Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV...

53
Flavor physics induced by light Z' from SO(10) GUT Yuji Omura (KMI, Nagoya Univ.) Based on PLB744 (2015) 395 (arXiv: 1503.06156) and JHEP1611(2016)018 (arXiv: 1607.05437) Collaborators: J. Hisano, Y. Muramatsu, Y. Shigekami, M. Yamanaka

Transcript of Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV...

Page 1: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Flavor physics induced by light Z' from SO(10) GUT

Yuji Omura (KMI, Nagoya Univ.)

Based on PLB744 (2015) 395 (arXiv: 1503.06156) and JHEP1611(2016)018 (arXiv: 1607.05437)

Collaborators: J. Hisano, Y. Muramatsu, Y. Shigekami, M. Yamanaka

Page 2: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Introduction

Page 3: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Flavor Physics

Very exciting era!

LHC Physics

PhysicsBeyond the SM

particle physics, string theoryCosmology,

Astrophysics

Page 4: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Flavor Physics

Integrated Research at KMI (Nagoya)

Dark Universe

LHC Physics

Beyond the SM

particle physics, string theoryCosmology,

Astrophysics

(Please visit KMI!)

Page 5: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Flavor Physics

LHC Physics

Beyond the SM

My talk

particle physics, string theoryCosmology,

Astrophysics

(Please visit KMI!)

Dark Universe

Integrated Research at KMI (Nagoya)

Page 6: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

As a candiate for BSM,we discuss SUSY GUT.(SUSY is still a attractive BSM.)

Page 7: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

(SUSY is still a attractive BSM.)

Origin of EW scale

Dark matter

(Origin of SM gauge groups)Gauge coupling unification (GUT)

As a candiate for BSM,we discuss SUSY GUT.

The (original) motivations are

Page 8: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

(SUSY is still a attractive BSM.)

Origin of EW scale

Dark matter

(Origin of SM gauge groups)Gauge coupling unification (GUT)

As a candiate for BSM,we discuss SUSY GUT.

The (original) motivations are

Really??

Page 9: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Experimental constraintsDirect search at LHC

Higgs mass is around 125 GeV

loop correction

MSSM prediction

(Ibe, Matsumoto,Yanagida, 12’)

mgluino � 1.5TeV, msquark � 1.3TeV

mstop � 700GeV

model-dependent but…

Model e, µ, τ, γ Jets Emiss

T

!L dt[fb−1] Mass limit Reference

Incl

usi

veS

ea

rch

es

3rd

ge

n.

gm

ed

.3

rdg

en

.sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ctL

on

g-l

ive

dp

art

icle

sR

PV

Other

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g) 1405.78751.7 TeVq, g

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV, m(1st gen. q)=m(2nd gen. q) 1405.7875850 GeVq

qqγ, q→qχ01 (compressed) 1 γ 0-1 jet Yes 20.3 m(q)-m(χ

01 ) = m(c) 1411.1559250 GeVq

gg, g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV 1405.78751.33 TeVg

gg, g→qqχ±1→qqW±χ

01

1 e, µ 3-6 jets Yes 20 m(χ01)<300 GeV, m(χ

±)=0.5(m(χ

01)+m(g)) 1501.035551.2 TeVg

gg, g→qq(ℓℓ/ℓν/νν)χ01

2 e, µ 0-3 jets - 20 m(χ01)=0 GeV 1501.035551.32 TeVg

GMSB (ℓ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ01)>50 GeV ATLAS-CONF-2014-0011.28 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 20.3 m(G)>1.8 × 10−4 eV, m(g)=m(q)=1.5 TeV 1502.01518865 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<400 GeV 1407.06001.25 TeVg

g→ttχ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→ttχ01

0-1 e, µ 3 b Yes 20.1 m(χ01)<400 GeV 1407.06001.34 TeVg

g→btχ+

1 0-1 e, µ 3 b Yes 20.1 m(χ01)<300 GeV 1407.06001.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ

