Firing Angle Document

download Firing Angle Document

of 226

Transcript of Firing Angle Document

  • 8/17/2019 Firing Angle Document

    1/226

    DIGITAL CONTROL O F RECTIFIER FIRING ANGLES FOR THE ZEROGRADIENT SYNCHROTRON (ZGS) RING MAGNET POWER S U P P L Y 5

    Martin J. Knott, Lloyd G. Lewis, and Her be rt H. Rabe

    Argonne National Laboratory

    Argonne, Illinois

    Abstract

    The hea rt of the new control sy st em for the ZGS

    ring magnet power supply is a counter that counts

    f r o m 0 to 3600 each voltage cycle of the mai n gene ra-

    to r .

    synchronized with the g enerat or voltage wave by a

     phase - lock feedback loop.

    number i n the counter with the desir ed angle forf irin g

    each of the 12 rectifier phases.

    is generated and applied to the control grids of the

    appropriate mercury vapor rectifiers.

    arithmetic adder circuits upclate the desired firing

    angles for each of the 1 2  phase s in response to com-

    mands fr om the ZGS pro gra mm er and in resp ons e t o .

    feedback s lgnals fr om beam spill mon itors and f r o m B

     pickup co il s on the ring magnet.

    arithme tic adders and selecto rs provide individual ad -

     justment of each phase in order to reduce low fre -

    quency ripple.

    l o o - ,

    and 150-cycle ripple on the ring magnet field onflattop and on porch es, has provided fas t action to

     pe rmi t spill con tr ol when the RF accelerating cavity

    is off, and has provided st able opera tion in full rectify

    f o r the accelerating pa rt of the ZGS cycle.

    This provides an electrica l degree scale that is

    Digital gates c ompare the

    At eauality, a pulse

    Fast digital

    Separa te digital

    This s ystem has greatly reduced 50 - ,

    Introduction

    The new slow resonance e xtrac tion s yst em for the

    ZGS provides two simultaneous beams that have no R F

    s t ructure.

    off the R F accel erati ng cavity ea rl y in flattop and then,

    after the beam has debunched, by moving the beam t o

    the v r = 2 / 3 extraction point with the ring magnet con-

    tro l system. The rate of extraction is then controlled

    throu gh manipulation of the rin g nlagnet field.

    The sys tem accomplishes this by turning

    This magnetic spil l mode place s specific demands

    on the con trol sys tem for the ring magnet power sup-

     ply. One of the se demands is that the s yst em must beable to rapi dly change the voltage applied to the rin g

    magnet. The required speed and accuracy ar e det er -mined by the amount of  beam s teer ing needed to s t a r t

    and maintain the extraction at a select ed rat e.

    A second demand is that the cont rol sy st em for

    the ring magn et minimizes the g enera tion of low fr e -

    quency ripple. This is important becau se the ripple

     produces modu la ti on of the extracted b eam in te nsi ty.

    An additional requirement is that the ring magnet

    contr ol sy st em be capable of operating i n full rectify;

    that is with natural commutation fro m phase to phase.This provides the minimum accelerating time and the

    desire d conditions for be am injection into the ZGS.

    ZGS Ring Magnet

    The ZGS ring magnet circuit contains eight mag -

    nets and eight power supplies connected in a se ri es

    circuit with four-fold symmetry.

    *Work per form ed under the aus pices of the U. S.

    The result is the

    Atomic Energy Commission.

    equivalent of a 12- ph ase supply in each qu ad ra nt of the

    ring' magnet.

    The rectifiers in each of these eight supplies are

    merc ury vapor tubes.

    continuously s o that firing control is provided by two

    gri ds placed between the cathode ar c and the anode.

    The excitation ar c opera tes

    Each of the eight supplie s is provided with a low

    The f i l -

     pas s LC filter. The f i l ter has a rolloff of 40 dB / d ec -

    ade and a corn er f reque ncy of about 40 Hz.

    te r is underdamped with a damping r atio of about 0 . 3 .

    Ripple Amplitudes

    Ripple amplitudes produced by the ZGS ring mag-

    net power supply were mea sured in two ways.

    fir st was to use the f ast gauss clock in the ZGS  pro-

    grammer .

    analog (D-A) con ver ter and to an oscill oscop e. The

    gauss pictures fr om the oscilloscope showed that most

    of the ripple produced by the original analog controlsys tem was at low frequencies. Amplitudes a t

    -

    50

    cycles (generator frequency) were of the o rd er of 1 or

    2 G.

    this display.

    The

    The clock output was sent to a dig i ta l - to-

    The 12th harmon ic was not r ead i l y observed on

    The second method was to l o o k at the dc voltage

    acros s one pair of ring magnets. This was a mor e

    convenient signal f o r ripple studies since the relative

    amplitudes of the se ver al harmonics were more fa-

    vorable for measurement.

    The relatively larg e low frequency ripple (a t le ss

    than the 12th harmon ic) results f ro m a variety of

    causes . One cause is the incorr ect spacing of rectifi-

    e r fir ing pulses.

    t ics of the low pas s fil ter which attenuates poorly atthe low freque ncie s. Additional cau ses include poss i-

     ble e r r o r s in the nu mb er of tu rn s on the polyphase

    tra nsfo rme r windings, variations in the leakage in-

    ductance from one ph as e winding t o another, lack of

    symmetry in circuit resista nces, and imbalances be-

    tween phases of the generator voltage.

    A second cause is the cha rac teri s-

    The effects of some of these ca uses of low fre -

    quency ripple can be cancelled on flattop by proper ly

    retarding or advancing the firing t ime of one or sev-

    e r a l of the 12- ph ase rect i f iers wit h respect to the

    others. Fr om this, i t is apparent that exactly uni-

    form spacing of the firing pulses to the re cti fie rs will

    not produce minimum ripple.

    Firing Accuracy

    The bias voltages to the unijunctions in the origi-

    nal fir ing control s yste m were readjusted to produce asignificant change in the ripple a t the ge nerato r f re -

    quency.

    sured with the digital phase-angle meter used for

    routine monitoring of the ZGS ring magnet supply.

    These changes in fir ing angles were m ea-

    The data showed that substantial reduc tions in the

    low frequency ripple could be obtained if the fir ing

    511

  • 8/17/2019 Firing Angle Document

    2/226

    angles of the 12- ph as e r ec t i f i e r s we r e re pr od uc ibl e to

    1/10 of an ele ctric al degree.

    accu racy and stability of conventional analog ra mp

    type control systems. Fo r this reason , a digital con-

    tr ol sys tem was designed and installed a t the ZGS.

    This is far beyond the

    Rectifier Grid Drive

    The contr ol of firing an gles to 0.1

    electr ical

    corresponds to controlling the turn -on of a rec tif ier

    to about 5 ps Any variation in the turn -on tim e of a

    s ingle rect i f ier m ust be sma l ler than this if the con-

    tr ol accu racy is to be achieved.

    var iat ion in the average t ime delay f rom one rect i f ier

    to another must be sh orter than 5 ps

    In a simil ar way,

    High voltage switch- t rans is tors w ere used to pro -Thevide the drive t o the grids of the rec tifie r tubes.

    fir ing pulse fr om the control ci rcuit was coupled

    through a well insulated pulse transformer to a drive

    module that operated at rectifi er cathode potential.

    The l / 2 p s  pu lse wa s lengthened to 4 m s by a single

    shot amplifier located at cathode potential.

    lengthened pulse was applied to switch- t rans is tors

    that supplied the grid drive signal.

    This

    The grids were switched to t 3 0 0 V with respect

    t o the cathode with a rise time of 600 ns.

    conditions, the tube turn -on was about 1 ~s a t low

    cur ren ts and also at high cu rre nts when the tube was

    fi rs t used. At high cur ren ts, the time delay and the

     j i t te r increased du ri ng th e f i r s t tw o min ut es. At

    equilibrium, the delay varied f ro m a minimum of

    about  2 ps to a maximum of about 5 ps We believe

    that this increase in turn -on delay is caused by out-

    gassing of the electrodes under high current loads.

