First records of Aspergillus porphyreostipitatus and ...During a survey of phyllosphere and...

16
First records of Aspergillus porphyreostipitatus and Aspergillus carlsbadensis since their original descriptions ABDEL-AAL H. MOUBASHER 1,2 *, MOHAMED A. ABDEL-SATER 1,2 ,ZEINAB S.M. SOLIMAN 2 1 Department of Botany and Microbiology, Faculty of Science, Assiut University, P.O. Box 71526, Assiut, Egypt 2 Assiut University Mycological Centre, Assiut University, P.O.Box 71526, Assiut, Egypt *corresponding author: [email protected] Moubasher A.H., Abdel-Sater M.A., Soliman Z.S.M. (2018): First records of Asper- gillus porphyreostipitatus and Aspergillus carlsbadensis since their original de- scriptions. – Czech Mycol. 70(1): 67–82. During a survey of phyllosphere and non-rhizosphere soil fungi of orange plantations in the Assiut area, Egypt, several isolates of species of Aspergillus belonging to the section Usti were iso- lated at 25 °C. These were identified using phenotypic and genotypic characters as Aspergillus porphyreostipitatus and Aspergillus carlsbadensis. To the best of our knowledge, these are the first global records since their original descriptions and indicate their probable wide distribution. The strains of both species could grow at 37 °C (a character contrasting to that of the original de- scription of A. carlsbadensis), but both were not able to grow on CYA at 5 °C or 45 °C or to produce acid on creatine. It is interesting to report that both strains produced the urease enzyme (however weakly in A. porphyreostipitatus) and failed to grow on G25N at 25 °C, characters not examined in the original descriptions. Key words: Aspergillus, section Usti, orange plantations, Assiut, Egypt, phenotypic and genotypic characterisation. Article history: submitted 23 November 2017, revised 25 February 2018, accepted 3 May 2018, pub- lished online 29 May 2018. Moubasher A.H., Abdel-Sater M.A., Soliman Z.S.M. (2018): První nálezy Aspergillus porphyreostipitatus a Aspergillus carlsbadensis od jejich originálního popisu. – Czech Mycol. 70(1): 67–82. Během výzkumu společenstev půdních hub mimo rhizosféru a fylosférních hub v pomerančo- vých plantážích v okolí Asijútu (Egypt) byly při 25 °C izolovány dva druhy rodu Aspergillus, patřící do sekce Usti. Na základě fenotypových a genotypových znaků byly určeny jako Aspergillus porphy- reostipitatus a Aspergillus carlsbadensis, přičemž podle našich poznatků se jedná o první záznamy o výskytu těchto druhů od doby, kdy byly popsány; tyto záznamy svědčí o jejich širším rozšíření. U kmenů obou druhů byl zjistěn růst při 37 °C (oproti původnímu popisu A. carlsbadensis), ale ani jeden nebyl schopný růst na CYA při 5 °C a 45 °C ani nebyla zaznamenána tvorba kyseliny na kreatinovém agaru. Zajímavé je, že oba druhy produkují ureázu (i když A. porphyreostipitatus jen slabě) a nerostly na G25N při 25 °C, což jsou znaky, které nebyly zjištěny v rámci originálního popisu. 67 CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

Transcript of First records of Aspergillus porphyreostipitatus and ...During a survey of phyllosphere and...

First records of Aspergillus porphyreostipitatus and

Aspergillus carlsbadensis since their original descriptions

ABDEL-AAL H. MOUBASHER1,2*, MOHAMED A. ABDEL-SATER

1,2, ZEINAB S.M. SOLIMAN2

1 Department of Botany and Microbiology, Faculty of Science, Assiut University, P.O. Box 71526,Assiut, Egypt

2 Assiut University Mycological Centre, Assiut University, P.O.Box 71526, Assiut, Egypt*corresponding author: [email protected]

Moubasher A.H., Abdel-Sater M.A., Soliman Z.S.M. (2018): First records of Asper-

gillus porphyreostipitatus and Aspergillus carlsbadensis since their original de-scriptions. – Czech Mycol. 70(1): 67–82.

During a survey of phyllosphere and non-rhizosphere soil fungi of orange plantations in theAssiut area, Egypt, several isolates of species of Aspergillus belonging to the section Usti were iso-lated at 25 °C. These were identified using phenotypic and genotypic characters as Aspergillus

porphyreostipitatus and Aspergillus carlsbadensis. To the best of our knowledge, these are the firstglobal records since their original descriptions and indicate their probable wide distribution.

The strains of both species could grow at 37 °C (a character contrasting to that of the original de-scription of A. carlsbadensis), but both were not able to grow on CYA at 5 °C or 45 °C or to produceacid on creatine. It is interesting to report that both strains produced the urease enzyme (howeverweakly in A. porphyreostipitatus) and failed to grow on G25N at 25 °C, characters not examined inthe original descriptions.

Key words: Aspergillus, section Usti, orange plantations, Assiut, Egypt, phenotypic and genotypiccharacterisation.

Article history: submitted 23 November 2017, revised 25 February 2018, accepted 3 May 2018, pub-lished online 29 May 2018.

Moubasher A.H., Abdel-Sater M.A., Soliman Z.S.M. (2018): První nálezy Aspergillus

porphyreostipitatus a Aspergillus carlsbadensis od jejich originálního popisu. –Czech Mycol. 70(1): 67–82.

Během výzkumu společenstev půdních hub mimo rhizosféru a fylosférních hub v pomerančo-vých plantážích v okolí Asijútu (Egypt) byly při 25 °C izolovány dva druhy rodu Aspergillus, patřícído sekce Usti. Na základě fenotypových a genotypových znaků byly určeny jako Aspergillus porphy-

reostipitatus a Aspergillus carlsbadensis, přičemž podle našich poznatků se jedná o první záznamyo výskytu těchto druhů od doby, kdy byly popsány; tyto záznamy svědčí o jejich širším rozšíření.

