Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave...

download Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

of 5

Transcript of Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave...

  • 8/17/2019 Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

    1/5

    Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonianin a gravitational-wave background

    James Q. Quach*

     Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan(Received 2 September 2015; published 21 October 2015)

    Goncalves et al. [Phys. Rev. D 75, 124023 (2007)] derived a nonrelativistic limit of the generalized Dirac

    Hamiltonian in the presence of a gravitational wave, using the  exact  Foldy-Wouthuysen transformation.This gave rise to the intriguing notion that spin precession may occur even in the absence of a magnetic

    field. We argue that this effect is not physical as it is the result of a gauge-variant term that was an artifact of 

    a flawed application of the exact Foldy-Wouthuysen transformation. In this paper we derive the correct 

    nonrelativistic limit of the generalized Dirac Hamiltonian in the presence of a gravitational wave, using

    both the exact and   standard   Foldy-Wouthuysen transformation. We show that both transformations

    consistently produce a Hamiltonian where all terms are gauge invariant. Unfortunately however, we also

    show that this means the novel spin-precession effect does not exist.

    DOI:  10.1103/PhysRevD.92.084047   PACS numbers: 04.30.-w, 03.65.Pm, 04.62.+v, 04.80.Nn

    I. INTRODUCTION

    Gravitational waves (GWs) are one of the major pre-

    dictions of general relativity that has yet to be directly

    observed. Light interferometry, such as that used in LIGO

    and VIRGO, currently stands as the most promising means

    by which to detect GWs. More recently however, matter-

    wave interferometry has been proposed as a more sensitive

    way to detect GWs because of the increased gravitational

    interaction from the massive particles [1–8]. In light of this,

    it is important to understand the quantum interaction of 

    massive particles with GWs in the nonrelativistic limit.

    Goncalves  et al.   [9] was the first to investigate the Dirac

    Hamiltonian in the presence of an electromagnetic (EM)

    gauge field and GWs, in the nonrelativistic limit. In their paper, they came to the intriguing conclusion that in the

    presence of the GW, the particle’s spin may precess even in

    the absence of a magnetic field, which they propose could

    be the basis for a new type of GW detector. In this paper we

    show that this precession cannot be physical and is the

    result of a miscalculation.A systematic scheme by which to write down the

    nonrelativistic limit of the Dirac Hamiltonian with relativ-

    istic correction terms is provided by the Foldy-Wouthuysen

    (FW) transformation   [10]. The FW transformation is a 

    unitary transformation which separates the upper and lower 

    spinor components. In the FW representation, the

    Hamiltonian and all operators are block diagonal (diagonal

    in two spinors). It is an extremely useful representation

    because the relations between the operators in the FW

    representation are similar to those between the respective

    classical quantities. Two popular variants of the FW

    transformation exists: the   chiral   or   exact   FW (EFW)

    transformation [11–14] and the standard  FW (SFW) trans-

    formation [10].The EFW transformation is so-called because under 

    certain anticommutative conditions, the scheme leads toan exact expression containing only even terms:  even termsdo not mix the upper and lower spinor components,   odd terms do. The EFW transformation has the advantage that its calculation is relatively simpler than the SFW trans-

    formation, however the EFW may give rise to parity-variant terms which are difficult to physically interpret   [14–17].

    The SFW transformation involves multicommutator expan-sions of a unitary transformation, which eliminates the oddcontributions to a desired level of accuracy. As it is aniterative scheme, its calculation can be considerably more

    difficult than the EFW scheme. The SFW transformationhowever consistently yields terms that are amenable tophysical interpretation.

    To arrive at their conclusion, Goncalves et al. applied theEFW transformation to the Dirac Hamiltonian to produce a Hamiltonian which contains a gauge-variant term. It is thisgauge-variant term that gives rise to the novel spin-precession effect. We contend that this term is an artifact of a flawed application of the EFW transformation. In thispaper we will derive the correct nonrelativistic limit of theDirac Hamiltonian in the background of an EM gauge fieldand GWs, first using the EFW transformation, then as a further check, using the SFW transformation. We show that 

    both these methods produce a gauge-invariant Hamiltonian.As a resultwe will show that there is no spin-precession whenthere is no magnetic field, contrary to the conclusions of 

    Goncalves  et al.

