Fischer–Tropsch Synthesis on the Al2O3-Modified Ordered

download Fischer–Tropsch Synthesis on the Al2O3-Modified Ordered

of 9

Transcript of Fischer–Tropsch Synthesis on the Al2O3-Modified Ordered

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    1/9

    Catalysis Today 265 (2016) 2735

    Contents lists available at ScienceDirect

    Catalysis Today

    j ournal homepage : www.elsevier .com/ locate /cattod

    FischerTropsch synthesis on the Al2O3-modified ordered

    mesoporous Co3O4with an enhanced catalytic activity and stability

    Chang-Il Ahn,Jong Wook Bae

    School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do440-746, Republic of Korea

    a r t i c l e i n f o

    Article history:

    Received 26 June 2015

    Received in revised form 19 August 2015

    Accepted 10 September 2015

    Keywords:

    FischerTropsch synthesis

    Ordered mesoporous Co3 O4Al2O3 modification

    Structural stability

    Deactivation

    a b s t r a c t

    Ordered mesoporous Co3O4 metal oxide synthesized by nano-casting method using a hard template of

    KIT-6 was subsequently modified with Al component to increase catalytic activity and structural sta-

    bilities even under H2-rich FischerTropsch synthesis (FTS) conditions. While using a highly ordered

    mesoporous Co3O4 for FTS reaction, a significant structural change by forming larger cobalt aggregates

    and encapsulated cokes accelerated a catalyst deactivation. By introducing an irreducible Al species on

    the inner surfaces or in the main frameworks ofmesoporous Co3O4, the ordered mesoporous structures

    ofCo3O4 were successfully maintained even after FTS reaction. These modifications ofthe mesoporous

    Co3O4 structures were carried out by adding a pillaring material of aluminum oxide or by preparing

    mesoporous mixed binary metal oxides with the partial formation of a spinel CoAl2O4 phase, and a

    higher structural stability and activity were observed due to the suppressed collapses ofthe mesopore

    structures of Co3O4 . The improved stability of the Co3O4 mesopores seems to be related with a lower

    mobility ofan irreducible Al2O3pillar by strongly interacting with the inner surfaces ofthe mesoporous

    Co3O4or by enhancing the interactions ofCo3O4with Al2O3in a main framework ofmixed binary metal

    oxides. 2015 Elsevier B.V. All rights reserved.

    1. Introduction

    FischerTropsch synthesis (FTS) reaction has been well known

    to be an efficient chemical conversion process using the synthe-

    sis gases, which can be synthesized from the reforming of natural

    gas or coal (or biomass) gasification, to produce some clean fuels

    or petrochemicals [13]. The cobalt-based FTS catalysts have the

    advantages such as a higheryieldfor linearhydrocarbons at a lower

    operating temperature with a suppressed water gas shift activity

    compared to the iron-based FTS catalysts [4]. The supported FTS

    catalysts can be prepared by supporting cobalt nanoparticles on

    the highly porous irreducible metal oxides with a high dispersion

    of them, however, significant aggregations of the cobalt nanopar-

    ticles with the reoxidation to form an inactive cobalt species and

    the possible deposition of heavy waxes (or coke precursors) during

    the FTS reaction haven been known for the main reasons for cat-

    alyst deactivations [4]. To overcome these general disadvantages

    of supported catalysts, ordered mesoporous supports such as the

    ordered mesoporous silica, carbons or transition metal oxides have

    been widely investigated in the field of heterogeneous catalysis due

    Corresponding author.

    E-mail address: [email protected] (J.W. Bae).

    to their well-developed regular mesopore structures with a higher

    surface area [2,3] through well-known nano-casting methods for

    some applications of battery technologies and oxidation catalytic

    reactions and so on [5,6]. However, the direct applications of the

    transition metal oxides for some catalytic reactions have been lim-

    ited dueto their structureinstabilityunder H2-richconditions [7,8].

    Thephasetransformationfrom metal oxidesto metallic species can

    cause a severeaggregationand a structural collapse of thereducible

    mesoporous transition metal oxide frameworks resulted in accel-

    erating catalyst deactivation. As far as we know, these deactivation

    mechanisms may be main reasons for the small research reports

    concerning practical applications of mesoporous transition metal

    oxides for the FTS reaction till now.

    In the present study, we investigated two possible methodolo-

    gies to suppress the structural collapses of the mesoporous Co3O4even under the reductive CO hydrogenation conditions by intro-

    ducing an irreducible aluminum oxide in the mesoporous surfaces

    [10] or by preparing mixed binary metal oxides of CoAlOx in the

    main frameworks of Co3O4 to elucidate the roles of aluminum

    oxide on the surfaces or mainframes of mesoporous Co3O4. These

    modifications of the mesoporous Co3O4 with irreducible Al2O3species showed a stable activity by maintaining regular meso-

    porous structures during the FTS reaction. The improved catalytic

    activity and structural stability of the mesoporous Co3O4 were

    http://dx.doi.org/10.1016/j.cattod.2015.09.047

    0920-5861/ 2015 Elsevier B.V. All rights reserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.cattod.2015.09.047http://www.sciencedirect.com/science/journal/09205861http://www.elsevier.com/locate/cattodmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.cattod.2015.09.047http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.cattod.2015.09.047mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.cattod.2015.09.047&domain=pdfhttp://www.elsevier.com/locate/cattodhttp://www.sciencedirect.com/science/journal/09205861http://localhost/var/www/apps/conversion/tmp/scratch_6/dx.doi.org/10.1016/j.cattod.2015.09.047
  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    2/9

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    3/9

    C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735 29

    calculated to compare the surface composition changes before and

    after FTS reaction. Transmission electron microscopy (TEM) anal-

    ysis was also carried out to verify the changes of the local surface

    morphologies on the fresh and used mesoporous Co3O4 catalysts

    using TECNAI G2 operated at an accelerating voltage of 200 kV.