U kmenů obou druhů byl zjistěn růst při 37 °C (oproti původnímu popisu A. carlsbadensis), aleani jeden nebyl schopný růst na CYA při 5 °C a 45 °C ani nebyla zaznamenána tvorba kyseliny nakreatinovém agaru. Zajímavé je, že oba druhy produkují ureázu (i když A. porphyreostipitatus jenslabě) a nerostly na G25N při 25 °C, což jsou znaky, které nebyly zjištěny v rámci originálního popisu.

67

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

INTRODUCTION

Raper & Fennell (1965) classified Aspergillus ustus (together with A. conjunc-

tus, A. deflectus, A. panamensis and A. puniceus) to the Aspergillus ustus spe-cies group (Aspergillus section Usti according to Gams et al. 1985). Later,Kozakiewicz (1989) revised the group, and included A. ustus, A. conjunctus,A. granulosus, A. panamensis, A. pseudodeflectus and A. puniceus in the A. ustus

species group, and established the A. deflectus species group including A. de-

flectus, A. pulvinus and A. silvaticus, based on morphological studies. Klich(1993) treated A. granulosus as a member of section Versicolores, and found thatA. pseudodeflectus is only weakly related to this section based on a morphologi-cal treatment of section Versicolores. Peterson (2000) transferred A. conjunctus,A. funiculosus, A. panamensis, A. silvaticus and A. anthodesmis to sectionSparsi. More recently, Peterson (2008) examined the relationships of the Asper-

gillus genus using a phylogenetic analysis of sequences of four loci, and assigned15 species to this section. In 2011, Samson et al. described, based on a phylogen-etic analysis of sequence data, five new species, proposed one new combination,and included 21 species in section Usti, at least two of which are able to repro-duce sexually: Aspergillus heterothallicus (� Emericella heterothallica) andAspergillus monodii (� Fennellia monodii). On 2012, Nováková et al. describedtwo more species, namely A. baeticus and A. thesauricus in section Usti, fromSpanish caves. On 2014, Visagie et al. added another novel species, A. porphyreo-

stipitatus and on 2016, Jurjević & Peterson described two new species A. asper

and A. collinsii in the section. In 2016, Hubka et al. showed that sect. Usti is notmonophyletic and designated four Usti members “incertae sedis”. As a conse-quence, Chen et al. (2016) introduced the new section Cavernicolus for the fourmembers (A. cavernicola, A. egyptiacus, A. kassunensis, A. subsessilis) thatwere designated “incertae sedis” by Hubka et al. (2016) in addition to A. cali-

fornicus and accepted 23 species in sect. Usti. Recently, a new member was de-scribed, A. contaminans, by Crous et al. (2017), therewith increasing the numberof species in the section to 24.

Species of Aspergillus section Usti are common in foods, stored maize, soil,dung and indoor air environments (Moubasher 1993, Samson et al. 2004, 2011).However, a species like A. calidoustus is considered a rare human pathogenwhich can cause invasive infection in immunocompromised hosts (Houbraken etal. 2007, Varga et al. 2008, Balajee et al. 2009, Peláez et al. 2013), A. granulosus

has been demonstrated to cause disseminated infection in a cardiac transplantpatient (Fakih et al. 1995), and A. deflectus can cause disseminated mycosis indogs (Jang et al. 1986, Robinson et al. 2000, Schultz et al. 2008, Krockenberger etal. 2011).

68

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

Various molecular methods have been used for genotypic studies of aspergilli(Rinyu et al. 2000, Varga et al. 2000). The internal transcribed spacer (ITS) region,located between the 18S and 28S rRNA genes, is an area of particular importancein discriminating between closely related species or at intraspecific level and hasbeen used to identify Aspergillus species (Henry et al. 2000). However, many au-thors (Varga et al. 2011, Visagie et al. 2014, Hubka et al. 2014, 2016, Chen et al.2016, 2017) have revealed that ITS has only limited discriminatory power in thegenus Aspergillus in contrast to beta-tubulin, calmodulin and RPB2 loci.

Several Aspergillus isolates were obtained from orange plantations in theAssiut area. Our research aimed at identifying some of these isolates to specieslevel, using phenotypic and molecular methods and this work also provides inter-esting records of two rare species, contributing to the knowledge of their globaldistribution. These two species are described in detail and their features and vari-ous growth characteristics are compared with related species.

MATERIAL AND METHODS

S t r a i n s e x a m i n e d. During the course of a survey of mycobiota of Citrus

sinensis (L.) Osbeck (orange) plantations in the town of Sahel-Saleem approxi-mately 25 km south-east of the city of Assiut, Egypt, several isolates of species ofAspergillus were isolated at 25 °C on plates with dichloran rose Bengalchloramphenicol agar, DRBC (King et al. 1979) and dichloran yeast extract maltextract agar, DYM (Wickerham 1951 and modified by Moubasher et al. 2016). Thestrains examined were isolated from the phyllosphere in October 2008 and non-rhizosphere soil of the orange plantation in August 2008. They were isolated byZeinab Soliman in a laboratory of Assiut University Mycological Centre (AUMC),Assiut, Egypt. The macro- and micro-morphological characteristics of the iso-lates proved the species to be related to section Usti.

M o r p h o l o g y. For macromorphological observations, the strain was grownin the dark on the following standard media: Czapek yeast extract agar (CYA;Samson & Pitt 1985), Czapek’s agar (CZ; Raper & Thom 1949), Czapek’s agar with20% sucrose (CZ20S; Raper & Fennell 1965), malt extract agar (MEA; Blakeslee1915), malt yeast with 40% sucrose agar (M40Y; Raper & Fennell 1965), glycerol25% nitrate agar (G25N; Pitt 1973), mannitol agar (MAN; Brayford & Bridge 1989),tannin sucrose agar (TAN; Thrane 1986), creatine sucrose agar (CREA; Frisvad1985) and Christensen’s urea agar (UREA; Christensen 1946). Three replicateplates of 3-pointed inoculation of all media were incubated at 25 °C, but CYAplates were incubated at 5 °C, 25 °C, 37 °C and 45 °C for 7 days. Growth rateswere recorded on CYA, CZ and MEA after 7 days of incubation. Assessment of

69

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

growth on media with reduced water activity (CZ20S, G25N and M40Y) was alsocarried out. The change of colour to pink on the UREA medium was assessed asurease positive. Results of MAN were assessed by growth and acid production,turning the phenol red pH indicator from red to yellow. Growth and base produc-tion on CREA were also recorded by visible colour change of the medium frompurple to yellow. Colony colours were identified according to Kornerup &Wanscher (1978). A Sony Cybershot DSCW5 5.1MP Digital Camera with 3× Opti-cal Zoom was used for plate photography.