    In Sec.   II   we write down the generalized Dirac

    Hamiltonian with a GW metric. In Sec.   III   we briefly

    review the work of Goncalves   et al.   before deriving the

    correct nonrelativistic limit of the generalized Dirac

    Hamiltonian with GWs under the EFW transformation.*[email protected] 

    PHYSICAL REVIEW D   92,   084047 (2015)

    1550-7998=2015=92(8)=084047(5) 084047-1 © 2015 American Physical Society

    http://dx.doi.org/10.1103/PhysRevD.92.084047http://dx.doi.org/10.1103/PhysRevD.92.084047http://dx.doi.org/10.1103/PhysRevD.92.084047http://dx.doi.org/10.1103/PhysRevD.92.084047http://dx.doi.org/10.1103/PhysRevD.92.084047

  • 8/17/2019 Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

    2/5

    Section IV derives the same Hamiltonian under the SFW

    transformation, thereby confirming the consistency of the

    Hamiltonian. From this Hamiltonian we will also derive the

    spin equation of motion.

    II. DIRAC HAMILTONIAN WITH

    GRAVITATIONAL WAVE METRIC

    The wave function ψ  of a spin-1=2 particle of rest massm and charge e  in an EM and gravitational field obeys thecurved spacetime Dirac equation (SI units),

    iℏγ aea μ

    ∂  μ − Γ μ −

    ie

    ℏ A μ

    ψ  ¼ mcψ :   ð1Þ

    The spacetime metric g  μν  can be related at every point to a 

    tangent Minkowski space ηab via tetrads ea μ, g  μν ¼ ea μebνηab.

    The tetrads obey the orthogonality conditions   ea μeνa ¼ δ ν μ,

    ea μe μ

    b ¼ δ ab. We use the convention that Latin indicesrepresent components in the tetrad frame. The spinorial

    affine connection   Γ μ ¼  i4 e

    aνð∂  μe

    νb

    þ Γν μσ e

    σ b

    Þσ ab, whereΓν μσ    is the affine connection and   σ ab ≡

    i2 ½γ a; γ b   are the

    generators of the Lorentz group.   γ a   are gamma matrices

    defining the Clifford algebra   fγ a; γ bg ¼ −2ηab, withspacetime metric signature (−; þ; þ; þ).   A μ   is the EMfour-vector potential. We use the Einstein summation

    convention where repeated indices ( μ; ν; σ ; a ; b ¼f0; 1; 2; 3g) are summed.

    The metric for one of the polarization states of the linear 

    plane GW is

    ds2 ¼  −c2dt2 þ dx2 þ ð1 − 2 f Þdy2 þ ð1 þ 2 f Þdz2;   ð2Þ

    where  f  ¼ f ðt − xÞ   is a function which describes a wavepropagating in the   x-direction. Under this metric Eq.   (1)can be written in the familiar Schrödinger picture

    iℏ∂ tψ  ¼ H ψ , where (α ≡ γ 0γ ,   β ≡ γ 0,   p≡ −iℏ∇, andi;…; n ¼ f1; 2; 3g)   [9],

    H  ¼ cα iðpi  − eAiÞ − cf α 2ðp2  − eA2Þ þ cf α 3ðp3  − eA3Þþ β mc2:   ð3Þ

    III. EXACT FOLDY-WOUTHUYSEN

    TRANSFORMATION

    Central to the EFW transformation is the propertythat when   H   anticommutes with   J ≡ iγ 5 β , fH; J g ¼ 0,under the unitary transformation   U  ¼ U 2U 1, where(Λ≡ H=

     ffiffiffiffiffiffiH 2

    p   )