    Under these

    Turn-off of the rect ifi er by remov al of the posi -

    tive anode voltage left a plasma in th e space be tw een

    the grids and the cathode arc. This caused grid cur -

    rents that lasted long enough to influence the next

    turn-on. For this reason, a switch- t rans is tor was

    used to clamp grid#1

    to a negative bi as when the tube

    was off.electrode space in about 1 / 2 m s .

    This bias swept out the ions left in the in ter -

     Nu mb er Sys tem and Lo gic

    The digital pa rt s of the co ntro l sy st em shown in

    the block diagram of Fig.  1 use the binary number

    syste m. This was chosen since the input fr om the

    ZGS  p rog ramm er i s in one 's comp le ment f o r m and

     because of co nv en ie nc e in co nst ru cti on .

    The DISPLAY sys tem use s LED numeric display

    elements driven by a binary coded deci mal counter.

    This i s convenient for checkout by the maint enance

     personnel.

    The digital logic util izes 7400 s e r i e sTTL-MSI

    integrated circuits .

    chips a re mounted in dual in- l ine packages and are

    interconnected by wire-wrap wiring.

    delays for this logic ser ie s var y f ro m package to

     pack age but a r e of th e o rde r of a few tens of ns.

    About 250 integrated circ uit

    The propagation

    Phase Lock Loop

    The generator voltage wave var ie s in frequency

    during the ZGS cycle and is very dis tor ted.commutation produces notches in the generator

    Rectifier

    voltage wave that ar e as lar ge as 25% of the peak volt-

    age. Fo r this reason, a zero cross ing type of r e fer  -

    ence is not suitable even when the input wave i s

    heavily fil tered. This is t rue because the f i l ters that

    were tr i ed produced variable phase shifts and l o r large

    trans ient s when entering flattop and invert. The

     phas e- lock loop shown in the upper righ t portion of

    Fig.  1 was found to operate satisfactorily.

    In this loop, a dc tachometer voltage fro m the

    main gene rator and the output voltage f ro m the fil te r

    ar e added in an operational amplifier. The resul tant

    voltage dri ves a voltage- to- frequency (v-

    f) converter

    that prod uces a sawtooth wave. This sawtooth dri ves

    a binary that divides the frequency by two and pro -

    duces a squ are wave with*lO V output levels.

    It is well known that the mathematical product of

    two sine waves of the sam e frequency but different

     phases produces a dc component plu s a se cond h a r -

    monic component.

     pha se di ff ere nce be tw ee n the two si ne wa ve s.

    The dc component depends on the

    In a sim il ar way, the product of a squar e wave

    and a distor ted sin e wave of the sa me period prod uces

    a dc component that is a function of the ph ase differ -

    ence between the two waves. This fac t i s utilized in

    the loop in F ig .   1 by feeding the disto rted sin e wave

    fr om the gen erator bus and the squa re wave f r o m the

    frequency divider to a transconductance type analog

    multiplier.

     po nent s is fed to the low- pass fil ter to co mpl et e th e

    feedback loop.

    The output which contains dc and ac com-

    This loop would operate without the dc tachometer

    input; but since the maximum loop gain is finite, the

     ph ase dif fer en ce be twee n the a c re ference and th e

    squ are wave in locked op eration would va ry with gen-

    era tor speed. The dc tachometer input amplitude is

    adjusted so that the dc output of the fil ter is near ly

    ze ro in the locked condition. In this way, the phase

    difference between the ac refer ence and the s quar e

    wave is made very near ly 90° and independent of gen-

    erator speed.

    Main Counter Loop

    The MAIN COUNTER and its associated feedback

    loop ar e shown in the upper left pa rt of Fig. The

    function of this c ounter i s to provide a digita l deg ree

    scale that has 360. 0  per generator cy cle an d that i s

     phase sy nc hro niz ed wi th th e squa re w av e f r o m the

     phase- lock loop.

    1.

    Its operation is described below.

    The dc tachometer voltage, shown in the upper

    left of Fig. 1, is multiplied by a constant in the

    SERVO CONTROL.

    input of the v-f converter.

     jus ted to give v e r y nearly 160 co un ts per e lect r ical

    deg ree of the gen era tor wave. In this way, the maincounter receives ve ry near ly 16 x 3600 counts eac hgenerator cycle, without the feedback loop's co rre c -

    tion. This make s the action of the feedback loop al-

    mo st independent of genera tor spee d.

    The product is then applied to the

    The gain constant is ad -

    The main counter is provided with gates that

    clea r the counter to zero each time the total countreaches 16 x 3600.

     pulse a t the s am e t ime that the counter is cleared.

     N o other input cle ars the counter , thus assur ing

    360. O o  pe r m ain cou nte r cy cl e.

    The gates generate a ROLLOVER

    5 12

  • 8/17/2019 Firing Angle Document

    3/226

  • 8/17/2019 Firing Angle Document

    4/226

    If the prog ram mer input is O o (full rectify) and i f

    the FEEDBACK is not in us e (F= 15 ), the B input to

    the comparator may be fro m 15' to 45O depending on

    the D.S. 1 setting.

    As soon as the number in the pre set counter

    equals or exceeds the number B, a compari son pulse

    is generated.

    #1 and causes the hCNT to advance to the second

    state.

    This pulse is transmitted to rectifier

    In this second state, D.S. 2 digital switch is con-

    nected by the sel ect or to output E and driv er 2 i s

    conditioned.

     pu t has a va lu e of 30.0'.

    In this ca se, the 30°1NC generator out-

    This pro ce ss continues to fire each of the 12 rec -

    tifi ers in the proper sequence.

    synchronizing at star tup of the sys te m becaus e of the

    equal to or g rea ter than action of the compa rator .

    The ACNT i s se l f -

    Feedback

    The digital control sy ste m is provided with a fast

    channel that ma y be used in cpnjunction with other

    control syst ems such as the B feedback cont rol and

    the external be am intensity control.

    The feedback sys te m, located a t the bottom ofFig. 1, consists of an input ampli fier , a S /H , an a

    -

    d

    con ver ter , and a re gi st er (REG). The input voltage

    range is - 20 to t 2 0 V .

     pu t ra ng e of 0 to 30. Oo

    not in us e. the REG is held at 15. 0 .

    The a-d converter has an out-

    When the feedback input is

    Model

    Dynamic checks of the digital control of the recti -

    fi er fi ring angles a r e done through use of the MODEL.

    This model contains two smal l 6- ph as e t ransformers

    supplied f r o m the generator bus.

    has a delta primary and the other a wye connected

     p r imary .

    coupled SCR ' s that a re operated by the 12 dr iv er s of

    Fig.  1. The rectified voltage is fed to an operational

    ampli fier analog model of the ZGS passi ve fi lte r and

    rin g magnet system. Magnet voltage, magnet cur -

    rent, and current through the filter inductor ar e

    available.

    transmitted to the power house display sys tem f o r the

    operators' inspection.

    One trans former

    The secondaries connect to 12 small photo-

    Model current and magnet voltage are

    Discussion

    The control syst em has been in routine use since

    Initial start up was with all the digi- No ve mb er 1973.

    tal switches, D.S. 1 - D.S. 12, se t for equal int er -vals between rectifier firings. No parti cular prob-

    lem s with a r cbacks wer e encountered.

    Readjustments of the individual rec tif ier angles

    wer e made to minimize ripple. This was done with

    the aid of the control computer using the PHASOR

     program. The am pl itu de s of the f i r s t , se co nd , and

    third harmo nics were reduced to values that were

    about a factor of 20 sma lle r than with the old analog

    ramp control system.

     back in pu t.

