Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat...

126
Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology COST Workshop “The String Theory Universe” Mainz, September 2014 based on work with Afshar, Bagchi, Detournay, Fareghbal, Gary, Rey, Riegler, Rosseel, Salzer, Sch¨ oller, Simon, ...

Transcript of Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat...

Page 1: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin holography

Daniel Grumiller

Institute for Theoretical PhysicsVienna University of Technology

COST Workshop “The String Theory Universe”Mainz, September 2014

based on work with Afshar, Bagchi, Detournay, Fareghbal, Gary,Rey, Riegler, Rosseel, Salzer, Scholler, Simon, ...

Page 2: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Outline

Motivation (how general is holography?)

Simplification (3D)

Generalization (higher derivatives or spins)

Daniel Grumiller — Flat space higher spin holography 2/29

Page 3: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Outline

Motivation (how general is holography?)

Simplification (3D)

Generalization (higher derivatives or spins)

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 3/29

Page 4: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFTholographic principle: ’t Hooft ’93; Susskind ’94

AdS/CFT precursor: Brown, Henneaux ’86AdS/CFT: Maldacena ’97; Gubser, Klebanov, Polyakov ’98; Witten’98

non-unitary holography:AdS/log CFT ’08-’13: review: DG, Riedler, Rosseel, Zojer ’13Vafa ’14

I Does it work in flat space?I Can we find models realizing flat space/field theory correspondences?I Are there higher-spin versions of such models?I Does this correspondence emerge as limit of (A)dS/CFT?I Relation between S-matrix and holographic observables?I Entanglement entropy in flat space (higher spin) gravity?I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 5: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFTI Does it work in flat space?

Polchinski ’99Susskind ’99Giddings ’00Gary, Giddings, Penedones ’09; Gary, Giddings ’09; ...

I Can we find models realizing flat space/field theory correspondences?I Are there higher-spin versions of such models?I Does this correspondence emerge as limit of (A)dS/CFT?I Relation between S-matrix and holographic observables?I Entanglement entropy in flat space (higher spin) gravity?I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 6: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFTI Does it work in flat space?I Can we find models realizing flat space/field theory correspondences?

Barnich, Compere ’06Barnich et al. ’10-’14Bagchi et al. ’10-’14Strominger et al. ’13-’14...

flat space chiral gravity: Bagchi, Detournay, DG ’12

I Are there higher-spin versions of such models?I Does this correspondence emerge as limit of (A)dS/CFT?I Relation between S-matrix and holographic observables?I Entanglement entropy in flat space (higher spin) gravity?I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 7: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFTI Does it work in flat space?I Can we find models realizing flat space/field theory correspondences?I Are there higher-spin versions of such models?

Afshar, Bagchi, Fareghbal, DG, Rosseel ’13Gonzalez, Matulich, Pino, Troncoso ’13

part of larger program: non-AdS holography in higher spin gravityGary, DG, Rashkov ’12Afshar, Gary, DG, Rashkov, Riegler ’12Gutperle, Hijano, Samani ’13Gary, DG, Prohazka, Rey ’14

I Does this correspondence emerge as limit of (A)dS/CFT?I Relation between S-matrix and holographic observables?I Entanglement entropy in flat space (higher spin) gravity?I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 8: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT

I Does it work in flat space?

I Can we find models realizing flat space/field theory correspondences?

I Are there higher-spin versions of such models?

I Does this correspondence emerge as limit of (A)dS/CFT?some aspects: yes; other aspects: nocannot just take the naive Λ→ 0 limit of 104 papers on AdS/CFT...

I Relation between S-matrix and holographic observables?

I Entanglement entropy in flat space (higher spin) gravity?

I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 9: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT

I Does it work in flat space?

I Can we find models realizing flat space/field theory correspondences?

I Are there higher-spin versions of such models?

I Does this correspondence emerge as limit of (A)dS/CFT?some aspects: yes; other aspects: nocannot just take the naive Λ→ 0 limit of 104 papers on AdS/CFT...

I Relation between S-matrix and holographic observables?Strominger et al ’13, ’14

I Entanglement entropy in flat space (higher spin) gravity?

I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 10: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT

I Does it work in flat space?

I Can we find models realizing flat space/field theory correspondences?

I Are there higher-spin versions of such models?

I Does this correspondence emerge as limit of (A)dS/CFT?some aspects: yes; other aspects: nocannot just take the naive Λ→ 0 limit of 104 papers on AdS/CFT...

I Relation between S-matrix and holographic observables?

I Entanglement entropy in flat space (higher spin) gravity?

I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 11: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT

I Does it work in flat space?

I Can we find models realizing flat space/field theory correspondences?

I Are there higher-spin versions of such models?

I Does this correspondence emerge as limit of (A)dS/CFT?some aspects: yes; other aspects: nocannot just take the naive Λ→ 0 limit of 104 papers on AdS/CFT...

I Relation between S-matrix and holographic observables?

I Entanglement entropy in flat space (higher spin) gravity?

I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 12: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

MotivationHow general is holography?

I Holographic principle, if correct, must work beyond AdS/CFT

I Does it work in flat space?