For micromorphological observations, microscopic mounts were made inlactophenol cotton blue from CYA colonies after 7–10 days of cultivation. A CarlZeiss, Axiostar Plus microscope (Microimaging GmbH, Göttingen, Germany),magnification up to 1000× connected with a Canon Powershot G6 7.1MP DigitalCamera was used for examination and microscopic photography.

G r o w t h o f t h e f u n g u s a n d D N A e x t r a c t i o n a n d s e q u e n c i n g.The fungus was grown on CYA plates and incubated at 25 °C for 7 days. A smallamount of fungal biomass was scraped off and resuspended in 100 μl of distilledwater and boiled at 100 °C for 15 minutes, then sent to SolGent Co., Ltd.(Daejeon, South Korea) for DNA extraction and sequencing. The DNA was ex-tracted using SolGent purification bead. Internal transcribed spacer (ITS) se-quences of nuclear rDNA were amplified using universal primers ITS1 (5'- TCCGTA GGT GAA CCT GCG G -3') and ITS4 (5'- TCC TCC GCT TAT TGA TAT GC -3').Then amplification was performed using the polymerase chain reaction (PCR)(GeneAmp® PCR System 9700 thermal cycler, Applied Biosystems, Foster City,California, USA). The PCR reaction mixtures were prepared using SolGent EF-Taq as follows: 10X EF-Taq buffer 2.5 μl, 10 mM dNTP (T) 0.5 μl, forward primer(10 pmol/μl) 1.0 μl, reverse primer (10 pmol/μl) 1.0 μl, EF-Taq (2.5 U) 0.25 μl, tem-plate 1.0 μl, distilled water up to 25 μl. Then the amplification was carried out us-ing the following PCR reaction conditions: one round of amplification consistingof denaturation at 95 °C for 15 min. followed by 30 cycles of denaturation at 95 °Cfor 20 s, annealing at 50 °C for 40 s and extension at 72 °C for 1 min., with a finalextension step of 72 °C for 5 min. The PCR products were then purified with theSolGent PCR Purification Kit-Ultra prior to sequencing. After that, the purifiedPCR products were reconfirmed (using size markers) by electrophoreses of thePCR products on 1% agarose gel. These bands were then eluted and sequenced.Each sample was sequenced in sense and antisense direction. Contigs were cre-ated from the sequence data using the CLCBio Main Workbench program. The se-quence obtained from each isolate was further analysed using BLAST from theNational Center of Biotechnology Information (NCBI) website. Sequences ob-tained together with those retrieved from the GenBank database were subjectedto the Clustal W analysis using MegAlign software version 5.05 (DNASTAR Inc.,

70

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

Madison, Wisconsin, USA) for phylogenetic analysis (Thompson et al. 1994). Thephylogenetic tree was constructed based on the neighbour-joining method withinthe DNASTAR software package. The bar below the tree indicates the number ofsubstitutions per site. The sequences of other Aspergillus species used for com-parison were retrieved from the GenBank database (http://www.ncbi.nlm.nih.gov).

RESULTS AND DISCUSSION

Aspergillus porphyreostipitatus Visagie, Hirooka & Samson 2014

This species was isolated infrequently from a phyllosphere sample of orangeplantations on DRBC at 25 °C. The strain was first identified as Aspergillus ustus

(Soliman 2012). The strain was deposited at the culture collection of Assiut Uni-versity Mycological Centre (AUMC) and assigned to AUMC 6930. The ITS genesequence of the strain is registered under GenBank accession number JQ425378(Tab. 1, Fig. 1).

G r o w t h c h a r a c t e r i s t i c s. Colony diameters (range and mean ± SD) after7 days at 25 °C on CYA, CZ, MEA, CREA, UREA, MAN, TAN and low water activitymedia CZ20S, M40Y and G25N, and at 5 °C, 37 °C and 45 °C on CYA are shown inTab. 2. No growth was detected on CYA at 5 °C or at 45 °C nor on G25N at 25 °C, andno acid was produced on CREA or MAN agar at 25 °C, but urease was produced

71

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

Fig. 1. Phylogenetic tree of Aspergillus porphyreostipitatus AUMC 6930 and A. carlsbadensis

AUMC 6717 together with closely related species.

72

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

Tab

.1

.G

enet

icsi

mil

arit

ies

bet

wee

nex

amin

edis

ola

tes

and

the

ex-t

ype

iso

late

so

fA

sp

ergil

lus

sect

ion

Usti

mem

ber

sb

ased

on

BL

AS

Tsi

mil

arit

yse

arch

es.

AU

MC

nu

mb

erG

enB

an

k

acc

ess

ion

nu

mb

er

Len

gth

(bp

)C

lose

st

Gen

Ba

nk

ma

tch

#IT

S

Cu

ltu

re

coll

ect

ion

cod

e

Seq

uen

cin

g

sim

ila

rity

(%

)

Sp

ecie

sR

efe

ren

ces

6930

JQ42

5378

573

NR

_13

5461

NR

_13

1284

NR

_13

5431

NR

_10

3579

NR

_13

5368

NR

_13

5348

CB

S13

8203

T

CB

S26

1.67

T

CC

F42

26T

CB

S49

5.65

T

NR

RL

5096

T

NR

RL

1932

T

526/

527

(99.