    Catalytic activity test of the as-prepared mesoporous Co3O4catalysts were carried out in a stainless steel fixed-bed tubular

    reactor having an outer diameter of 12.7 m m using 100 m g of

    the catalyst after mixing with 1.0 g of gamma-Al2

    O3

    as a diluent

    with the a granule size of 60100m. Prior to the FTS reac-

    tion, the mesoporous Co3O4 catalysts were reduced in situ at

    400 C under a flow of 5%H2 balanced with N2 for 12 h. After

    the reduction, the reactor temperature was cooled down to room

    temperature and the reactant of syngas having a feed gas com-

    position of H2/N2/CO = 62.84/5.60/31.56 was introduced. The FTS

    reaction was performed for around 2060h under the following

    reaction conditions; T= 2 30 and 240 C, P=2.0MPa, and weight

    hourly space velocity (WHSV)= 24000 L (mixed gas)/(kgcat h). The

    effluent productsfrom thereactorwereanalyzedby using an online

    gas chromatograph (YoungLin Acme 6500, GC) equipped with GS-

    GASPRO capillary column connected to flame ionization detector

    (FID) for the analysis of hydrocarbons, and Carboxen 1000 packed

    columnconnectedto TCDfor theanalysis ofCO, CO2, CH4 andH2. CO

    conversion was calculated using the variations of CO moles before

    and after FTS reaction corrected by using the area changes of inter-

    nalstandardgas andthe product distributions were also calculated

    based on the total carbon balances. In addition, the reaction rate

    wasdefinedas thereactedCOmol/(gcat s)andtheTOFwasdefined

    as the reacted CO molecules/(surface cobaltatoms), where the rate

    and TOF were calculated using the results of FTS reaction at around

    20h on stream.

    3. Results and discussion

    3.1. Physicochemical properties of the Al-modified mesoporous

    Co3O4

    The surface area, pore volume and average pore diameter of the

    mesoporousCo3O4catalystswith theirpore size distributions were

    measured by N2sorption method, and the results are summarized

    in Table 1 and Fig. 1. As shown in Fig. 1, the presence of the meso-

    pore structures was clearly observed with a type IV isotherm and

    H1 hysteresis on the mesoporous Co3O4 catalysts. In addition, the

    hysteresis pattern on the comparative bulk-Co3O4suggests a typi-

    cal non-porous material structure. The sharp peak intensities with

    a pore size around 4 nm were observed on the Al-modified meso-

    porous Co3O4 catalysts such as the meso-Co3O4, Al/meso-Co3O4,

    and Al/meso-CoAlOx, however the bulk-Co3O4 showeda broadpore

    size distribution between 10 and 100nm in pore size as shown

    in an inset of Fig. 1. The broad pore size distribution on the bulk-

    Co3O4 seems to be attributed to the inter-particular pores of Co3O4nanoparticles byshowing a lower surface area of 32m2/g andlarger

    pore diameter of 20.3nm. The surface areas of the mesoporous

    Co3O4 catalysts were significantly decreased after Al modification

    from 104m2/g on the meso-Co3O4 by showing a bimodal pore

    size distribution to 98m2/g on the Al/meso-Co3O4and 47m2/g on

    the Al/meso-CoAl0.25Ox by showing an unimodal size distribution

    with a sharp peak intensity at around 4nm in size. The observa-

    tion strongly suggests that Al2O3pillar was highlydispersed on the

    inner surfaces of the meso-Co3O4 and the meso-CoAlOx without

    significant aggregation of Al2O3 pillar or a possible structural col-

    lapse during the preparation steps [8,10,11]. The pore volume and

    average pore diameter were also observed with a similar trend by

    showing the respective values of 0.070.19 cm3/g and 4.76.1 nm

    except for the bulk-Co3O4 as summarized in Table 1. The slightly

    Fig. 1. N2

    adsorptiondesorption patterns and pore size distributions of the fresh

    mesoporous Co3O4catalysts.

    increased average pore diameter of 6.1 nm on the Al/meos-Co3O4from that of 5.0 nm on the meos-Co3O4can be possibly attributed

    to the formation of inter-particular pores originated from the par-

    tially collapsed Co3O4 and Al2O3 pillar at around 50nm (an inset

    of Fig. 1). Interestingly, the ordered mesoporous structures were

    well developedon the Al/meso-CoAl0.25Ox and Al/meso-CoAl0.13Ox,

    which seems to have a positive effect for a superior catalytic activ-

    ity and stability through a facile transport of heavy hydrocarbons

    formed during FTS reaction [10].

    Wide angel powder XRD patterns of the fresh mesoporous

    Co3O4catalysts are displayed in Fig. 2(A), and the calculated aver-

    age particle sizes of Co3O4 were also summarized in Table 1. Thespinel structures of Co3O4crystalline phases were clearly observed

    atthe2valuesof 19.0,31.2, 38.5,44.8,59.3and 65.2,whichcanbe

    corresponding to the characteristic crystalline Co3O4 diffractions

    of (1 1 1), (2 2 0), (3 1 1), (4 0 0), (5 1 1) and (4 4 0) planes [12]. The

    particle sizes of Co3O4were further calculated by DebyeScherrer

    equation using the most intense characteristic diffraction peak at

    2=36.8. The particle sizes of the mesoporous Co3O4 catalysts

    even after Al modification were found to be around 15.916.9 nm,

    which could be a grain size of main framework of cobalt oxides,

    except for the bulk-Co3O4with a particle size of 27.9nm. The par-

    ticle sizes of metallic cobalt were calculated by using the equation

    of d(Co0)=0.75d(Co3O4) [13], and the calculated particle sizes of

    metallic cobaltwerefoundto beabove12 nmon allthe mesoporous

    Co3O4 catalysts, which has been generally known to be a trivialeffect to the intrinsic activity for the FTS reaction due to its charac-

    ter of structure insensitivity above 8 nm in size [4]. Therefore, the

    different intrinsic catalytic activity of the turnover frequency (TOF)

    on the mesoporous Co3O4catalysts seems to be mainly attributed

    to the other characteristics such as the mesoporosity with its sta-

    bility and the mass transport of products of heavy hydrocarbons

    and so on. Even though the spinel structure of the cobalt aluminate

    of CoAl2O4was not clearly observed by the XRD analysis due to an

    identical diffraction peak position with Co3O4 [14,15], a possible

    formation of cobalt aluminate on the Al/meso-Co3O4, Al/meso-

    CoAl0.25Ox and Al/meso-CoAl0.13Ox seems to be a main reason for

    an enhanced structural stability and activity by forming a particle

    size of around 16nm, which corresponds to a main frameworks

    granule size of Co3O4. As shown in Fig. 2(B), the characteristic 2D

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    4/9

    30 C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735

    Table 1

    Characteristics of the Al-modified ordered mesoporous Co3 O4catalysts.