I Can we find models realizing flat space/field theory correspondences?

I Are there higher-spin versions of such models?

I Does this correspondence emerge as limit of (A)dS/CFT?some aspects: yes; other aspects: nocannot just take the naive Λ→ 0 limit of 104 papers on AdS/CFT...

I Relation between S-matrix and holographic observables?

I Entanglement entropy in flat space (higher spin) gravity?

I possibly O(104) other questions...

Many interesting open issues in flat space holography!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 4/29

Page 13: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 14: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 15: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 16: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 17: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 18: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Goals of this talk

1. Review (AdS and flat space) holography

2. Discuss flat space cosmologies (microstates, phase transitions)

3. Start flat space holographic dictionary (sources, 1-point functions)

4. Generalize to higher spin gravity (avoid no-go’s, unitarity)

5. List selected open issues

Address these issues in 3D!

Daniel Grumiller — Flat space higher spin holography Motivation (how general is holography?) 5/29

Page 19: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Outline

Motivation (how general is holography?)

Simplification (3D)

Generalization (higher derivatives or spins)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 6/29

Page 20: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

“Gravity 3D is a spellbinding experience”

... so let us consider 3D gravity!Daniel Grumiller — Flat space higher spin holography Simplification (3D) 7/29

Page 21: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 22: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 23: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 24: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 25: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 26: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 27: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 28: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 29: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 30: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Some properties of 3D gravityAdS3 gravity

I Lowest dimension with black holes and (off-shell) gravitons

I Weyl = 0, thus Riemann = Ricci

I Einstein gravity: no on-shell gravitons

I Formulation as topological gauge theory (Chern–Simons)

I Dual field theory (if it exists): 2D

I Infinite dimensional asymptotic symmetries (Brown–Henneaux)

I Black holes as orbifolds of AdS3 (BTZ)

I Microstate counting from AdS3/CFT2

I Hawking–Page phase transition hot AdS ↔ BTZ

Flat space analogues of these features?Does naive Λ→ 0 limit work?

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 8/29

Page 31: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2

( `ρ`

)dt2 + `2 sinh2

( `ρ`

)dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −

( r2

`2− r2

+

`2)(r2 − r2

−)

r2dt2+

r2 dr2

( r2

`2− r2

+

`2)(r2 − r2

−)+r2

(dϕ−

r+` r−

r2dt)2

Limit `→∞ (r+ = r+` = finite):

ds2FSC = r2

+

(1− r2

−r2

)dt2 − 1

1− r2−r2

dr2

r2+

+ r2(

dϕ− r+ r−r2

dt)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade agoDescribes expanding (contracting) Universe in flat space (horizon r = r−)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 9/29

Page 32: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2

( `ρ`

)dt2 + `2 sinh2

( `ρ`

)dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −

( r2

`2− r2

+

`2)(r2 − r2

−)

r2dt2+

r2 dr2

( r2

`2− r2

+

`2)(r2 − r2

−)+r2

(dϕ−

r+` r−

r2dt)2

Limit `→∞ (r+ = r+` = finite):

ds2FSC = r2

+

(1− r2

−r2

)dt2 − 1

1− r2−r2

dr2

r2+

+ r2(

dϕ− r+ r−r2

dt)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade agoDescribes expanding (contracting) Universe in flat space (horizon r = r−)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 9/29

Page 33: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2

( `ρ`

)dt2 + `2 sinh2

( `ρ`

)dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −

( r2

`2− r2

+

`2)(r2 − r2

−)

r2dt2+

r2 dr2

( r2

`2− r2

+

`2)(r2 − r2

−)+r2

(dϕ−

r+` r−

r2dt)2

Limit `→∞ (r+ = r+` = finite):

ds2FSC = r2

+

(1− r2

−r2

)dt2 − 1

1− r2−r2

dr2

r2+

+ r2(

dϕ− r+ r−r2

dt)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade agoDescribes expanding (contracting) Universe in flat space (horizon r = r−)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 9/29

Page 34: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2

( `ρ`

)dt2 + `2 sinh2

( `ρ`

)dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −

( r2

`2− r2

+

`2)(r2 − r2

−)

r2dt2+

r2 dr2

( r2

`2− r2

+

`2)(r2 − r2

−)+r2

(dϕ−

r+` r−

r2dt)2

Limit `→∞ (r+ = r+` = finite):

ds2FSC = r2

+

(1− r2

−r2

)dt2 − 1

1− r2−r2

dr2

r2+

+ r2(

dϕ− r+ r−r2

dt)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade agoDescribes expanding (contracting) Universe in flat space (horizon r = r−)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 9/29

Page 35: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 1: Limit of geometries