81)

509/

514

(99.

20)

550/

556

(98.

92)

559/

577

(96.

88)

547/

567

(96.

47)

543/

562

(96.

61)

A.

po

rph

yre

ost

ipit

atu

s

A.

ust

us

A.

ba

etic

us

A.

pu

nic

eus

A.

het

ero

tha

llic

us

A.

gra

nu

losu

s

Vis

agie

etal

.20

14

Varg

aet

al.

2008

Nov

ákov

áet

al.

2012

Rak

eman

etal

.20

05

Pet

erso

n20

08

Pet

erso

n20

08

6717

JQ42

5406

816

NR

_13

7522

KT

6988

40

NR

_13

7507

NR

_13

5435

NR

_13

5432

NR

_13

5372

NR

_13

1292

NR

_13

5348

NR

_13

5368

NR

_10

3579

NR

_13

5431

NR

_13

5461

NR

_13

7492

NR

_13

1284

IBT

1449

3T

NR

RL

3591

0T

CB

S12

3887

T

CB

S12

1601

T

CC

F41

66T

NR

RL

6135

T

NR

RL

279T

NR

RL

1932

T

NR

RL

5096

T

CB

S49

5.65

T

CC

F42

26T

CB

S13

8203

T

CB

S20

9.92

T

CB

S26

1.67

T

464/

464

(100

)

518/

526

(98.

47)

454/

464

(97.

84)

454/

464

(97.

84)

541/

554

(97.

65)

545/

559

(97.

49)

544/

559

(97.

31)

540/

562

(96.

81)

542/

567

(95.

59)

541/

568

(95.

25)

535/

561

(95.

36)

511/

531

(96.

23)

495/

510

(97.

05)

498/

518

(96.

13)

A.

carl

sba

den

sis

A.

asp

er

A.

ger

ma

nic

us

A.

cali

do

ust

us

A.

thes

au

ricu

s

A.

pse

ud

od

efle

ctu

s

A.

insu

etu

s

A.

gra

nu

losu

s

A.

het

ero

tha

llic

us

A.

pu

nic

eus

A.

ba

etic

us

A.

po

rph

yre

ost

ipit

atu

s

A.

kev

eii

A.

ust

us

Sam

son

etal

.20

11

Jurj

ević

&P

eter

son

2016

Sam

son

etal

.20

11

Nov

ákov

áet

al.

2012

Nov

ákov

áet

al.

2012

Pet

erso

n20

08

Pet

erso

n20

08

Pet

erso

n20

08

Pet

erso

n20

08

Rak

eman

etal

.20

05

Nov

ákov

áet

al.

2012

Vis

agie

etal

.20

14

Hou

bra

ken

etal

.20

07

Varg

aet

al.

2008

73

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

Tab

.2

.G

row

thm

easu

rem

ents

ofA

sp

ergil

lus

porp

hy

reosti

pit

atu

sA

UM

C69

30an

dA

.ca

rls

ba

den

sis

AU

MC

6717

.Th

eva

lues

rep

rese

ntc

olo

ny

dia

me-

ter

inm

m(r

ange

and

mea

SD

of

9re

adin

gs).

Gro

wth

tem

per

atu

re2

5°C

Cu

ltiv

ati

on

med

ium

CYA

CZ

ME

AC

RE

AU

RE

AM

AN

TA

NC

Z2

0S

M4

0Y

G2

5N

A.

po

rph

yre

ost

ipit

atu

s34

–42

24–

3525

–40

25–

3234

–43

20–

2815

–25

25–

3218

–24

0

38.5

2.01

27.3

3.38

31.3

3.76

26.6

2.72

37.6

2.72

23.3

2.25

20.3

2.62

28.7

2.05

19.5

1.76

A.

carl

sba

den

sis

26–

3812

–22

14–

2720

–28

25–

3214

–22

8–28

19–

2618

–22

0

31.1

3.31

17.9

2.99

21.3

4.07

24.2

2.69

29.0

2.53

18.0

2.07

17.6

7.52

22.6

2.28

20.2

1.31

Gro

wth

tem

per

atu

re5

°C3

7°C

45

°C

Cu

ltiv

ati

on

med

ium

CYA

CYA

CYA

A.

po

rph

yre

ost

ipit

atu

s0

16–

450

26.7

11.3

4

A.

carl

sba

den

sis

08–

340

22.0

7.87

Tab

.3

.M

icro

sco

pic

mea

sure

men

ts(r

ange

so

fat

leas

t10

read

ings

,in

μm

)an

dp

hys

iolo

gica

lch

arac

teri

stic

so

fA

sp

ergil

lus

porp

hy

reosti

pit

atu

s

AU

MC

6930

and

A.

ca

rls

ba

den

sis

AU

MC

6717

.

Sp

ecie

sS

tip

ele

ngt

hS

tip

ew

idth

Vesi

cle

dia

m.

Con

idia

size

lle

cell

size

Aci

dfr

om

crea

tin

e

Ure

ase

A.

po

rph

yre

ost

ipit

atu

s(2

0)50

–12

5(3

)3.5

–5.

5(5

)7–

153–

3–4

26–

92×

10–

13N

oac

idw

A.

carl

sba

den

sis

105–

245

5–6

(6)1

0–15

3.5–

3–3.

520

–33

×16

–27

No

acid

+

Nu

mb

ers

inp

aren

thes

esre

pre

sen

tth

elo

wes

tan

din

freq

uen

tva

lues

.S

ymb

ols

:w=

wea

k,+

=p

osi

tive

.

74

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

weakly just beneath the colonies (Fig. 2). The current strain is able to grow at37 °C just as those in the original description (Visagie et al. 2014).

C o l o n y f e a t u r e s . C o l o u r: on CYA yellowish grey to brownish grey inthe centre (4B–E2), mixed with orange grey to greyish orange (5B2–3), on CZorange grey to greyish orange (6B2–3) with edge white, on MEA grey to brownishgrey (3–4C–E1–2, with some sectors formed), on CZ20S grey to brownish grey inthe centre (5C–D1–2) to brownish grey to light brown in the medium (6C–D2–4,with edge white), on MAN grey to dull green (28D–E1–3).

