First results from EVA simulations

23
First results from EVA simulations Krijn de Vries ¹ Olaf Scholten ¹ Klaus Werner ² ¹ KVI/RUG Groningen ² SUBATECH, University of Nantes ARENA 2012 1

description

First results from EVA simulations. Krijn de Vries ¹ Olaf Scholten ¹ Klaus Werner ² ¹ KVI/RUG Groningen ² SUBATECH , University of Nantes. Timing Radio pulse. n=real. n=1 !!. Most distant emission arrives first. c/n. z = ct’. z = ct’. - PowerPoint PPT Presentation

Transcript of First results from EVA simulations

Page 1: First results from EVA simulations

First results from EVA simulations

Krijn de Vries ¹Olaf Scholten ¹Klaus Werner ²

¹ KVI/RUG Groningen ² SUBATECH, University of Nantes

ARENA 2012 1

Page 2: First results from EVA simulations

Timing Radio pulse

Distant & near emission may arrive simultaneously

n=1 !!Most distant emission arrives first

Arrives later

n=real

z = ct’

c

c

z = ct’c/n

c/n

Large, sharp pulset = d2/2czARENA 2012 2

Page 3: First results from EVA simulations

EVA - Emission MechanismsFrom Currents to radiation.

dt'dtR=

θnβR=Dt,xDt'J=t,xA

μμ

cos1||

t,xAxddt,xA

dtd

=t,xE

0

D can vanish for realistic cases,n = n(z) ≠ 1 Cherenkov !

'

)'(),()'(),( ||

14

20

dttdJhrwtJ

dhhrdw

Ddhrdc=t,xE PL

x

PLxx

ARENA 2012 3

Page 4: First results from EVA simulations

The extreme case for a realistic shower front

50

20

1D= 1Rdt'dt

Shower profile

ARENA 2012 4

Page 5: First results from EVA simulations

The extreme case for a realistic shower front

50

20

Arrival times reflected in pulse shapes

1D= 1Rdt'dt

Shower profile

E/10!!

ARENA 2012

De Vries et al., PhysRevLett. 107, 061101 (2011),Alvarez-Muñiz et al., arXiv:1107.1189

n=realistic

A-typical example

5

Page 6: First results from EVA simulations

EVA: Realistic shower frontHigh Frequencies!!

/10

Sharp pulse High frequency > 1GHz

shower max@30 km (along sh axis)impact = 400 m, E=5x1017eV

E(μV

/m/M

Hz)

E(m

V/m

)

t(ns)

ν(MHz)

d=1170 mn=1n=n(z)n=1.0003

ARENA 2012 6

Page 7: First results from EVA simulations

Length Scales Cherenkov: Shower front; cm or GHz

Normal: derivative of the projected shower

profile; m or 10 MHz

ARENA 2012 7

Page 8: First results from EVA simulations

270 shower

ARENA 2012

1 GHz v.s. 10 MHz

0.1 ns v.s. 10 ns

Cherenkov v.s.‘normal’

EASIER ?

100100

100 m 400 m

Frequency spectrum

1000100 10010

Time spectrum

Timing !

8

Page 9: First results from EVA simulations

Cherenkov effects; Probing the shower profile

ARENA 2012

No Cherenkov

Cherenkovdominant

Cherenkov + ‘normal’

b>300 m

b=250 m

b<200 m9

θ = 60o, E=1017 eV

Page 10: First results from EVA simulations

-200

-7000

-3000

~ 60 ns

~ 4 ns

~ 8 ns

E(μV

/m)

E(μV

/m)

E(μV

/m)

t(μs)

t(μs)

t(μs)ARENA 2012 10

No Cherenkov

Cherenkovdominant

Cherenkov + ‘normal’

b>300 m

b=250 m

b<200 m

Cherenkov effects; Pulse in time

Page 11: First results from EVA simulations

Two bump structure for Cherenkov emission from below the shower maximum!!

E(μV

/m/M

Hz)

10 100ν(MHz)

1000 50000.1

3

ARENA 2012 11

No Cherenkov

Cherenkovdominant

Cherenkov + ‘normal’

b>300 m

b=250 m

b<200 m

Cherenkov effects; Pulse in frequency

Page 12: First results from EVA simulations

Two bump structure seen at ANITA?

Simulation for 60 degrees shower at the Auger site. Geometry of ANITA event not known, so not 1 to 1 comparable!

ARENA 2012 12

Page 13: First results from EVA simulations

The LDF: Determining the Chemical composition

Chernkov ring clearly visible, becomes sharper at high frequencies!

Link position d_max to emission height by:

122max

n

dzc

ARENA 2012 13

determined by X_max

Page 14: First results from EVA simulations

Polarization of the radio emission:Determining the Charge excess in the Air

Shower

Geomagnetic: Charge excess (Askaryan):

Leading: Geomagnetic

Sub Leading: Charge Excess

BvdtAdEJA Lorentz

x

00

xd

dAEJA

K.D. de Vries, O. Scholten, K. Werner: Proceedings of the 31th ICRC (2009), Lodz, Poland. ARENA 2012 14

Page 15: First results from EVA simulations

Polarization of the radio emission:Determining the Charge excess in the Air

Shower

eVE

md

p1710

070

)( 22yx

yx

EEEE

R

ARENA 2012 15

Page 16: First results from EVA simulations

Polarization of the radio emission:The charge-excess fraction in the radio

signal

)( 22yx

yx

EEEE

R

ARENA 2012 16

@ N-S

Page 17: First results from EVA simulations

Conclusions Cherenkov effects lead to emission at

very high frequencies > 1GHz Cherenkov emission below the shower

maximum gives rise to a two bump structure in the frequency spectrum

The Cherenkov ring gives information about the shower maximum

The fraction of charge-excess in the radio signal is affected by Cherenkov effects and not constant

ARENA 2012 17

Page 18: First results from EVA simulations

Retarded distance D (2)1D= 1Rdt'dt

2

t': emission timet: observer time

-t’(μs)

t(μs)

Ne·10-11

ARENA 2012 18

Page 19: First results from EVA simulations

Retarded distance D (2)1D= 1Rdt'dt

t': emission timet: observer time

2

-t’(μs)

t(μs)

Ne·10-11

ARENA 2012 19

Page 20: First results from EVA simulations

Retarded distance D (2)1D= 1Rdt'dt

t': emission timet: observer time

2

-t’(μs)

t(μs)

Ne·10-11

ARENA 2012 20

Page 21: First results from EVA simulations

Retarded distance D (2)1D= 1Rdt'dt

t': emission timet: observer time

2

-t’(μs)

t(μs)

Ne·10-11

)( znnctt

)( znnctt

0D

ARENA 2012 21

Page 22: First results from EVA simulations

Sharp edge of shower front

General Pulse shape

Shower max

Cherenkov distance:

Particle max

Far from the Cherenkov distance:

3

Shower profile pre shower max

ARENA 2012 22

Page 23: First results from EVA simulations

Retarded distance D (1)

θnβR=D cos1

nβ=θCH

1cos 1

θ

Observer

1

2

1D

t,xE

ARENA 2012 23