    Catalysts BET XRD H2-Chem. TPR XPS

    Surface

    area

    (m2/g)

    Pore

    volume

    (cm3 /g)

    Pore

    diameter

    (nm)

    Particle

    size of

    Co3O4 (nm)

    Surface area

    of cobalt

    (m2/gCo)

    Degree of

    reduction

    (%)a

    BE (eV)of

    Co2p3/2

    BE(eV) ofAl2p IAl /ICob (103)

    Fresh/used Fresh/used Fresh/used

    Bulk-Co3O4c 32 0.22 20.3 27.9 12.1 98.2

    Meso-Co3O4c 104 0.19 5.0 15.5 22.8 62.9 780.2/780.0 / /

    Al/meso-Co3O4c 98 0.21 6.1 16.9 31.0 44.0 780.5/780.3 75.8/75.0 1.28/1.14

    Al/meso-CoAl 0.13 Ox 68 0.10 4.7 15.9 8.4 50.4 781.0/780.9 74.4/74.2 2.12/2.15

    Al/meso-CoAl 0.25 Ox 47 0.07 5.5 16.4 10.9 50.3 778.8/778.7 74.2/73.8 4.36/4.31

    a The degrees of reduction of catalysts were calculated using TPR data with an amount of H2 consumption below 450C divide d by t ot al H2 consumption in the full

    temperature ranges.b Thevalues of theintensity ratio ofIAl /ICo were calculated using theintegrated area of each peak by correcting thearea usingthe atomicsensitivityfactors (ASF) with the

    values ofSCo=4.5 and SAl= 0.11.c The characterization results of the bulk-Co3O4 , meso-Co3O4 and Al/meso-Co3O4was partly reported in ourpreviousworks [8,10].

    Fig. 2. (A)Wide-angle XRD patterns and (B)small angle X-ray scattering (SAXS)patternsof the fresh mesoporous Co3O4 catalysts.

    hexagonal ordered mesostructures assigned to planes of (10 0),

    (11 0), and (20 0) reflections [16,17] were clearly observed on the

    ordered mesoporous Co3O4 before and after Al modification. The

    peak intensity of (10 0) plane was observed much larger on the Al-

    incorporated meso-Co3O4such as on the Al/meso-CoAl0.25Ox, and

    it suggests the facile formation of well-ordered mesoporous struc-

    tures on the mesoporous mixed oxides which is in line with the

    results of N2sorption analysis.

    3.2. Reducibility and structural stability of the Al-modified

    mesoporous Co3O4

    The reduction patterns of Co3O4 crystallites are known to fol-

    low two-step reductions such as Co3O4CoOCo0. From TPR

    analysis of the mesoporous Co3O4catalysts as shown in Fig. 3, the

    stepwise reductions with two distinctive reduction peaks can be

    assigned as the first reduction of Co3O4 to CoO at around 300C

    and the second reduction of CoO to metallic cobalt above 400 C

    [18,19]. In the case of the unmodified Co3O4, two H2 absorption

    peaks of Co3O4were clearly observed at much lower temperatures

    of 303 and 374 C on the bulk-Co3O4, and at the temperatures of

    280 C and 493 C on the meso-Co3O4, which are also responsi-

    ble for the typical two step reductions of Co3O4. Interestingly, a

    higherreduction temperature shift of thesecond peak on themeso-

    Co3O4 can be possibly attributed to the suppressed H2 transport Fig. 3. TPR profiles of thefresh mesoporous Co3O4 catalysts.

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    5/9

    C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735 31

    Fig. 4. TEM imagesof thefresh(A) bulk-Co3O4 , (B)meso-Co3O4 , (C) Al/meso-Co3O4 , (D) Al/meso-CoAl0.25 Ox catalysts.

    rate by the trapped water generated during the reduction step in

    the mesopores of the meso-Co3O4[2,8,20]. On the Al/meso-Co3O4,

    two characteristic reduction peaksappearedat 371and 446Cwith

    a medium reduction temperature of 402 C, which are also in line

    with the typical stepwise reduction steps of Co3O4, and a shoulder

    peak at 402 C may be originated from the aggregated cobalt parti-

    cles during the synthesis steps through partial structural collapses

    [8,10]. The shifts of reduction peaks to higher temperatures on the

    Al/meso-Co3O4 compared to the meso-Co3O4 were attributed to

    the dispersed Al2O3 pillar on the inner framework surfaces of the

    mesoporous Co3O4 by forming a strong metal-support interaction.In addition,a reductionpeak at 724C on theAl/meso-Co3O4seems

    to be originatedfrom a possibleformation of spinel structuralcobalt

    aluminate [4]. Generally, it has been known that irreducible metal

    oxides such as Al2O3, SiO2 and TiO2 can lead to the formation of

    strong metal-support interactions on the supportedmetal catalysts

    [4,21]. Even though these phenomena can show negative effects

    in terms of catalytic activity due to the difficult reduction behav-

    ior of the strongly interacted cobalt particles on the supports, the

    enhanced structural stability can be originated from a strongly

    interacted Al2O3 pillar on the meso-Co3O4and meso-CoAlOxeven

    under H2-rich reaction conditions.