±1 )=2 m(χ

01) 1404.2500275-440 GeVb1

t1 t1, t1→bχ±1 1-2 e, µ 1-2 b Yes 4.7 m(χ

±1 ) = 2m(χ

01), m(χ

01)=55 GeV 1209.2102, 1407.0583110-167 GeVt1 230-460 GeVt1

t1 t1, t1→Wbχ01 or tχ

01

2 e, µ 0-2 jets Yes 20.3 m(χ01)=1 GeV 1403.4853, 1412.474290-191 GeVt1 215-530 GeVt1

t1 t1, t1→tχ01

0-1 e, µ 1-2 b Yes 20 m(χ01)=1 GeV 1407.0583,1406.1122210-640 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01 )<85 GeV 1407.060890-240 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ01)>150 GeV 1403.5222150-580 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ01)<200 GeV 1403.5222290-600 GeVt2

ℓL,R ℓL,R, ℓ→ℓχ01 2 e, µ 0 Yes 20.3 m(χ

01)=0 GeV 1403.529490-325 GeVℓ

χ+1χ−

1 , χ+

1→ℓν(ℓν) 2 e, µ 0 Yes 20.3 m(χ01)=0 GeV, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1403.5294140-465 GeVχ±

1

χ+1χ−

1 , χ+

1→τν(τν) 2 τ - Yes 20.3 m(χ01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1407.0350100-350 GeVχ±

1

χ±1χ0

2→ℓLνℓLℓ(νν), ℓνℓLℓ(νν) 3 e, µ 0 Yes 20.3 m(χ±1 )=m(χ

02), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1402.7029700 GeVχ±

1 ,χ0

2

χ±1χ0

2→Wχ01Zχ

01

2-3 e, µ 0-2 jets Yes 20.3 m(χ±1 )=m(χ

02), m(χ

01)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ±

1 ,χ0

2

χ±1 χ02→Wχ

01h χ

01, h→bb/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ

±1 )=m(χ

02), m(χ

01)=0, sleptons decoupled 1501.07110250 GeVχ±

1 ,χ0

2

χ02χ0

3, χ02,3 →ℓRℓ 4 e, µ 0 Yes 20.3 m(χ

02)=m(χ

03), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

02)+m(χ

01)) 1405.5086620 GeVχ0

2,3

Direct χ+

1χ−

1 prod., long-lived χ±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01)=160 MeV, τ(χ

±1 )=0.2 ns 1310.3675270 GeVχ±

1

Stable, stopped g R-hadron 0 1-5 jets Yes 27.9 m(χ01)=100 GeV, 10 µs<τ(g)<1000 s 1310.6584832 GeVg

Stable g R-hadron trk - - 19.1 1411.67951.27 TeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ0

1

GMSB, χ01→γG, long-lived χ

01

2 γ - Yes 20.3 2<τ(χ01)<3 ns, SPS8 model 1409.5542435 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X, ντ→e + µ 2 e, µ - - 4.6 λ′311

=0.10, λ132=0.05 1212.12721.61 TeVντ

LFV pp→ντ + X, ντ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′311

=0.10, λ1(2)33=0.05 1212.12721.1 TeVντ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q)=m(g), cτLS P<1 mm 1404.25001.35 TeVq, g

χ+1χ−

1 , χ+

1→Wχ01, χ

01→eeνµ, eµνe 4 e, µ - Yes 20.3 m(χ

01)>0.2×m(χ

±1 ), λ121!0 1405.5086750 GeVχ±

1

χ+1χ−

1 , χ+

1→Wχ01, χ

01→ττνe, eτντ 3 e, µ + τ - Yes 20.3 m(χ

01)>0.2×m(χ

±1 ), λ133!0 1405.5086450 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg

Scalar charm, c→cχ01 0 2 c Yes 20.3 m(χ

01)<200 GeV 1501.01325490 GeVc

Mass scale [TeV]10−1 1√

s = 7 TeVfull data

√s = 8 TeV

partial data

√s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: Feb 2015

ATLAS Preliminary√

s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Page 10: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Experimental constraintsDirect search at LHC

