the   surface   temperature   to   the   north   (south)   of   the   equator.   This   cross-­‐341

equatorial   pattern   amplifies   the   initial   surface   temperature   perturbation   on   the   eastern  342

side   of   the   basin.     The   WES-­‐feedback   propagates   this   surface   temperature   anomaly  343

westward,  which  decreases  (increases)  convective  activity  and  precipitation  over  the  ocean  344

basin  in  the  NH  (SH)  tropics.  In  our  model,  the  westward  propagation  of  the  WES  feedback  345

decays  about  30°  west  from  the  eastern  boundary  (Figures  8.a  and  3.a):  the  WES-­‐induced  346

cross-­‐equatorial  dipole  anomalies  also  propagate  equatorward  in  the  region  of  background  347

easterly  wind  (Xie  2004)  so  they  dissipate  when  they  reach  the  equator.   348

  349

In  Exp  II.bl,   the  anomalies  of  tropical  wind  stress  (Figure  8.b,  vectors),  SST  (shading)  and  350

precipitation  (contours)  are  not  predominantly  controlled  by  local  processes  on  long  time  351

scales.   After   about   100   years,   these   anomalies   reverse   sign,   placing   the   maximum   of  352

precipitation   in   the  NH.  After  Exp   II.bl   reaches  equilibrium  around  year  400,   the  average  353

surface   tropical   conditions  along   the  eastern  edge  of   the  basin   still   show  evidence  of   the  354

WES  feedback.  However,  the  maximum  of  tropical  precipitation  across  the  ocean  basin  is  in  355

the  NH:  anomalous  southerly  surface  winds  across   the  equator  occur  throughout  most  of  356

the  ocean  basin,  pushing  precipitation  northward.  This  anomalous  surface  structure  and  its  357

time   evolution   in   the   tropics   reflect   the   dominance   of   the   anomalous   cross-­‐equatorial  358

Hadley  circulation  over  the  ocean.  This  coupled  circulation’s  asymmetry  about  the  equator  359

is  induced  by  the  MOC  asymmetry,  just  as  in  the  Exp  I  simulations.     360

361

In  Exp  II.bl  the  main  source  of  multidecadal  changes  again  is  driven  by  the  evolution  of  the  362

deep   MOC   (Figure   9.a).   This   ICCM   experiment   is   initialized   from   dynamically   quasi-­‐363

balanced  oceanic   IC;   as   a   result,   the  MOC  avoids   erratic  behavior   at   the  beginning  of   the  364

simulation.  The  dominance  of  deep-­‐water  production  in  the  NH  over  the  SH  is  established  365

before  the  end  of  first  century.  OHT(y=0)  (Figure  9.b,  red  curve)  and  the  Hadley  circulation  366

asymmetry  index  (blue  curve)  show  less  correlation  in  the  first  50  years  because  the  deep  367

MOC  asymmetry  has   not   chosen   a   dominant   hemisphere   yet.   As   a   result,   tropical   ocean-­‐368

atmosphere  processes  exert  the  dominant  control  over  the  Hadley  cells  during  the  first  50  369

years  (also  evident  in  Figure  8.b).    Afterwards,  however,  an  anomalous  Hadley  circulation  370

develops  with  its  lower  branch  transporting  moisture  into  the  NH.  Furthermore,  Figure  9.c  371

Page 13 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 15: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

13  

again  shows  co-­‐evolution  of   the   interhemispheric  differences  of   tropical  SST  (blue  curve)  372

and  precipitation  (red  curve)  on  long  time  scales. 373

374

Exp  II.bl  reaches  a  stable  equilibrium  climate  after  about  300  years.  Figure  10.b  shows  the  375

801-­‐1000   year   average   of   the   hemispherically   asymmetric   MOC   streamfunction.   This  376

asymmetric   streamfunction   is   mirrored   across   the   equator   from   the   Exp   I   simulations  377

shown   in   Figure   5.b   for   Exp   I.zu.   The   direction   of   the   MOC   controls   the   hemispheric  378

asymmetry   of   the   coupled   global   circulation   and   energetics   on   long   time   scales   in   our  379

model.  The  deep  MOC  determines  the  direction  and  the  amplitude  of  the  anomalous  Hadley  380

and  Ferrel  cell   shown   in  Figure  10.a.  The  ascending  branch  of   the  anomalous  Hadley  cell  381

and  the  maximum  of  tropical  precipitation  is  anchored  in  the  NH,  which  has  the  dominant  382

source  of  deep  water. 383

384

4.  Conclusions  and  future  directions   385

386

Five   numerical   experiments   with   the   ICCM   model,   an   idealized   coupled   GCM   with  387