    The reduction patterns on the Al2O3 incorporated Al/meso-

    CoAlOx were similar with the Al/meso-Co3O4 by shifting to lower

    temperatures, especially on the Al/meso-CoAl0.25Ox. The two stepreductions of Co3O4 particles were observed at around 330 and

    490 C, and the medium temperature of 383C on the Al/meso-

    CoAl0.13Ox seems to be originated from the aggregated cobalt

    particles through a partial structural collapses [8,10]. Interest-

    ingly, the higher temperature reduction peaks at a respective

    654 and 611 C on the Al/meso-CoAl0.13Oxand Al/meso-CoAl0.25Oxcan generate a strong interaction between Co3O4 and impreg-

    nated (or incorporated) Al2O3 species. This can be beneficial for

    an enhanced structural stabilityof the mesoporous Co3O4catalysts

    by forming spinel CoAl2O4phases possibly. The reduction degrees

    ofCo3O4 particleswere foundto be lower on theAl-modifiedmeso-

    porous Co3O4catalysts with the values of 44.0, 50.4, and 50.3% on

    the respective Al/meso-Co3O4, Al/meso-CoAl0.13Ox and Al/meso-

    CoAl0.25

    Ox

    compared to the meso-Co3

    O4

    with a value of 62.9%,

    which strongly suggests the formation of new strong interactions

    between Co3O4andAl2O3particles.In addition,the observed lower

    reduction temperatures on the Al/meso-CoAl0.25Oxthan thatof the

    Al/meso-CoAl0.13Ox seemsto be attributed to smaller total amounts

    of Al2O3content n in the mesoporous Co3O4main frameworks.

    To further verify the structural stability after Al modification on

    the mesoporous Co3O4catalysts, TEM analyses were carried outon

    the as-prepared catalysts as shown in Fig. 4 with magnified inset

    figures. The bulk-Co3O4 showed the bundles of spheres with the

    particle sizes of 2030 nm, and the ordered mesopore structures

    on the meso-Co3O4 were clearly observed with an average porediameter around 5 nm. In addition, the observed different parti-

    cle sizes of Co3O4 on the Al-modified meso-Co3O4 between XRD

    and TEM analysis seems to be mainly attributed to a formation

    of larger cobalt clusters in the frameworks of mesoporous Co3O4which could be the aggregates of the separate Co3O4grains mainly

    measured by XRD analysis.The regularity of the mesoporous struc-

    tures on the meso-Co3O4seems to be responsible for the observed

    higher specific surface area of metallic cobalt compared to that of

    the bulk-Co3O4. In addition, the typical ordered mesoporous struc-

    tures with a pore diameter of 68 nm were clearly observed on the

    Al/meso-Co3O4 which was also sustainedeven after the addition of

    Al2O3 pillaring material. This observation suggests that the Al2O3pillar is well dispersed inside the mesopores of the meso-Co3O4. It

    also suggests that Al2O3 particles can be strongly interacted withthe mesoporous Co3O4 surfaces by forming a strong metal-support

    interaction (confirmedby TPR), which canplay an importantrole in

    stabilizing the mesopore structures of Co3O4 under the reductive

    FTS conditions. In addition, TEM images of the fresh Al/meso-

    CoAl0.25Ox also support that the mesoporous frameworks of Co-Al

    mixed oxides originated from vacant pores of the KIT-6 mesopores

    are well developed with similar pore sizes of the Al/meso-Co3O4.

    H2 chemisorption analysis was carried out on the mesoporous

    Co3O4 catalysts to verify the active metallic surface area of cobalt

    species, andthe results aresummarized in Table1. The larger metal-

    lic cobalt surface areas of 22.8 and 31.0m2/gCo were observed on

    the meso-Co3O4 and the Al/meso-Co3O4, respectively, compared

    to that of bulk-Co3O4 with a value of 12.1m2/gCo. However, with

    an incorporation of Al2

    O3

    particles on the Al/meso-CoAl0.13

    Ox

    and

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    6/9

    32 C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735

    Fig. 5. Catalytic activities on the mesoporous Co3O4 catalysts with time on stream

    (h).

    Al/meso-CoAl0.25Oxmixed oxides, the metallic cobalt surface areas

    were decreased to 8.4 and 10.9m2/gCo due to a smaller content

    of cobalt species. In addition, from our previous study [10], thedecreased metallic surface area after the reduction treatment was

    mainly attributed to the partial structure collapses of the meso-

    Co3O4. Although the Al2O3 modified meso-Co3O4 has a smaller

    metallic surface area than that of the meso-Co3O4 due to the

    well-developed mesoporous structures, the structural collapse of

    the ordered mesoporous structures without Al modification can

    increase the structural instability during the reductionstep through

    a intrinsicvolume contraction from Co3O4to metallic cobalt, which

    resulted in showing a lower catalytic activity and stability. The

    observed higher metallic cobalt surface area of the Al-modified

    meso-Co3O4 suggests that the ordered mesoporous structures are

    well preservedthrougha higherdispersionof theAl2O3 pillar inside

    the pores of the meso-Co3O4 and meso-CoAlOx. Generally, it has

    been also known that the irreducible metal oxide having a lowermelting point and smaller particle size can have a higher mobility

    onthe surfacesat a much lowermeting temperature ofmetaloxides

    during thermal treatment [21,22]. Based on the above phenomena,

    a pillaring oxide of Al2O3 can be evenly dispersed on the inside

    of the meso-Co3O4 or meso-CoAlOx surfaces which are verified

    by the variations of specific surface areas after the Al impregna-

    tion. The higher metallic cobalt surface area of the Al/meso-Co3O4suggests theformation of thestrongerinteractionbetween thesur-

    faces of mesoporous Co3O4 with thermally stable Al2O3 particles

    under a higher temperature reductive condition. In addition, with

    the increase of the amount of Al2O3 in the main frameworks of

    the meso-CoAlOx, the amount of active metallic cobalt sites can be

    diminished by showing a lower metallic cobaltsurface area around

    8.410.9m

    2

    /gCocompared to the Al/meso-Co3O4.