    2

    This was done without the feed -

    The amplitude of the si xth har mon ic could be

    minimized but remained large.fai rly broad, and the values of D.S. 1 - D.S. 12

    The minimum was

    indicated that the delta and wye connected transform -

    e r s did not produce voltage waves that are 30° apart.

    It appea rs that the angles ar e about 28O.

    The feedback connection is used wit h the B coi l on

    the ring magnet to control the slope of the magne t flat -

    top for energy los s extraction. In this mode, in-

    crease d ripple amplitudes appear on the ring magnet

    voltage.

     pr od uc ibl e f r o m cycl e to cy cl e.

    frequency noise is picked up in the B sys tem .

    so, the ripple is less than with the old control system.

    The feedback input is used during resonant ex -

    traction to control the extraction r a t e .3 The signal is

    supplied fr om beam monitoring devices to magnetical -

    ly pro gra m the beam position during extraction.

    These a re at low frequencies and ar e not re -

    It ?ppea r s that low

    Even

    Acknowledgments

    Many people have enthusiastically contributed to

    the digital firing control sys tem project.

    forts have made the sys tem operational in a re mar k -

    ably short time.

    Their ef  -

    We wish to thank Mr. Ray Kickert fo r his e ffor ts,

    especially during the measu rem ent s of the dynamic

    charac teris tics of the me rc ur y vapor rectif iers and

    during debugging and testing of the system.

    The ring magnet power group, under Mr. George

    Wes t, did an outstanding job of cons truct ing ma ny of

    the circuit modules and making the many changes in

    the control and interloc k cir cui ts. We wish to thank

    P. Bertucci, L. Johns, P. Roth, E. Kulovitz,W. Welch, and the whole ring magnet power group.

    1.

    2.

    3.

    References

    J. F. Sel le rs , E . F. Frisby, W. F. Praeg, and

    A, T. Vis ser , Ring Magnet Power Sys tem for the

    Zer o Gradient Synchrotron, 1965 Par ti cl e Accel-

    er at or Conference, Washington, D. C., March 10

    to 12, 1965, IEEE Trans actio ns on Nuclear Sci -

    ence, Volume NS-12,  No. 3, p. 338 (1965)

    Lloyd G. Lewis and Anthony D. Valen te, Argon ne

     Nati onal La boratory, PHASOR:

     pu ter Method for Di sp la ying Ampl it ude and Phase

    of Ripple Components in the Ring Magnet Voltage,

    IXth International Conference on High Energy

    Accelerators, Stanford, California, May 2 to 7 ,

    1974.

    A Control Com-

    Y. Cho, E. A. Crosbie, L. G. Lewis, C. W.

    Potts, and L. G. Ratner, Argonne National Labo-

    rat ory , Slow Resonance Extract ion of Two Simul -

    taneous Beams without R F Structure, IXth Inter -

    national Conference on High Energy Accelerators,Stanford, California, May 2 to 7, 1974.

    5 14

  • 8/17/2019 Firing Angle Document

    5/226

    v D.

    C.

    0 D + A REG. LOAD TA CH .D.C. TACH.

    v v

    SERVO CONTROLSUB.

    v-*

    f S U M

    RECTIFY D.S.160 COUNTS

    /

    DEG.

    COUNTS / DEGREE

    START

    DISPLAY

    CONTROL

    I

     A D DI

    G

    I

    S E L - f 256

    MCOMP ADD

    + + w

    SU B. RATE LAG REG.

    9

    I

    R E G . A D D

    MAX.I N V E R T

     ADJUST

    1 I

    SUB,

    0005'

    0005

    S E L .

    CURRENT IN VE RT MAN,

    COMP. PROGRAMMER

    F

    REG. k 5 O

    1CONTROL

    TIMING

    0

    0

    0

    0

    0

    0

    0

    0

    30 INC.

    S E L E C T O R

    D.S.DECOD

    - - - - _ -

    D.S.I

    12

    F E E D I N D I V I D U A L D R I V E R S

    BACK ANGLE ADJ UST

    FIG. 1 - DIGITAL FIRING  A N G L E CONTROL SYSTEM BLOCK DIAGRAM

    5 1 5

    t

  • 8/17/2019 Firing Angle Document

    6/226

    PHASOR: A CONTROL COMPUTER METHOD FOR DISPLAYING AMPLIT UDE

    AND PHASE OF RIPPLE COMPONENTS IN THE RING MAGNETVOLTAGE*:

    Lloyd G. Lew is and Anthony D. Valente

    Argonne National Laboratory

    Argonne,

    Abstract

    Deviations of 12- ph ase generator - t ransformer  -

    rect i f ier sys tems f ro m ideal performance resul t in

    the generation of ring mag net ripple a t the fundamen-

    tal and at low harm onic s of the gen era tor frequency.Analysis and display of the amplitude and p hase of

    each of these harmonic components makes it  po ss ib le

    for the sys tem s engineer to minimize the ripple by re -

    adjusting the control system. The Zer o Gradi ent Syn-

    chro tron (ZGS) control comp uter sampl es both the f i l -

    ter ed voltage on the ring magnet and a ref erenc e volt-

    age produced by a phase- lock loop connected to the

    generator bus.

    val of the  ZGS cycle and are then analyzed.

    driven graphic displays plot the raw ripple data, am -

     pl it ud e an d phase bar graphs for each h armoniccorn-

     ponent , reconstructed ri pp le da ta for checking, and

    graphs fo r comparing ripple components under differ -

    ent operating conditions. Numerical information i s

    als o displayed. The PHASOR pr og ra m co rre ct s the phase ang le s for th e phase sh if ts pro duc ed by th e ZGS

     pass ive fil ter. These correc ted angl es in di ca te whlch

    of the 12- ph as e fi r in g angl es should be re ta rded or acl-

    vanced to reduce the ripple.

    Data ar e taken during a selec ted inter -Computer

    Introduction

    Power supplies for synchrotron ring magnets

    usually consist of phase -controlled rectifiers operated

    fro m an ac power l ine or f rom ac generators. The

    number of a c phases is often high to minimize the rip -

     pl e. Th e ri pp le on the magnet is reduced even more

    in some syste ms by inserting a low- pa ss f i l te r be-

    tween the rec tif ier s and the ring;nagnet.

    In a 12- pha se sys tem with a low- pass fi lt er , the

    amplitude of the ri pple component at the fundamental

    frequ ency of the power line ma y exceed the amplitude

    of the 12th harmonic. This i s caused in pa rt by the

    fil ter 's attenuation being la rg er at the higher frequen-

    cy. Additional cause s include er ro r s in the number. OE

    turns on the polyphase tran sfo rme r windings, variation

    in the leakage inductance from one phase winding to

    another, lack of symmet ry in circuit resis tance s, and

    imbalances between phases of the pow er li ne or ge n-

    erator .

    The magnitude of the low frequency ripple c om -

     po ne nts may be redu ced on fl at to p by proper ly re ta rd -

    ing o r advancin g the firi ng ti me of ea ch of the 12 -

     phase rect i f iers wi th respec t to th e others.

    Pr op er adjustment of the fir ing delays ofcach

    of

    the 12  phases i s extremely di ff icul t by t r i a l and e r r o r

    methods and an optimum i s difficult to determineby

    eye. Fo r these reasons, analytical methods ar e re -

    quired.

    A swept frequency spec trum analy zer was used

    ::::Work

     performed under th e auspices of the U. S.

    Atomic Energy Commission.

    Illinois

    in a n attempt to analyze the ripple during a 700 m s

    flattop of the ZGS ring magnet.

    quencies, 50-600 Hz, the sweep ra te for the requ ired

    resolution was so low that an analysis could not be p er -

    for med in the length of the flattop, In addition, no

     phase ang le informat ion i s giv en by su ch an instrument .

    At the low ripple fre -

    The ZGS control computer s yst em was used in

    conjunction with the program PHASOR to analyze the

    ripple and display the results . The pr og ra m i s of the

    interactive type where the computer operator directs

    the logic flow after observi ng the re sul ts of each se c -

    tion of the program.

