fluid-mechanics-benno-new.ppt

download fluid-mechanics-benno-new.ppt

of 131

Transcript of fluid-mechanics-benno-new.ppt

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    1/131

    TL2101

    Mekanika Fluida I

    Benno Rahardyan

    Pertemuan

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    2/131

    Mg Topik Sub Topik Tujuan Instruksional (TIK)

    1 Pengantar Definisi dan sifat-sifat fluida,

    berbagai jenis fluida yang

    berhubungan dengan bidang TL

    Memahami berbagai

    kegunaan mekflu

    dalam bidang TL

    Pengaruh tekanan Tekanan dalam fluida, tekananhidrostatik Mengerti prinsip-2tekanan statitka

    2 Pengenalan jenisaliran fluida

    Aliran laminar dan turbulen,

    pengembangan persamaan untuk

    penentuan jenis aliran: bilangan

    reynolds, freud, dll

    Mengerti, dapat

    menghitung dan

    menggunakan prinsip

    dasar aliran staedy state

    Idem Idem Idem

    3 Prinsip kekekalan

    energi dalam

    aliran

    Prinsip kontinuitas aliran,

    komponen energi dalam aliran

    fluida, penerapan persamaan

    Bernoulli dalam perpipaan

    Mengerti, dapat

    menggunakan dan

    menghitung sistem prinsi

    hukum kontinuitas

    4 Idem Idem + gaya pada bidang terendam Idem

    5 Aplikasi

    kekekalan

    energi

    Aplikasi kekekalan energi dalam

    aplikasi di bidang TL

    Latihan menggunakan

    prinsip kekekalan

    eneri khususnya

    dalam bidang air

    minum

    - -

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    3/131

    Pipes are Everywhere!

    Owner: City ofHammond, IN

    Project: Water Main

    Relocation

    Pipe Size: 54"

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    4/131

    Pipes are Everywhere!

    Drainage Pipes

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    5/131

    Pipes

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    6/131

    Pipes are Everywhere!

    Water Mains

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    7/131

    Types of Engineering

    Problems How big does the pipe have to be to

    carry a flow ofxm3/s?

    What will the pressure in the waterdistribution system be when a firehydrant is open?

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    8/131

    FLUID DYNAMICS

    THE BERNOULLI EQUATION

    The laws of Statics that we have learned cannot solveDynamic Problems. There is no way to solve for the flow

    rate, or Q. Therefore, we need a new dynamic approach

    to Fluid Mechanics.

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    9/131

    The Bernoulli Equation

    By assuming that fluid motion is governed only by pressure and

    gravity forces, applying Newtons second law, F = ma, leads us tothe Bernoulli Equation.

    P/g+ V2

    /2g + z =constant along a streamline(P=pressure g =specific weight V=velocity g=gravity z=elevation)

    A streamline is the path of one particle of water. Therefore, at any twopoints along a streamline, the Bernoulli equation can be applied and,using a set of engineering assumptions, unknown flows and pressurescan easily be solved for.

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    10/131

    Free Jets

    The velocity of a jet of water is clearly related to the depth of waterabove the hole. The greater the depth, the higher the velocity. Similarbehavior can be seen as water flows at a very high velocity from the

    reservoir behind the Glen Canyon Dam in Colorado

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    11/131

    Closed Conduit Flow Energy equation

    EGL and HGL

    Head loss

    major losses

    minor losses

    Non circular conduits

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    12/131

    The Energy Line and the Hydraulic Grade Line

    Looking at the Bernoulli equation again:

    P/ + V2/2g + z = constant on a streamlineThis constant is called the total head (energy), H

    Because energy is assumed to be conserved, at any point alongthe streamline, the total head is always constant

    Each term in the Bernoulli equation is a type of head.

    P/ = Pressure Head

    V2/2g = Velocity Head

    Z = elevation head

    These three heads, summed together, will always equal H

    Next we will look at this graphically

    22

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    13/131

    Conservation of Energy Kinetic, potential, and thermal

    energy

    hL=

    Ltp hhzg

    Vphz

    g

    Vp 2

    2

    22

    21

    2

    11

    1

    22

    g

    g

    hp =ht=

    head supplied by a pumphead given to a turbine

    mechanical energy converted to thermal

    Cross section 2 is ____________ from cross section 1!downstream

    Point to point or control volume?

    Why ? _____________________________________

    irreversible

    V is average velocity, kinetic energy 2

    V

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    14/131

    Energy Equation

    Assumptions

    hp g

    p1

    g

    1V1

    2

    2g

    z1 hp p2

    g

    2V2

    2

    2g

    z2 ht hL

    hydrostatic

    density

    Steady

    kinetic

    Pressure is _________ in both cross sections

    pressure changes are due to elevation only

    section is drawn perpendicular to the streamlines(otherwise the _______ energy term is incorrect)

    Constant ________at the cross section

    _______ flow

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    15/131

    EGL (or TEL) and HGL

    velocity

    head

    elevationhead (w.r.t.

    datum)

    pressurehead (w.r.t.

    reference pressure)

    zg

    VpEGL

    2

    2

    g

    z

    pHGL

    downward

    lower than reference pressure

    The energy grade line must always slope ___________ (indirection of flow) unless energy is added (pump)

    The decrease in total energy represents the head loss or

    energy dissipation per unit weight EGL and HGL are coincident and lie at the free surface for

    water at rest (reservoir)

    If the HGL falls below the point in the system for which it

    is plotted, the local pressures are _____ ____ __________

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    16/131

    Energy equation

    z = 0

    pump

    Energy Grade Line

    Hydraulic G Lvelocity head

    pressurehead

    elevation

    datum

    z

    2g

    V2

    g

    p

    Ltp hhzg

    Vphzg

    Vp

    2

    2

    2221

    2

    11122

    g

    g

    static headWhy is static

    head important?

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    17/131

    The Energy Line and the Hydraulic Grade LineLets first understand this drawing:

    Q

    Measures theStatic Pressure

    Measures theTotal Head

    1 2

    Z

    P/

    V2/2gEL

    HGL

    12

    1: Static Pressure Tap

    Measures the sum of theelevation head and the

    pressure Head.

    2: Pilot Tube

    Measures the Total Head

    EL : Energy Line

    Total Head along a systemHGL : Hydraulic Grade line

    Sum of the elevation andthe pressure heads along a

    system

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    18/131

    The Energy Line and the Hydraulic Grade Line

    Q

    Z

    P/

    V2/2g

    EL

    HGL

    Understanding the graphical approach ofEnergy Line and the Hydraulic Grade line is

    key to understanding what forces aresupplying the energy that water holds.