    3.3. Activity and stability of the Al modified meso-Co3O4under

    reductive conditions

    The catalytic activities on the mesoporous Co3O4catalysts were

    carried out at T=230 and 240 C, P=2.0MPa, and WHSV= 24000L

    (mixed gas)/(kgcat h). As shown in Fig. 5 with the summarized

    results in Table 2, the superior catalytic activity at 230 C was

    observedonthemeso-Co3O4 compared to the bulk-Co3O4 by show-

    ing CO conversions of 6.1 and 11.7% with a similar trend of reaction

    rates at steady-state, which can be induced from regular meso-

    porous structures and suppressed paraffin wax deposition on the

    activecobalt sites resulted in theenhancementof mass transportof

    the heavier hydrocarbons formed as reported in our previous work

    [8]. The TOFs (defined as number of reacted CO molecules/(surface

    cobalt atom s )) were found to be similar values of 0.055 and

    0.035 s1 on the bulk-Co3O4 and the meso-Co3O4 because of the

    structure insensitive characters of the cobalt nanoparticles above

    8nm in size [4,23,24]. A higher CH4 and a lower C5+ selectivity on

    the meso-Co3O4 (i.e., 6.9% for CH4 and 81.8% for C5+) compared

    to those on the bulk-Co3O4 (i.e., 3.1% for CH4 a nd 94.0% for C5+)

    were attributed to the presence of the partially reduced cobalt

    particles with a higher mesoporosity on the meso-Co3

    O4

    d ue to

    a lower intrinsic activity for the secondary reactions of light olefins

    to the heavy hydrocarbons [4,23,2527]. Based on our previous

    work [20], the catalyst deactivation was mainly originated form

    the structural collapses of the meso-Co3O4and the wax encapsula-

    tion and filamentous carbon formation on the bulk-Co3O4surfaces

    verified by thecharacterizationsof FT-IR,Raman andTEM analyses.

    In addition, the possible catalyst deactivation by the deposition of

    heavy wax components in the mesopores of meso-Co3O4 cannot

    be overlooked [4], however, a collapse of regular mesopore struc-

    tures seems to be more dominant deactivation mechanism of the

    meso-Co3O4.

    As shown in Fig. 6(A) and (B), the particle sizes of cobalt after

    the FTS reaction were increased up to 50100 nm on the used

    meso-Co3O4 with the complete structural collapse of mesoporous

    Co3O4, and the particle size of cobalt on the used bulk-Co3O4was more significantly increased from 30nm to above 100nm

    [8,10]. The morphologies of deposited carbons were significantly

    different by showing an encapsulation of the aggregated cobalt

    particles with amorphous carbons on the bulk-Co3O4 which can

    disrupt the transport of reactants to the active cobalt sites, and a

    growth of filamentous whisker carbons on the meso-Co3O4which

    is likely to form on the surfaces of metallic crystallites having a

    weak metal-support interaction with a small cobalt particle size

    [28,29].

    To stabilize the ordered mesoporous Co3O4 structures with

    lower carbon depositions, the modification with irreducible metal

    oxide of Al2O3 was further applied to the meso-Co3O4 by pillar-

    ing Al2O3 into the mesopores or by preparing mixed-metal oxide

    frameworks such as CoAlOx. As shown in Fig. 5 and summarizedin Table 2, a significant increase of activity and stability on the

    Al/meso-Co3O4 was observed at T=230C with CO conversion

    above 83%during 40h on streamwithouta significant deactivation.

    The reaction rate and TOF were also dramatically increased on the

    Al/meso-Co3O4 with values of 82.8 [reacted COmol/(gcat s)] and

    0.153 [reacted CO molecules/(surface cobalt atom s)] compared to

    the unmodified meso-Co3O4. A slight increase of CH4selectivity of

    11.6%and decrease ofC5+ selectivity of 77.3% on the Al/meso-Co3O4can be attributed to the formation of the strongly interacted Al2O3pillaringoxide withthe surfaces of meso-Co3O4 whichalso resulted

    in forming a largely oxidized electronic states of cobalt particles

    by decreasing the adsorption properties of H2 and increasing CH4selectivity possibly due to a known relatively fast formation rate of

    light hydrocarbons [4,10,3032]. However, the strong interactionsbetween the metallic cobalt surfaces of the meso-Co3O4 frame-

    works and the Al2O3 pillar can stabilize the mesopore structures

    even under FTS reaction condition by maintaining stable catalytic

    activity. As shown in Fig. 6(C) with the magnified inset TEM image,

    the ordered mesoporous structures with a pore size of around6 nm

    on the used Al/meso-Co3O4 were well maintained after the FTS

    reaction for 40h with local aggregations of the mesoporous Co3O4and without filamentous carbon formations. The structural stability

    on the Al/meso-Co3O4 was improved because of an even distri-

    bution of the thermal stable Al2O3 pillar inside the meso-Co3O4pores, which resulted in showing a higher catalytic activity and

    stability. Since the collapses of the mesopore structures of the

    Al/meso-Co3O4 were also insignificant under H2 reduction pre-

    treatment as confirmed by our previous study through N2sorption

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    7/9

    C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735 33

    Table 2

    Catalytic performances on the Al-modified ordered mesoporous Co3O4 catalysts.