Higgs mass is around 125 GeV

loop correction

MSSM prediction

(Ibe, Matsumoto,Yanagida, 12’)

mgluino � 1.5TeV, msquark � 1.3TeV

mstop � 700GeV

model-dependent but…

Model e, µ, τ, γ Jets Emiss

T

!L dt[fb−1] Mass limit Reference

Incl

usi

veS

ea

rch

es

3rd

ge

n.

gm

ed

.3

rdg

en

.sq

ua

rks

dir

ect

pro

du

ctio

nE

Wd

ire

ctL

on

g-l

ive

dp

art

icle

sR

PV

Other

MSUGRA/CMSSM 0 2-6 jets Yes 20.3 m(q)=m(g) 1405.78751.7 TeVq, g

qq, q→qχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV, m(1st gen. q)=m(2nd gen. q) 1405.7875850 GeVq

qqγ, q→qχ01 (compressed) 1 γ 0-1 jet Yes 20.3 m(q)-m(χ

01 ) = m(c) 1411.1559250 GeVq

gg, g→qqχ01 0 2-6 jets Yes 20.3 m(χ

01)=0 GeV 1405.78751.33 TeVg

gg, g→qqχ±1→qqW±χ

01

1 e, µ 3-6 jets Yes 20 m(χ01)<300 GeV, m(χ

±)=0.5(m(χ

01)+m(g)) 1501.035551.2 TeVg

gg, g→qq(ℓℓ/ℓν/νν)χ01

2 e, µ 0-3 jets - 20 m(χ01)=0 GeV 1501.035551.32 TeVg

GMSB (ℓ NLSP) 1-2 τ + 0-1 ℓ 0-2 jets Yes 20.3 tanβ >20 1407.06031.6 TeVg

GGM (bino NLSP) 2 γ - Yes 20.3 m(χ01)>50 GeV ATLAS-CONF-2014-0011.28 TeVg

GGM (wino NLSP) 1 e, µ + γ - Yes 4.8 m(χ01)>50 GeV ATLAS-CONF-2012-144619 GeVg

GGM (higgsino-bino NLSP) γ 1 b Yes 4.8 m(χ01)>220 GeV 1211.1167900 GeVg

GGM (higgsino NLSP) 2 e, µ (Z) 0-3 jets Yes 5.8 m(NLSP)>200 GeV ATLAS-CONF-2012-152690 GeVg

Gravitino LSP 0 mono-jet Yes 20.3 m(G)>1.8 × 10−4 eV, m(g)=m(q)=1.5 TeV 1502.01518865 GeVF1/2 scale

g→bbχ01 0 3 b Yes 20.1 m(χ

01)<400 GeV 1407.06001.25 TeVg

g→ttχ01 0 7-10 jets Yes 20.3 m(χ

01) <350 GeV 1308.18411.1 TeVg

g→ttχ01

0-1 e, µ 3 b Yes 20.1 m(χ01)<400 GeV 1407.06001.34 TeVg

g→btχ+

1 0-1 e, µ 3 b Yes 20.1 m(χ01)<300 GeV 1407.06001.3 TeVg

b1b1, b1→bχ01 0 2 b Yes 20.1 m(χ

01)<90 GeV 1308.2631100-620 GeVb1

b1b1, b1→tχ±1 2 e, µ (SS) 0-3 b Yes 20.3 m(χ

±1 )=2 m(χ

01) 1404.2500275-440 GeVb1

t1 t1, t1→bχ±1 1-2 e, µ 1-2 b Yes 4.7 m(χ

±1 ) = 2m(χ

01), m(χ

01)=55 GeV 1209.2102, 1407.0583110-167 GeVt1 230-460 GeVt1

t1 t1, t1→Wbχ01 or tχ

01

2 e, µ 0-2 jets Yes 20.3 m(χ01)=1 GeV 1403.4853, 1412.474290-191 GeVt1 215-530 GeVt1

t1 t1, t1→tχ01

0-1 e, µ 1-2 b Yes 20 m(χ01)=1 GeV 1407.0583,1406.1122210-640 GeVt1

t1 t1, t1→cχ01 0 mono-jet/c-tag Yes 20.3 m(t1)-m(χ

01 )<85 GeV 1407.060890-240 GeVt1

t1 t1(natural GMSB) 2 e, µ (Z) 1 b Yes 20.3 m(χ01)>150 GeV 1403.5222150-580 GeVt1