R e v e r s e: white at the edge and orange yellow to olive brown in the centre(4–5B–D7–8) on CYA, white at the edge and pale to dull yellow in the centre(3A–B3–4) on CZ, white at the edge and brownish orange (6–7C4–6) to darkbrown (7F4–6) in the centre on CZ20S, orange yellow to light brown (4–5B–D7–8)on MEA. No reverse colouration on MAN agar (Fig. 2).

75

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

Fig. 3. Microscopic structures of Aspergillus porphyreostipitatus AUMC 6930. A–C – conidialheads; D–G – hülle cells. Bars = 10 μm. Photos by A.M. Moharram.

� Fig. 2. Aspergillus porphyreostipitatus AUMC 6930 grown at 25 °C on CYA, CZ, MEA, TAN, CREA,MAN, UREA, CZ20S, M40Y and G25N, and at 5 °C, 37 °C and 45 °C on CYA. Photos by M.A. Ismail.

Te x t u r e: floccose on CYA, CZ, CZ20S, CREA, MAN and UREA at 25 °C,slightly floccose on MEA at 25 °C and on CYA at 37 °C, slightly floccose with whit-ish powdery patches on TAN.

M i c r o s c o p i c f e a t u r e s (Tab. 3, Fig. 3). Conidial heads radiate to shortcolumnar; conidiophores biseriate; stipes sinuate, hyaline to brownish, mostlysmooth, but some areas show roughness, (20)50–125 μm long, (3)3.5–5.5 μm wide;vesicles globose, sometimes slightly elongated, (5)7–15 μm; metulae 7 × 2.5 μm,covering 75% of head; phialides ampulliform, 6–10 × 2.5–3.0 μm; conidia globoseto subglobose, 3–4 × 3–4 μm, spiny to tuberculate. Hülle cells on CYA, thick-walled,predominantly elongate, twisted, 26–92 μm long × 10–13 μm wide. Sclerotia absent,sexual stage not observed on any growth media incubated for up to 2 months.

M o l e c u l a r i d e n t i f i c a t i o n. Phylogenetically our current strain AUMC6930 matched with the type strains of A. porphyreostipitatus (99.81% sequencesimilarity), A. ustus (99.20%), A. baeticus (98.92%), A. puniceus (96.88%), A. gra-

nulosus (96.61%) and A. heterothallicus (96.47%) (Tab. 1, Fig. 1).

N o t e s. This species was first isolated in 2010 from dust from a church,Sayulita, Mexico (type CBS 138203T = DTO 266D9), and from house dust, Song-khla, Thailand (CBS 138202 = DTO 132D1) by Ed Whitfield & Kalima Mwange,and described as a new species (A. porphyreostipitatus) by Visagie et al. (2014).

The micro-morphological features of A. porphyreostipitatus are similar tothose of A. baeticus, A. ustus, A. puniceus, and A. pseudoustus. These speciesare similar in producing brownish colours in colonies (Visagie et al. 2014). Vesicleshapes and diameter both show significant differences between A. porphyreo-

stipitatus and A. ustus (hemispherical to subglobose, 7–15 μm in diameter) onthe one hand and A. baeticus (elliptical to elongate, 9.8–15.4 × 16.8–19.6 μm indiameter), A. pseudoustus (globose, 10–14 μm) and A. puniceus (subglobose,8–16 μm in diam. to elliptical, 15–18 × 13–15 μm) on the other. Additionally, thewidth of the stipes is smaller in A. porphyreostipitatus (3.5–6.5 μm), A. ustus

(3–6 μm) and A. pseudoustus (3.5–5 μm) than in A. baeticus (5–8 μm) andA. puniceus (5.5–8 μm). The ability of A. porphyreostipitatus to grow on CYA at37 °C easily distinguishes it from its morphologically similar relatives (A. baeti-

cus, A. ustus, A. puniceus, and A. pseudoustus).

Aspergillus carlsbadensis Frisvad, Varga & Samson 2011

In 2008–2009 and during a survey of filamentous fungi of orange and grape-vine plantations in the Assiut area, several isolates of Aspergillus related to sec-tion Usti were recovered from non-rhizosphere soil, in high frequency from or-ange and in moderate and low frequency from grapevine plantations on DRBC(King et al. 1979) and DYM (Moubasher et al. 2016). These isolates were initially

76

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

identified as Aspergillus calidoustus (Soliman 2012, Abdel-Sater et al. 2016).A representative isolate was deposited at the culture collection of Assiut Univer-sity Mycological Centre and assigned code AUMC 6717. The ITS gene sequence ofthe strain is registered under GenBank accession number JQ425406 (Tab. 1, Fig. 1).The strain was also deposited in the Culture Collection of Fungi at the Depart-ment of Botany, Prague under no. CCF 5180.

G r o w t h c h a r a c t e r i s t i c s. Colony diameters (range and mean ± SD) af-ter 7 days at 25 °C on CYA, CZ, MEA, CREA, UREA, MAN, TAN and the low wateractivity media CZ20S, M40Y and G25N, and at 5 °C, 37 °C and 45 °C on CYA areshown in Tab. 2. No growth was detected on CYA at 5 °C or at 45 °C nor on G25Nat 25 °C, and no acid was produced on CREA or MAN agar at 25 °C, but the ureaseenzyme was produced (Fig. 4). Growth of the current strain at 37 °C is in contrastto that of the original description (Samson et al. 2011).

C o l o n y f e a t u r e s . C o l o u r: whitish on CYA, CZ, CREA (3A1–2), pale yel-low (3A1–3) to yellowish grey in the centre (2B2) on CZ20S, white to pale yellow(3–4A1–3) on UREA, dull green to greyish green (27E4–5) on M40Y, grey to greenishgrey (26B–C1–2) on MEA and greenish grey to dull green (27C–E2–3) on MAN.