    V2/2g

    P/

    Z

    1

    2

    Point 1:

    Majority of energystored in the water is in

    the Pressure Head

    Point 2:Majority of energy

    stored in the water is inthe elevation head

    If the tube wassymmetrical, then the

    velocity would beconstant, and the HGL

    would be level

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    19/131

    Bernoulli Equation

    Assumption

    constp

    g

    Vz

    g2

    2

    density

    Steady

    streamline

    Frictionless_________ (viscosity cant be asignificant parameter!)

    Along a __________

    ______ flow

    Constant ________

    No pumps, turbines, or head lossWhy no ____________

    Does direction matter? ____

    Useful when head loss is small

    point velocity

    no

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    20/131

    Pipe Flow: Review

    2 2

    1 1 2 21 1 2 2

    2 2

    p t L

    p V p Vz h z h h

    g g

    g g

    dimensional analysis

    We have the control volume energyequation for pipe flow.

    We need to be able to predict therelationship between head loss and flow.

    How do we get this relationship?__________ _______.

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    21/131

    Example Pipe Flow

    Problem

    D=20 cm

    L=500 mvalve

    100 mFind the discharge, Q.

    Describe the process in terms of energy!

    cs1

    cs2

    p Vg

    z H p Vg

    z H hp t l1 1 12

    12

    22

    2

    22 2g

    g

    zV

    g

    z hl12

    2

    2

    2

    V g z z hl2 1 22

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    22/131

    Flow Profile for Delaware

    AqueductRondout Reservoir(EL. 256 m)

    West Branch Reservoir

    (EL. 153.4 m)

    70.5 km

    Sea Level

    (Designed for 39 m3/s)

    2 2

    1 1 2 21 1 2 2

    2 2p t l

    p V p Vz H z H h

    g g

    g g

    Need a relationship between flow rate and head loss

    1 2lh z z

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    23/131

    Ratio of Forces

    Create ratios of the various forces

    The magnitude of the ratio will tell us

    which forces are most important andwhich forces could be ignored

    Which force shall we use to create the

    ratios?

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    24/131

    Inertia as our Reference

    Force F=ma

    Fluids problems (except for statics) include a

    velocity (V), a dimension of flow (l), and adensity (r)

    Substitute V, l, r for the dimensions MLT

    Substitute for the dimensions of specific force

    F a rF

    a

    f r f M

    L T2 2

    L l T M

    fi

    lV

    rl3

    r

    V

    l

    2

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    25/131

    Dimensionless

    Parameters Reynolds Number

    Froude Number Weber Number

    Mach Number

    Pressure/Drag Coefficients

    (dependent parameters that we measure experimentally)

    ReVlr

    m=

    Fr

    V

    gl=

    2

    2Cp

    p

    Vr

    rlVW

    2

    cVM

    AVd

    2

    Drag2C

    r

    2f

    u

    V

    l

    fg gr

    2f

    l

    2

    f vEc

    l

    r=

    2

    fiV

    lr

    ( )p g zrD + D

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    26/131

    Problem solving approach

    1. Identify relevant forces and any other relevant parameters

    2. If inertia is a relevant force, than the non dimensional Re, Fr,W, M, Cp numbers can be used

    3. If inertia isnt relevant than create new non dimensional forcenumbers using the relevant forces

    4. Create additional non dimensional terms based on geometry,velocity, or density if there are repeating parameters

    5. If the problem uses different repeating variables then

    substitute (for example wd instead of V)6. Write the functional relationship

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    27/131

    Friction Factor : Major

    losses Laminar flow

    Hagen-Poiseuille

    Turbulent (Smooth, Transition, Rough) Colebrook Formula

    Moody diagram

    Swamee-Jain

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    28/131

    Laminar Flow Friction

    FactorL

    hDV l

    g

    32

    2

    2

    32

    gD

    LVhl

    r

    g

    V

    D

    Lhl

    2f

    2

    g

    V

    D

    L

    gD

    LV

    2f

    32 2

    2

    r

    RVD

    6464f

    r

    Hagen-Poiseuille

    Darcy-Weisbach

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    29/131

    Pipe Flow: Dimensional

    Analysis What are the important forces?

    ______, ______,________. Therefore________number and _______________ .

    What are the important geometricparameters? _________________________ Create dimensionless geometric groups

    ______, ______

    Write the functional relationship

    Cp f

    Re, ,l

    D D

    Inertial

    diameter, length, roughness height

    Reynolds

    l/D

    viscous

    /D

    2

    2C

    V

    pp

    r

    Other repeating parameters?

    pressure

    Pressure coefficient

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    30/131

    Dimensional

    Analysis How will the results of dimensional analysis

    guide our experiments to determine the

    relationships that govern pipe flow? If we hold the other two dimensionless

    parameters constant and increase thelength to diameter ratio, how will Cp

    change?, Rep

    DC f

    l D

    f , RepD

    C f

    l D

    2

    2C

    V

    pp

    r

    Cp proportional to l

    f is friction factor

    , , Repl

    C fD D

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    31/131

    Hagen-Poiseuille

    Darcy-Weisbach

    Laminar Flow Friction

    Factor232

    lhDVL

    g

    f 2

    32 LVh gD

    r

    2

    f f2

    L Vh

    D g

    2

    2

    32f

    2

    LV L V

    gD D g

    r

    64 64f

    ReVD

    r

    Slope of ___ on log-log plot

    f 4

    128 LQ

    h gDr

    -1

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    32/131

    Viscous Flow inPipes

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    33/131

    Two important parameters!R - Laminar or Turbulent

    /D- Rough or Smooth

    R,

    Df

    l

    DCp

    2

    2C

    V

    pp

    r

    rVDR

    Viscous Flow:

    Dimensional AnalysisWhere and

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    34/131

    Transition at Rof 2000

    Laminar and Turbulent

    Flows Reynolds

    apparatus

    rVDR

    dampinginertia

    http://localhost/var/www/apps/conversion/tmp/scratch_10//civil9.civil.tamu.edu/kchang$/Clips/V8_1.mov
  • 7/27/2019 fluid-mechanics-benno-new.ppt

    35/131

    Boundary layer growth:

    Transition length

    Pipe

    Entrance

    What does the water near the pipeline wall experience?