Global AdS metric (ϕ ∼ ϕ+ 2π):

ds2AdS = d(`ρ)2 − cosh2

( `ρ`

)dt2 + `2 sinh2

( `ρ`

)dϕ2

Limit `→∞ (r = `ρ):

ds2Flat = dr2 − dt2 + r2 dϕ2 = −du2 − 2 dudr + r2 dϕ2

BTZ metric:

ds2BTZ = −

( r2

`2− r2

+

`2)(r2 − r2

−)

r2dt2+

r2 dr2

( r2

`2− r2

+

`2)(r2 − r2

−)+r2

(dϕ−

r+` r−

r2dt)2

Limit `→∞ (r+ = r+` = finite):

ds2FSC = r2

+

(1− r2

−r2

)dt2 − 1

1− r2−r2

dr2

r2+

+ r2(

dϕ− r+ r−r2

dt)2

Shifted-boost orbifold studied by Cornalba & Costa more than decade agoDescribes expanding (contracting) Universe in flat space (horizon r = r−)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 9/29

Page 36: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

FSC Penrose diagram (2D slice)

I

II

III IV

i+

J + J +

H+H+

i−

H− H−

J −J −

(graphics from Bagchi, DG, Salzer,

Sarkar, Scholler ’14)

I I: expanding cosmologyrelevant patch for thermodynamics

I II: contracting cosmology

I III, IV: regions with access tosingularity (wiggly line)

I i+: future time-like infinity

I J +: future null infinity

I H+: horizon of expandingcosmology (dashed line)

I H−: horizon of contractingcosmology (dashed line)

I J−: past null infinity

I i−: past time-like infinityDaniel Grumiller — Flat space higher spin holography Simplification (3D) 10/29

Page 37: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 2: Limit of asymptotic boundaries (ultra-relativistic boost)

AdS-boundary:

Limit `→∞

Flat space boundary:

Null infinity holography!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 11/29

Page 38: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 3: Limit of asymptotic symmetries (Barnich, Compere ’06)

I Take two copies of Virasoro, generators Ln, Ln, central charges c, c

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L−n Mn := 1`

(Ln + L−n

)I Make ultrarelativistic boost, `→∞ (Inonu–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL112

(n3 − n

)δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM112

(n3 − n

)δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c cM = (c+ c)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29

Page 39: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 3: Limit of asymptotic symmetries (Barnich, Compere ’06)

I Take two copies of Virasoro, generators Ln, Ln, central charges c, c

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L−n Mn := 1`

(Ln + L−n

)

I Make ultrarelativistic boost, `→∞ (Inonu–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL112

(n3 − n

)δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM112

(n3 − n

)δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c cM = (c+ c)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29

Page 40: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 3: Limit of asymptotic symmetries (Barnich, Compere ’06)

I Take two copies of Virasoro, generators Ln, Ln, central charges c, c

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L−n Mn := 1`

(Ln + L−n

)I Make ultrarelativistic boost, `→∞ (Inonu–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL112

(n3 − n

)δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM112

(n3 − n

)δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c cM = (c+ c)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29

Page 41: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 3: Limit of asymptotic symmetries (Barnich, Compere ’06)

I Take two copies of Virasoro, generators Ln, Ln, central charges c, c

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L−n Mn := 1`

(Ln + L−n

)I Make ultrarelativistic boost, `→∞ (Inonu–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL112

(n3 − n

)δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM112

(n3 − n

)δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c cM = (c+ c)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29

Page 42: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space limitExample 3: Limit of asymptotic symmetries (Barnich, Compere ’06)

I Take two copies of Virasoro, generators Ln, Ln, central charges c, c

I Define superrotations Ln and supertranslations Mn

Ln := Ln − L−n Mn := 1`

(Ln + L−n

)I Make ultrarelativistic boost, `→∞ (Inonu–Wigner contraction)

[Ln, Lm] = (n−m)Ln+m + cL112

(n3 − n

)δn+m, 0

[Ln, Mm] = (n−m)Mn+m + cM112

(n3 − n

)δn+m, 0

[Mn, Mm] = 0

I Is precisely the (centrally extended) BMS3 algebra!

I Central charges:

cL = c− c cM = (c+ c)/`

I BMS3 = GCA2 = URCA2 Bagchi, Gopakumar ’09, Bagchi ’10

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 12/29

Page 43: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of AdS gravityCS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Banados ’96)

I CS action:

SCS =k

∫CS(A)− k

∫CS(A)

withCS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GNDreibein: e/` ∼ A− A, spin-connection: ω ∼ A+ A

I Boundary conditions for sl(2) connections A (A analogously):

A(ρ, x±) = b−1(ρ)(

d+a(x±) + o(1))b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =(L1 + L(x+)L−1

)dx+

I Virasoro charges and algebra:

Q[ε] ∼∮ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12ε′′′

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 13/29

Page 44: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of AdS gravityCS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Banados ’96)

I CS action:

SCS =k

∫CS(A)− k

∫CS(A)

withCS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GNDreibein: e/` ∼ A− A, spin-connection: ω ∼ A+ A

I Boundary conditions for sl(2) connections A (A analogously):

A(ρ, x±) = b−1(ρ)(

d+a(x±) + o(1))b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =(L1 + L(x+)L−1

)dx+

I Virasoro charges and algebra:

Q[ε] ∼∮ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12ε′′′

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 13/29

Page 45: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of AdS gravityCS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Banados ’96)

I CS action:

SCS =k

∫CS(A)− k

∫CS(A)

withCS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GNDreibein: e/` ∼ A− A, spin-connection: ω ∼ A+ A

I Boundary conditions for sl(2) connections A (A analogously):

A(ρ, x±) = b−1(ρ)(

d+a(x±) + o(1))b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =(L1 + L(x+)L−1

)dx+

I Virasoro charges and algebra:

Q[ε] ∼∮ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12ε′′′

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 13/29

Page 46: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of AdS gravityCS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Banados ’96)

I CS action:

SCS =k

∫CS(A)− k

∫CS(A)

withCS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GNDreibein: e/` ∼ A− A, spin-connection: ω ∼ A+ A

I Boundary conditions for sl(2) connections A (A analogously):

A(ρ, x±) = b−1(ρ)(

d+a(x±) + o(1))b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =(L1 + L(x+)L−1

)dx+

I Virasoro charges and algebra:

Q[ε] ∼∮ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12ε′′′

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 13/29

Page 47: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of AdS gravityCS with weird boundary conditions (Achucarro & Townsend ’86; Witten ’88; Banados ’96)

I CS action:

SCS =k

∫CS(A)− k

∫CS(A)

withCS(A) = 〈A ∧ dA+ 2

3 A ∧A ∧A〉Locally trivial (pure gauge), but globally non-trivial

I Relation to gravity: k ∼ 1/GNDreibein: e/` ∼ A− A, spin-connection: ω ∼ A+ A

I Boundary conditions for sl(2) connections A (A analogously):

A(ρ, x±) = b−1(ρ)(

d+a(x±) + o(1))b(ρ)

I AdS boundary conditions: b(ρ) = exp (ρL0) and

a(x±) =(L1 + L(x+)L−1

)dx+

I Virasoro charges and algebra:

Q[ε] ∼∮ε(x+)L(x+) δεL = L′ ε+ 2L ε′ + c

12ε′′′

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 13/29

Page 48: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of flat space gravityBarnich, Gonzalez ’13, Afshar ’13, Riegler ’15 (part of PhD thesis)

I CS action:

SCS =k

∫CS(A)

with iso(2, 1) connection

A = eaMa + ωaLa

I Same type of boundary conditions:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1

)dt+

(L1 −M(ϕ)L−1 − L(ϕ)M−1

)dϕ

I BMS charges and BMS/GCA algebra:

Q[εM , εL] ∼∮ (

εM (ϕ)M(ϕ) + εL(ϕ)L(ϕ))

δεLL = L′ εL+2Lε′L+ cL12 ε

′′′L δεLM = M ′ εL+2M ε′L+ cM

12 ε′′′L δεMM = 0

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 14/29

Page 49: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of flat space gravityBarnich, Gonzalez ’13, Afshar ’13, Riegler ’15 (part of PhD thesis)

I CS action:

SCS =k

∫CS(A)

with iso(2, 1) connection

A = eaMa + ωaLa

I Same type of boundary conditions:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1

)dt+

(L1 −M(ϕ)L−1 − L(ϕ)M−1

)dϕ

I BMS charges and BMS/GCA algebra:

Q[εM , εL] ∼∮ (

εM (ϕ)M(ϕ) + εL(ϕ)L(ϕ))

δεLL = L′ εL+2Lε′L+ cL12 ε

′′′L δεLM = M ′ εL+2M ε′L+ cM

12 ε′′′L δεMM = 0

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 14/29

Page 50: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of flat space gravityBarnich, Gonzalez ’13, Afshar ’13, Riegler ’15 (part of PhD thesis)

I CS action:

SCS =k

∫CS(A)

with iso(2, 1) connection

A = eaMa + ωaLa

I Same type of boundary conditions:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1

)dt+

(L1 −M(ϕ)L−1 − L(ϕ)M−1

)dϕ

I BMS charges and BMS/GCA algebra:

Q[εM , εL] ∼∮ (

εM (ϕ)M(ϕ) + εL(ϕ)L(ϕ))

δεLL = L′ εL+2Lε′L+ cL12 ε

′′′L δεLM = M ′ εL+2M ε′L+ cM

12 ε′′′L δεMM = 0

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 14/29

Page 51: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Chern–Simons formulation of flat space gravityBarnich, Gonzalez ’13, Afshar ’13, Riegler ’15 (part of PhD thesis)

I CS action:

SCS =k

∫CS(A)

with iso(2, 1) connection

A = eaMa + ωaLa

I Same type of boundary conditions:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1

)dt+

(L1 −M(ϕ)L−1 − L(ϕ)M−1

)dϕ

I BMS charges and BMS/GCA algebra:

Q[εM , εL] ∼∮ (

εM (ϕ)M(ϕ) + εL(ϕ)L(ϕ))

δεLL = L′ εL+2Lε′L+ cL12 ε

′′′L δεLM = M ′ εL+2M ε′L+ cM

12 ε′′′L δεMM = 0

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 14/29

Page 52: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space cosmologiesGraphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)