    Data Input

    The reference for al l phase angles was a square

    wave produced by a phase- lock loop that had one phase

    of the gene rato r voltage a s it s input. This loop acted

    as a f il ter for the distortions in the genera tor voltage

    wave and gave sh arp indications of corresponding

     poi nt s i n each generator vo lt ag e cy cl e. Th e lo op wa s

    adjusted so that the positive -going sq uare wave tra nsi -

    t ions were at 9 ° on the gene rator voltage s ine wave

    and wer e independent of gen erato r voltage and f re-

    quency.

    This squ are wave, shown in Fig.lA,

    was the in-

     put to an an al og integrator that was vo lt ag e limited at

    * 10 V. The waveform fr om this i s shown in Fig. 1B.

    The ri se and fall t imes were adjusted to be slightly

    longer than the control computer data sampling i n t p r -

    Val. In this way, the computer was as su re d of one

    data point on the r l s e even through the compu ter was

    not synchronized to the gener ator.

    The second input to the ZGS control computer

    data station was a voltage cGntaiiiing the magnet r ipp l r

    rnformation. It was obtained by capaci tively coupling

    the voltage which was a cr os s one quadrant of the ring

    magnet to an amplifier with a high common mode r e -

     je ct io n. Zenerdlode

    networks el iminated most of the

    C ~ L component.

    Data Taking

    The manual keyboard at the computer driven

    scope was used to specify the point in the ZGS cycle

    lor the st ar t of data taking (e. g. 250 ms af ter the s tar t

    of flattop). The keyboard was then used to ent er the

    niimber

    of data sa mpl es of the ripple voltage that ar e

    to  be taken.

    fcr al l of the da ta points.

    Z O O

    u s intervals and alternate between the reference

    wave: and the ripple wave.

    The computer then gene rates requisitions

    Measurements a re made at

    When the op era tor pushes e DISPLAY  NEW

    SET key, a new set of d ata is ta ken on the next  ZGS

    cycle.

    screen. Figure  3  top plots the sa mple s taken on the

    r e l e r ence

    wave.

    risin g and falling slopes of the refere nce. Fig1n-e3

     bot tom plo ts the samples take n on the ripple wa ve.

    These data ar e then displayed onthe

    scope

    The points that a re circl ed a re on the

    516

  • 8/17/2019 Firing Angle Document

    7/226

  • 8/17/2019 Firing Angle Document

    8/226

     

    a

    a

     ALPHA SET0 0 0

    0 0 0

    0 0 0

    0 0 0

    0

     AMP.- 2I . I

    I . I.2

    .3

    . II .4

    . I

    .o

    .o

    .o

    .o

    6

    PHASE0

    29.3- I

    11.7

    I

    12.0

    -130. I-145.9- 76.6

    - 82.1138.0

    1 1 1

    47.8

    - 5 .915 6

    Fi g  3.

    dcI234

    56

    789

    I O

    I I

    12

     AMP.0000000

    000000

    RETAINED SETPHASE ALPHA SET

    0 0 00

    0 0 000 0 00

    0 0 0

    00 00

    0

    00

    Display New Set and Deri ved Ripple

    PHASOR

    15 NOV. 1973

    21 :04 :36

    START AT 16 400.0

    300 SAMPLES TAKEN

    2 PERIOD ANALYSIS

    H Z 1 ST THETA

    I 50.15 4.82

    2 50.10 2.28

    Three hundred data sample s were taken and two p e r i -

    ods we re analyzed. The first peri od had a fr equ en cy

    of 50.15 Hz, while the second had 50.10 Hz. This dif -

    fer enc e is caused by the slowing down of the ge ner ato r

    during the ZGS cycle. The angle8d for the f i rs t data

     po in t in each cyc le wa s 4.82O and 2 . 2 7O .

    The top graph gives the recon struct ed r ipple

    The FIT

    data that was calculated fr om the amplitudes and

     phases of th e derived ri pp le co mp on en ts .

    number is also given.

    4 , as wel l as in Fig. 3, for identification purp oses and

     because ma ny people get a be tter "feel" for the data

    from an analog type display.

    This graph is included in Fig.

    The upper bar graph of Fig. 4 plots the dc com-

     po ne nt and th e amp li tu de s of th e f i r s t 12 harmonics of

    the ge nerato r frequency.

     plo t is shown above and to the le ft of the b a r graph.

    The sc ale factor in volts pe r inch is changeable at will

    through the scope keyboard. These amplitudes ar e for

    the filtered voltage applied to the ring magnet.

    The vertical scale for thi s

    The lower bar graph of Fig. 4 plots the phaseangles x for the fi rs t 12 harmonics. The range of

    angles isrfixed a t t 180° to -180° in a ccordance with

    the restriction on x r in equation (8).

    have been corrected for the phase shifts produced by

    the passive filter of Fig. 2.  They are , the refore, the

     phase an gle s of th e harmonic co mp on en ts at the outputof the rect ifie rs. This i s done to make it  poss ible to

    deter mine which rectifie r f ir ing angles should be r e -

    tarded o r advanced to reduce the amplitudes of the rip -

     ple co mp on en ts .

    These angles

    The lower part of Fig. 4 lists sev era l set s of

    numer ic data. The column in the center l ists dc and

     phases 1-12. The two columns to the left of center

    give the amplitudes in volts and the phase angles in

    degrees for the 12 phases and the am pl itu de of th e dc

    component. These a re the values used to calculate

    the deriv ed rippl e plotted a t the top of Fig. 4.

    The table of numbers at the lower left re cor ds

    the alpha angle setting s for the 12 pha ses and in addi-

    tion, the full rectify setting. The se ar e the settin gs

    of the ZCS control system that produced the ripple r e -

    const ructe d a t the top of Fig. 4. The numbers ar e in

    octal code and represe nt deviations f rom the ideal uni-

    fo rm spacing of rec tifi er firing angles. These num -

     b e r s a r e recorded in th e exact format in wh ich th ey

    appea r on the con trol panel of the digital firing angle

    control system.

    These numb ers ar e ente red through the use of

    theENTER/MODIFY

    ALPHA SET subroutine, and

    can be used by the o perat or when desired.

    Retained Set

    The opera tor may save a se t of re sul ts , such as

    that presented in Fig. 4, by pushing the button labelled

    RETAIN THIS PHASOR SET. This activates a sub-

    routine that stor es the information in computer me mo-

    ry f or c omparison with future data.

    The ope rat or may then analyze a new se t of data

    and call for GRAPH PHASOR SET. The re su lt i s the

    gener ation of a display such as shown in Fig.  5 .

    518

  • 8/17/2019 Firing Angle Document

    9/226

    1.00

     AMP. MAG.

    P. s.

    I

    I I

    PHASOR

    15 NOV. 1973

    21 :04: 36

    START AT16

    400.0

    300 SAMPLES TAKEN

    2 PERIOD  ANALYSIS

    HZ 1 ST THETA

    I 50.15 4.82

     2 50.10 2.28

    RETAINED SET-180

     ALPHA SET  AMP. PHASE AMP. PHASE ALPHA SET

    0 0 0 0n

    077

    37

    76

    36

    472

    36

    76

    36

    74

    77

    36

    77

    36

    - . 2

    I I

    I . I

    - 2

    3

    . I

    1.4

    . I

    o

    o

    o

    o

    . 6

    029.3

    I 11.7

    - I 12.0- I 30.-145. 9- 76. 6

    -82.1138.01 1 . 1

    47. 8- 5. 9

    15 .6

    dcI

    3456

    789IO

    I 1

    12

    F i g . 4 Graph

    The numeri c informati on at the top right of Fig.

    5 i s s imi lar to that of F ig . 4 except i t i s for the new

    s e t of data.

    number are aIso for the new set of data.