    _________________________

    Why does the water in the center of the pipeline speed

    up? _________________________

    v v

    Drag or shear

    Conservation of mass

    Non-Uniform Flow

    v

    Need equation for entrance length here

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    36/131

    Images - Laminar/Turbulent Flows

    Laser - induced florescence image of an

    incompressible turbulent boundary layer

    Simulation of turbulent flow coming out of a

    tailpipe

    Laminar flow (Blood Flow)

    Laminar flowTurbulent flow

    http://www.engineering.uiowa.edu/~cfd/gallery/lim-turb.html

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    37/131

    Laminar, Incompressible,

    Steady, Uniform Flow Between Parallel Plates

    Through circular tubes

    Hagen-Poiseuille EquationApproach

    Because it is laminar flow the shear

    forces can be quantifiedVelocity profiles can be determined froma force balance

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    38/131

    Laminar Flow through

    Circular Tubes Different geometry, same equation

    development (see Streeter, et al. p

    268)Apply equation of motion to cylindrical

    sleeve (use cylindrical coordinates)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    39/131

    Laminar Flow through

    Circular Tubes: Equations

    hpdl

    drau g

    4

    22

    hpdl

    dau g

    4

    2

    max

    hpdl

    daV g

    8

    2

    hpdl

    daQ g

    8

    4

    Velocity distribution is paraboloid of

    revolution therefore _____________

    _____________

    Q = VA =

    Max velocity when r = 0

    average velocity

    (V) is 1/2 umax

    Vpa2

    a is radius of the tube

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    40/131

    Laminar Flow through

    Circular Tubes: Diagram

    Velocity

    Shear

    hpdl

    drau g

    4

    22

    hpdldr

    drdu g

    2

    hpdl

    dr

    dr

    dug

    2

    l

    hr l

    2

    g

    l

    dhl4

    0

    g True for Laminar or

    Turbulent flow

    Shear at the wall

    Laminar flow

    L i fl

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    41/131

    Laminar flowContinue

    Momentum is

    Mass*velocity (m*v)

    Momentum per unit volume is

    r*vzRate of flow of momentum isr*vz* dQdQ=vz2rdr

    butvz= constant at a fixed value of r

    rvz(v2rdr) z rvz(v2rdr) zdz 0Laminar flow

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    42/131

    Laminar flow

    Continue2rzr rdz2(r dr)zr rdrdzp z2rdr p zdz2rdr rg2rdrdz 0

    dvz

    dr

    Q 2vzdr0R R

    4

    8pL

    p pz 0 pzL rgL

    Hagen-Poiseuille

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    43/131

    The Hagen-Poiseuille

    Equation

    hpdl

    daQ g

    8

    4

    h

    p

    dl

    dDQ

    g

    g

    128

    4

    lhzp

    zp

    22

    21

    1

    1

    gg

    2

    2

    21

    1

    1 zp

    zp

    hlgg

    h

    phl

    g

    L

    hDQ l

    g

    128

    4

    L

    hh

    p

    dl

    d l

    g

    L

    hDV l

    g

    32

    2

    cv pipe flow

    Constant cross section

    Laminar pipe flow equations

    h orz

    pz

    V

    gH

    pz

    V

    gH hp t l

    1

    1

    1 11

    2

    2

    2

    2 22

    2

    2 2g

    g

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    44/131

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    45/131

    Prof. Dr. Ir. Bambang Triatmodjo, CES-UGM :

    Hidraulika I, Beta Ofset Yogyakarta, 1993

    Hidraulika II, Beta Ofset Yogyakarta, 1993

    Soal-Penyelesaian Hidraulika I, 1994

    Soal-Penyelesaian Hidraulika II, 1995

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    46/131

    Air mengalir melalui pipa berdiameter

    150 mm dan kecepatan 5,5m/det.Kekentalan kinematik air adalah1,3 x 10-4 m2/det. Selidiki tipe aliran

    turbulenaliranberartiKarena

    xx

    x

    v

    VD

    reynoldsBilangan

    4000Re

    1035,6103,1

    15,05,5Re

    :

    5

    6

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    47/131

    Minyak di pompa melalui pipasepanjang 4000 m dan diameter 30

    cm dari titik A ke titik B. Titik Bterbuka ke udara luar. Elevasi titik Badalah 50 di atas titik A. Debit 40 l/det.

    Debit aliran 40 l/det. Rapat relatifS=0,9 dan kekentalan kinematik 2,1 x10-4 m2/det. Hitung tekanan di titik A.

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    48/131

    erLaaliranberartiKarena

    x

    x

    v

    VD

    reynoldsBilangan

    dtkm

    xA

    QV

    aliranKecepatn

    mZZAbawahujung

    terhadapBpipaatasujungElevasi

    mkgSrelatifRapat

    dtkmxvkinematikKekentalan

    dtkmQaliranDebit

    mLpipaPanjang

    cmDpipaDiameter

    AB

    min2000Re

    6,808101,2

    3,0566,0Re

    :

    /566,0

    3,04

    04,0

    :

    50:)(

    )(

    /9009,0:

    /101,2:

    /04,0:

    4000:

    30:

    4

    2

    3

    24

    3

    r

    kPap

    mNp

    xxp

    mp

    p

    VV

    hfzg

    Vpz

    g

    Vp

    mx

    xxx

    gD

    vVLhf

    tenagaKehilangan

    A

    A

    A

    A

    A

    BA

    BBB

    AAA

    574,593

    /574,593

    81,990023,67

    23,67

    23,175000

    22

    23,173,082,9

    4000,566,0101,23232

    2

    22

    2

    4

    2

    g

    g

    gg

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    49/131

    Minyak dipompa melalui pipaberdiameter 25 cm dan panjang 10 km

    dengan debit aliran 0,02 m3/dtk. Pipaterletak miring dengan kemiringan1:200. Rapat minyak S=0,9 dankeketnalan kinematik v=2,1x 10-4

    m2/det. Apabila tekanan pada ujungatas adalah p=10 kPA ditanyakantekanan di ujung bawah.

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    50/131

    erLaaliranberartiKarena

    x

    x

    v

    VDreynoldsBilangan

    dtkm

    xA

    QV

    aliranKecepatn

    NmkPapBBdiTekanan

    mkgSrelatifRapat

    dtkmxvkinematikKekentalan

    dtkmQaliranDebit

    pipaKemiringan

    mLpipaPanjang

    cmDpipaDiameter

    min2000Re

    485101,2

    25,04074,0Re

    :

    /4074,0

    25,04

    02,0

    :

    000.1010:

    /9009,0:

    /101,2:

    /02,0:

    200:1:

    000.10:

    25:

    4

    2

    2

    3

    24

    3

    r

    kPap

    mNp

    xxp

    mp

    x

    p

    VV

    hfzg

    Vpzg

    Vp

    mxz

    ujungkeduaelevasiSelisih

    m

    x

    xxxx

    gD

    vVLhf

    tenagaKehilangan

    A

    A

    A

    A

    A

    BA

    BBB

    AAA

    642,845

    /642,845

    81,990078,95

    78,95

    65,445081,9900

    000.100

    22

    50000.10200

    1

    :

    65,44

    25,082,9

    100004074,0101,23232

    2

    22

    2

    4

    2

    g

    g

    gg

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    51/131

    Turbulent Pipe andChannel Flow: Overview

    Velocity distributions

    Energy Losses

    Steady Incompressible Flow throughSimple Pipes

    Steady Uniform Flow in Open Channels

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    52/131

    Turbulence

    A characteristic of the flow.