R e v e r s e: edge and centre pale yellow (3A4–5) with a brown ring near edge(6F4–6) on CYA, pale yellow edge (3A3–4), yellow brown centre (5F5–8), witha yellowish brown ring in between (5F5–8) on CZ, brownish orange to goldenbrown (5B–D5–7) on MEA, pale yellow edge (3A2–3) to yellowish brown centre(5D–F5–8) on CZ20S at 25 °C, and pale to light yellow edge (3A3–5) to greyish yel-low to amber yellow in the centre (4B6–7) on CYA at 37 °C. No reverse colourationon MY40S, CREA, MAN and TAN.

Te x t u r e: velutinous on CYA, MEA, M40Y, TAN, CREA, MAN, UREA at 25 °Cand on CYA at 37 °C, slightly floccose on CZ and CZ20S at 25 °C.

M i c r o s c o p i c f e a t u r e s (Tab. 3, Fig. 5). Conidiophores biseriate with typ-ical smooth-walled, brown stipes 105–245 μm long, 5–6 μm wide, sometimes con-stricted below the vesicle; vesicles globose (6)10–15 μm in diam.; conidia dis-tinctly ornamented with spines or echinulations, ellipsoidal 3.5–4.0 × 3.0–3.5 μm.Hülle cells hyaline, thick-walled, globose to broadly ellipsoidal, 20–33 μm long to16–27 μm wide. Sclerotia not observed after 7 days on any growth media incu-bated at different temperatures; sexual stage not observed on any growth mediaincubated for up to 2 months.

M o l e c u l a r i d e n t i f i c a t i o n. The ribosomal DNA sequence of our strainmatched with the type strains of A. carlsbadensis (100% sequence similarity),A. asper (98.47%), A. germanicus (97.84%), A. calidoustus (97.84%), A. thesauricus

(97.65%), A. pseudodeflectus (97.49%), A. insuetus (97.31%) and A. keveii (97.05%)(Tab. 1, Fig. 1).

77

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

78

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

N o t e s. This species was first isolated in 1992 from soil, Lechuguilla Cave,Carlsbad Caverns National Park, New Mexico, USA, by D.E. Northup, soil fromGalapagos Islands, Ecuador, and soil from Carthage, Tunesia (Samson et al.2011).

Samson et al. (2011) revealed that A. carlsbadensis is related to but clearlydistinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus

and A. keveii in all three phylogenetic trees presented, and it is unable to grow at37 °C, while acid production was not observed on CREA. However, our straincould grow at 37 °C, but does not produce organic acid on CREA.

The micro-morphological features of A. carlsbadensis are similar to those ofA. contaminans, A. calidoustus, A. keveii, A. pseudodeflectus, A. insuetus andA. granulosus. The vesicle shapes and diameter of these species (A. carlsbadensis

globose, 10–14 μm, A. ustus hemispherical to subglobose 7–15 μm diam.,A. insuetus hemispherical to subglobose, 11–16 μm diam., A. keveii pyriform,9–13 μm diam., A. pseudodeflectus globose to elevate, 4–12 μm and A. calidoustus

79

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

Fig. 5. Microscopic structures of Aspergillus carlsbadensis AUMC 6717. A–C – conidial heads;D–G – hülle cells. Bars = 10 μm (A–C), 20 μm (D–G). Photos by A.M. Moharram.

� Fig. 4. Aspergillus carlsbadensis AUMC 6717 grown at 25 °C on CYA, CZ, MEA, TAN, CREA, MAN,UREA, CZ20S, M40Y and G25N, and at 5 °C, 37 °C and 45 °C on CYA. Photos by M.A. Ismail.

pyriform to broadly spathulate, 7–20 μm) are significantly different from those ofA. contaminans (globose or pyriform, 12–28 μm diam.) and A. granulosus (ovoidto elliptical, 15–25 × 12–18 μm). Additionally, the width of the stipes is smaller inA. carlsbadensis (4–5 μm), A. pseudodeflectus (2.5–3.5 μm), A. ustus (3–6 μm),and A. keveii (4–6 μm) than in A. contaminans, A. insuetus (4–8 μm), A. granu-

losus (5.5–8 μm) and A. calidoustus (4–7 μm). The conidia sizes can be used asa reliable feature for distinguishing three groups of species – conidia less 3 μm:A keveii; conidia exceeding 3 μm but less than 5 μm: A. carlsbadensis, A. calido-

ustus, A. contaminans, A. insuetus, A. ustus; up to 5–5.5 μm: A. pseudodeflectus

and A. granulosus. Aspergillus carlsbadensis strain AUMC 6717 (contrasting tothe originally described strains) shares with A. calidoustus, A. peseudodeflecus

and A. granulosus the ability to grow on CYA at 37 °C, which easily distinguishesthese species from morphologically similar relatives (A. contaminans, A. keveii,A. insuetus and A. ustus) (Houbraken et al. 2007, Samson et al. 2011, Crous et al.2017).

An added value of the current study was the use of media such as UREA,G25N, TAN and MAN, which enabled us to find more cultural or physiologicalcharacters that might be beneficial for differentiating these or other related spe-cies (ability of urease production, growing on G25N and TAN, growing and acidproduction on mannitol).

REFERENCES

ABDEL-SATER M.A., MOUBASHER A.H., SOLIMAN Z.S.M. (2016): Biodiversity of filamentous and yeastfungi in soil of citrus and grapevine plantations in Assiut area, Egypt. – Czech Mycology 68(2):183–214.

BALAJEE S.A., KANO R., BADDLEY J.W., MOSER S.A., MARR K.A., ALEXANDER B.D., ANDES D., KONTO-

YIANNIS D.P., PERRONE G., PETERSON S., BRANDT M.E., PAPPAS P.G., CHILLER T. (2009): Molecularidentification of Aspergillus species collected for the transplant-associated infection surveil-lance network. – Journal of Clinical Microbiology 47: 3138–3141. DOI: 10.1128/JCM.01070-09.