    Catalysts Reaction Temp. (C) Reaction duration (h) Activitya Product distribution (C-mol%)

    CO conv. (C-mol%) Rateb TOFb C1/C2C4/C5+ Olefins in C2C4(%)

    Bulk-Co3O4 230 20 6.1 5.8 0.055 3.1/2.9/94.0 43.4

    Meso-Co3O4 230 20 11.7 10.9 0.035 6.9/11.3/81.8 61.1

    Al/meso-

    Co3O4c 230

    20 88.2 82.8 0.153 11.6/11.1/77.3 11.6

    40 83.6 9.7/11.9/78.4 16.5

    Al/meso-

    CoAl0.13 Ox 240 20 93.9 88.2 0.406 8.3/6.1/85.6 7.5

    60 91.3 6.4/5.4/88.2 16.5

    Al/meso-

    CoAl0.25 Ox240

    20 95.8 90.0 0.234 13.4/7.5/79.1 4.2

    60 85.9 12.1/8.8/79.1 25.2

    a The FTS reaction was car ried out at t he f ollo wing con ditions ; T= 230 and 240 C, P=2.0MPa, WHSV=24000L/(kgcath), and a feed gas composition of

    H2/N2/CO= 62.84/5.60/31.56.b Thereactionrate was definedas thereacted COmol/(gcats) andthe TOFwas definedas thereacted CO molecules/(surface cobalt atom s),where therate andTOF were

    calculated using thereactiondate at around20 h on stream.c The results of theAl/meso-Co3O4 was reported in our previous work [10].

    and TEM analysis [10], the highlyorderedmesoporous structuresof

    the Al/meso-Co3O4seems to be maintained through the formation

    of thestrong interaction between thereducible cobaltparticles and

    the irreducible Al2O3pillaring metal oxide.

    To further improve a structural stability of mesoporous metal

    oxide catalysts, the Al2

    O3

    incorporated mixed metal oxides of

    the Al/meso-CoAl0.13Ox and Al/meso-CoAl0.25Ox were prepared

    by nano-casting method and the representative catalytic activi-

    ties are summarized in Table 2 with the activity with time on

    stream at T=240 C in Fig. 5. A higher catalytic activity and sta-

    bility without significant deactivation (i.e., CO conversion of 93.9%

    at 20 h and 91.3% after 60 h on stream) were observed on the

    Al/meso-CoAl0.13Ox, and the activity was slightly decreased with

    an increase of Al2O3 content in the mixed metal oxide structures

    such as the Al/meso-CoAl0.25 Ox (i.e., Co conversion of 95.8% at

    20h and 85.9% after 60h on stream). The reaction rates and TOFs

    were also found to be higher on the Al/meso-CoAl0.13Ox with the

    values of 88.2 [reacted CO mol/(gcat s)] and 0.406 [reacted CO

    molecules/(surface cobalt atoms)] with a lower CH4 selectivity

    of 8.3% and a higher C5+ selectivity of 85.6% than those on the

    Al/meso-CoAl0.25Ox. Thesehigher catalyticactivityand stabilitycanbe mainly attributed to the stable maintenance of the mesoporous

    frameworks by using Al2O3modifier through the formation of the

    strongly interacted Al2O3 and a possible formation of the inac-

    tive CoAl2O4 species on the Al/meso-Co3O4 and Al/meso-CoAlOx.

    As shown in Fig. 6(D) with the magnified inset TEM image, there

    were no large differences in the ordered mesoporous structures

    between the fresh and used Al/meso-CoAl0.25Ox, which strongly

    suggests thatthe structural collapse can be successfullysuppressed

    by using the Al2O3 modifier to the mesoporous Co3O4 struc-

    tures through pillaring method of irreducible Al2O3 or preparing

    mixed metal oxide structures of meso-CoAlOx. In addition, the

    increased C5+ selectivity with an increase of reaction time on all

    the Al-modified mesoporous Co3O4can be attributed to thesurface

    changes through the reconstruction andaggregation of cobalt parti-

    cles or thecarbon depositions andso on [4,18,25,32]. The decreased

    olefin selectivity on the Al-modified meso-Co3O4 compared to the

    meso-Co3O4 seems to be attributed to the higher oxidation states

    of cobalt particles or the increased surface acidity [4,16] dueto the

    formation of the strong new interactions of Al2O3species with the

    outer surfaces or the frameworks of the mesoporous Co3O4. It was

    also supported from the measured isoparaffin percentage based

    on the total paraffin in the range of C2C4 hydrocarbons with the

    values of 3.73, 3.59, 2.29, 1.97 and 0% on the Al/meso-CoAl0.25Ox,Al/meso-CoAl0.13Ox, Al/meso-Co3O4, meso-Co3O4and bulk-Co3O4,

    respectively.

    Fig. 6. TEM imagesof theused (A)bulk-Co3O4 , (B)meso-Co3O4 , (C) Al/meso-Co3O4 , (D) Al/meso-CoAl0.25 Oxcatalysts.

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    8/9

    34 C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735

    Fig. 7. XPS spectra ofCo2pon the mesoporous(A) fresh and (B) usedCo3O4 catalysts.

    To further verify the possible reasons for the enhanced struc-

    tural stability after the Al2O3 modification on the mesoporous

    Co3O4, XPS analysis was also carried out on the fresh and used

    FTS catalysts and the results are summarized Table 1 with the

    XPS peaks of Co2p in Fig. 7. The values of BEs on the fresh meso-

    porous Co3O4 were found to be in the ranges of 778.8781.0eV

    and 778.7780.9eV on the used mesoporous Co3O4. In general,

    the core level BEs of Co2p3/2 on the supported Co3O4 catalysts

    have been reported to slightly increase compared to those of pure

    Co3O4 nanoparticles due to the strong metal-support interaction

    due to different surface properties of the supports such as acid-

    ity or hydrophilicity and so on [33,34]. Therefore, the observed

    slight increases of BEs after Al2O3modification on the mesoporousCo3O4 compared to the pure meso-Co3O4 may suggest the forma-

    tion a new strong interactions between the Al2O3 pillar (or the

    mixed metal oxides of CoAlOx) and the mesoporous Co3O4 sur-

    faces. Due to the possible superposition of Co2p3/2 peak assigned

    to the cobalt oxides with various oxidation states such as Co3O4,

    CoO and CoAl2O4with the reference metallic cobalt BE of 780.0 eV

    [35,36], the formation of spinel cobalt aluminate species cannot be

    overlooked dueto a observed newreductionpeak ata higherreduc-

    tion temperature above 600 C from TPR results after the Al2O3modification on the meso-Co3O4. In addition, a main aluminum

    phase seems to be the stable gamma-Al2O3from the observed BEs

    of Al at around 75 eV on the fresh and used mesoporous Co3O4catalysts without significant variations. The modification with a

    thermally stable Al2O3 on the Al/meso-Co3O4 and Al/CoAlOx maybe related with an enhanced stability of mesopore structures by

    partially forming CoAl2O4 spinel structures in the interfaces of

    Al2O3and Co3O4particles possibly. This hypothesis was supported

    by comparing the intensity ratio of Co2p3/2peak with that of Al2p

    peak on the fresh and used catalysts as summarized in Table 1.