    How can we characterize turbulence?

    intensity of the velocity fluctuations

    size of the fluctuations (length scale)

    mean

    velocity

    instantaneous

    velocity

    velocity

    fluctuationtuuu

    u

    u

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    53/131

    Turbulent flow

    When fluid flow at higher flowrates,

    the streamlines are not steady and

    straight and the flow is not laminar.Generally, the flow field will vary in

    both space and time with fluctuations

    that comprise "turbulence

    For this case almost all terms in the

    Navier-Stokes equations are important

    and there is no simple solution

    P= P(D, , r, L , U,)

    uz

    z

    Uzaverage

    ur

    r

    Ur

    average

    p

    P

    paverage

    Time

    http://localhost/var/www/apps/conversion/tmp/scratch_10//civil9.civil.tamu.edu/kchang$/Clips/V8_1.movhttp://localhost/var/www/apps/conversion/tmp/scratch_10//civil9.civil.tamu.edu/kchang$/Clips/V8_1.mov
  • 7/27/2019 fluid-mechanics-benno-new.ppt

    54/131

    Turbulent flow

    All previous parameters involved three fundamental dimensions,

    Mass, length, and time

    From these parameters, three dimensionless groups can be build

    PrU

    2 f(Re,L

    D)

    Re rUD

    inertia

    Viscous forces

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    55/131

    Turbulence: Size of theFluctuations or Eddies

    Eddies must be smaller than the physicaldimension of the flow

    Generally the largest eddies are of similar size

    to the smallest dimension of the flow Examples of turbulence length scales

    rivers: ________________

    pipes: _________________ lakes: ____________________

    Actually a spectrum of eddy sizes

    depth (R = 500)

    diameter (R = 2000)depth to thermocline

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    56/131

    Turbulence: FlowInstability

    In turbulent flow (high Reynolds number) the forceleading to stability (_________) is small relative tothe force leading to instability (_______).

    Any disturbance in the flow results in large scalemotions superimposed on the mean flow.

    Some of the kinetic energy of the flow is transferredto these large scale motions (eddies).

    Large scale instabilities gradually lose kinetic energyto smaller scale motions.

    The kinetic energy of the smallest eddies isdissipated by viscous resistance and turned into heat.

    (=___________)head loss

    viscosity

    inertia

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    57/131

    Velocity Distributions

    Turbulence causes transfer of momentum fromcenter of pipe to fluid closer to the pipe wall.

    Mixing of fluid (transfer of momentum) causesthe central region of the pipe to have relatively_______velocity (compared to laminar flow)

    Close to the pipe wall eddies are smaller (size

    proportional to distance to the boundary)

    constant

    Turbulent Flow Velocity

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    58/131

    Turbulent Flow VelocityProfile

    dy

    du

    dydu

    IIulr

    dy

    dulu II

    dy

    dulI

    2r

    Length scale and velocity of large eddies

    y

    Turbulent shear is from momentum transfer

    h = eddy viscosity

    Dimensional analysis

    b l l l i

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    59/131

    Turbulent Flow VelocityProfile

    ylI

    dy

    duy 22r

    2

    22

    dy

    duyr

    dy

    duy

    r

    dy

    dulI

    2r

    dy

    du

    Size of the eddies __________ as we

    move further from the wall.

    increases

    k = 0.4 (from experiments)

    Log Law for Turbulent,

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    60/131

    Log Law for Turbulent,Established Flow, Velocity

    Profiles

    5.5ln1 *

    *

    yu

    u

    u

    r

    0* u

    dy

    duy

    r

    Iuu *

    Shear velocity

    Integration and empirical results

    Laminar Turbulent

    x

    y

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    61/131

    Pipe Flow: The Problem

    We have the control volume energyequation for pipe flow

    We need to be able to predict thehead loss term.

    We will use the results we obtained

    using dimensional analysis

    F i i F M j

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    62/131

    Friction Factor : Majorlosses

    Laminar flow

    Hagen-Poiseuille

    Turbulent (Smooth, Transition, Rough) Colebrook Formula

    Moody diagram

    Swamee-Jain

    T b l t Pi Fl H d

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    63/131

    Turbulent Pipe Flow HeadLoss

    ___________ to the length of the pipe

    Proportional to the _______ of the velocity

    (almost) ________ with surface roughness

    Is a function of density and viscosity

    Is __________ of pressure

    Proportional

    Increases

    independent

    2

    f f2

    L Vh

    D g

    square

    Smooth Transition Rough

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    64/131

    (used to draw the Moody diagram)

    Smooth, Transition, RoughTurbulent Flow

    Hydraulically smoothpipe law (vonKarman, 1930)

    Rough pipe law (vonKarman, 1930)

    Transition function

    for both smooth andrough pipe laws(Colebrook)

    1 Re f 2log

    2.51f

    1 2.512log

    3.7f Re f

    D

    1 3.72log

    f

    D

    2

    f2

    f

    L Vh

    D g

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    65/131

    Pipe Flow Energy Losses

    gphl

    R,f

    Df

    L

    DCp

    2

    2CV

    pp

    r

    2

    2CV

    ghlp

    L

    D

    V

    ghl2

    2f

    g

    V

    D

    Lhl

    2

    f2

    Horizontal pipe

    Dimensional Analysis

    Darcy-Weisbach equation

    p V

    gz h

    p V

    gz h hp t l

    11

    1

    2

    12

    22

    2

    22 2g

    g

    T b l t Pi Fl H d

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    66/131

    Turbulent Pipe Flow HeadLoss

    ___________ to the length of the pipe

    ___________ to the square of the

    velocity (almost)________ with the diameter (almost)

    ________ with surface roughness

    Is a function of density and viscosity

    Is __________ of pressure

    Proportional

    Proportional

    Inversely

    Increase

    independent

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    67/131

    Surface Roughness

    Additional dimensionless group /D needto be characterize

    Thus more than one curve on friction factor-Reynolds number plot

    Fanning diagram or Moody diagramDepending on the laminar region.