simplified   atmospheric   physics   and   comprehensive   ocean   physics,   are   presented   here   to  388

examine   the   competition   of   local   effects   of   tropical   coastlines   and   global   coupled  389

overturning  circulation  on  tropical  circulation  and  precipitation.    These  simulations  show  390

that  slanted  tropical  coastlines  affect  tropical  precipitation  via  the  WES  feedback  near  the  391

eastern  coast  of   the  basin  through  the  entire   integration  of  all  simulations.  However,   this  392

local  coupled  ocean-­‐atmosphere  process  determines  the  position  of  ITCZ  only  if  the  ocean’s  393

deep  MOC  does   not   develop   a   significant   interhemispheric   asymmetry  with   an   opposing  394

effect.   Once   the   asymmetry   of   ocean   circulation   places   the   main   source   of   deep-­‐water  395

production   in   one   hemisphere,   then   the   whole   climate   follows   that   asymmetry.   The  396

hemisphere   with   the   prevailing   deep-­‐water   production   also   contains   greater   tropical  397

precipitation,   irrespective  of   the   local   forcing  of   slanted   tropical   coastline  on   the  eastern  398

side  of  the  ocean  basin. 399

400

In  all  numerical  experiments,  during  both  the  transient  evolution  and  in  steady  states,  the  401

deep  MOC  asymmetry  (measured  by  our  index  as  the  maximum  NH  MOC  streamfunction  -­‐  402

Page 14 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 16: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

14  

minimum  SH  MOC  streamfunction)  is  a  useful  linear  predictor  of  the  cross-­‐equatorial  OHT  403

(Figure   11.a)   and   the   interhemispheric   asymmetry   of   the   extratropical   surface   heat   flux  404

(Figure  11.b).  The  ocean  basin  geometry  forces  the  dominant  deep-­‐water  production  in  the  405

hemisphere  with  less  tropical  land  on  the  eastern  side  of  the  basin.  The  MOC  that  develops  406

with   greater   deep  water   production   in   one   hemisphere   causes   OHT(y=0)   into   this   same  407

hemisphere.   The   hemisphere   heated   by   the   ocean   circulation   is   warmed   due   to   greater  408

extratropical  heat  release  from  the  ocean  to  the  atmosphere,  as  compared  to  the  opposite  409

hemisphere.   The   hemisphere   that   is   relatively   warmed   (cooled)   by   the   OHT   develops   a  410

weaker   (stronger)   meridional   surface   temperature   gradient   between   the   tropics   and  411

extratropics.    This  weaker  (stronger)  temperature  gradient,  in  turn,  weakens  (strengthens)  412

the   Hadley   and   Ferrel   cells   in   that   hemisphere.   This   change   in   the   global   atmospheric  413

overturning   circulation   (Figure   11.c)   is   manifested   in   the   tropics   as   anomalous   cross-­‐414

equatorial  Hadley  cell  that  transports  moisture  (heat)  by  its  lower  (upper)  branch  toward  415

the  direction  of  warmer  (colder)  hemisphere.  The  cross-­‐equatorial  flow  of  warm  and  moist  416

air  over  the  most  of  the  ocean  basin  anchors  the  ascending  branch  of  the  Hadley  circulation  417

and   the  maximum  of   tropical   precipitation   in   the   hemisphere  with   the  main   deep-­‐water  418

source  (Figure  11.d).       419

 420

On  Earth,   the   continents   in   all   ocean   basins   have  much  more   of   a  westward   tilt   than   an  421

eastward   tilt.     Our   idealized  modeling   results   suggest   that   this   tropical   effect   on   its   own  422

would   cause   the   ITCZ   to   be   located   in   the   NH   as   in   observations   only   if   there   is   no  423

significant   interhemispheric   asymmetry   between   extratropics   in   coupled   general  424

circulation,   but   such   global   asymmetry   is   clearly   evident   in   the  present   climate   (Liu   and  425

Alexander,  2007).    We  suggest  that  the  key  ingredient  from  these  experiments  is  the  same  426

as   that   identified   by   Fučkar   et   al   (2013)   and   Frierson   et   al   (2013),   the   oceanic   MOC.    427

Specifically,  in  the  Fučkar  et  al  (2013)  study,  we  showed  in  this  same  model  that  opening  a  428

Drake   passage-­‐like   channel   in   the   SH   is   sufficient   to   force   anchoring   the   deep   water  429

production  of  the  MOC  in  the  NH,  and  shift  the  ITCZ  northward.    We  consider  this  study  to  430

be  strong  additional  evidence  that  whatever  causes  the  MOC  to  transport  heat  northward  431

across  the  equator  in  the  ocean  also  causes  the  ITCZ  to  be  in  the  NH.      432