    The derived ripple curve and the FIT

    The ba r graph for the amplitude now has t wo

    l ines a t each harmonic locstion.

     pa i r gi ve s th e am pl it ud e of th at harmonic co mponen t

    in the new set of data, while the r ight l ine in each pair

    gives the amplitude of that harmonic component in the

    reta ined set . In this way, the amplitudes may be com -

     pa r ed visually t o determine the effect of the changes

    in the f ir ing angles.

    The lef t l ine in each

    The bar graph for the phases also has a pair of

    l ines a t each harmonic location. The left l ine in each

     p a i r gives th e phase an gl e for that harmonic compo-

    nent in the new se t of data, while the righ t line gives

    the p h ase angle of that harmonic component in the re-

    tained set .

    The num eri c information, at the bottom of F i g . 5

    on the r i ght, gives the amplitude and phase angles fo r

    the ret ained se t and in addit ion the alpha s et that pro -

    duced them, The numeric information,at

    the bottomon the le f t , gives the amplitude and phase angles for

    the new set of data and the corresponding alpha set.

    output

    The p r ogr am PHASOR is an in teract ive one so

    that most of the output is through visual observation of

    the computer driven scope display. Seve ral options in

    the interac tion can produce copies of the scope display

    on8%

    x11

     ph ot og ra ph ic paper. The se include:

    V

    00

    000

    000

    000

    PHASOR Set

    0

    0

    0

    0

    0

    0

    COPY  NEW SET - - similar to Fig. 3,COPY LEFT SHIFTED - - that portion of F i g .  3that was analyzed,

    COPY DERIVED - - derived ripple,COPY PHASOR iALPHA SET - - simi lar toF i g . 4, 5.

    The 'hard -copy" unit ca n produce a pr int in about ten

    seconds.  No l ine pri nter output is provided.

    Calibration

    The effects produced by changes in rect if ie r f ir -

    ing angle were experimentally investigated. Fo r ex-

    ample, the firing angle of phase nu mber 1 was ad -

    vanced s everal e le ct r ical degrees to produce a larg e

    ripple on flattop.

    the amplitude and phase of the ha rmo nic c omponents

    of the ripple thus produced.

     peat ed for seve ra l co mb in at io ns of cha ng e s in f ir ing

    angles of selected rectif iers.

    PHASOR was then used to meas ure

    This procedur e was r e -

    The calibration data were useful i n predicting

    which of the 12 rect ifie r groups should have the ir fir -

    ing angles altered to reduce a given obse rved r ipple.

    Discus sion

    Analyses of r ipple data wer e made fo r a variety

    of firing angle combinations during the calibration runs

    and for many actual operating conditions while ripple

    reduction adjustments wer e made. In all cases, the

     ba r graphs s imi lar to Figs. 4 and 5 showed ve ry s mall

    or no amplitudes fo r t he5th, 7th

    8th

    9th, IOth,

    and

    1 l th harmonic s. The phase angles computed fo r these

    5 19

  • 8/17/2019 Firing Angle Document

    10/226

    PHASOR

    15 NOV. 1973

    23:25 : 16

    START AT 16 600 O

    500 SAMPLES TAKEN

    2 PERIOD  ANALYSIS

     AM

    HZ ST

    THETA

    I48. 82 4 58

    P.

    s. 2 48. 76 3. 27

    -180 RETAINED SET ALPHA SET AMP. PHASE AMP. PHASE ALPHA SET

    77 32 77

    32 76 32

    101 32 77

    32 76 32

    473

    -- 6

    3

    3

    .2

    .2

    .o

    . I

    .o

    o

    o

    o

    o

    , 2

    026. 4170.8

    - 96. 2- 117.8

    - 146.0- 78. 3- 63. 7- 166.4- 30.- 68. 0

    78. I, 42. 0

    dcI23456

    7891

    I 1

    12

      \ o

    . 3

    . I

    . I

    . I

    . I

    2. 0

    I

    . I

    .o

    o

    o

    . 7

    0- 106.3

    43. I- 153.2- 158.2- 73. 6- 77.1

    -90. 2

    - 153.7-131. 3- 136.6136.0

    I38 3

    77

    46

    76

    46

    470

    50

    76

    47

    74

    77

    47

    77

    46

    F i g . 5 Graph PHASOR Set With Retained Set for Comparison

    har moni c components varied widely fro m one data s et

    to the next which leads us to the conslusion that these

    harmonic components a r e largely the re sult of "noise"

    or inaccuracies in the input data.

    We we re not able to find a combination of rec ti -

    f ier f ir ing angles that produced large or significant

    amounts of 5th, 7th, 8th, 9th, loth, and I l th, harmon -

    ics. We therefore have amplitude and phase mea -a u r e m e n t s at harmonic numbers l , 2, 3, 4, 6, and 12

    for a total of 12 measurements .

    The control s ys te m has adjust ments fo r each of

    the 12 phases bu t only 11 of these a r e indepe nden t v a r -iables as fa r as r ipple i s concerned. The 12th phase

    control and the "full rectify" control adjust the slope

    of the f lat top. This slope is adjusted to z ero before

    the r ipple measu reme nts ar e made.

    that would compute new firing angle settings fr om theripple component amplitudes and phas e angles. Ther e

    appear to be enough measur ements to per mit the solv-

    ing of a se t of 12 equations.

    for this was developed in the ver y l imited effort ex- pended .

     ple may be re du ce d one co mpon en t a t a ti me .

    the procedu re used.

    Some thought was given to writing a program

     No ad eq ua te algori thm

    Inspection of the problem indicates that the r ip -This i s

     A  per fect recti f ier sys tem will pr od uc e on ly th e

    12th harmoni c, ther efor e this cannot be elimina ted oreffectiv ely reduce d by adjusting firi ng angles. On the

    other hand, the 6th harmoni c can be incr eas ed o r de -

    cre as ed in only one way. That is, all even number ed

     phases should be adva nced an eq ua l amo unt and a ll qddnumbered phases retarded by the same amount. This

    method reduced the 6th harmoni c amplitude to a mini -mu m but would not make it vanish. The data indicate

    that the phase shift between our delta and wye conne ct-

    ed transformers is only 28' rather than the theoretical

    30°

    The fir st harmonic amplitude may be reduc ed by

    changing al l of the 12 angles. In thi s case, the

    changes a re dis tributed sinusoidally with the peak of

    the distribution determined by the phase angle of the1s t harmonic of the ripple. The 2nd ha rmo nic may be

    reduced  by a si milar procedure except that the sinus -

    oid for the distrib ution is the 2nd harmoni c.

    This progr am was used successfully to reduce

    the flattop ripple a t the ZGS with the distr ibutions foralpha angle changes determined manually. It is hoped

    that additional subrou tines can soon be added to pe r -

    mi t the compu ter to calculate the alpha sett ings that

    will minimize the ripple.