    If, at the lowest Reynolds numbers, the laminar portion

    corresponds to f =16/Re Fanning Chart

    orf= 64/Re Moody chart

    Friction Factor for Smooth Transition and

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    68/131

    Friction Factor for Smooth, Transition, and

    Rough Turbulent flow

    1

    f 4.0 * log Re* f 0.

    Smooth pipe, Re>3000

    1

    f 4.0 * log

    D

    2.28

    Rough pipe, [ (D/)/(Re)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    69/131

    Smooth, Transition, RoughTurbulent Flow

    Hydraulically smoothpipe law (vonKarman, 1930)

    Rough pipe law (vonKarman, 1930)

    Transition function

    for both smooth andrough pipe laws(Colebrook)

    51.2

    Relog2

    1 f

    f

    D

    f

    7.3log2

    1

    g

    V

    D

    Lfhf

    2

    2

    (used to draw the Moody diagram)

    f

    D

    f Re

    51.2

    7.3log2

    1

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    70/131

    Moody Diagram

    0.01

    0.10

    1E+03 1E+04 1E+05 1E+06 1E+07 1E+08R

    frictionf

    actor

    laminar

    0.05

    0.04

    0.03

    0.02

    0.015

    0.010.0080.006

    0.004

    0.002

    0.0010.0008

    0.0004

    0.0002

    0.0001

    0.00005

    smooth

    l

    DCpf

    D

    0.02

    0.03

    0.04

    0.05

    0.06

    0.08

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    71/131

    Fanning Diagram

    f=16/Re

    1

    f 4.0 * log

    D

    2.28

    1

    f 4.0* log

    D

    2.28 4.0* log 4.67

    D /

    Re f1

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    72/131

    Swamee-Jain

    1976

    limitations

    /D < 2 x 10-2

    Re >3 x 103 less than 3% deviation

    from results obtainedwith Moody diagram

    easy to program forcomputer orcalculator use

    5 / 2 f

    3/ 2 f

    1.782.22 log

    3.7

    ghQ D

    L D ghD

    L

    0.04

    4.75 5.22

    1.25 9.4

    f f

    0.66LQ L

    D Qgh gh

    2

    0.9

    0.25f

    5.74log

    3.7 ReD

    no f

    Each equation has two terms. Why?

    fgh

    L

    hf

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    73/131

    Colebrook Solution for Q

    1 2.512log

    3.7f Re f

    D

    2

    f 2 5

    8f

    LQh

    g D

    2

    2 5

    f

    1 1 8f

    LQh g D

    Re 4Q

    D

    2 5

    f 2

    4Re f

    8

    Q g Dh

    D LQ

    3

    f21

    Re fgh D

    L

    2

    1 2.514 logf 3.7 Re f

    D

    f

    2 5 2

    8f

    h g

    D LQ

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    74/131

    Colebrook Solution for Q

    2

    2

    2 5 3f f

    1 8 2.514 log

    3.7 21

    LQ

    h g D D gh D

    L

    5 / 2 3f f

    2 2.51log

    3.7 21

    L Q

    gh D D gh D

    L

    5 / 2 f

    3f

    log 2.513.7 22

    gh LQ D

    L D gh D

    Swamee0.04

    5 1/ 4 5 1/ 52 2 2 2Q Q Q Q

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    75/131

    SwameeD?

    2 2 2 21.250.66

    Q Q Q QD

    g g Q g g

    1/251/ 5 1/ 4 1/ 5

    2 2 25 / 40.66

    Q Q QD

    g g Q g

    2

    f 2 5

    8f

    LQh

    g D

    25

    2

    8f QDg

    25

    2

    64f

    8

    QD

    g

    1/ 51/ 4 1/ 5

    2 25 / 4

    2

    64f

    Q Q

    g Q g

    1/ 5

    2

    2

    64f

    8

    QD

    g

    1/ 51/ 5

    1/ 4 1/52 2 2

    5/ 4

    8

    Q Q QD

    g g Q g

    1/ 51/ 4 1/ 52 2 2

    5 / 41f4 4

    Q Q

    g Q g

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    76/131

    Pipe roughness

    pipe material pipe roughness (mm)

    glass, drawn brass, copper 0.0015

    commercial steel or wrought iron 0.045

    asphalted cast iron 0.12

    galvanized iron 0.15

    cast iron 0.26

    concrete 0.18-0.6rivet steel 0.9-9.0

    corrugated metal 45

    PVC 0.12

    d Must be

    dimensionless!

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    77/131

    Solution Techniques

    find head loss given (D, type of pipe, Q)

    find flow rate given (head, D, L, type of pipe)

    find pipe size given (head, type of pipe,L, Q)0.04

    4.75 5.22

    1.25 9.4

    f f

    0.66LQ L

    D Qgh gh

    2

    2 5

    8ff

    LQh

    g D2

    0.9

    0.25f

    5.74log

    3.7 ReD

    Re 4Q

    D

    5 / 2 f

    3

    f

    log 2.513.7 22

    gh LQ D

    L D gh D

    Exponential Friction

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    78/131

    Exponential FrictionFormulas

    f

    n

    m

    RLQh

    D=

    unitsSI

    675.10

    unitsUSC727.4

    n

    n

    C

    CR

    1.852

    f 4.8704

    10.675SI units

    L Qh

    D C

    =

    C = Hazen-Williams coefficient

    range of data

    Commonly used in commercial andindustrial settings

    Only applicable over _____ __ ____collected

    Hazen-Williams exponential friction

    formula

    Head loss:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    79/131

    Head loss:Hazen-Williams Coefficient

    C Condition

    150 PVC

    140 Extremely smooth, straight pipes; asbestos

    cement

    130 Very smooth pipes; concrete; new cast iron

    120 Wood stave; new welded steel

    110 Vitrified clay; new riveted steel

    100 Cast iron after years of use

    95 Riveted steel after years of use

    60-80 Old pipes in bad condition

    Hazen-Williams1.852

    f 4.8704

    10.675SI units

    L Qh

    D C

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    80/131

    vs

    Darcy-Weisbach

    D C 2

    f 2 5

    8f

    LQh

    g D

    preferred

    Both equations are empirical

    Darcy-Weisbach is dimensionally correct,

    and ________. Hazen-Williams can be considered valid only

    over the range of gathered data.

    Hazen-Williams cant be extended to otherfluids without further experimentation.

    Non Circular Conduits:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    81/131

    Non-Circular Conduits:Hydraulic Radius Concept

    A is cross sectional area

    P is wetted perimeter

    Rhis the Hydraulic Radius(Area/Perimeter)

    Dont confuse with radius!