 433

Page 15 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 17: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

15  

Our   use   of   an   idealized  model  with   an   intermediate   level   of   complexity,  while   useful   for  434

ease   of   interpretation,   also  means   that   there   are   caveats   with   this   work   that   should   be  435

tested   in   follow-­‐up   studies  with  models   of   increasing   levels   of   complexity.   For   example,  436

would  the  deep  MOC  asymmetry  still  determine  the  main  position  of   the   ITCZ  with  more  437

comprehensive   model   physics   (e.g.   clouds),   model   geometry   (e.g.,   higher   resolution,  438

mountains  and  more  realistic  ocean-­‐land  configuration)  and  SW  forcing  (e.g.  seasonal  and  439

diurnal   solar   variation).   This   gray   atmosphere   shares   much   code   with   its   cousin,   the  440

comprehensive  GFDL  AM2  model;  the  tropical  circulation  in  this  gray  atmosphere  responds  441

with   weaker   magnitude   than   AM2,   but   both   respond   to   various   forcings   with   the   same  442

interhemispheric   asymmetry   (Kang   et   al.   2008,   2009,   Seo   et   al.   2014,   Maroon   et   al.   in  443

press);  we  anticipate  that  the  inclusion  of  more  comprehensive  atmospheric  physics  would  444

amplify   the   hemispheric   response   that   we   see   in   this   study.   Furthermore,   orography,  445

especially  the  Andes  mountain  range,  has  a  known  effect  on  the  ITCZ  location  in  the  eastern  446

tropical   Pacific   with   local   WES   and   stratus   cloud   feedbacks   involved   (Takahashi   and  447

Battisti,   2007,   Maroon   et   al.   2015).     Local   tropical   processes   induced   by   the   Andes   and  448

other  mountain  ranges  should  be  also  fully  tested  as  well  in  coupled  climate  models.  While  449

our  ICCM  model  lacks  comprehensive  atmospheric  physics  and  real-­‐world  topography  and  450

bathymetry,  it  does  include  a  comprehensive  ocean  model;  as  such,  ICCM,  alongside  more  451

complex   coupled   models,   is   a   useful   tool   for   improving   the   understanding   of   tropical-­‐452

extratropical  coupled  dynamics.  Examining  the  interaction  of  the  MOC  with  tropical  climate  453

at   different   time   scales   would   benefit   our   understanding   from   seasonal   climate   to  454

paleoclimate   dynamics.   Overall,   the   development   of   an   encompassing   global   theory   of  455

tropical  circulation  and  precipitation  would  benefit  climate  predictions  and  projections.   456

 457

Acknowledgments    458

 459

The   authors   thank   Shang-­‐Ping   Xie,   LuAnne   Thompson,   Cecilia   Bitz,   David   Battisti,   and  460

Xiaojuan  Liu  for  valuable  discussions.  D.M.W.F  was  supported  by  NSF  grants  AGS-­‐1359464,  461

PLR-­‐1341497,  and  a  UW  Royalty  Research  Fund  award.  E.A.M.  was  supported  by  a  NDSEG  462

fellowship  and  an  NSF  IGERT  Program  on  Ocean  Change  traineeship.  463

 464

Page 16 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 18: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