    5 20

  • 8/17/2019 Firing Angle Document

    11/226

  • 8/17/2019 Firing Angle Document

    12/226

  • 8/17/2019 Firing Angle Document

    13/226

    LINK TO SDS925 IN MAIN CONTROL

    DECTAPES POP-3

    KLYSTRON

    MAINTENANCE

    GROUP

    CCR CONTROLS

    CCR ANALOGS

    LINK TO I B M 360/370 COMPLEX

    KLYSTRON GALLERY

    CONTROLTO

    PULSED PHASECLOSURE,

    GUN MOD A

    GUN MOD B

    CONTROL TO

    PULSEDENERFY

    VERNIER

    Fig. 2

    5 2 3

  • 8/17/2019 Firing Angle Document

    14/226

    THE CPS IMPROVEMENTS 1965-1973

    AN ASSESSMENT

    THE CPS

    CERN, Geneva,

    Summary

    I n 1965, p lans were made t o in cre as e t he beam

    in te ns it y delive red by the CPS by a f ac t o r o f t e n o r

    more. The f i r s t s ta ge, involving a new power supply fo r

    the main magnet and more than doubli ng th e c ycle repe-

    t i t i on r a t e , was completedi n

    1968. In the second

    stage, which i s now es se nt ia l l y complete, the major

    i tems was t he cons tru cti on of an 800 MeV slow- cycling

     b oos t er i n j e c t o r . Many o t h e r mo di f i ca t i ons we re i nc l u-

    ded. The Linac cu rre nt had to be incre ased by an o rder

    of magnitude t o suppl y the Bo oste r, and th e highe r beam

    in te ns i t ie s r eq u i red a more powerfu l RF accele ra t i ng

    system. Besides the 800 MeV inj ect ion e lements , quadru- po l e l e n s e s were i n s t a l l e d t o avo id l o n g i t u d i n a l d i l u-

    t i o n a t t r a n s i t i o n , andm u l t i p o l e s

    t o co u n t e r ac t i n s t a-

     b i l i t i e s . I n ad d i t i o n , t h e chamber vacuum was improve d

     by a f a c t o r of t en , s h i e l d i n g and r ad i a t i o n r e s i s t an c e

    incr ease d where necessary, and beam-equipment inter -

    act ion r educed . Adequate ins t rumenta t ion and con t ro l

    f a c i l i t i e s h ad t o b e pr o vi d ed , and t h e e f f i c i e n cy of

    fa s t and s low ex t r a c t i on sys tems improved . Per tu rbat ionsdue to v ar i ous co ll ec t i ve phenomena had t o beovercome.

    The performance ob ta ined dur ing the f i r s t phys ics

    runs i s r epor ted .

    1. I n t r o d u c t i o n

    Af te r a few yea rs of op era ti on, th e CPS had reached

    a maximum intensity of 1Tp/pulse*

    and,i n

    view of space-

    charge ef f ec ts , a fu r t her f a c to r o f two seemed the mst

    th at could be expected. The motor  -genera to r s e t supp ly-

    ing th e main magnet l imi te d t he du ty cycle to a t yp ic a l

    value of 10%a t 19 GeV/c (200 ms f l a t- to p with a 2 sr e pe t i t i on t ime) and even less a t h i g h e r e n e r g i es (100

    m s f l a t- top every 3 s a t 24 GeV/c). The exper imental

    f a c i l i t i e s co mp ri sed two h a l l s , w i t h a t o t a l a r ea of4000 m2, f ed by i n t e r n a l t a r g e t s and a s i n g l e f a s t

    ex t r ac t i o n ch an n e l .

    I n 1964, an improvement programme w a s launched withthe ob j ect o f increas i ng t he average acc ele ra te d beam

    i n t en s i t y by a f ac t o r of 10 t o 15'. This was to be

    achievedi n

    two stages :

    i )

    i i )

    r a i s i n g t h e r e p e t i t i o n r a t e t o g a i n a f a c t o r o f 2

    o r 3 , depending on energy and flat- top leng th , by

    constructing a new magnet power supply;

    r a i s i n g t h e i n j ec t i o n ene rg y ( f ac t o r 5 i n in ten-

    s i t y per pul se) . Two possi ble methods were inves-

    t i g a t e di n

    d e t a i l ; a 200 MeVLinac'

    and a 600 MeV

    twin s low cycl ing boos ter s ynchro t ron 3 , A compara-t i v e s tudy4 showed t ha t alth ough bo th schemes could

     pro du ce t h e r equ i red i n t e n s i t y i n c r ea s e , t h e h igher

    space- charge l i m i t of t he boos ter a l lowed a g reater

     p o t e n t i a l f o r f u t u r e de ve lo pm en t. Fu r t he r s t u d i e s

    f i n a l l y l e d t o a n 800 MeV boost er wit h 4 super  -

     po se dr ings ' .

    I n ad d i t i o n t o t h e new i n j e c t o r , t h i s

     p a r t of t h e programme inv ol ved a number of comple-

    mentary improvements t o t he 50 MeV Linac and t he

    main p ro ton synchro t ron , which ar e deta i le dbelow.

    * Tp = 10  p rotons (Terapro ton) .

    STAFF

    Switzer land

    'The programme was balanced by a comparable expan-

    s ion of exper imenta l ar eas and f a c i l i t i es (West Hal l

    wi th t h eOmega

    spec trom ete r and t he Big European Bubble

    Chamber(BEBC)

    a nd n e u t r i n o f a c i l i t y w i thGargamel le) ,

    which took place simultaneously.

    2 . Main Magnet Power Supply

    The new power supply6 was designed to more tha n

    double the du ty cycle .

    The magnet vo lt ag e was incr ea sed from 5.4 to 108

     V,

    which approx imate ly halved t he r i s e and f a l l t imes

    of t h e mag ne t ic f i e l d . I n o r d e r t o av o i d i n c r eas in g

    the maximum vol ta ge t o ground, l im ite d by t he winding

    i n s u l a t i o n , a se co nd r e c t i f i e r s e t was i n s e r t e d i n t h e

    middle of the magnet c i r c u i t , w i th the ou tpu t vo l tages

    of bo th r ec t i f i er se t s symmetr ica l to g round . Keep ing

    the same maximum current (6400 A) as b e f o r e , t h e h i gh e r

    magnet voltage implies a higher peak power, namely

    95 MVAi n

     p l a c e of 46 MVA.

    Th e i n c r eas e i n d ut y cy c l e r a i s e s t h e av e rag e

     power and t h e l o s s e s i n t h e magnet . Mean power r o s e

    from 18 to 46 MVA and power dissipation i n the magnet

    f rom 1.6 to 3 MW. The magnet cool ing system had t o be

    adapted to the new cond it io ns.

    The new power sup ply has a more fl ex i bl e co nt ro l

    system, which provides a wider cho ice of magnet cyc les ,

    i n c l u d i n g t h e p o s s i b i l i t y o f two " f l a t- tops" a t d i ff e-

    r en t en e r g i e s . T h e d i s t r i b u t i o n of acce l e r a t ed pr o t on s

     be tw een u s e r s i s thereby simplified; a common example

    of such a complex cy cl e i s : acce l e r a t i o n t o 2 6 .3 GeV/c,e j ec t i o n o f 4  bunches t o ISR , d ece l e r a t i o n t o 2 4 GeV/c,

    t h en sl ow ex t r ac t i o n s h a r ed w it h an i n t e r n a l t a r g e t o v e r

    a 400 ms  b u r s t .

    The reduction obtainedi n

    the r ipp le vo l tage (20 V

     peak t o peak i ns t ead of 100) and the bet t er r eproduci-

     b i l i t y of t h e magnet f i e l d (4 a r e important fac-

    to r s i n p roducing a sa t i s f ac t o ry s low ex t r ac te d beam.

    Re li ab il i t y has proved t o be very good (2 h down-

    t ime per 1000 hours o f op era t ion i n 1973).

    An important addi t io nal imp li cat ion was the need

    to in crea se the mean power and the r a te o f r i s e of the

    aux i l i ary power sup pl ie s . These modi f ica t i ons were

    car r ie d ou t p rogress ively , and s t i l l cont inue today , as

    each aux i l iary sub-system proves t o be a bott le- neck

    f o r an i n c r eas e i n t h e m achi ne o v e r a l l e f f i c i en c y and

    h as , i n i t s tur n, to be matched t o t he main power sup ply

    cap ab i l i t y o r modi fied to improve th e co n t r o l o f beamdynamics ef f ec ts .