t2 t2, t2→t1 + Z 3 e, µ (Z) 1 b Yes 20.3 m(χ01)<200 GeV 1403.5222290-600 GeVt2

ℓL,R ℓL,R, ℓ→ℓχ01 2 e, µ 0 Yes 20.3 m(χ

01)=0 GeV 1403.529490-325 GeVℓ

χ+1χ−

1 , χ+

1→ℓν(ℓν) 2 e, µ 0 Yes 20.3 m(χ01)=0 GeV, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1403.5294140-465 GeVχ±

1

χ+1χ−

1 , χ+

1→τν(τν) 2 τ - Yes 20.3 m(χ01)=0 GeV, m(τ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1407.0350100-350 GeVχ±

1

χ±1χ0

2→ℓLνℓLℓ(νν), ℓνℓLℓ(νν) 3 e, µ 0 Yes 20.3 m(χ±1 )=m(χ

02), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

±1 )+m(χ

01)) 1402.7029700 GeVχ±

1 ,χ0

2

χ±1χ0

2→Wχ01Zχ

01

2-3 e, µ 0-2 jets Yes 20.3 m(χ±1 )=m(χ

02), m(χ

01)=0, sleptons decoupled 1403.5294, 1402.7029420 GeVχ±

1 ,χ0

2

χ±1 χ02→Wχ

01h χ

01, h→bb/WW/ττ/γγ e, µ, γ 0-2 b Yes 20.3 m(χ

±1 )=m(χ

02), m(χ

01)=0, sleptons decoupled 1501.07110250 GeVχ±

1 ,χ0

2

χ02χ0

3, χ02,3 →ℓRℓ 4 e, µ 0 Yes 20.3 m(χ

02)=m(χ

03), m(χ

01)=0, m(ℓ, ν)=0.5(m(χ

02)+m(χ

01)) 1405.5086620 GeVχ0

2,3

Direct χ+

1χ−

1 prod., long-lived χ±1 Disapp. trk 1 jet Yes 20.3 m(χ

±1 )-m(χ

01)=160 MeV, τ(χ

±1 )=0.2 ns 1310.3675270 GeVχ±

1

Stable, stopped g R-hadron 0 1-5 jets Yes 27.9 m(χ01)=100 GeV, 10 µs<τ(g)<1000 s 1310.6584832 GeVg

Stable g R-hadron trk - - 19.1 1411.67951.27 TeVg

GMSB, stable τ, χ01→τ(e, µ)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ0

1

GMSB, χ01→γG, long-lived χ

01

2 γ - Yes 20.3 2<τ(χ01)<3 ns, SPS8 model 1409.5542435 GeVχ0

1

qq, χ01→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ

01)=108 GeV ATLAS-CONF-2013-0921.0 TeVq

LFV pp→ντ + X, ντ→e + µ 2 e, µ - - 4.6 λ′311

=0.10, λ132=0.05 1212.12721.61 TeVντ

LFV pp→ντ + X, ντ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′311

=0.10, λ1(2)33=0.05 1212.12721.1 TeVντ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q)=m(g), cτLS P<1 mm 1404.25001.35 TeVq, g

χ+1χ−

1 , χ+

1→Wχ01, χ

01→eeνµ, eµνe 4 e, µ - Yes 20.3 m(χ

01)>0.2×m(χ

±1 ), λ121!0 1405.5086750 GeVχ±

1

χ+1χ−

1 , χ+

1→Wχ01, χ

01→ττνe, eτντ 3 e, µ + τ - Yes 20.3 m(χ

01)>0.2×m(χ

±1 ), λ133!0 1405.5086450 GeVχ±

1

g→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg

g→t1t, t1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg

Scalar charm, c→cχ01 0 2 c Yes 20.3 m(χ

01)<200 GeV 1501.01325490 GeVc

Mass scale [TeV]10−1 1√

s = 7 TeVfull data

√s = 8 TeV

partial data

√s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower LimitsStatus: Feb 2015

ATLAS Preliminary√

s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

no SUSY around TeV-scale…

Page 11: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Higgs discovery and

severe constraints

Yes Nolow-scale SUSY

not easybut possible

effective SUSY

focus-point SUSY

extended MSSM

heavy 1,2 generationslight 3 generation

NMSSM MSSM with U(1)

Is SUSY really the origin of the EW scale?