    2

    f2

    f

    L Vh

    D g=

    2

    f f4 2h

    L VhR g

    =

    2

    44

    h

    DA DR

    P D

    p

    = = = 4 hD R=For a pipe

    We can use Moody diagram or Swamee-Jain with D = 4Rh!

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    82/131

    Pipe Flow Summary (1)

    Shear increases _________ withdistance from the center of the pipe (for

    both laminar and turbulent flow) Laminar flow losses and velocity

    distributions can be derived based on

    momentum and energy conservation Turbulent flow losses and velocity

    distributions require ___________

    results

    linearly

    experimental

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    83/131

    Pipe Flow Summary (2)

    Energy equation left us with the elusivehead loss term

    Dimensional analysis gave us the form ofthe head loss term (pressure coefficient)

    Experiments gave us the relationshipbetween the pressure coefficient and the

    geometric parameters and the Reynoldsnumber (results summarized on Moodydiagram)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    84/131

    Questions

    Can the Darcy-Weisbach equation andMoody Diagram be used for fluids other

    than water? _____YesNo

    Yes

    Yes

    What about the Hazen-Williams equation? ___

    Does a perfectly smooth pipe have head loss?

    _____

    Is it possible to decrease the head loss in a

    pipe by installing a smooth liner? ______

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    85/131

    Darcy Weisbach

    Major and Minor Losses

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    86/131

    Major Losses:

    Hmaj = f x (L/D)(V2/2g)

    f = friction factor L = pipe length D = pipe diameterV = Velocity g = gravity

    Minor Losses:Hmin = KL(V2/2g)

    Kl = sum of loss coefficients V = Velocity g = gravity

    When solving problems, the loss terms are added to the system at thesecond point

    P1/ + V12/2g + z1 = P2/ + V2

    2/2g + z2 + Hmaj + Hmin

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    87/131

    Hitung kehilangan tenaga karena gesekan di

    dalam pipa sepanjang 1500 m dan diameter20 cm, apabila air mengalir dengankecepatan 2 m/det. Koefisien gesekanf=0,02

    Penyelesaian :

    Panjang pipa : L = 1500 m

    Diameter pipa : D = 20 cm = 0,2 m

    Kecepatan aliran : V = 2 m/dtk

    Koefisien gesekan f = 0,02 mxxx

    g

    V

    D

    Lfhf

    tenagaKehilangan

    58,30

    81,922,02150002,0

    2

    2

    2

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    88/131

    Air melalui pipa sepanjang 1000 m dan

    diameternya 150 mm dengan debit 50 l/det.Hitung kehilangan tenaga karenagesekanapabila koefisien gesekan f = 0,02

    Penyelesaian :Panjang pipa : L = 1000 mDiameter pipa : D = 0,15 mDebit aliran : Q = 50 liter/detik

    Koefisien gesekan f = 0,02m

    xx

    xx

    QDg

    Lfhf

    tenagaKehilangan

    4,54

    )015,0(81,9

    100002,0802,0

    8

    22

    5

    52

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    89/131

    Hitung kehilangan tenaga karena gesekan di

    dalam pipa sepanjang 1500 m dan diameter20 cm, apabila air mengalir dengankecepatan 2 m/det. Koefisien gesekanf=0,02

    Penyelesaian :

    Panjang pipa : L = 1500 m

    Diameter pipa : D = 20 cm = 0,2 m

    Kecepatan aliran : V = 2 m/dtk

    Koefisien gesekan f = 0,02 mxxx

    g

    V

    D

    Lfhf

    tenagaKehilangan

    58,30

    81,922,02150002,0

    2

    2

    2

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    90/131

    Air melalui pipa sepanjang 1000 m dan

    diameternya 150 mm dengan debit 50 l/det.Hitung kehilangan tenaga karenagesekanapabila koefisien gesekan f = 0,02

    Penyelesaian :Panjang pipa : L = 1000 mDiameter pipa : D = 0,15 mDebit aliran : Q = 50 liter/detik

    Koefisien gesekan f = 0,02m

    xx

    xx

    QDg

    Lfhf

    tenagaKehilangan

    4,54

    )015,0(81,9

    100005,0802,0

    8

    52

    5

    5

    52

    Example

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    91/131

    Solve for the Pressure Head, Velocity Head, and Elevation Head at eachpoint, and then plot the Energy Line and the Hydraulic Grade Line

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Assumptions and Hints:

    P1 and P4 = 0 --- V3 = V4 same diameter tube

    We must work backwards to solve this problem

    R = .5

    R = .25

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    92/131

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Point 1:

    Pressure Head : Only atmospheric P1/ = 0

    Velocity Head : In a large tank,V1 = 0 V12/2g = 0Elevation Head : Z1= 4

    R = .5R = .25

    Point 4:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    93/131

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Apply the Bernoulli equation between 1 and 40 + 0 + 4 = 0 + V4

    2/2(32.2) + 1

    V4 = 13.9 ft/s

    Pressure Head : Only atmospheric P4/ = 0

    Velocity Head :V42/2g = 3

    Elevation Head : Z4= 1

    R = .5R = .25

    Point 3:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    94/131

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Apply the Bernoulli equation between 3 and 4 (V3=V4)P3/62.4 + 3 + 1 = 0 + 3 + 1

    P3 = 0

    Pressure Head : P3/ = 0

    Velocity Head :V32/2g = 3

    Elevation Head : Z3= 1

    R = .5R = .25

    Point 2:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    95/131

    1

    23 4

    1

    4

    H2O= 62.4 lbs/ft3

    Apply the Bernoulli equation between 2 and 3P2/62.4 + V2

    2/2(32.2) + 1 = 0 + 3 + 1

    Apply the Continuity Equation

    (.52)V2 = (.252)x13.9 V2 = 3.475 ft/s

    P2/62.4 + 3.4752/2(32.2) + 1 = 4 P2 = 175.5 lbs/ft

    2

    R = .5R = .25

    Pressure Head :P2/= 2.81

    Velocity Head :V22/2g = .19

    Elevation Head :Z2= 1

    Plotting the EL and HGLE Li S f h P V l i d El i h d

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    96/131

    Energy Line = Sum of the Pressure, Velocity and Elevation heads

    Hydraulic Grade Line = Sum of the Pressure and Velocity heads

    EL

    HGL

    Z=1Z=1Z=1

    V2/2g=3V2/2g=3

    Z=4

    P/=2.81

    V2/2g=.19

    Pipe Flow and the Energy EquationFor pipe flow, the Bernoulli equation alone is not sufficient. Friction loss

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    97/131

    p p , qalong the pipe, and momentum loss through diameter changes and

    corners take head (energy) out of a system that theoretically conserves

    energy. Therefore, to correctly calculate the flow and pressures in pipesystems, the Bernoulli Equation must be modified.