I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentumI Ground state (global flat space): M = −1, L = 0I Flat space cosmologies: M = M ≥ 0, L = J

cosmological solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 15/29

Page 53: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space cosmologiesGraphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentumI Ground state (global flat space): M = −1, L = 0I Flat space cosmologies: M = M ≥ 0, L = J

cosmological solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 15/29

Page 54: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space cosmologiesGraphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentum

I Ground state (global flat space): M = −1, L = 0I Flat space cosmologies: M = M ≥ 0, L = J

cosmological solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 15/29

Page 55: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space cosmologiesGraphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentumI Ground state (global flat space): M = −1, L = 0

I Flat space cosmologies: M = M ≥ 0, L = J

cosmological solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 15/29

Page 56: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space cosmologiesGraphics by Barnich, Gomberoff, Gonzalez ’12

I Physical states characterized by two functions M(ϕ) and L(ϕ)I Geometric meaning:

ds2 =M(ϕ) du2 − 2 du dr + r2 dϕ2 + 2L(ϕ) dudϕ

I Physical meaning: M∼ mass, L ∼ angular momentumI Ground state (global flat space): M = −1, L = 0I Flat space cosmologies: M = M ≥ 0, L = J

cosmological solutions

angular defects

J

black holes

M

angular defects

J

M

angular excessangular excess

(a) (b)Daniel Grumiller — Flat space higher spin holography Simplification (3D) 15/29

Page 57: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

SGCA = πhL

√cM

6hM

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)I Get contracted Cardy-like formula:

Sinner = π

√cMhM

6

( hLhM

+cLcM

)I Einstein gravity: cL = 0 reproduces correct formula for SGCA of

Bagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 58: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)

I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)I Get contracted Cardy-like formula:

Sinner = π

√cMhM

6

( hLhM

+cLcM

)I Einstein gravity: cL = 0 reproduces correct formula for SGCA of

Bagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 59: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

Note the unusual sign between the two terms!

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)I Get contracted Cardy-like formula:

Sinner = π

√cMhM

6

( hLhM

+cLcM

)I Einstein gravity: cL = 0 reproduces correct formula for SGCA of

Bagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 60: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)

I Get contracted Cardy-like formula:

Sinner = π

√cMhM

6

( hLhM

+cLcM

)I Einstein gravity: cL = 0 reproduces correct formula for SGCA of

Bagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 61: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)I Get contracted Cardy-like formula:

Sinner = π

√cMhM

6

( hLhM

+cLcM

)

I Einstein gravity: cL = 0 reproduces correct formula for SGCA ofBagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 62: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Microstate countingCardy-like formula?

I Direct calculation of Cardy-like formula in GCA2 with cL = 0 (Bagchi,Detournay, Simon ’12, Barnich ’12)

I Limit from AdS results (Riegler ’14, Fareghbal, Naseh ’14)I Inner horizon Cardy-formula! (Castro, Rodriguez ’12, Detournay ’12)

Smacro = SAint =Aint

4G= 2π

√ch

6−2π

√ch

6= Sinner = Smicro

I Make Inonu–Wigner contraction as before

cL = c− c cM =1

`

(c+ c

)hL = h− h hM =

1

`

(h+ h

)I Get contracted Cardy-like formula:

Sinner

∣∣∣cL=0

= π

√cMhM

6

( hLhM

+cLcM

)∣∣∣cL=0

= πhL

√cM

6hM= SGCA

I Einstein gravity: cL = 0 reproduces correct formula for SGCA ofBagchi, Detournay, Simon ’12, Barnich ’12

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 16/29

Page 63: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsStatement of main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 17/29

Page 64: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsStatement of main result

Hot flat space (ϕ ∼ ϕ+ 2π)

ds2 = ±dt2 + dr2 + r2 dϕ2

ds2 = ±dτ2 +(Eτ)2 dx2

1 + (Eτ)2+(1 + (Eτ)2

) (dy +

(Eτ)2

1 + (Eτ)2dx)2

Flat space cosmology (y ∼ y + 2πr0)Bagchi, Detournay, Grumiller, Simon ’13Daniel Grumiller — Flat space higher spin holography Simplification (3D) 17/29

Page 65: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsDerivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫Dg e−Γ[g] =

∑gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity Ω

I Leading contribution:

lnZ(T, Ω) ≈ −Γ[gc(T, Ω)]

gc is the most dominant classical saddleI Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity ΩI obey flat space boundary conditionsI solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 18/29

Page 66: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsDerivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫Dg e−Γ[g] =

∑gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity ΩI Leading contribution:

lnZ(T, Ω) ≈ −Γ[gc(T, Ω)]

gc is the most dominant classical saddle

I Two Euclidean saddle points in same ensemble ifI same temperature T and angular velocity ΩI obey flat space boundary conditionsI solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 18/29

Page 67: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsDerivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫Dg e−Γ[g] =

∑gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity ΩI Leading contribution:

lnZ(T, Ω) ≈ −Γ[gc(T, Ω)]

gc is the most dominant classical saddleI Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity ΩI obey flat space boundary conditionsI solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 18/29

Page 68: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsDerivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫Dg e−Γ[g] =