16  

References  465

   466

Antonov,  J.  I.,  D.  Seidov,  T.  P.  Boyer,  R.  A.  Locarnini,  A.  V.  Mishonov,  H.  E.  Garcia,  O.  K.  467 Baranova,  M.  M.  Zweng,  and  D.  R.  Johnson,  2010:  World  Ocean  Atlas  2009,  Volume  2:  468 Salinity.  S.  Levitus,  Ed.  NOAA  Atlas  NESDIS  69,  U.S.  Government  Printing  Office,  469 Washington,  D.C.,  184  pp. 470   471 Betts,  A.  K.,  1986:  A  new  convective  adjustment  scheme.  Part  I:  Observational  and  472 theoretical  basis.  Quart.  J.  Roy.  Meteor.  Soc.,  112,  677–692. 473   474 Broecker,  W.  S.,  D.  M.  Peteet,  and  D.  Rind,  1985:  Does  the  ocean-­‐atmosphere  system  have  475 more  than  one  stable  mode  of  operation?  Nature,  315,  21–26. 476   477 Broecker,  W.  S.  2007:  Musings  about  the  connection  between  thermohaline  circulation  and  478 climate—Past  and  Future  Changes  of  Meridional  Overturning,  Geophys.  Monogr.,  Vol.  173,  479 Amer.  Geophys.  Union,  265–278 480   481 Chang,  P.,  and  Coauthors,  2006:  Climate  fluctuations  of  tropical  coupled  system—The  role  482 of  ocean  dynamics.  J.  Climate,  19,  5122–5174. 483   484 Cheng,  W.,  C.  M.  Bitz,  and  J.  C.  H.  Chiang,  2007:  Adjustment  of  the  global  climate  to  an  abrupt  485 slowdown  of  the  Atlantic  meridional  overturning  circulation.  Ocean  Circulation:  486 Mechanisms  and  Impacts—Past  and  Future  Changes  of  Meridional  Overturning,  Geophys.  487 Monogr.,  Vol.  173,  Amer.  Geophys.  Union,  295–313 488   489 Chiang,  J.  C.  H.,  2009:    The  Tropics  in  Paleoclimate.    Annual  Review  of  Earth  and  Planetary  490 Sciences,  pp  263-­‐297,  v37,  10.1146/annurev.earth.031208.100217 491   492 Dansgaard,  W.,  and  Coauthors,  1993:  Evidence  for  general  instability  of  past  climate  from  a  493 250-­‐kyr  ice-­‐core  record.  Nature,  364,  218–220. 494   495 Delworth,  T.  L.,  and  Coauthors,  2006:  GFDL’s  CM2  global  coupled  climate  models.  Part  I:  496 Formulation  and  simulation  characteristics.  J.  Climate,  19,  643–674. 497   498 Dima,  I.  M.,  and  J.  M.  Wallace,  2003:  On  the  seasonality  of  the  Hadley  cell.  J.  Atmos.  Sci.,  60,  499 1522–1527. 500   501 Drijfhout,  S.  S.,  2010:  The  atmospheric  response  of  a  THC  collapse:  Scaling  relations  for  the  502 Hadley  circulation  and  the  nonlinear  response  in  a  coupled  climate  model.  J.  Climate,  23,  503 757–774. 504

Page 17 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 19: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

17  

  505 Farneti,  R.,  and  G.  K.  Vallis,  2009:  An  Intermediate  Complexity  Climate  Model  (ICCMp1)  506 based  on  the  GFDL  flexible  modeling  system.  Geosci.  Model  Dev.,  2,  73–88. 507   508 Frierson,  D.  M.  W.,  I.  M.  Held,  and  P.  Zurita-­‐Gotor,  2006:  A  gray-­‐radiation  aquaplanet  moist  509 GCM.  Part  I:  Static  stability  and  eddy  scales.  J.  Atmos.  Sci.,  63,  2548–2566. 510   511 Frierson,  D.  M.  W.,  2007:  The  dynamics  of  idealized  convection  schemes  and  their  effect  on  512 the  zonally  averaged  tropical  circulation.  J.  Atmos.  Sci.,  64,  1959–1976. 513   514 Frierson,  D.  M.  W.  et  al.,  2013:  Contribution  of  ocean  overturning  circulation  to  tropical 515 rainfall  peak  in  the  northern  hemisphere.  Nature  Geosci.  6,  940–944. 516   517 Fučkar,  N.  S.,  S.-­‐P.  Xie,  R.  Farneti,  E.  A.  Maroon,  and  D.  M.  W.  Frierson,  2013:  Influence  of  the  518 extratropical  ocean  circulation  on  the  intertropical  convergence  zone  in  an  idealized  519 coupled  general  circulation  model.  J.  Climate,  26,  4612–4629,  doi:10.1175/JCLI-­‐D-­‐12-­‐520 00294.1. 521   522 Gent,  P.,  and  J.  McWilliams,  1990:  Isopycnal  mixing  in  ocean  circulation  models.  J.  Phys.  523 Oceanogr.,  20,  150–155. 524   525 GFDL  Global  Atmospheric  Model  Development  Team,  2004:  The  new  GFDL  Global  526 Atmosphere  and  Land  Model  AM2–LM2:  Evaluation  with  prescribed  SST  simulations. 527 J.  Climate,  17,  4641–4673. 528   529 Griffies,  S.  M.,  1998:  The  Gent–McWilliams  skew  flux.  J.  Phys.  Oceanogr.,  28,  831–841. 530   531 Griffies,  S.  M.,  M.  J.  Harrison,  R.  C.  Pacanowski,  and  A.  Rosati,  2004:  A  technical  guide  to  532 MOM4.  GFDL  Ocean  Group  Tech.  Rep.  5,  342  pp. 533   534 Grootes,  P.  M.,  and  M.  Stuiver,  1997:  Oxygen  18/16  variability  in  Greenland  snow  and  ice  535 with  10^3-­‐  to10^5-­‐year  time  resolution.  J.  Geophys.  Res.,  102,  26  455–26  470. 536   537 Held,  I.M.,  2005:  The  gap  between  simulation  and  understanding  in  climate  modeling.  Bull.  538 Amer.  Meteor.  Soc.,  86,  1609–1614. 539   540