    P1/ + V12/2g + z1 = P2/ + V2

    2/2g + z2 + Hmaj + Hmin

    Major losses: Hmaj

    Major losses occur over the entire pipe, as the friction of the fluid overthe pipe walls removes energy from the system.Each type of pipe as a

    friction factor, f, associated with it.

    Hmaj

    Energy line with no losses

    Energy line with major losses

    1 2

    Pipe Flow and the Energy Equation

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    98/131

    Minor Losses : Hmin

    Momentum losses in Pipe diameter changes and in pipe bends are calledminor losses. Unlike major losses, minor losses do not occur over thelength of the pipe, but only at points of momentum loss. Since Minorlosses occur at unique points along a pipe, to find the total minor lossthroughout a pipe, sum all of the minor losses along the pipe. Each

    type of bend, or narrowing has a loss coefficient, KL to go with it.

    MinorLosses

    i

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    99/131

    Minor Losses

    We previously obtained losses through anexpansion using conservation of energy,momentum, and mass

    Most minor losses can not be obtainedanalytically, so they must be measured

    Minor losses are often expressed as a loss

    coefficient, K, times the velocity head.

    g

    VKh

    2

    2

    R,geometryfCp 22

    C

    V

    pp

    r

    2

    2C

    V

    ghlp

    g

    Vh pl

    2

    C2

    High R

    H d L Mi L

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    100/131

    Head Loss: Minor Losses

    potential thermal

    Vehicle drag Hydraulic jumpVena contracta Minor losses!

    Head loss due tooutlet, inlet, bends, elbows, valves, pipe sizechanges

    Flow expansions have high losses Kinetic energy decreases across expansion

    Kinetic energy ________ and _________ energy

    Examples __________________________________________________________________________

    Losses can be minimized by gradual transitions

    Mi L

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    101/131

    Minor Losses

    Most minor losses can not be obtainedanalytically, so they must be measured

    Minor losses are often expressed as aloss coefficient, K, times the velocityhead.

    2

    2l

    Vh K

    g=

    ( )geometry,RepC f=

    2

    2C

    V

    ghlp

    g

    Vh pl

    2C

    2

    High Re

    Head Loss due to Gradual

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    102/131

    Head Loss due to GradualExpansion (Diffusor)

    g

    VVKh EE

    2

    2

    21

    diffusor angle ( )

    00.10.20.30.40.50.60.70.8

    0 20 40 60 80

    KE

    2

    1

    2

    2

    2 12

    A

    Ag

    VKh EE

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    103/131

    Sudden Contraction

    losses are reduced with a gradual contraction

    g

    V

    Ch

    cc 2

    11 22

    2

    2A

    AC cc

    V1 V2

    flow separation

    S dd C t ti

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    104/131

    Sudden Contraction

    0.6

    0.65

    0.7

    0.75

    0.80.85

    0.9

    0.95

    1

    0 0.2 0.4 0.6 0.8 1

    A2/A1

    Cc

    hC

    V

    gc

    c

    HG KJ

    11

    2

    2

    2

    2

    Q CA ghorifice orifice 2

    E t L

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    105/131

    g

    VKh ee

    2

    2

    0.1eK

    5.0eK

    04.0eK

    Entrance Losses

    Losses can bereduced byaccelerating the

    flow gradually andeliminating the

    vena contracta

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    106/131

    Head Loss in Bends

    Head loss is afunction of the ratio

    of the bend radius tothe pipe diameter(R/D)

    Velocity distributionreturns to normalseveral pipediameters

    High pressure

    Low pressure

    Possible

    separation

    from wall

    D

    g

    VKh bb

    2

    2

    Kb

    varies from 0.6 - 0.9

    R

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    107/131

    Head Loss in Valves

    Function of valve type and valveposition

    The complex flow path throughvalves can result in high headloss (of course, one of thepurposes of a valve is to create

    head loss when it is not fullyopen)

    g

    VKh vv

    2

    2

    S l ti T h i

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    108/131

    Solution Techniques

    Neglect minor losses

    Equivalent pipe lengths

    Iterative Techniques Simultaneous Equations

    Pipe Network Software

    Iterative Techniques forD d Q ( i t t l h d

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    109/131

    D and Q (given total head

    loss)Assume all head loss is major head

    loss.

    Calculate D or Q using Swamee-Jainequations

    Calculate minor losses

    Find new major losses by subtractingminor losses from total head loss

    Solution Technique: Head

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    110/131

    qLoss

    Can be solved directly

    minorfl hhh

    g

    VKhminor2

    2

    5

    2

    2

    8

    D

    LQ

    g

    fhf

    2

    9.0Re

    74.5

    7.3log

    25.0

    D

    f

    42

    2

    8Dg

    QKhminor

    D

    Q4Re

    Solution Technique:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    111/131

    qDischarge or Pipe Diameter

    Iterative technique

    Set up simultaneous equations in Excel

    minorfl hhh

    42

    28

    Dg

    Q

    Khminor

    5

    2

    2

    8

    D

    LQ

    gfhf

    2

    9.0Re

    74.5

    7.3log

    25.0

    D

    f

    D

    Q4Re

    Use goal seek or Solver to

    find discharge that makes thecalculated head loss equal

    the given head loss.

    Example: Minor and

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    112/131

    pMajor Losses

    Find the maximum dependable flow between thereservoirs for a water temperature range of 4Cto 20C.

    Water

    2500 m of 8 PVC pipe

    1500 m of 6 PVC pipeGate valve wide open

    Standard elbows

    Reentrant pipes at reservoirs

    25 m elevation difference in reservoir water levels

    Sudden contraction

    Directions

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    113/131

    Directions

    Assume fully turbulent (rough pipe law)

    find f from Moody (or from von Karman)

    Find total head loss

    Solve for Q using symbols (must includeminor losses) (no iteration required)

    Obtain values for minor losses from notes or

    text

    Example (Continued)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    114/131

    Example (Continued)

    What are the Reynolds number in thetwo pipes?

    Where are we on the Moody Diagram? What value of K would the valve have

    to produce to reduce the discharge by

    50%? What is the effect of temperature?

    Why is the effect of temperature so

    small?

    Example (Continued)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    115/131

    Example (Continued)

    Were the minor losses negligible?

    Accuracy of head loss calculations?

    What happens if the roughnessincreases by a factor of 10?

    If you needed to increase the flow by30% what could you do?

    Suppose I changed 6 pipe, what isminimum diameter needed?