    U 1 ¼  1 ffiffiffi2

    p   ð1 þ J ΛÞ; U 2 ¼  1 ffiffiffi2

    p   ð1 þ β J Þ;   ð4Þ

    the transformed Hamiltonian is even,

    UHU þ ¼ 12 β    ffiffiffiffiffiffi

    H 2p 

      þ β  ffiffiffiffiffiffi

    H 2p 

      β 

    þ 12

      ffiffiffiffiffiffiH 2

    p   − β 

     ffiffiffiffiffiffiH 2

    p   β 

    ¼n   ffiffiffiffiffiffi

    H 2p  o

    even β  þ

    n   ffiffiffiffiffiffiH 2

    p  oodd

    J:   ð5Þ

    In Eq.   (5)  we have made use of the fact that the even

    and odd components of any operator   Q   are respectivelygiven by

    fQgeven ¼ 1

    2ðQ þ β Q β Þ;   fQgodd ¼

     1

    2ðQ − β Q β Þ:

    ð6Þ

    As β  is an even operator and J  is an odd operator, Eq. (5)is an even expression which does not mix the positive andnegative energy states. The EFW transformation has the

    further benefit that in many cases the odd components of  ffiffiffiffiffiffiH 2

    p   vanish. In practice

     ffiffiffiffiffiffiH 2

    p   is taken as a perturbative

    expansion where the rest mass energy is the dominate term.In Ref.   [9], Goncalves   et al.   report to use the EFW

    transformation to arrive at the following nonrelativistic

    limit of Eq.  (3):

    H GOS ¼  1

    2mðδ ij þ 2 fT ijÞ½ðpi − eAiÞðp j − eA jÞ

    þ eℏϵ jklσ l∂ kð AiÞ

    þ   ℏ2m

    ∂ ið f ÞT  jlϵijkσ kðpl  − eAlÞ þ mc2;   ð7Þ

    where   T ≡ diagð0;−1; 1Þ  and partial derivatives act onlyon the contents of the parentheses which follow.  δ ij,  ϵijk,

    and   σ i are the Kronecker delta, Levi-Cività symbol, and

    Pauli matrices respectively.

    The spin equation of motion is given by   iℏd σ i=dt ¼½σ i; H . Calculating the commutation with  H GOS  and thentaking the  ℏ → 0  limit, one arrives at the following semi-

    classical spin equation of motion:

    d σ idt

     ¼   em

    ϵijkσ kϵ jlm∂ lð Am þ 2 fT mn AnÞ

    1

    mðp j − eA jÞσ k½T kj∂ ið f Þ − T ij∂ kð f Þ:   ð8Þ

    From Eq.  (8), Goncalves  et al.   claims that even in the

    absence of a magnetic field, spin precession may still occur 

    due to the coupling of the GW to the EM gauge field.

    Setting the magnetic field Bi

    ¼ ϵijk

    ∂  jð AkÞ ¼  0  and neglect-ing small   ∂ ð f Þ   (which is an appropriate approximationfor GWs of astronomical sources on Earth) the spin

    precession is

    d σ idt

     ¼  2em

     f ϵijkϵ jlmT mn∂ lð AnÞσ k:   ð9Þ

    This poses the notion that due to the presence of the

    GW, the gauge field can have a physical effect on spin

    JAMES Q. QUACH PHYSICAL REVIEW D   92,   084047 (2015)

    084047-2

  • 8/17/2019 Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

    3/5

    precession even in the absence of a magnetic field. We

    argue that the contribution to spin precession as presented

    by Eqs.   (8)   and   (9)   cannot be physical, as it is not 

    gauge invariant. More generally, the GW correction term 

    to the magnetic dipole energy in   H GOS, i.e. the term 

    proportional to   T ijϵ jklσ l∂ kð AiÞ, is gauge variant under 

    the usual gauge transformation,   Ai →  Ai þ ∂ i χ    andψ   → ei

    eℏ χ ψ , where   χ   is some scalar function. We believe

    the gauge-variant term in   H GOS   is not the result of theEFW transformation, but the result of an erroneous

    calculation in the application of the EFW transformation,

    as our derivation using the EFW transformation yields no

    such gauge-variant term.We begin by writing Eq.   (3)   in a more convenient 

    form,

    H  ¼ β mc2 þ cα  jðδ i j þ T i j f Þðpi − eAiÞ:   ð10Þ

    Hence,

    H 2

    ¼ m2

    c4

    þ c2

    α  jα kðδ i j þ T i j f Þ× ½ðδ lk þ T lk f Þðpi  − eAiÞðpl − eAlÞ− T lkpið f Þðpl − eAlÞ:   ð11Þ