∑gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity ΩI Leading contribution:

lnZ(T, Ω) ≈ −Γ[gc(T, Ω)]

gc is the most dominant classical saddleI Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity ΩI obey flat space boundary conditionsI solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 18/29

Page 69: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Phase transitionsDerivation from Euclidean path integral

I Evaluate Euclidean partition function in semi-classical limit

Z(T, Ω) =

∫Dg e−Γ[g] =

∑gc

e−Γ[gc(T,Ω)] × Zfluct.

boundary conditions specify temperature T , angular velocity ΩI Leading contribution:

lnZ(T, Ω) ≈ −Γ[gc(T, Ω)]

gc is the most dominant classical saddleI Two Euclidean saddle points in same ensemble if

I same temperature T and angular velocity ΩI obey flat space boundary conditionsI solutions without conical singularities

I Determine saddle with lowest free energy (smallest on-shell action Γ)

For this to work need full action Γ!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 18/29

Page 70: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 71: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!

I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 72: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δg

I Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 73: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)

I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 74: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 75: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8G

I Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 76: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionary0-point function (Detournay, DG, Scholler, Simon ’14)

I Full (holographically renormalized) action:

Γ = − 1

16πG

∫Md3x√g R− 1

16πG

∫∂Md2x√γ K

I Boundary term is half of Gibbons–Hawking–York!I δΓ = 0 on-shell for all allowed variations δgI Free energy: F (T, Ω) = T Γ(T, Ω)I Free energy of flat space cosmology solutions:

FFSC(T, Ω) = −r2

+

8G= − π

2T 2

2GΩ2

I Free energy of (hot) flat space:

FHFS(T, Ω) = − 1

8GI Phase transition at self-dual point (r+ = 1):

2π Tc = Ω T > Tc : FSC stable T < Tc : HFS stable

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 19/29

Page 77: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 78: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 79: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 80: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 81: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)

I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 82: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Towards a holographic dictionarySources and 1-point functions (Detournay, DG, Scholler, Simon ’14)

I Sources ψµν : non-normalizable solutions to linearized EOM

I Linearized solutions: locally pure gauge in Einstein gravityψµν = ∇µξν +∇νξµ

I Gauge choice: axial gauge ψµνnν = 0 with nν = δνr

I Non-normalizable solutions with these choices:

ψτϕ = r2 ∂τξ0+norm. ψϕϕ = 2r2 ∂ϕξ

0+norm. ψττ = 0+norm.

with

ξ0 = ξJ(ϕ) τ + 12

∫dϕ ξM (ϕ)

I Result for 1-point functions then follow from usual holographicdictionary:

δΓ∣∣EOM

= 12

∫∂Md2x

(M2π δξM −

J2π δξJ

)I M and J coincide precisely with zero-point canonical charges!

Daniel Grumiller — Flat space higher spin holography Simplification (3D) 20/29

Page 83: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Outline

Motivation (how general is holography?)

Simplification (3D)

Generalization (higher derivatives or spins)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 21/29

Page 84: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 85: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)

I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 86: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies match

I Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 87: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)

I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 88: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra match

I Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 89: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formula

I No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 90: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 91: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space chiral gravityBagchi, Detournay, DG ’12

Conjecture:

Conformal Chern–Simons gravity at level k = 1 'chiral extremal CFT with central charge c = 24

ICSG =k

∫ (Γ ∧ dΓ + 2

3Γ ∧ Γ ∧ Γ)

+ flat space bc’s

I Symmetries match (Brown–Henneaux type of analysis)I Trace and gravitational anomalies matchI Perturbative states match (Virasoro descendants of vacuum)I Gaps in spectra matchI Microscopic counting of SFSC reproduced by chiral Cardy formulaI No issues with logarithmic modes/log CFTs

Missing: full partition function on gravity side

Z(q) = J(q) =1

q+ 196884 q +O(q2)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 22/29

Page 92: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAfshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)

I Flat space: similar!

SflatCS =

k

∫CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1 − V (ϕ)V−2

)dt

+(L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ))

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 23/29

Page 93: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAfshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)I Flat space: similar!

SflatCS =

k

∫CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

isl(3) algebra (spin 3 extension of global part of BMS/GCA algebra)

[Ln, Lm] = (n−m)Ln+m

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1 − V (ϕ)V−2

)dt

+(L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ))

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 23/29

Page 94: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAfshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)I Flat space: similar!

SflatCS =

k

∫CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1 − V (ϕ)V−2

)dt

+(L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ))

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 23/29

Page 95: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAfshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)I Flat space: similar!

SflatCS =

k

∫CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1 − V (ϕ)V−2

)dt

+(L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ))

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 23/29

Page 96: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAfshar, Bagchi, Fareghbal, DG, Rosseel ’13, Gonzalez, Matulich, Pino, Troncoso ’13

I AdS gravity in CS formulation: spin 2 → spin 3 ∼ sl(2)→ sl(3)I Flat space: similar!