    Pipe Flow Summary (3)

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    116/131

    Pipe Flow Summary (3)

    Dimensionally correct equations fit to theempirical results can be incorporated intocomputer or calculator solution techniques

    Minor losses are obtained from the pressurecoefficient based on the fact that thepressure coefficient is _______ at high

    Reynolds numbers Solutions for discharge or pipe diameter often

    require iterative or computer solutions

    constant

    Loss CoefficientsUse this table to find loss coefficients:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    117/131

    Expansion:Conservation of Energy

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    118/131

    Conservation of Energy

    1 2

    ltp hHg

    Vz

    pH

    g

    Vz

    p

    22

    2

    222

    2

    2

    2

    111

    1

    1

    g

    g

    lhg

    VVpp

    2

    2

    1

    2

    221

    g

    g

    VVpphl

    2

    2

    2

    2

    121

    g

    z1 = z2

    What isp1 - p2?

    Head Loss due to Sudden Expansion:Conservation of Momentum

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    119/131

    Apply in direction of flowNeglect surface shear

    Divide by (A2g)

    Conservation of Momentum

    Pressure is applied over all ofsection 1.

    Momentum is transferred overarea corresponding toupstream pipe diameter.V1 is velocity upstream.

    sspp FFFWMM 2121

    1 2

    xx ppxxFFM

    2121

    1

    2

    11 AVM x r 22

    22 AVx r

    222122

    212

    1 ApApAVAV rr

    g

    A

    AVV

    pp 2

    12

    1

    2

    2

    21

    g

    A1A2

    x

    Head Loss due toSudden Expansion

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    120/131

    Energy

    Sudden Expansion

    g

    VVpphl

    2

    22

    2121

    g

    gA

    AVV

    pp 2

    12

    1

    2

    2

    21

    g

    1

    2

    2

    1

    V

    V

    A

    A

    g

    VV

    g

    V

    VVV

    hl 2

    2

    2

    2

    11

    22

    1

    2

    2

    g

    VVVV

    hl 2

    2 21212

    2

    g

    VVhl

    2

    2

    21

    2

    2

    1

    2

    1 12

    A

    A

    g

    Vhl

    2

    2

    11

    A

    AK

    Momentum

    Mass

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    121/131

    Contraction

    V1 V2

    EGL

    HGL

    vena contracta

    g

    VKh

    cc2

    2

    2

    losses are reduced with a gradual contraction

    Expansion!!!

    Questions:

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    122/131

    Questions:

    In the rough pipe law region if the flow rateis doubled (be as specific as possible)

    What happens to the major head loss?

    What happens to the minor head loss?

    Why do contractions have energy loss?

    If you wanted to compare the importance of

    minor vs. major losses for a specificpipeline, what dimensionless terms couldyou compare?

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    123/131

    Entrance Losses

    Losses can bereduced by

    accelerating theflow gradually andeliminating thevena contracta

    Ke 0.5

    Ke 1.0

    Ke 0.04

    he Ke

    V2

    2g

    reentrant

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    124/131

    Head Loss in Valves

    Function of valve typeand valve position

    The complex flow paththrough valves oftenresults in high head loss

    What is the maximumvalue that Kvcan have?_____

    hv KvV2

    2g

    How can K be greater than 1?

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    125/131

    Questions

    What is the headloss when a pipeenters a

    reservoir?

    Draw the EGLand HGL

    V

    g

    V

    2

    2

    EGL

    HGL

    2

    2

    11

    A

    AK

    ltp hHg

    VzpHg

    Vzp 22

    2

    222

    2

    2

    2

    111

    1

    1

    g

    g

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    126/131

    Example

    D=40 cmL=1000 m

    D=20 cmL=500 m

    valve100 m

    Find the discharge, Q.What additional information do you need?Apply energy equationHow could you get a quick estimate? _________________Or spreadsheet solution: find head loss as function of Q.

    Use S-J on small pipe

    cs1

    cs2

    2

    21002

    l

    Vm h

    g= +

    Pipe Flow Example

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    127/131

    1

    2Z2 = 130 m

    130 m

    7 m

    60 m

    r/D = 2

    Z1 = ?oil= 8.82 kN/m

    3

    f = .035

    If oil flows from the upper to lower reservoir at a velocity of1.58 m/s in the 15 cm diameter smooth pipe, what is the

    elevation of the oil surface in the upper reservoir?Include major losses along the pipe, and the minor losses

    associated with the entrance, the two bends, and the outlet.

    Kout=1

    r/D = 0

    Pipe Flow Example

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    128/131

    1

    2Z2 = 130 m

    130 m

    7 m

    60 m

    r/D = 2

    Z1 = ?oil= 8.82 kN/m

    3

    f = .035

    Kout=1

    r/D = 0

    Apply Bernoullis equation between points 1 and 2:Assumptions: P1 = P2 = Atmospheric = 0 V1 = V2 = 0 (large tank)

    0 + 0 + Z1

    = 0 + 0 + 130m + Hmaj

    + Hmin

    Hmaj = (fxLxV2)/(Dx2g)=(.035 x 197m x (1.58m/s)2)/(.15 x 2 x 9.8m/s2)

    Hmaj= 5.85m

    Pipe Flow Example

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    129/131

    1

    2Z2 = 130 m

    130 m

    7 m

    60 m

    r/D = 2

    Z1 = ?oil= 8.82 kN/m

    3

    f = .035

    Kout=1

    r/D = 0

    0 + 0 + Z1 = 0 + 0 + 130m + 5.85m + Hmin

    Hmin= 2KbendV2/2g + KentV

    2/2g + KoutV2/2g

    From Loss Coefficient table: Kbend = 0.19 Kent = 0.5 Kout = 1

    Hmin = (0.19x2 + 0.5 + 1) x (1.582/2x9.8)

    Hmin = 0.24 m

    Pipe Flow Example

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    130/131

    1

    2Z2 = 130 m

    130 m

    7 m

    60 m

    r/D = 2

    Z1 = ?oil= 8.82 kN/m

    3

    f = .035

    Kout=1

    r/D = 0

    0 + 0 + Z1 = 0 + 0 + 130m + Hmaj + Hmin

    0 + 0 + Z1 = 0 + 0 + 130m + 5.85m + 0.24mZ1 = 136.09 meters

    Pipa ekivalen

  • 7/27/2019 fluid-mechanics-benno-new.ppt

    131/131

    Pipa ekivalen

    Digunakan untukmenyederhanakansistem yang ditinjau

    Ciri khasnya adalah memilikikeserupaan hidrolis dengan kondisinyatanya Q, hf sama

    Pipa ekivalen dapat dinyatakan melaluiekivalensi l,D,f