EW scale naturally realized by specific mass spectrum

Page 12: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Higgs discovery and

severe constraints

Yes No high-scale SUSY

respect only

unification, DM

low-scale SUSYnot easy

but possible

effective SUSY

focus-point SUSY

extended MSSM

heavy 1,2 generationslight 3 generation

NMSSM MSSM with U(1)

my talk

Is SUSY really the origin of the EW scale?

EW scale naturally realized by specific mass spectrum

(split SUSY)

Page 13: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

In high-scale SUSY scenario,gauginos: a few TeV sfermions: O(100)TeV

Page 14: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

In high-scale SUSY scenario,gauginos: a few TeV sfermions: O(100)TeV

(Cabrera, Casas, Delgado, 11’; Guidice, Strumia, 11’; Hall, Nomura, 11’;Arkani-Hamed, Gupta,et.al,12’; Ibe, Matsumoto,Yanagida, 12’; etc.)

・125-GeV Higgs mass is realized by small tanβ.

・gauge coupling unification has been studied well.(Arkani-Hamed, Dimopoulos, 04’;Giudice, Romanino 04’; Hisano,Kuwahara,Nagata, 13’; etc.)

・DM may be wino.

・Constraints from flavor physics are relaxed.

Page 15: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

In high-scale SUSY scenario,

there are still some issues:

Page 16: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

In high-scale SUSY scenario,

there are still some issues:

how to realize the fermion mass hierarchy from Yukawa unification (GUT),

how to prove such a high-scale physics,

doublet-triplet splitting (proton decay),

how to generate baryon asymmetry,

and so on.

Page 17: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

In high-scale SUSY scenario,

there are still some issues:

how to realize the fermion mass hierarchy from Yukawa unification (GUT),

how to prove such a high-scale physics,

doublet-triplet splitting (proton decay),

how to generate baryon asymmetry,

and so on.

Motivation of our model

Page 18: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

I introduce extra matters to realize top-bottom hierarchy:

16 10

SM particles are the linear combinations of these 2 fields.

・Hierarchy between top and bottom quarks are realized.

・Z’ interaction from SO(10) relates to the hierarchy,  and GUT could be tested by flavor physics!

In minimal SO(10) GUT, all SM fermions are from 16

Page 19: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Setup

Page 20: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

tcu

bsd

tcu

bsd

tcu

bsd

ν

τμe

ν νe μ τ

Standard Model (SU(3)c×SU(2)L×U(1)Y)

quarks

leptons

SU(3)c-charged

spin-1/2 spin-1

g

W

Z

γ

SU(3)c gauge

SU(2)L× U(1)Y

+/-

spin-0

H

Higgs

breaks SU(2)L× U(1)Y

carry forces

EM-charge

+2/3

-1/3

0

-1

massive

massive

ggggggg

photon

gluon

Page 21: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

tcu

bsd

tcu

bsd

tcu

bsd

ν

τμe

ν νe μ τ

quarks

leptons

SU(3)c-chargedspin-1/2 spin-1

g

W

Z

γ

SU(3)c gauge

SU(2)L× U(1)Y

+/-

spin-0

H

Higgs

breaks SU(2)L× U(1)Y

EM-charge

+2/3

-1/3

0

-1

ggggggggluon

H’Extra Higgs

Z’ Extra gauge boson

slightly extended SMSO(10) Embedding:

1616161 2 3 G10

Hc

Hc

matter also unifiedSO(10)

extra

Page 22: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

But we can easily notice that

it is not simple to realize the realistic Yukawa couplings in the GUT.