Huffman,  G.  J.,  Adler,  R.  F.,  Bolvin,  D.  T.  &  Gu,  G,  2009:  Improving  the  global  precipitation  541 record:  GPCP  Version  2.1.  Geophys.  Res.  Lett.  36,  L17808 542

Page 18 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 20: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

18  

Kang,  S.  M.,  I.  M.  Held,  D.  M.  W.  Frierson,  and  M.  Zhao,  2008:  The  response  of  the  ITCZ  to  543 extratropical  thermal  forcing:  Idealized  slab-­‐ocean  experiments  with  AGCM.  J.  Climate,  21, 544 3521–3532. 545   546 Kang,  S.M.,  D.  M.  W.  Frierson,  and  I.  M.  Held,  2009:  The  Tropical  Response  to  Extratropical  547 Thermal  Forcing  in  an  Idealized  GCM:  The  Importance  of  Radiative  Feedbacks  and  548 Convective  Parameterization.  J.  Atmos.  Sci.,  66,  2812-­‐2827. 549   550 Kang,  S.  M.,   I.  M.  Held,  and  S.-­‐P.  Xie,  2014:  Contrasting   the  Tropical  Responses   to  Zonally  551 Asymmetric  Extratropical  and  Tropical  Thermal  Forcing,  Clim.  Dyn.  42,  2033-­‐2043. 552   553 Koutavas,  A.,  and  J.  Lynch-­‐Stieglitz,  2004:  Variability  of  the  marine  ITCZ  over  the  eastern  554 Pacific  during  the  past  30,000  years:  Regional  perspective  and  global  context.  The  Hadley  555 Circulation:  Present,  Past  and  Future,  H.  F.  Diaz  and  R.  S.  Bradley,  Eds.,  Springer,  347–369 556   557 Liu,  Z.,  and  M.  Alexander  (2007),  Atmospheric  bridge,  oceanic  tunnel,  and  global  climatic  558 teleconnections,  Rev.  Geophys.,  45,  RG2005,  doi:10.1029/2005RG000172. 559   560 Locarnini,  R.  A.,  A.  V.  Mishonov,  J.  I.  Antonov,  T.  P.  Boyer,  H.  E.  Garcia,  O.  K.  Baranova,  M.  M.  561 Zweng,  and  D.  R.  Johnson,  2010:  World  Ocean  Atlas  2009,  Volume  1:  Temperature.  S.  562 Levitus,  Ed.  NOAA  Atlas  NESDIS  68,  U.S.  Government  Printing  Office,  Washington,  D.C.,  184  563 pp. 564   565 Manabe,  S.,  and  R.  J.  Stouffer,  1995:  Simulation  of  abrupt  climate  change  induced  by  566 freshwater  input  to  the  North  Atlantic  Ocean.  Nature,  378,  165–167. 567   568 Maroon,  E.  A.,  D.  M.  W.  Frierson,  D.  S.  Battisti,  2015:  The  Tropical  Precipitation  Response  to  569 Andes  Topography  and  Ocean  Heat  Fluxes  in  an  Aquaplanet  Model.  J.    Climate  28:1,  381-­‐570 398.   571   572 Maroon,  E.  A.,  D.  M.  W.  Frierson,  S.  M.  Kang,  and  J.  Scheff,  (in  press):  The  precipitation  573 response  to  an  idealized  subtropical  continent.  J.    Climate,  http://dx.doi.org/10.1175/JCLI-­‐574 D-­‐15-­‐0616.1 575   576 Marshall,  J.,  Donohoe,  A.,  Ferreira,  D.  and  McGee,  D,  2013:  The  role  of  the  ocean  circulation  577 in  setting  the  mean  position  of  the  ITCZ.  Clim.  Dyn.  http://dx.doi.org/10.1007/s00382-­‐578 013-­‐1767-­‐z 579 580 Peterson,  L.  C.,  G.  H.  Haug,  K.  A.  Hughen,  and  U.  Rohl,  2000:  Rapid  changes  in  the  hydrologic  581 cycle  of  the  tropical  Atlantic  during  the  last  glacial.  Science,  290,  1947–1951. 582   583

Page 19 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 21: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

