Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by...

23
Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk

Transcript of Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by...

Page 1: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH

Flow Aware Networking

Router model

lead by prof. dr hab. inż. Andrzej Jajszczyk

Page 2: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH2/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 3: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH3/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 4: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH4/23 Jakub Palider

Current network quality requirements

Nowadays networks are expected to support a variety of services beyond the best-effort service available today

New applications already rely on the network ability to guarantee such services

High speed packet-switched networks

Applications requiring bandwidth

Applications requiringlow latency

VoIP, tele-conferencing, UMA, on-line gaming,

distance learning

P2P Networks, Large Databases, Large multimedia files,

XBOX Live

Page 5: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH5/23 Jakub Palider

What is congestion?

Simple definition: congestion occurs when traffic coming into one link exceeds its capacity e.g. motorway

Main reason: lack of bandwidth

– Demand bigger than capacity

– Suddenly changing demands

– Network failures

– Changes in routing

Page 6: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH6/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 7: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH7/23 Jakub Palider

QoS

In streaming traffic type following guarantee an end-user proper:

Packet delay

Mean bit rate

Stream bit rate

Packet loss

Jitter

Page 8: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH8/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 9: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH9/23 Jakub Palider

What are the current QoS solutions?

Already Implemented:

Integrated Services – IntServ, the first model defining whole concept of QoS

Differentiated Services – DiffServ – later conception, opposite (in majority) to IntServ

New Idea:

Flow Aware Networking

Page 10: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH10/23 Jakub Palider

Traffic conditioning mechanisms

Page 11: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH11/23 Jakub Palider

IntServMemory load

High

High

Low

Page 12: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH12/23 Jakub Palider

DiffServMemory load

High

High

Low

Page 13: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH13/23 Jakub Palider

How does congestion control is implemented in DiffServ?

Network traffic entering a DiffServ domain is subjected to classification and conditioning

AC realized only in edge routers, controlled by Bandwidth Broker

PHB define packet forwarding properties inside domain

QoS Mechanisms

Packet level Admission level

classifier

traffic conditioners

scheduler

AC (admission control)

Page 14: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH14/23 Jakub Palider

Main differences between IntServ and DiffServ

Bilateral agreementsMultilateral agreementsInter domain deployment

Scalable and robustInformation held in each network node – not scalable

Scalability

Cannot provide low delay and high bandwith guarantee

simultaneously

Per flow - bandwidth and delay guarantee

Quality guarantees

Similar to IP networksSimilar to network switching (e.g. phone calls)

Network management

Based on class usageBased on flow characteristics and QoS requirement

Network accounting

Limited by number of classes of service

Limited by number of flowsClassification of traffic

Per hopEnd to endCoordination for service differentation

DiffServIntServParameter

Page 15: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH15/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 16: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH16/23 Jakub Palider

Features of FAN

No reservation

Classification based on flows

2 flow classes - stream (audio, video, real-time) and elastic (digital documents)

Idea of cross-protect router – accurate relation between admission control and scheduling

“Good enough” performance

Cost effectiveness and accountability $$$

Page 17: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH17/23 Jakub Palider

What DiffServ congestion control ideas have in common with FAN?

The only common mechanisms are admission control and scheduling, but the admission control is realized in different way

Scheduling algorithms may be implemented in FAN

There are many elementary conceptions common to both architectures – but these are mostly basics of QoS idea

Page 18: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH18/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 19: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH19/23 Jakub Palider

Measurement Based Admission Control (MBAC)

Page 20: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH20/23 Jakub Palider

Cross-protection in FAN router

Incoming packets Outgoing packets

Page 21: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH21/23 Jakub Palider

Outline

Transmission requirements

QoS

Existing architectures (IntServ, DiffServ)

FAN mechanisms

Cross-protection: MBAC

Conclusion

Page 22: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH22/23 Jakub Palider

FAN – pros and cons…

Advantages Disadvantages

Good scalability

Ease of admission control in each network node (MBAC)

Only small amounts of data stored in network node memory

No strict guarantees of network performance

Not implemented yet

Page 23: Flow Aware Networking © 2007 Katedra Telekomunikacji AGH Flow Aware Networking Router model lead by prof. dr hab. inż. Andrzej Jajszczyk.

Flow Aware Networking

© 2007 Katedra Telekomunikacji AGH23/23 Jakub Palider

Thank you for attention!

to be continued…