    3. Linac

    Since the o r i g i na l 50 MeV Linac had a l so t o serve

    as i n j ec to r fo r the new Boos ter synchro t ron , i t s  per -

    formance require d su bs ta nt ia l improvement. This involved

    i n c r eas i n g t h e p u l s e l en g t h t o 100 u s , f o rm u l t i t u r n

    i n j ec t i o n up t o 1 5 t u r n s ; m ore cu r r en t (100 mA w i t h i n

    a spe ci f i ed em i t tance and energy spread (30 I mm mrad

    5 2 4

  • 8/17/2019 Firing Angle Document

    15/226

    and 2 150keV);

    and a h i g h e r r e p e t i t i o n ra te ( 2 s - ’so t h a t a l t e r n a t e p u l s e s c ou ld b e sent down a  p a i r ofnew beam measur ing l in es . Besides i ncre asi ng t he duty

    cyc le of sev era l components ( i on source,pre-acceleratn ,

     pu lsed qua dr up ole s , e t c . ) , a major problem was ca vi ty

     beam l oad ing and i t s compensation. This was ta ckle d by

    i n s t a l l i n g f o r e a c h of t h e t h r e e t a n k s an a d d i t i o n a lRF am pl if ie r usin g more powerful tubes . However, t h e

     beam l oad ing co mp en sa ti on i s v er y d i f f i c u l t t o a d j u s t

    w i t h a de q ua t e s t a b i l i t y f o r l o ng p u l s e s a t  pe ak i n t e n-

    s i t y , a n di t

    has been necessary t o l i m i t the beam t o

    50mA,

    toach i eve s t a b l e opera t i on and r ep roduci bl e

     beam q u a l i t y .

    4 . 800 MeV In j ec t i o n Syst em

    A f t e r i n j e c t i o n a t 50 MeV from the L inac and acce-l e r a t i o n i n t h e B o o st e r , t h e 800 MeV  beam i s i n j e c t e di n t o t h e PS over one turn , and the bunches ar e t rapped

    d i r e c t l y i n synchron i zed bucket s . The i n j ec t i o n sys t em

    t oget her wi t h t he assoc i a t ed beam observa t i on dev i ces

    and low energy magnet ic corr ec t io ns i s descr i bed else-where

    7. An incoming beam wit hin t he sp ec if ie d charac-

    teris tics is t r ap p ed w i t h b a r e l y d e t e c t a b l e l o s s e s .

    5. Accelerat ing System

    The r educt i o n of t he magnet ic f i e l d r ise t i m e a l s o

    i mpl i es an i ncre ase o f t he energy ga i n per t u rn , andi t was i n i t i a l l y in te nd ed t o a c h ie v e t h i s w it h a s e t of

    t h ree add i t i ona l nar row- band se co nd -harmonic c avi t ies’ .

    These would have been switched on 80m s

    a f t e r i n j e c t i o n

    when a remaining frequency swing of only 10%was needed

    t o r each t op energy. Al though p ro t o t ype un i t s were deve-l oped and suc ces s fu l l y t es t ed wi t h t he beam, t he p ro-

     j e c t was dr oppe d when, dur ing the second s t ag e of t he

    improvement programme, i t  became c l e a r t h a t t he wh ol e

    RF sys t em wou ld have t o be r e bu i l t .

    An add i t i ona l r equ i r emen t w a s t h e d e s i r e t o b e

    a b l e t o t r a p t h e 20 Booster bunches i n 10 of the PS

     bucke ts a s a means of increasing the ISR l umi nos i t y .

    A f t e r i n v e s t i g a t i n g se v e r a l a l t e r n a t i v e sg

    , i t was de-

    c i d e d t o b u i l d a new accelerat ion system capable of

    c op in g b ot h w i t h t h e f a s t e r r a t e o f rise  br oug ht abo ut by t h e new magnet power su pp ly ( s e c t i o n 2) and the

    h i gher beam i n t ens i t y .

    The new RFsystemio

    compr i ses t en un i t s spaced

    around theVing.

    Each un i t has two i de n t i ca lf e r r i t e -

    tuned cav i ty res onat ors , working over the f requency

    range  2 . 5 - 10 MHz,  p rovi di ng a  pe ak a c c e l e r a t i n g vo l-tage of 2 x 10 kV. The av ai l abl e power output i s 90 kW

     pe r u n i t , wh ic h i s adequate, under the worst condi t ions ,

    f o r a n i n t e n s i t y of 1 . 5 Tp per PS  bucket . The p a i r ofr e s o n a t o r s i s connected

    i n

     p a r a l l e l , which s i m p l i f i e s

    t un i ng cu r r en t co n t ro l and a l l ows a l a rg er t o l e rance

    fo r t he power t ube ou t pu t capac i t ance . The acc e l er a t i n g

    gaps are s h o r t- ci r cu i te d by vacuum re lay s a t the endof t he acce l e ra t i on phase of t he cyc l e , so t h a t t h e yshow a low impedance t o t he beam and re- bunc hi ng i s

    avoided.

    The power amplifier i s a n e u t r a l i z e d 70 kW t e t r o d e ,

    operat ing wi th grounded cathodei n

    c l a s s B . It i shoused

    i n

    t he c av i t y compart ment t o p rovi de i s o l a t i o n

     be tw ee n t h e vary ing c a v i t y im pe da nc e and t h e f eed ca bl e,

    andi s . b u i l t

    as a  p lu g- in assembly fo r r apid exchange;

    t h e rest of the system i s i n t h e c e n t r e of t h e r i n g

    where i t i s always accessible. A l l su b- assemblies are

    e a s i l y i n t e r ch a n g ea b l e a n d, a p a r t f ro m t h e f i n a l st a g e s,

    f u l l y t r a n s i s to r i z e d .

    The beam con t ro l system has a l s o been replaced to

    meet t he more s t r i nge n t opera t i ona l r equ i r emen t s ( au t o-

    matic  ph as e programme , ada pt ed pi ck -u p s e n s i t i v i t y ,

     beam-derived freq uency programme, sync hron iza tion with

    t he Boos t er , s i n g l e bunch acc e l er a t i on ) .

    6 . Vacuum System

    It has long been known th at re sid ual gas could be

    a sou rce o f beam i ns t a b i l i t i es , and t herefo re set alower l i m i t on ul t imate performance than s imple gas

    sc a t t e r i ng e f f e c t s wou ld i nd i ca t e . Fu rt hermore , t he

     p rospe c t of i nc re a s e d r a d i a t i o n dam age , an d t he re f o r ereduced r e l i a b i l i t y o f vacuum se a l s made o f o rga n i c

    m a t e r i a l s , was a n a d d i t i o n a l r e a s on f o r r e d e s i gn i n g t h evacuum sys

    eml

    .

    The 8 2 o i l d i f fu si on pump groups have been replaced

     by abo ut 130 s pu t t e r - ion pumps (200 o r 400 2 1s  pumping

    speed according t o the local load) and 14 turbomolecu-l a r pump groups ( 260 k / s ) f o r pumping down to th e l od5Torr range. A l l the rubber se al s have been replac ed by

    metall ic typ es , and new bel lows- s e al e d v a l v es i n s t a l l e d .

    The completionof

    t h i s p ro j e c t has r educed t he mean

     p re s s u r e by a f a c t o r of t e n , nam ely fr om 2-3 lob6 Torr

    down to 2-3loe7

    Torr. Recent beam dynamicsexperiment&’

    have shown tha t a t t h e i n t e n s i t y l e v e l o f 2 Tp/p a

    re t u rn t o t he o l d p res su re l eve l i mmed ia t el y lowered t hei n t e n s i t y by 50%. It shou l d a l so be no ted t h a t , i n s p i t eof t he l ong er pump down time, th e t i m e l o s t du e t ovacuum system f a u l t s has gone down from 20 h t o 10 h per

    1000 h o f opera t i on .