    Neglecting the small   f 2 order terms, and using the

    identity  α iα  j ¼ iϵijkσ kI2 þ δ ijI4,

    H 2 ¼ m2c4 þ c2ðδ ij þ 2 fT ijÞ½ðpi  − eAiÞðp j − eA jÞ

    þ eℏc2

    2  ðδ ij þ 2 fT ijÞϵ jklΣl½∂ kð AiÞ − ∂ ið AkÞ

    þℏc2∂ i

    ð f 

    ÞT  jlϵijkΣ

    k

    ðpl  − eAl

    Þ;

      ð12

    Þwhere  Σk ≡ σ kI2. As the rest mass energy is the dominate

    energy term in the nonrelativistic limit the perturbative

    expansion of  ffiffiffiffiffiffi

    H 2p 

      to  O½1=m2   accuracy yields

    H EFW ¼  1

    2mðδ ij þ 2 fT ijÞ½ðpi  − eAiÞðp j − eA jÞ

    þ  eℏ4m

    ðδ ij þ 2 fT ijÞϵ jklσ l½∂ kð AiÞ − ∂ ið AkÞ

    þ   ℏ2m

    ∂ ið f ÞT  jlϵijkσ kðpl  − eAlÞ þ mc2:   ð13Þ

    The first and second terms of  H EFW   involve the kineticand magnetic dipole energies and their corrections due to

    the GW. The third term can be thought of as being the GW

    analogue of the Schwarzschild gravitational spin-orbit 

    energy   [18]. The last term is the rest mass energy. In

    comparison to the  H GOS,  H EFW  has an extra term propor-

    tional to ∂ ið AkÞ in the second line of Eq. (13). The presenceof this term has the effect of ensuring gauge invariance in

    the Hamiltonian.

    One notes that the EFW transformation has been known

    to produce spurious parity-violating terms   [14–17].Reference   [14]   argues that these parity-violating terms

    are the result of chiral transformation of the  U 2  operator,which alters the symmetry properties of the Hamiltonian.

    We point out that the gauge-variant term in  H GOS is not of this type.

    To further our claim that   H EFW   is the correct 

    nonrelativistic limit of the Dirac Hamiltonian in a GWbackground, we provide a consistency check by arriving

    at the same Hamiltonian using the alternative SFWtransformation [19].

    IV. STANDARD FOLDY-WOUTHUYSEN

    TRANSFORMATION

    The odd and even components of   H   are respectivelygiven by

    O ¼  12ðH − β H  β Þ; E ¼ 1

    2ðH  þ β H  β Þ:   ð14Þ

    The SFW is a multicommutator expansion of the unitary

    transformation U  ¼ eiS,

    H 0 ¼ H  þ i½S; H  þ i2

    2!½S; ½S; H  þ ;   ð15Þ

    where   S ¼  −   i β 2m

    O.   i½S; H  ≈ −O   generates a term that eliminates the odd operator   O, however many moreterms are generated by the higher-order terms which

    potentially could be odd operators. To eliminate these

    odd operators, the FW transformation is repeated onsubsequent Hamiltonians (i.e.   H 0,   H 00,   H 000, and so on)

    until all odd operators are eliminated to the required order of accuracy.For convenience we will work in the natural units where

    ℏ ¼ c ¼ e ¼  1. We will put   ℏ,   c,   e   back into the finalequation. We begin by calculating the following commu-

    tator relations:

    ½ βα iðpi  − AiÞ; α  jðp j − A jÞ¼  2 βδ ijðpi  − AiÞðp j − A jÞ þ 2 βϵijkΣk∂  jð AiÞ;   ð16Þ

    ½ βα iðpi  − AiÞ; f α 2ðp2  − A2Þ

    ¼ 2 β  f 

    ðp2 − A2

    Þ2

    þ β  f ϵi2kΣk

    ½∂ 2

    ð Ai

    Þ− ∂ i

    ð A2

    Þþ β Σ3∂ 1ð f Þðp2 − A2Þ;   ð17Þ

    ½ βα iðpi  − AiÞ; f α 3ðp3  − A3Þ¼  2 β  f ðp3 − A3Þ2 þ β  f ϵi3kΣk½∂ 3ð AiÞ − ∂ ið A3Þ

    þ β Σ2∂ 1ð f Þðp3 − A3Þ:   ð18Þ

    Using these commutator relations and Eq.  (3) we write

    down

    FOLDY-WOUTHUYSEN TRANSFORMATION OF THE  …   PHYSICAL REVIEW D   92,   084047 (2015)

    084047-3

  • 8/17/2019 Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

    4/5

    i½S; H  ¼  β m

    δ ijðpi  − AiÞðp j − A jÞ þ β 

    mϵijkΣk∂  jð AiÞ

    þ 2 β m

     fT ijðpi  − AiÞðp j − A jÞ

    þ  β m

     fT ijϵ jklΣl½∂ kð AiÞ − ∂ ið AkÞ

    þ

     β 

    m

    ∂ i

    ð f 

    ÞT  jlϵijkΣ

    k

    ðpl  − Al

    Þ− α i

    ðpi  − Ai

    Þþ f ½α 2ðp2  − A2Þ − α 3ðp3  − A3Þ þ h:o:;   ð19Þ

    where h.o. indicates that there are higher order terms.Using Eq.  (19),

    i½S; H  þ i2

    2 ½S; ½S; H  ¼   1

    2m½ βα iðpi  − AiÞ;

    1

    2α  jðp j − A jÞ − f α 2ðp2 − A2Þ þ f α 3ðp3 − A3Þ þ β m

    þ   12m

    ½− β  f α 2ðp2  − A2Þ þ β  f α 3ðp3 − A3Þ; β m þ h:o:

    ð20ÞNeglecting higher order terms,

    HSFW ¼ H  þ i½S; H  þ i2

    2 ½S; ½S; H 

    ¼ β m þ   β 2m

    ðδ ij þ 2 fT ijÞðpi − AiÞðp j − A jÞ

    þ   β 4m

    ðδ ij þ 2 fT ijÞϵ jklΣl½∂ kð AiÞ − ∂ ið AkÞ

    þ   β 2m

    ∂ ið f ÞT  jlϵijkΣkðpl  − AlÞ:   ð21Þ

    Explicitly reinstating   ℏ,   c,   e, one retrieves Eq.   (13)

    from Eq. (21). In other words  H EFW ¼ H SFW   to  O½1=m2accuracy, where   HSFW ¼ β H SFW. The EFW and SFWtransformations are not equivalent unitary transformations,and in general can give rise to different Hamiltonians in

    the nonrelativistic limits. However in the current case, that both the EFW and SFW transformation yields the same

    Hamiltonian, is good verification that Eq. (13) is the correct 

    nonrelativistic limit of the Dirac Hamiltonian in the

    presence of an EM gauge and GW field.Importantly,   H EFW   is gauge invariant. This has conse-

    quences for the physical behavior of a spin-1=2   particleinteracting with GWs. In particular there is a stark differ-

    ence in the spin-precession behavior described by   H GOSand H EFW. The corresponding semiclassical spin equation

    of motion under  H EFW   is

    d σ idt

     ¼   em

    ϵijkσ kϵ jlm½∂ lð AmÞ þ fT mn∂ lð AnÞ − fT mn∂ nð AlÞ

    1

    mðp j − eA jÞσ k½T kj∂ ið f Þ − T ij∂ kð f Þ:   ð22Þ

    Unlike the spin equation of motion derived from   H GOS,Eq. (22) is gauge invariant. If one neglects the small  ∂ ð f Þand sets the magnetic field to zero then   d  σ =dt ¼ 0, andthere is no spin precession, in contrast to Eq.  (9) and the

    claims of Goncalves   et al.