BLAKESLEE A. (1915): Lindner’s roll tube method of separation cultures. – Phytopathology 5: 68–69.BRAYFORD D., BRIDGE P.D. (1989): Differentiation of Fusarium oxysporum from Fusarium solani

by growth and pigmentation on media containing sugar alcohols. – Letters in Applied Microbiol-ogy 9(1): 9–12.

CHEN A.J., FRISVAD J.C., SUN B.D., VARGA J., KOCSUBE S., DIJKSTERHUIS J., KIM D.H., HONG S.-B.,HOUBRAKEN J., SAMSON R.A. (2016): Aspergillus section Nidulantes (formerly Emericella):polyphasic taxonomy, chemistry and biology. – Studies in Mycology 84: 1–118.DOI: 10.1016/j.simyco.2016.10.001.

CHEN A.J., HUBKA V., FRISVAD J.C., VISAGIE C.M., HOUBRAKEN J., MEIJER M., VARGA J., DEMIRE R.,JURJEVIĆ Ž., KUBÁTOVÁ A., SKLENÁŘ F., ZHOU Y.G., SAMSON R.A. (2017): Polyphasic taxonomy ofAspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environ-ments and food. – Studies in Mycology 88: 37–135. DOI: 10.1016/j.simyco.2017.07.001.

80

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)

CHRISTENSEN W.B. (1946): Urea decomposition as a means of differentiating Proteus and paracoloncultures from each other and from Salmonella and Shigella types. – Journal of Bacteriology52(4): 461–466.

CROUS P.W., WINGFIELD M.J., BURGESS T.I., CARNEGIE A.J., HARDY G.E.St.J., SMITH D., SUMMERELL B.A.,CANO-LIRA J.F., GUARRO J., HOUBRAKEN J., LOMBARD L., MARTÍN M.P., SANDOVAL-DENIS M. et al.(2017): Fungal Planet description sheets: 625–715. – Persoonia 39: 270–467.DOI: 10.3767/persoonia.2017.39.11.

FAKIH M.G., BARDEN G.E., OAKES C.A., BERENSON C.S. (1995): First reported case of Aspergillus

granulosus infection in a cardiac transplant patient. – Journal of Clinical Microbiology 33:471–473.

FRISVAD J.F. (1985): Creatine sucrose agar, a differential medium for mycotoxin producing terverti-cillate Penicillium species. – Letters in Applied Microbiology 1: 109-113.

GAMS W., CHRISTENSEN M., ONIONS A.H., PITT J.I., SAMSON R.A. (1985): Infrageneric taxa of Asper-

gillus. – In: Samson R.A., Pitt J.I., eds., Advances in Penicillium and Aspergillus Systematics,pp. 55–62. Plenum Press, New York.

HENRY T., IWEN P.C., HINRICHS S.H. (2000): Identification of Aspergillus species using internal tran-scribed spacer regions 1 and 2. – Journal of Clinical Microbiology 38: 1510–1515.

HOUBRAKEN J., DUE M., VARGA J., MEIJER M., FRISVAD J.C., SAMSON R.A. (2007): Polyphasic taxonomyof Aspergillus section Usti. – Studies in Mycology 59: 107–128. DOI: 10.3114/sim.2007.59.12.

HUBKA V., LYSKOVÁ P., FRISVAD J.C., PETERSON S.W., SKOŘEPOVÁ M., KOLAŘÍK M. (2014): Aspergillus

pragensis sp. nov. discovered during molecular re-identification of clinical isolates belonging toAspergillus section Candidi. – Medical Mycology 52: 565–576. DOI: 10.1093/mmy/myu022.

HUBKA V., NOVÁKOVÁ A., PETERSON S.W., FRISVAD J.C., SKLENÁŘ F., MATSUZAWA T., KUBÁTOVÁ A.,KOLAŘÍK M. (2016): A reappraisal of Aspergillus section Nidulantes with descriptions of two newsterigmatocystin-producing species. – Plant Systematics and Evolution 302: 1267–1299.DOI: 10.1007/s00606-016-1331-5.

JANG S.S., DORR T.E., BIBERSTEIN E.L., WONG A. (1986): Aspergillus deflectus infection in four dogs. –Journal of Medical and Veterinary Mycology 24: 95–104.

JURJEVIĆ Ž., PETERSON S.W. (2016): Aspergillus asper sp. nov. and Asperillus collinsii sp. nov., fromAspergillus secion Usti. – International Journal of Systematic and Evolutionary Microbiology 66:2566–2572. DOI: 10.1099/ijsem.0.001094.

KING D.A., HOCKING A.D., PITT J.I. (1979): Dichloran rose Bengal medium for enumeration and isola-tion of molds from foods. – Applied and Environmental Microbiology 37: 959–964.

KLICH M.A. (1993): Morphological studies of Aspergillus section Versicolores and related species. –Mycologia 85: 100–107.

KORNERUP A., WANSCHER J.H. (1978): Methuen Handbook of Colour, 3rd ed. – 252 pp., London.KOZAKIEWICZ Z. (1989): Aspergillus species in stored products. – Mycological Papers 161: 1–188.KROCKENBERGER M.B., SWINNEY G., MARTIN P., ROTHWELL T.R., MALIK R. (2011): Sequential opportu-

nistic infections in two German Shepherd dogs. – Australian Veterinary Journal 89: 9–14.DOI: 10.1111/j.1751-0813.2010.00666.x.

MOUBASHER A.H. (1993): Soil fungi in Qatar and other Arab countries. – 566 pp., Scientific and Ap-plied Research Center, Qatar University, Doha.

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M. (2016): Biodiversity and molecular character-ization of yeast and filamentous fungi in the air of citrus and grapevine plantations in Assiut area,Egypt. – Mycosphere 7(3): 236–261. DOI: 10.5943/mycosphere/7/3/1.