19  

Philander,  S.  G.  H.,  D.  Gu,  G.  Lambert,  T.  Li,  D.  Halpern,  N.-­‐C.  Lau,  and  R.  C.  Pacanowski,  1996:  584 Why  the  ITCZ  is  mostly  north  of  the  equator.  J.  Climate,  9,  2958–2972. 585   586 Sarachik,  E.S.,  and  M.A.  Cane,  2010:  The  El  Niño-­‐Southern  Oscillation  Phenomenon,  587 Cambridge  University  Press,  513,  45,  384  pp 588   589 Schneider,  T.,  T.  Bischoff,  and  G.H.  Haug,  2014:  Migrations  and  dynamics  of  the  intertropical  590 convergence  zone.  Nature,  doi:10.1038/nature13636 591   592 Seo,  J.,  S.  M.  Kang,  D.  M.  W.  Frierson,  2014:  Sensitivity  of  Intertropical  Convergence  Zone  593 Movement  to  the  Latitudinal  Position  of  Thermal  Forcing.  J.  Climate  27:8,  3035-­‐3042.   594   595 Sijp,  W.  P.,  and  M.  H.  England,  2004:  Effect  of  the  Drake  Passage  throughflow  on  global  596 climate.  J.  Phys.  Oceanogr.,  34,  1254–1266. 597   598 Takahashi,  K.,  and  D.  S.  Battisti,  2007:  Processes  Controlling  the  Mean  Tropical  Pacific  599 Precipitation  Pattern.  Part  I:  The  Andes  and  the  Eastern  Pacific  ITCZ.  J.  Climate,  20:14,  600 3434-­‐3451   601   602 Toggweiler,  J.  R.,  and  H.  Bjornsson,  2000:  Drake  Passage  and  paleoclimate.  J.  Quat.  Sci.,  15,  603 319–328. 604   605 Vallis,  G.K.,  and  R.  Farneti,  2009:  Meridional  energy  transport  in  the  coupled  atmosphere–606 ocean  system:  Scaling  and  numerical  experiments.  Quart.  J.  Roy.  Meteor.  Soc.,  135,  1643–607 1660. 608   609 Vellinga,  M.,  and  R.A.  Wood,  2002:  Global  climatic  impacts  of  a  collapse  of  the  Atlantic  610 thermohaline  circulation.  Climatic  Change,  54,  3,  251-­‐267,  doi:10.1023/A:1016168827653     611   612 Waliser,  D.  E.,  and  C.A.  Gautier,  1993:  A  satellite-­‐derived  climatology  of  the  ITCZ.  J.  Clim.  6, 613 2162–2174. 614   615 Webster,  P.  J.,  2004:  The  elementary  Hadley  circulation.  The  Hadley  Circulation:  Present,  616 Past  and  Future,  H.  F.  Diaz  and  R.  S.  Bradley,  Eds.,  Springer,  9–60. 617 Winton,  M.,  2000:  A  reformulated  three-­‐layer  sea  ice  model.  J.  Atmos.  Oceanic  Technol.,  17,  618 525–531. 619   620 Xie,  S.-­‐P.  and  S.G.H.  Philander,  1994:  A  coupled  ocean-­‐atmosphere  model  of  relevance  to  the  621 ITCZ  in  the  eastern  Pacific.  Tellus,  46A,  340-­‐350. 622   623

Page 20 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 22: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

20  

Xie,  S.-­‐P.,  2004:  The  shape  of  continents,  air-­‐sea  interaction  and  the  rising  branch  of  the  624 Hadley  circulation.  The  Hadley  Circulation:  Present,  Past  and  Future,  H.  F.  Diaz  and  R.  S.  625 Bradley,  Eds.,  Springer,  121–152. 626   627 Xie,  P.,  and  P.A.  Arkin,  1997:  Global  precipitation:  A  17-­‐year  monthly  analysis  based  on  628 gauge  observations,  satellite  estimates,  and  numerical  model  outputs.  Bull.  Amer.  Meteor.  629 Soc.,  78,  2539  -­‐  2558. 630   631 Zhang,  R.,  and  T.  L.  Delworth,  2005:  Simulated  tropical  response  to  a  substantial  weakening  632 of  the  Atlantic  thermohaline  circulation.  J.  Climate,  18,  1853–1860. 633 634

635

636

637

638

639 Figure   1.   The   1981-­‐2010   averaged   precipitation   based   on   monthly   NOAA   CPC   Merged  640

Analysis  of  Precipitation   (CMAP)   in  which  rain  gauge  data  are  merged  with  precipitation  641

estimates  from  multiple  satellite-­‐based  (infrared  and  microwave)  products.     642