    V. CONCLUSION

    The spin precession of a spin-1=2   particle in theabsence of a magnetic field but in the presence of a 

    GW is a false effect of a gauge-variant Hamiltonian.

    We consistently derived a gauge-invariant Hamiltonian

    with both the EFW and SFW transformations, whichwe contend to be the correct nonrelativistic limit of 

    the generalized Dirac Hamiltonian in the backgroundof a GW spacetime metric. Using this Hamiltonian

    we showed the novel spin-precession effect no longer exists.

    ACKNOWLEDGMENTS

    The author would like to thank M. Lajkó, C.-H. Su,

    A. Martin, and S. Quach for discussions and checking themanuscript. This work was financially supported by the

    Japan Society for the Promotion of Science. The author isan International Research Fellow of the Japan Society for 

    the Promotion of Science.

    [1] M. O. Scully and J. P. Dowling,   Phys. Rev. A   48, 3186

    (1993).

    [2] R. M. Godun, M. B. D’Arcy, G. S. Summy, and K. Burnett,

    Contemp. Phys.  42 , 77 (2001).

    [3] R. Y. Chiao and A. D. Speliotopoulos, J. Mod. Opt.  51, 861

    (2004).

    [4] P. Delva, M.-C. Angonin, and P. Tourrenc,   Phys. Lett. A

    357, 249 (2006).

    [5] S. Foffa, A. Gasparini, M. Papucci, and R. Sturani,  Phys.

    Rev. D   73, 022001 (2006).

    [6] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich,

    and S. Rajendran, Phys. Rev. D  78, 122002 (2008).

    [7] D. Gao, P. Ju, B. Zhang, and M. Zhan, Gen. Relativ. Gravit.

    43, 2027 (2011).

    [8] P. W. Graham, J.M. Hogan, M.A. Kasevich, and S.

    Rajendran, Phys. Rev. Lett.  110, 171102 (2013).

    JAMES Q. QUACH PHYSICAL REVIEW D   92,   084047 (2015)

    084047-4

    http://dx.doi.org/10.1103/PhysRevA.48.3186http://dx.doi.org/10.1103/PhysRevA.48.3186http://dx.doi.org/10.1103/PhysRevA.48.3186http://dx.doi.org/10.1103/PhysRevA.48.3186http://dx.doi.org/10.1080/00107510118044http://dx.doi.org/10.1080/00107510118044http://dx.doi.org/10.1080/00107510118044http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1016/j.physleta.2006.04.103http://dx.doi.org/10.1016/j.physleta.2006.04.103http://dx.doi.org/10.1016/j.physleta.2006.04.103http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1103/PhysRevD.78.122002http://dx.doi.org/10.1103/PhysRevD.78.122002http://dx.doi.org/10.1103/PhysRevD.78.122002http://dx.doi.org/10.1007/s10714-011-1173-yhttp://dx.doi.org/10.1007/s10714-011-1173-yhttp://dx.doi.org/10.1007/s10714-011-1173-yhttp://dx.doi.org/10.1103/PhysRevLett.110.171102http://dx.doi.org/10.1103/PhysRevLett.110.171102http://dx.doi.org/10.1103/PhysRevLett.110.171102http://dx.doi.org/10.1103/PhysRevLett.110.171102http://dx.doi.org/10.1007/s10714-011-1173-yhttp://dx.doi.org/10.1007/s10714-011-1173-yhttp://dx.doi.org/10.1103/PhysRevD.78.122002http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1103/PhysRevD.73.022001http://dx.doi.org/10.1016/j.physleta.2006.04.103http://dx.doi.org/10.1016/j.physleta.2006.04.103http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1080/09500340408233603http://dx.doi.org/10.1080/00107510118044http://dx.doi.org/10.1103/PhysRevA.48.3186http://dx.doi.org/10.1103/PhysRevA.48.3186

  • 8/17/2019 Foldy-Wouthuysen transformation of the generalized Dirac Hamiltonian in a gravitational-wave background

    5/5

    [9] B. Goncalves, Y. N. Obukhov, and I. L. Shapiro, Phys. Rev.