NOVÁKOVÁ A., HUBKA V., SAIZ-JIMENEZ C., KOLAŘÍK M. (2012): Aspergillus baeticus sp. nov. and Asper-

gillus thesauricus sp. nov., two species in section Usti from Spanish caves. – International Jour-nal of Systematic and Evolutionary Microbiology 62: 2778–2785. DOI: 10.1099/ijs.0.041004-0.

PELÁEZ T., ÁLVAREZ-PÉREZ S., MELLADO E., SERRANO D., VALERIO M., BLANCO J.L., GARCIA M.E.,MUŃOZ P., CUENCA-ESTRELLA M., BOUZA E. (2013): Invasive aspergillosis caused by cryptic

81

MOUBASHER A.H., ABDEL-SATER M.A., SOLIMAN Z.S.M.: FIRST RECORDS OF ASPERGILLI

Aspergillus species: a report of two consecutive episodes in a patient with leukaemia. – Journalof Medical Microbiology 62: 474–478. DOI: 10.1099/jmm.0.044867-0.

PETERSON S.W. (2000): Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. –In: Samson R.A., Pitt J.I., eds., Integration of modern taxonomic methods for Penicillium andAspergillus classification, pp. 323–355. Harwood Academic Publishers, Amsterdam.

PETERSON S.W. (2008): Phylogenetic analysis of Aspergillus species using DNA sequences from fourloci. – Mycologia 100: 205–226.

PITT J.I. (1973): An appraisal of identification methods for Penicillium species: novel taxonomic cri-teria based on temperature and water relations. – Mycologia 65: 1135–1157.DOI: 10.1002/jobm.19810210822.

RAKEMAN J.L., BUI U., LAFE K., CHEN Y.-C., HONEYCUTT R.J., COOKSON B.T. (2005): Multilocus DNAsequence comparisons rapidly identify pathogenic molds. – Journal of Clinical Microbiology43(7): 3324–3333. DOI: 10.1128/JCM.43.7.3324-3333.2005.

RAPER K.B., FENNELL D.I. (1965): The genus Aspergillus. – 686 pp., Williams & Wilkins, Baltimore.RAPER K.B., THOM C. (1949): A manual of the Penicillia. – 878 pp., Williams & Wilkins, Baltimore.RINYU E., VARGA J., FERENCZY L., KOZAKIEWICZ Z. (2000): Phenotypic and genotypic variability within

Aspergillus section Fumigati. – In: Samson R.A., Pitt J.I., eds., Integration of modern taxonomicmethods for Penicillium and Aspergillus classification, pp. 483–490. Harwood Academic Pub-lishers, Amsterdam.

ROBINSON W.F., CONNOLE M.D., KING T.J., PITT J.I., MOSS S.M. (2000): Systemic mycosis due toAspergillus deflectus in a dog. – Australian Veterinary Journal 78: 600–602.

SAMSON R.A., PITT J.I. (1985): General recommendations. – In: Samson R.A., Pitt J.I., eds., Advancesin Penicillium and Aspergillus systematics, pp. 455–460. Plenum Press, New York.

SAMSON R.A., HOEKSTRA E.S., FRISVAD J.C., eds. (2004): Introduction to food and airborne fungi. 7th ed.– Centraal Bureau voor Schimmelcultures, Utrecht.

SAMSON R.A., VARGA J., MEIJER M., FRISVAD J.C. (2011): New taxa in Aspergillus section Usti. – Stud-ies in Mycology 69: 81–97. DOI: 10.3114/sim.2011.69.06.

SCHULTZ R.M., JOHNSON E.G., WISNER E.R., BROWN N.A., BYRNE B.A., SYKES J.E. (2008): Clinico-pathologic and diagnostic imaging characteristics of systemic aspergillosis in 30 dogs. – Journalof Veterinary Internal Medicine 22: 851–859.

SOLIMAN Z.S.M. (2012): Studies on yeast and filamentous fungi in citrus and grapevine plantations. –M.Sc. Thesis [depon. in Faculty of Science, Assiut University, Assiut, Egypt].

THOMPSON J.D., HIGGINS D.G., GIBSON T.J. (1994): CLUSTAL W: improving the sensitivity of progres-sive multiple sequence alignment through sequence weighting, position-specific gap penaltiesand weight matrix choice. – Nucleic Acids Research 22: 4673–4680. DOI: 10.1093/nar/22.22.4673.

THRANE U. (1986): The ability of common Fusarium species to grow on tannin-sucrose agar. – Let-ters in Applied Microbiology 2: 33–36.

VARGA J., HOUBRAKEN J., VAN DER LEE H.A., VERWEIJ P.E., SAMSON R.A. (2008): Aspergillus calidoustus

sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. – EukaryoticCell 7: 630–638.

VARGA J., TÓTH B., RIGÓ K., TÉREN J., HOEKSTRA R.F., KOZAKIEWICZ Z. (2000): Phylogenetic analysis ofAspergillus section Circumdati based on sequences of the internal transcribed spacer regions ofthe 5.8 S rRNA gene. – Fungal Genetics and Biology 30: 71–80. DOI: 10.1006/fgbi.2000.1204.

VARGA J., FRISVAD J.C., SAMSON R.A. (2011): Two new aflatoxin producing species, and an overviewof Aspergillus section Flavi. – Studies in Mycology 69: 57–80. DOI: 10.3114/sim.2011.69.05.

VISAGIE C.M., HIROOKA Y., TANNEY J.B., WHITFIELD E., MWANGE K., MEIJER M., AMEND A.S., SEIFERT K.A.,SAMSON R.A. (2014): Aspergillus, Penicillium and Talaromyces isolated from house dust sam-ples collected around the world. – Studies in Mycology 78: 63–139.

WICKERHAM L.J. (1951): Taxonomy of yeasts. – Technical Bulletin No. 1029, U.S. Department of Agri-culture, Washington D.C.

82

CZECH MYCOLOGY 70(1): 67–82, MAY 29, 2018 (ONLINE VERSION, ISSN 1805-1421)