    The calculated values of IAl/ICo were found to be 1.28, 2.12 and

    4.36 on thefreshAl/meso-Co3O4, Al/meso-CoAl0.13Ox and Al/meso-

    CoAl0.25Oxrespectively, and the observed higher ratios ofIAl/ICoon

    the fresh Al/meso-CoAlOx were attributed to a higher content of

    Al2O3 species. In addition,a smallshoulderpeak intensityat around

    785.0 eV on the fresh Al/meso-CoAlOx and Al/meso-Co3O4 can be

    assigned to a shake-up process of a high spin Co2+ species, which

    can be correlated with the formation of non-reducible inactive

    cobalt aluminate species as well [37]. Therefore, the XPS spectra

    of the Al2O3-modified mesoporous Co3O4 catalysts after FTS reac-

    tion further revealedthatthe shake-up processof thehighspin Co2+

    increased due to the additionally generated spinelcobalt aluminate

    species during FTS reaction possibly, which can be mainly respon-

    sible for the structural stability with a lower deactivation rate on

    the Al/meso-Co3O4 and Al/meso-CoAlOx. Interestingly, the calcu-

    lated values ofIAl/ICo were found to be 1.14, 2.15 and 4.31 on the

    used Al/meso-Co3O4, Al/meso-CoAl0.13Oxand Al/meso-CoAl0.25 Ox,

    respectively without significant variations compared to those of

    the fresh catalysts. These observations also support that the Al2O3species as a pillaring material or as a mixed metal oxide forma-

    tion seems to be thermally stable even under the FTS reaction by

    not being segregated and by forming strong interactions with themesoporous Co3O4 surfaces and the framework structures of the

    Al/meso-Co3O4and Al/meso-CoAlOxsufficiently.

    In summary, the irreducible Al2O3 modification of the meso-

    porous Co3O4 catalysts through the pillaring method or the

    formation of mixed metal oxide of mesoporous CoAlOx can suc-

    cessfully enhance the catalytic activity and stabilityby maintaining

    stable ordered mesopore structures even under the reductive FTS

    reaction conditions at a higher space velocity with a simultaneous

    suppression of coke or wax deposition on the active cobalt metal

    surfaces. The newlyformed strong interactions between Co3O4and

    Al2O3particles by partially forming spinel structure of the inactive

    CoAl2O4 species were the main reasons for the enhanced struc-

    turalstability of the mesoporesof Al-modified Co3O4. Theimproved

    structural stability of mesoporous Co3O4 was attributed to thelower mobility and thermal stability of the irreducible Al2O3 pil-

    lar by strongly interacting with the inner surfaces of the ordered

    mesoporous Co3O4 which were well verified by the surface char-

    acterizations such as TEM, XPS and TPR analysis.

    4. Conclusions

    The FTS activity of the mesoporous Co3O4synthesized through

    a well-known nano-casting methodusing the mesoporous KIT-6 as

    a hard template was investigated. The mesoporous structures and

    the enhanced structural stability of the mesopores after the mod-

    ification with an irreducible and thermally stable metal oxide of

    Al2O3showed an enhanced catalytic activity with less coke or wax

  • 7/26/2019 FischerTropsch Synthesis on the Al2O3-Modified Ordered

    9/9

    C.-I. Ahn, J.W. Bae / Catalysis Today 265 (2016) 2735 35

    deposition on the active sites. These improved activity and struc-

    tural stability were mainly attributed to a lower mobility of the

    Al2O3modifier by strongly interacting with cobalt particles on the

    surfaces of themesoporous Co3O4or in themain frameworks of the

    mixed metal oxide of CoAlOx. The formation of an inactive CoAl2O4spinel structure on the Al/meso-Co3O4and Al/meso-CoAlOxseems

    to be responsible for maintaining the stable ordered mesoporous

    structures even under the reductive FTS reaction conditions. The

    irreducible Al2

    O3

    modification of the mesoporous structures of

    Co3O4by pillaringAl2O3on thesurfacesof activecobalt particlesor

    byforming mixed metal oxide of mesoporous CoAlOx canbe further

    applied forthe FTS reaction working at a higher space velocity with

    a lower coke or wax deposition on the active cobalt metal surfaces

    due to its ordered mesoporosity and structural stability.

    Acknowledgments

    This work was also supported by the R&D Center for Valuable

    Recycling (Global-Top R&D Program) of the Ministry of Environ-

    ment with a project number of GT-14-C-01-038-0. The authors

    acknowledge the financial support from the National Research

    Foundation of Korea (NRF) grant funded by the Korea government

    (NRF-2014R1A1A2A16055557). This work was supported by the

    NationalResearchCouncil of Science and Technology(NST) through

    Degree and Research Center (DRC) Program (2014). This work was

    also supported by the Korea Institute of Energy Technology Evalu-

    ation and Planning (KETEP) under Energy Efficiency and Resources

    Programs with Project numbers of 20142010102790.

    References

    [1] T. Tsoncheva, L. Ivanova, J. Rosenholm, M. Linden, Appl. Catal. B: Environ. 89(2009) 365374.

    [2] G. Prieto, A. Martizez, R. Murciano, M.A. Arribas, Appl. Catal. A: Gen. 367(2009) 146156.