    D   75, 124023 (2007).

    [10] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

    [11] E. Eriksen, Phys. Rev.   111, 1011 (1958).

    [12] A. G. Nikitin,  J. Phys. A  31 , 3297 (1998).

    [13] Y. N. Obukhov,  Phys. Rev. Lett.   86, 192 (2001).

    [14] U. Jentschura and J. Noble, J. Phys. A  47, 045402 (2014).

    [15] N. Nicolaevici,  Phys. Rev. Lett.   89, 068902 (2002).

    [16] Y. N. Obukhov,  Phys. Rev. Lett.   89, 068903 (2002).

    [17] A. J. Silenko and O. V. Teryaev,  Phys. Rev. D  71, 064016

    (2005).

    [18] C. de Oliveira and J. Tiomno,   Nuovo Cimento   24, 672

    (1962).

    [19] One notes Goncalves   et al.  does write down the correct 

    generalized Dirac Hamiltonian in a GW-background

    [Eq. (28) in Ref. [1]] and a low-energy approximation of 

    it [Eq. (41) in Ref. [1]], prior to attempting an EFW

    transformation.

    FOLDY-WOUTHUYSEN TRANSFORMATION OF THE  …   PHYSICAL REVIEW D   92,   084047 (2015)

    084047-5

    http://dx.doi.org/10.1103/PhysRevD.75.124023http://dx.doi.org/10.1103/PhysRevD.75.124023http://dx.doi.org/10.1103/PhysRevD.75.124023http://dx.doi.org/10.1103/PhysRevD.75.124023http://dx.doi.org/10.1103/PhysRev.78.29http://dx.doi.org/10.1103/PhysRev.78.29http://dx.doi.org/10.1103/PhysRev.78.29http://dx.doi.org/10.1103/PhysRev.111.1011http://dx.doi.org/10.1103/PhysRev.111.1011http://dx.doi.org/10.1103/PhysRev.111.1011http://dx.doi.org/10.1088/0305-4470/31/14/015http://dx.doi.org/10.1088/0305-4470/31/14/015http://dx.doi.org/10.1088/0305-4470/31/14/015http://dx.doi.org/10.1103/PhysRevLett.86.192http://dx.doi.org/10.1103/PhysRevLett.86.192http://dx.doi.org/10.1103/PhysRevLett.86.192http://dx.doi.org/10.1088/1751-8113/47/4/045402http://dx.doi.org/10.1088/1751-8113/47/4/045402http://dx.doi.org/10.1088/1751-8113/47/4/045402http://dx.doi.org/10.1103/PhysRevLett.89.068902http://dx.doi.org/10.1103/PhysRevLett.89.068902http://dx.doi.org/10.1103/PhysRevLett.89.068902http://dx.doi.org/10.1103/PhysRevLett.89.068903http://dx.doi.org/10.1103/PhysRevLett.89.068903http://dx.doi.org/10.1103/PhysRevLett.89.068903http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1007/BF02816716http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1103/PhysRevD.71.064016http://dx.doi.org/10.1103/PhysRevLett.89.068903http://dx.doi.org/10.1103/PhysRevLett.89.068902http://dx.doi.org/10.1088/1751-8113/47/4/045402http://dx.doi.org/10.1103/PhysRevLett.86.192http://dx.doi.org/10.1088/0305-4470/31/14/015http://dx.doi.org/10.1103/PhysRev.111.1011http://dx.doi.org/10.1103/PhysRev.78.29http://dx.doi.org/10.1103/PhysRevD.75.124023http://dx.doi.org/10.1103/PhysRevD.75.124023