SflatCS =

k

∫CS(A)

with isl(3) connection (ea = “zuvielbein”)

A = eaTa + ωaJa Ta = (Mn, Vm) Ja = (Ln, Um)

I Same type of boundary conditions as for spin 2:

A(r, t, ϕ) = b−1(r)(

d+a(t, ϕ) + o(1))b(r)

I Flat space boundary conditions: b(r) = exp (12 rM−1) and

a(t, ϕ) =(M1 −M(ϕ)M−1 − V (ϕ)V−2

)dt

+(L1 −M(ϕ)L−1 − V (ϕ)U−2 − L(ϕ)M−1 − Z(ϕ)V−2

)dϕ

I Spin 3 charges:

Q[εM , εL, εV , εU ] ∼∮ (

εM (ϕ)M(ϕ)+εL(ϕ)L(ϕ)+εV (ϕ)V (ϕ)+εU (ϕ)U(ϕ))

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 23/29

Page 97: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAsymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or Inonu–Wignercontraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +cM12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +192

cM(n−m)Λn+m

−96(cL+ 44

5

)c2M

(n−m)Θn+m +cL12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +96

cM(n−m)Θn+m

+cM12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 24/29

Page 98: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAsymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or Inonu–Wignercontraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +cM12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +192

cM(n−m)Λn+m

−96(cL+ 44

5

)c2M

(n−m)Θn+m +cL12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +96

cM(n−m)Θn+m

+cM12

n(n2 − 1)(n2 − 4) δn+m, 0

Λn =∑p

: LpMn−p : − 310

(n+ 2)(n+ 3)Mn Θn =∑p

MpMn−p

other commutators as in isl(3) with n ∈ Z

I Note quantum shift and poles in central terms!I Analysis generalizes to flat space contractions of other W -algebras

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 24/29

Page 99: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAsymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or Inonu–Wignercontraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +cM12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +192

cM(n−m)Λn+m

−96(cL+ 44

5

)c2M

(n−m)Θn+m +cL12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +96

cM(n−m)Θn+m

+cM12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 24/29

Page 100: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Flat space higher spin gravityAsymptotic symmetry algebra at finite level k Afshar, Bagchi, Fareghbal, DG, Rosseel ’13

I Do either Brown–Henneaux type of analysis or Inonu–Wignercontraction of two copies of quantum W3-algebra

I Obtain new type of W -algebra as extension of BMS (“BMW”)

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m +cM12

(n3 − n) δn+m, 0

[Un, Um] = (n−m)(2n2 + 2m2 − nm− 8)Ln+m +192

cM(n−m)Λn+m

−96(cL+ 44

5

)c2M

(n−m)Θn+m +cL12

n(n2 − 1)(n2 − 4) δn+m, 0

[Un, Vm] = (n−m)(2n2 + 2m2 − nm− 8)Mn+m +96

cM(n−m)Θn+m

+cM12

n(n2 − 1)(n2 − 4) δn+m, 0

I Note quantum shift and poles in central terms!

I Analysis generalizes to flat space contractions of other W -algebras

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 24/29

Page 101: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)

I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 102: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0

I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 103: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforward

I All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 104: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebra

I cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 105: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 106: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM Un

Doubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 107: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 108: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceUnitarity leads to further contraction DG, Riegler, Rosseel ’14

Facts:I Unitarity in GCA requires cM = 0 (see paper for caveats!)I Non-triviality requires then cL 6= 0I Generalization to contracted higher spin algebras straightforwardI All of them contain GCA as subalgebraI cM = 0 is necessary for unitarity

Limit cM → 0 requires further contraction: Un → cM UnDoubly contracted algebra has unitary representations:

[Ln, Lm] = (n−m)Ln+m +cL12

(n3 − n) δn+m, 0

[Ln, Mm] = (n−m)Mn+m

[Ln, Um] = (2n−m)Un+m

[Mn, Um] = [Ln, Vm] = (2n−m)Vn+m

[Un, Um] ∝ [Un, Vm] = 96(n−m)∑p

MpMn−p

Higher spin states decouple and become null states!Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 25/29

Page 109: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 110: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Example:Flat space chiral gravityBagchi, Detournay, DG, 1208.1658

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 111: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Example:Minimal model holographyGaberdiel, Gopakumar, 1011.2986, 1207.6697

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 112: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Example:Flat space higher spin gravity (Galilean W3 algebra)Afshar, Bagchi, Fareghbal, DG and Rosseel, 1307.4768Gonzalez, Matulich, Pino and Troncoso, 1307.5651

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 113: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 114: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceGeneric flat space W -algebras DG, Riegler, Rosseel ’14

1. NO–GO:Generically (see paper) you can have only two out of three:

I UnitarityI Flat spaceI Non-trivial higher spin states

Compatible with “spirit” of variousno-go results in higher dimensions!

2. YES–GO:There is (at least) one counter-example, namely a Vasiliev-type of theory,where you can have all three properties!

Unitary, non-trivial flat space higher spin algebra exists!Vasiliev-type flat space chiral higher spin gravity?

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 26/29

Page 115: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceFlat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...