1616161 2 3

only 3 matterspredict same mass matrices

of (u,c,t), (d,s,b),(e,μ,τ)

no CKM mixing

same mass spectrum

yij16i16j10H yijQiLuj

RHu + yijQiLdj

RHd + yij liLejRHd

mt � mb (tan � � 1)

can be diagonalized

This looks elegant and we expect the GUT exists at the high scale.

Page 23: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

There are several ways to solve this problem:

Introduce higher dimensional operators

Consider large tanβ

Introduce extra matters(quark/lepton), Higgs fields

(Georgi, Jarlskog, 79’, etc.)

(Ellis, Gaillard, 79’; Lazarides, Shafi, Wetterich, 81’;Barr 81’,etc.)

(Banks, 88’; Olechowski,Pokorski, 81’;etc..)

(Tobe, Wells, 03’)

Page 24: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

There are several ways to solve this problem:

Introduce higher dimensional operators

Consider large tanβ

(Ellis, Gaillard, 79’; Lazarides, Shafi, Wetterich, 81’;Barr 81’,etc.)

(Banks, 88’; Olechowski,Pokorski, 81’;etc..)

(Tobe, Wells, 03’)disfavored

by 125-GeV Higgs

Introduce extra matters(quark/lepton), Higgs fields

(Georgi, Jarlskog, 79’, etc.)

Page 25: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

minimal setup

1616161 2 3

matters

uut ddb ντ τ ×3

Page 26: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Let me add extra matters (101, 102, 103)

1616161 2 3

1010101 2 3

extra particles

matters

uut ddb ντ τ

ddb, τ, ντ,extra quarks and leptons

×3

×3

(YO, J. Hisano, Y. Muramatsu, M. Yamanaka)

Page 27: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Let me add extra matters (101, 102, 103)

1616161 2 3

1010101 2 3

extra particles

matters

uut ddb ντ τ

ddb, τ, ντ,extra quarks and leptons

×3

×3

Then SM particles are given by the linear combinations:

ex) minimal extended

(YO, J. Hisano, Y. Muramatsu, M. Yamanaka)

“The GUT relation” is broken.

Page 28: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Ex) 3rd generation

Observed value:

In minimal SO(10) GUT, mt � mb (tan � � 1)

Page 29: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Ex) 3rd generation

small cosθb required

Observed value:

Improved prediction:

In minimal SO(10) GUT, mt � mb (tan � � 1)

Page 30: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

mass mixing

“extra” quarks

from

The detail of the mass mixing

top:

bottom:

develop nonzero VEV

Diagonalizing this mass matrix, we get the bottom quark mass.

Page 31: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

How test this GUT?

Hints

There is Z’ from SO(10).

Z’ interaction is flavor-dependent because of the fermion mass hierarchy.

Usually, proton decay.

Page 32: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

This is because

d d,andextra

i i carry different U(1)X charges

Z’

d i

d iZ’

d,i

d,i

U(1)X-charge states

QX=-3 QX=+2

(YO, J. Hisano, Y. Muramatsu, M. Yamanaka)

Page 33: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

d d,andextra

i i carry different U(1)X charges

Z’

d i

d iZ’

d,i

d,i

U(1)X-charge states

mass eigenstates

QX=-3 QX=+2

Z’

di

dk

down-type quarks

Flavor violating!

(YO, J. Hisano, Y. Muramatsu, M. Yamanaka)This is because

Page 34: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

How test this GUT?

Hints

There is Z’ from SO(10).

Z’ interaction is flavor-dependent because of the fermion mass hierarchy.

If Z’ resides around SUSY scale (~100TeV),We can test the SO(10) GUT by flavor physics!

Usually, proton decay.

Page 35: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Our Predictions

Left-handed leptons and right-handed down-type quarks have FCNCs.

FCNCs relate to the fermion mass hierarchy and CKM.

Page 36: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Our Predictions

dR

diR

dR

djR

(eL) (eL)

(ejL)(eiL)

11 3 3

Z’

d

d2R

d

d4R

(e) (e)

(e4L)(e2L)

11 1

Z1

Z’×

finite Z-Z’ mass mixing predicted

Ad,lij

Roughly speaking, Ad,lij � md,l

i � md,lj

For instance, (b,s) element is relatively large

Left-handed leptons and right-handed down-type quarks have FCNCs.