643

Page 21 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 23: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

21  

644 Figure   2.   Schematic   outline   of   60°-­‐wide   closed-­‐ocean   basins   with   (a)   westward   and   (b)  645

eastward   slanted   tropical   coastlines   (equatorward   of   14°   latitude),   under   a   120°-­‐wide  646

sector  atmosphere.     647

648

Page 22 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 24: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

22  

649 Figure  3.  Results  of  the  Exp  I.zu  simulation:  (a)  and  (c)  show  average  tropical  precipitation  650

(shading)  overlaid  with  anomalous   surface  wind  vectors   (with   respect   to  an  equatorially  651

symmetric  zonal  component  and  an  antisymmetric  meridional  component)  between  years  652

1  and  20,  and  between  years  381  and  400,  respectively.  Vectors  outside  of  the  deep  tropics  653

with  anomalous  wind  speed  above  2  m/s  are  removed   for  easier  visualization.  Blue   lines  654

mark  the  ocean  basin  boundaries.   (b)  Time-­‐latitude  diagram  from  year  1  to  400  showing  655

annual  zonal  means  of  hemispherically  anomalous  SST  (shading),  anomalous  precipitation  656

(blue/red   =   positive/negative   contours)   and   anomalous   surface   wind   stress   vectors.    657

Anomalous   precipitation   was   filtered   with   a   low-­‐pass   Butterworth   filter   with   a   40-­‐year  658

period  cutoff.         659

Page 23 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 25: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

23  

660

661 Figure   4.   Results   of   Exp   I.zu   simulation:   (a)  Maximum  and   absolute  minimum  of   the  NH  662

(red  curve)  and  the  SH  (blue  curve)  annual  mean  deep  MOC  overturning  stream  function  663

Page 24 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 26: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

24  

(below  200m  poleward  of  20°   latitude),  respectively.   (b)  Ocean  heat   transport  across  the  664

equator  (red  curve)  and  the  Hadley  circulation  asymmetry  index  (blue  curve)  defined  as  -­‐665

(minimum  streamfunction  value  of  the  SH  Hadley  cell  +  maximum  streamfunction  value  of  666

the  NH  Hadley  cell).  (c)  Tropical  precipitation  (red  curve)  and  SST  (blue  curve)  asymmetry  667

indices   (average  between  20°N  and   the  equator  minus  average  between   the  equator  and  668

20°S).   Quantities   in   panels   (b)   and   (c)   are   annual  means   smoothed   by   a   15-­‐year   boxcar  669

filter. 670

671

672 Figure  5.  The  average  of  Exp  I.zu  simulation  between  year  801  and  1000  of  (a)  anomalous  673

atmospheric   overturning   streamfunction   (with   respect   to   the   hemispherically  674

antisymmetric  component),  and  (b)  MOC  streamfunction.  Positive  values  of  streamfunction  675

indicate  a  clockwise  circulation. 676

677

Page 25 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 27: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

25  

678 Figure  6.  Annual  mean  results  of  Exp  I.nh,  Exp  I.bl  and  Exp  I.sh  simulations  in  left,  middle  679

and  right   columns,   respectively.  The   top   row  shows  maximum  and  absolute  minimum  of  680

the  NH   (red   curve)   and   the   SH   (blue   curve)  deep  MOC   streamfunction,   respectively.   The  681

middle   row   shows   ocean   heat   transport   across   the   equator   (red   curve)   and   Hadley  682

circulation   asymmetry   index   (blue   curve).   The   bottom   row   shows   tropical   precipitation  683

(red  curve)  and  SST  (blue  curve)  asymmetry  indices.  Panels  in  the  middle  and  bottom  rows  684

show  annual  means  smoothed  by  a  15-­‐year  boxcar  filter. 685

686

Page 26 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 28: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

26  

687 Figure  7.  Results  of  Exp   I.nh,  Exp   I.bl  and  Exp   I.sh  simulations   in   top,  middle  and  bottom  688

rows,  respectively.  Time-­‐latitude  diagrams  from  year  1  to  400  showing  annual  zonal  means  689

of   anomalous   SST   (fill),   anomalous  precipitation   (blue/red  =  positive/negative   contours)  690

and  anomalous  surface  wind  stress  vectors,  as  in  Figure  3b. 691

692

Page 27 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 29: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

27  

693 Figure  8.  Figure  3.  Results  of  Exp  II.bl  simulation:  The  quantities  in  this  figure  are  the  same  694

as  in  Figure  3. 695

696

Page 28 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 30: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