I ...but its existence is at least not ruled out by the no-go result!I If it exists, this must be its asymptotic symmetry algebra:

[V im,Vjn

]=

b i+j2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[V im,Wj

n

]=

b i+j2 c∑

r=0

gij2r(m,n)W i+j−2rm+n

[W im,Wj

n

]= 0

whereciV(m) = #(i, m) × c and c = −c

I Vacuum descendants W im|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 27/29

Page 116: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceFlat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...I ...but its existence is at least not ruled out by the no-go result!

I If it exists, this must be its asymptotic symmetry algebra:

[V im,Vjn

]=

b i+j2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[V im,Wj

n

]=

b i+j2 c∑

r=0

gij2r(m,n)W i+j−2rm+n

[W im,Wj

n

]= 0

whereciV(m) = #(i, m) × c and c = −c

I Vacuum descendants W im|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 27/29

Page 117: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceFlat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...I ...but its existence is at least not ruled out by the no-go result!I If it exists, this must be its asymptotic symmetry algebra:

[V im,Vjn

]=

b i+j2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[V im,Wj

n

]=

b i+j2 c∑

r=0

gij2r(m,n)W i+j−2rm+n

[W im,Wj

n

]= 0

whereciV(m) = #(i, m) × c and c = −c

I Vacuum descendants W im|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 27/29

Page 118: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceFlat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...I ...but its existence is at least not ruled out by the no-go result!I If it exists, this must be its asymptotic symmetry algebra:

[V im,Vjn

]=

b i+j2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[V im,Wj

n

]=

b i+j2 c∑

r=0

gij2r(m,n)W i+j−2rm+n

[W im,Wj

n

]= 0

whereciV(m) = #(i, m) × c and c = −c

I Vacuum descendants W im|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 27/29

Page 119: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Unitarity in flat spaceFlat space W∞-algebra compatible with unitarity DG, Riegler, Rosseel ’14

I We do not know if flat space chiral higher spin gravity exists...I ...but its existence is at least not ruled out by the no-go result!I If it exists, this must be its asymptotic symmetry algebra:

[V im,Vjn

]=

b i+j2 c∑

r=0

gij2r(m,n)V i+j−2rm+n + ciV(m) δij δm+n,0

[V im,Wj

n

]=

b i+j2 c∑

r=0

gij2r(m,n)W i+j−2rm+n

[W im,Wj

n

]= 0

whereciV(m) = #(i, m) × c and c = −c

I Vacuum descendants W im|0〉 are null states for all i and m!

I AdS parent theory: no trace anomaly, but gravitational anomaly(Like in conformal Chern–Simons gravity → Vasiliev type analogue?)

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 27/29

Page 120: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity sideI existence of flat space chiral higher spin gravity?I Bondi news and holography?I novel boundary conditions (both I ±)?I holographic entanglement entropy in flat space (higher spin) gravityI ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 121: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity side

I existence of flat space chiral higher spin gravity?I Bondi news and holography?I novel boundary conditions (both I ±)?I holographic entanglement entropy in flat space (higher spin) gravityI ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 122: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity sideI existence of flat space chiral higher spin gravity?

I Bondi news and holography?I novel boundary conditions (both I ±)?I holographic entanglement entropy in flat space (higher spin) gravityI ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 123: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity sideI existence of flat space chiral higher spin gravity?I Bondi news and holography?I novel boundary conditions (both I ±)?

I holographic entanglement entropy in flat space (higher spin) gravityI ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 124: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity sideI existence of flat space chiral higher spin gravity?I Bondi news and holography?I novel boundary conditions (both I ±)?I holographic entanglement entropy in flat space (higher spin) gravity

I ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 125: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected open issues

We have answered an ε of the open questions.

Here are a few more εs:

I check 2- and 3-point correlators on (higher spin) gravity sideI check semi-classical partition function on (higher spin) gravity sideI existence of flat space chiral higher spin gravity?I Bondi news and holography?I novel boundary conditions (both I ±)?I holographic entanglement entropy in flat space (higher spin) gravityI ...

I Long way to go before fully understanding flat space holography

I Part of the path now seems clear and may lead to new insights

I Other parts probably will require novel techniques

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 28/29

Page 126: Flat space higher spin holography - TU Wienquark.itp.tuwien.ac.at/~grumil/pdf/Mainz2014.pdf · Flat space higher spin holography Daniel Grumiller Institute for Theoretical Physics

Selected references

Thanks for your attention!

D. Grumiller, M. Riegler and J. Rosseel,JHEP 1407 (2014) 015 [arXiv:1403.5297].

S. Detournay, D. Grumiller, F. Scholler, J. Simon,Phys.Rev. D89 (2014) 084061 [arXiv:1402.3687].

H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel,Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768].

A. Bagchi, S. Detournay, D. Grumiller and J. Simon,Phys. Rev. Lett. 111 (2013) 181301 [arXiv:1305.2919].

A. Bagchi, S. Detournay and D. Grumiller,Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658].

Thanks to Bob McNees for providing the LATEX beamerclass!

Daniel Grumiller — Flat space higher spin holography Generalization (higher derivatives or spins) 29/29