    [3] J.S. Jung, S.W. Kim, D.J. Moon, Catal. Today 185 (2012) 168174.[4] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 16921744.[5] H. Tuysuz, Y. Liu, C. Weidenthaler, F. Schuth, J. Am. Chem. Soc. 130 (2008)

    1410814110.

    [6] M.Jin, J.N. Park, J.K. Shon, J.H. Kim, Z. Li, Y.K. Park, J.M. Kim, Catal. Today 185(2012) 183190.

    [7] D. Zhao, Y. Wan,W. Zhou, Ordered Mesoporous Materials, Wiley-VCH, 2012.

    [8] C.I.Ahn, H.M. Koo, M.Jin, J.M. Kim, T. Kim, Y. Suh, K.J. Yoon, J.W. Bae,Microporous Mesoporous Mater. 188 (2014) 196202.

    [9] T.W. Kim,F. Kleitz, B.Paul, R. Ryoo, J. Am. Chem. Soc. 127 (2005) 76017610.[10] C.I.Ahn, H.M. Koo, J.M. Jo, H.S. Roh, J.B. Lee, Y.J. Lee, E.J. Jang, J.W. Bae, Appl.

    Catal. B: Environ. 180 (2016) 139149.[11] J.W. Bae, S.M. Kim, Y.J. Lee, M.J. Lee, K.W. Jun, Catal. Commun. 10 (2009)

    13581362.[12] H. Zhu, R. Razzaq, L. Jiang,C. Li, Catal. Commun. 23 (2012) 4347.[13] D. Schanke, S. Vada, E.A. Blekkan, A.M. Hilmen, A. Hoff, A. Holmen, J. Catal. 156

    (1995) 8595.[14] H. Xiong,Y. Zhang, K. Liew, J. Li, J. Mol. Catal. A: Chem. 231 (2005) 145151.

    [15] D. Song, J. Li, J. Mol. Catal. A: Chem. 247 (2006) 206212.[16] D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, N. Melosh, G.H. Fredrikson, G.D.

    Stucky, Science 279 (1998) 548552.[17] D.J. Kim, B.C. Dunn, P. Cole, G. Turpin, R.D. Ernst,R.J. Pugmire, M. Kang, J.M.

    Kim, E.M. Eyring, Chem. Commun. (2005) 14621464.[18] R.J. Madon,E. Iglesia, J. Catal. 139 (1993) 576590.[19] B.A. Sexton, A.E. Hughes, T.W. Turney, J. Catal. 97 (1986) 390406.[20] J.Y. Luo, M. Meng, X. Li, X.G. Li, Y.Q. Zha, T.D. Hu, Y.N. Xie, J. Zhang, J. Catal. 254

    (2008) 310324.[21] G. Melaet, W.T. Ralston, C. Li, S. Alayoglu, K. An, N. Musselwhite,B. Kalkan,

    G.A. Somorjai, J. Am. Chem. Soc. 136 (2014) 22602263.[22] K.S. Smith,The Geological Society of America Reviews in Engineering

    Geology, vol. XVII, 2007.[23] G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu,F.

    Kapteijn, A. Jos van Dillen, K.P. de Jong, J. Am. Chem. Soc. 128 (2006)39563964.

    [24] E. Iglesia, S.L. Soled,R.A. Fiato, J. Catal. 137 (1992) 212224.[25] J.W. Bae, S.J. Park, M.H. Woo, J.Y. Cheon, K.S. Ha, K.W. Jun, D.H. Lee, H.M. Jung,

    ChemCatChem3 (2011) 13421347.

    [26] I.H. Jang, S.H.Um, B. Lim, M.H.Woo,K.W. Jun, J.B. Lee, J.W. Bae,Appl. Catal. A:Gen. 450 (2013) 8895.

    [27] E. Iglesia, Appl. Catal. A: Gen. 161 (1997) 5978.[28] B.S.Lee,H.M.Koo, M.J. Park, B. Lim, D.J. Moon, K.J. Yoon, J.W.Bae,Catal. Lett.

    143(2013) 1822.[29] T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, V.V. Pushkarev, S.V.

    Cherepanova, A.L. Chuvilin, V.A. Likholobov, Carbon 41 (2003) 16051615.[30] J.P. den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Froseth, A. Holmen,

    K.P. deJong, J. Am. Chem. Soc. 131 (2009) 71977203.[31] A. Tuxen,S. Carenco, M. Chintapalli, C.H. Chuang, C. Escudero, E. Pach, P. Jiang,

    F. Borondics, B. Beberwyck, A.P. Alivisatos, G. Thornton,W.F. Pong, J. Guo, R.Perez, F. Besenbacher, M. Salmeron,J. Am. Chem. Soc. 135 (2013) 22732278.

    [32] T. Koh, H.M. Koo, T. Yu, B. Lim, J.W. Bae, ACS Catal. 4 (2014) 10541060.[33] L. Ji, J. Lin, H.C. Zeng, J. Phys. Chem. B 104 (2000) 17831790.[34] J.M. Cho, C.I. Ahn, C. Pang, J.W. Bae, Catal. Sci. Technol. 5 (2015) 35253535.[35] G. Prieto, P. Concepcion, R. Murciano,A. Martinez,J. Catal. 302 (2013)

    3748.[36] B. Lee,I.H.Jang, J.W.Bae,S.H. Um, P.J. Yoo, M.J. Park, Y.C.Lee,K.W. Jun, Catal.

    Surv. Asia 16 (2012) 121137.[37] Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun,Catal. Sci. Technol. 4 (2014)717728.

    http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0190http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0190http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0190http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0190http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0195http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0195http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0195http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0200http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0200http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0370http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0365http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0360http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0355http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0350http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0345http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0340http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0335http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0330http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0325http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0320http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0315http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0310http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0305http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0300http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0295http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0290http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0285http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0280http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0275http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0270http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0265http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0260http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0255http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0250http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0245http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0240http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0235http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0230http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0225http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0220http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0215http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0210http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0205http://refhub.elsevier.com/S0920-5861(15)00660-4/sbref0