28  

697 Figure  9.    Results  of  Exp  II.bl  simulation  after  15-­‐year  box  smoothing  of  annual  means:  The  698

quantities  in  this  figure  are  the  same  as  in  Figure  4. 699

700

Page 29 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 31: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

29  

701 Figure  10.  The  average  of  Exp  II.bl  simulation  between  year  801  and  1000  of  (a)  anomalous  702

atmospheric   overturning   streamfunction   (with   respect   to   the   antisymmetric   component)  703

and   (b)   MOC   streamfunction.   Positive   values   of   streamfunctions   show   clockwise  704

circulation. 705

706

Page 30 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 32: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

   

30  

707 Figure  11.  5-­‐year  mean  results  from  full  integration  periods  of  all  simulations  in  this  study  708

as   functions   of   the   deep   MOC   asymmetry   index   (sum   of   the   subpolar   deep   MOC  709

streamfunction   extrema   in   both   hemispheres).   (a)   Upper   left   panel   show   ocean   heat  710

transport   across   the   equator.   (b)   Upper   right   panel   shows   the   average  NH   extratropical  711

surface  heat   flux  minus  average  SH  extratropical   surface  heat   flux   (with  upward  positive  712

direction).  (c)  Lower  left  panel  shows  the  Hadley  asymmetry  index.  (d)  Lower  right  panel  713

shows  the  tropical  precipitation  asymmetry  index. 714

715

Page 31 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 33: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

CPC merged analysis of precipitation (CMAP) 〈Jan 1981 - Dec 2010〉

[mm/day]

Page 32 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 34: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

Equator

3900m

y

x

3900m

60o60o

Exp I.zu

Exp I.nh, I.bl and I.sh

Exp II.bl

(a) (b)

Page 33 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 35: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

[yr]SSTa [°C]

(a)

(b)

(c)

Exp I.zu 〈1-20 〉 yr

Exp I.zu 〈381-400 〉 yr P [mm/day]

P [mm/day]

Exp I.zu

m/s

m/s

(usfc, vsfc)a

(usfc, vsfc)a

Page 34 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 36: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review

Only

(1010

kgs-1

)

NH deepMOC SH |deepMOC|

(a)

(b)

(c)

[yr]

[yr]

[yr]

Exp I.zu

Page 35 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 37: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

(a)

(b)

AAO

str

eam

func

tion

(1010

kgs

-1)

MO

C st

ream

func

tion

(Sv)

Exp I.zu

(m)

Page 36 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 38: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

NH deepMOC

SH |deepMOC|

NH deepMOC NH deepMOC

SH |deepMOC| SH |deepMOC|

(d) (e) (f )

(g) (h) (i)

(a) (b) (c)

[yr] [yr]

[yr] [yr]

[yr]

[yr]

[yr][yr][yr]

Exp I.nh Exp I.bl Exp I.sh

(1010

kgs-1

)

(1010

kgs-1

)

(1010

kgs-1

)

Page 37 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 39: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nly

(a)

(b)

(c)

SSTa [°C]

Exp I.sh

Exp I.bl

Exp I.nh

Page 38 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 40: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review O

nlyExp II.bl

(b)

SSTa [°C][yr]

(c)

(a)

Exp II.bl 〈1-20 〉 yr

Exp II.bl 〈381-400 〉 yr

P [mm/day]

P [mm/day]

m/s(usfc, vsfc)a

m/s(usfc, vsfc)a

Page 39 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 41: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review

Only

NH deepMOC SH |deepMOC|

(a)

(b)

(c)

[yr]

[yr]

[yr]

Exp II.bl

(1010

kgs-1

)

Page 40 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 42: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

(a)

(b)

AAO

str

eam

func

tion

(1010

kgs

-1)

MO

C st

ream

func

tion

(Sv)

Exp II.bl

(m)

Page 41 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal

Page 43: For Review Only - Department of Atmospheric Sciencesdargan/papers/fmff... · 2016. 4. 20. · For Review Only Tropical and extratropical sources of hemispheric asymmetry of the Intertropical

For Review Only

Exp I.zuExp I.nhExp I.blExp I.shExp II.bl

Exp I.zuExp I.nhExp I.blExp I.shExp II.bl

deep MOC asymmetry index (Sv) deep MOC asymmetry index (Sv)

deep MOC asymmetry index (Sv) deep MOC asymmetry index (Sv)

(1010

kgs

-1)

(a) (b)

(c)

(d)

trop

. Pex

trat

rop.

Page 42 of 42

https://mc.manuscriptcentral.com/dscs

Manuscripts submitted to Dynamics and Statistics of the Climate System: An Interdisciplinary Journal