FCNCs relate to the fermion mass hierarchy and CKM.

Page 37: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Our Predictions for Ad,lij

(s,d) vs. (d,d)

down quark is mainly from 10 representation !

large (s,d) element

Blue points: higher-dim. ope. < 0.001 Red points: higher-dim. ope. < 0.01

We need extra contributions to be realist

Page 38: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Our Predictions for Ad,lij

(b,d) element

very large because of mb and ms!

(b,s) elementBlue points: higher-dim. ope. < 0.001 Red points: higher-dim. ope. < 0.01

Page 39: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Flavor Physics

Page 40: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

dR

sR

Z’

Deviations in K-K compared to the SM predictions

sR

dR

complex

Adsd

Page 41: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Deviations in K-K compared to the SM predictions

For example, CKM fitter collaboration suggest

Blue points: higher-dim. ope. < 0.001 Red points: higher-dim. ope. < 0.01

(arXiv: 1309.2293)

MZ� = 100TeV MZ� = 36TeV

|��K | � 0.3

Page 42: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Deviations in rare K decayKL→π0ννwill be measured by the KOTO experiment.

νZ’

ν

sR dR

Page 43: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Deviations in rare K decay

deviations of KL→μμ,μe, K→π0ννare at most O(1)%.

MZ� = 100TeV MZ� = 36TeV

KL→π0ννwill be measured by the KOTO experiment.

|��K | < 0.3|��K | < 0.3

Page 44: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

qR

bR

Z’

Deviations in B(s)-B(s) compared to the SM predictions

bR

qR

complex

Adbq

Page 45: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

The deviation of Bs-Bs mixing reaches 10 % if Z’ mass O(10) TeV.

MZ� = 100TeV MZ� = 36TeV

Deviations in B(s)-B(s) compared to the SM predictions

|��K | < 0.3|��K | < 0.3

Page 46: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Lepton Flavor Violations

Page 47: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

μ→3eμ e

e

e+

Z’

Future experiment (Mu3e) could reach our region!

MZ� = 100TeV MZ� = 36TeV

Blue points: higher-dim. ope. < 0.001 Red points: higher-dim. ope. < 0.01

SINDRUMSINDRUM

Mu3e Mu3e

There are correlations.

Page 48: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

μN→e N μ e

q q

Z’

COMET experiment could reach our region!

MZ� = 100TeV MZ� = 36TeV

Blue points: higher-dim. ope. < 0.001 Red points: higher-dim. ope. < 0.01

COMET-I

COMET-II

COMET-I

COMET-II

There are correlations.

Page 49: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

Summary

Page 50: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

• I discussed SUSY SO(10) GUT.

Thank you

125GeV Higgs mass

realistic Yukawa

flavor violating O(100)-TeV Z’

• This setup can be tested via K and μ physics.

• If Z’ has lower mass, B and τbecome important.deviations of KL→μμ,μe, K→π0ννare at most O(1)%.

εK, μ→3e and μ-e conversion are relevant. (Mu3e and COMET experiments may discover.)

deviations of ΔMBs can reach 10% if Z’ ~30 GeV, but ΔMBd less than 10%.

deviation of B(s)→μμ is a few percent.

Page 51: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

μ

Backup

Page 52: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

The mixing between 10 and 16 can realize the hierarchy between top and bottom.(High-scale SUSY predict small tan β)

But it is difficult for only the mixing to achieve the all elements of realistic Yukawa coupling.

We are adding Higher-dim. operators

Note

Page 53: Flavor physics induced by light Z' from SO(10) GUT · Stable˜gR-hadron trk --19.1 ˜g 1.27 TeV 1411.6795 GMSB, stable τ ˜,χ0 1 →(˜e,µ)+τ(e,µ) 1-2µ --19.1 ˜χ 537 GeV 10

B(s)→μμ

The deviation of B(s)→μμ is a few percent.

MZ� = 100TeV MZ� = 36TeV