    7 . Extract ion Systems

    Ef f i c i en t shar i ng o f acce l e ra t ed p ro t ons be tween

    an inc re as in g number of us er s demanded th e development

    of new ex tr ac ti on systems and components. Li mit ati on of

    t h e i n t e n s i t y p e r m i s s i b l e on i n t e r n a l t a rg e t s , t o avoi d

     bot h overhea t i ng of the t a r g e t head andr a d i a t i c n

    damage

    to adjacent components , p laces a  premium upon metho ds

    of s low ext ra ct i on which can s imultaneously sha re th e

     beam wi thou t un du ly i n c re a s i n g l o s s e s . A resonant ext rac-

    t i o n sys tem o f t h i s k i nd i s now i n o p era t io n 1 3 . Gene-

    r a l l y , t h e u s e o f h i g h e r i n t e n s i t i e s i m p li e s t h e n ec es-

    s i t y fo r i mprovement s i n ex t r ac t i on e f f i c i e ncy .

    This problem has been t ack l ed i n two ways; f i r s t l y ,

     by t h e de ve lopm en t of e x t r a c t i o n sys te m compone nts wi th

    wider ape r tur es f or the same def l ec t in g power; secondly ,

     by t h e u se o f dev ices ah ea d of t he e x t r a c t o r magnet

    which enhance the se par at i on of the protons- to- be- ejected

    wh i l s t providi ng the minimum obst r uct ion i n th e machine

    ape r t u re ( sep t a) . B r i e f de scr i p t i on s o f t h ese component s

    fo l l ow.

    i A Fu l l Aper t u re Ki cker FAK), t o r e p l a c e t h e p l un-

    g i ng par t i a l aper t u re dev i ces wh i ch cou l d on l y

    ha ndl e beam of pr e- boos ter di me ns io ns .

    The new system

    si on l i ne magnet modules of 15 Ohm c h a r a c t e r i s t i cimpedance. With a  pu l s e v o l t a g e of 40 kV 80 kV

    on t h e p u l s e g e n e r a t o r ) , t h e f l u x d e n si t y i n t h e

    53 mm gap i s 630 Gauss and t he t o t a l k i ck s t r e ng t ha t 26 GeV/c g i v e s a displacement of 19

    nun

    a t t h e

    septum ext ractor magnet l oca t i on wi t h a 55 ns (10t o 90%) r i se t i m e . These parameters have been

    chosen t ak i ng i n t o cons i dera t i on t he expec t ed lar -

    ger t rans vers e emi t ta nce and the longe r bunch

    leng th of the h igh in te ns i t y beam. The system wascommissioned i n 1973 and has performed w e l l up to

    c o n s i s t s of 9 f e r r i t e transmis-

    5 2 5

  • 8/17/2019 Firing Angle Document

    16/226

  • 8/17/2019 Firing Angle Document

    17/226

  • 8/17/2019 Firing Angle Document

    18/226

    18. Keyser R.L., "The development of la rg e aper tu re

    septum magnets fo r slow e j e c t i o n" , CERN i n t e r n a l

    r e p o r t MPS/SI/Int. MAE 72-5.

    19. B e r t o l o t t o R . , "P r o p o si t i o n p ou r l a c o n s t r u c t i o n

    de nouveaux aimants septum pour l ' l j e c t i o n r a pi -

    de", CERN i n t e r n a l n o t e MPSfSRINote 72-4.

    20. Hardt W . , "Gamma-transition- jump scheme of the

    CPS , Proc. of th is Conference .

    21. -Gareyte J ., Sacherer F ., "Head - t a i l t ype ins a -b i l i t i e s i n t he CERN PS and Booster " , Proc. of

    this Conference.

    t i e s - Thaory", Proc. of t hi s Conference.

    l i n e a r s p a c e- charge for ces and octup oles" , Proc.

    of th is Conference.

    -Sacherer F., "Transverse bunched beam in st ab il i -

    -Mghl D . , S c h h a u e r H . , "Landau damping by non-

    22. Gyr M . , "Studies on the PS o c tu p o les , CERN i n t e r  -

    na l note MPS/SR/Note 71-16/Corr.

    23. Boussard D . , Gareyte J . , "Damping of th e lo ng it u-

    d i n a l i n s t a b i l i t i e s i n t h e CERN PS , Proc. of

    8t h In t . Conf. on High Energy Accel. , CERB, 1971,

     pp . 317-320.

    24. -M6hl D . , "Equipment responsible for t ransverse beam i n s t a b i l i t y i n t h e PS", CERN i n t e r n a l n o t e

    MPS/DL/Note 74-6.

    - F a l t e n s H, U m s t i t t e r H . H . , "Longi tudinal coupl ings

    impedances at insulated PS vacuum chamber flanges" ,

    CERN i n t e r n a l n o t e MPS/LIN/Note 74-5.

    25.

     2 6 .

    27.

    28.

    29.

    30.

    31 .

    A g o r i t s a s A. e t a l , 'Techniques fo r measur ing beam

     parameters" , Proc. of 2nd USSR  Nat ional Co nf . on

    Part. Accel., Moscow, 1970.

    Carpenter B. , "Experiments with interact ive con-

    t r o l s o ft w ar e a t t h e CERN PS", Proc. of I E E Conf.

    on Software for Contro l , Warwick, England, 1973.

    Madsen J . H . B . , "The expan sion of t he PS c o n t r o l

    system", CERN i n t e r n a l n o t e MPS/CO/Note 72-42.

    Gouiran R . , "La r a d i o a c t i v i t s de l ' a i m a n t du CPS

    e t s o n i n fl u e n c e s u r l a maintenance de l 'anneau -S t a t i s t i q u e s e t p r l v i s i o n s , CERN i n t e r n a l r e p o r t

    CERN/MPS/SR

    73-5.

    Coet P . , "The work i n h i g h l y r a d i o a c t i v e e x p e r i-

    mental are as of t he PS", CERN i n t e r n a l r e p o r t

    CERN/MPS/MU-EPf 72-2.

    Ste in b ach Ch., "Beam dumping, the s i t ua t i on i n

    January 1974 , CERN i n t e r n a l n o t e MPS/OP/Note

    74-4.

    Hoffmann L., " E as t h a l l t r a n s fo r m a ti o n p r o j e c t" ,CERN i n t e r n a l n o t e MPS/MU/Note EPf73-12IRev.

    5 2 8

  • 8/17/2019 Firing Angle Document

    19/226

    SIMULTANEOUS STEERING OF H N D

    H- BEAMS AT LAMPF*

    by

    K. R. Crandall and W. E . J u l e

    Uni ver s i t y of Cal i f o rn i a

    Los Alamos S ci en t i f i c LaboratoryLos Alamos,

    Summary

    Based on an aly sis and computer s imul at io ns, i t has become apparen t t h a t two k inds of doubl e t s t e e r i n g aren e c e s sa r y f o r l i n e a r a c c e l e r a t i o n of

    H

    andH

     beams

    s i mul t aneous l y . The r esp ec t i ve advan tages o f s t eer i ng by e l e c t r i c a l l y " t i l t i n g" and "d i sp l ac i ng" a system ofd o u b l e t s are d e s c r i b e d . S i n g l e d i p o l e s t e e r i n g f o r si-

    multaneous beams and the e ff ec t of t he e ar th ' s magnet icf ield on opposi tely charged beams is a l so cons i dered .

    F i n a l l y , t h e i mp lement a ti on of this k i nd of s t e e r i n g a t

    LAMPF is d i scussed .

    Theory

    Conven t i ona l s t eer i n g superposes a d i po l e f i e l d t o

    c o u n t e r a c t any mechanical misalignment of a quadrupole.

    I f o n e is deal i ng wi t h a s i n g l e qu a dr u po l e, t h i s steer -i n g f i e l d c a n b e a p pl i e d i n a ma nner w hi ch e l e c t r i c a l l y

    moves th e magnetic cen ter of the quadrupole f rom i tsm e c ha n ic a l c e n t e r t o t h e c o r r e c t de s i g n p o s i t i o n . I n

    F i g . 1 a r e shown for ce versu s d isplacement d iagrams fo r

    focu ssin g and defocussi ng quads.a d i s t ance , x , f rom t he quad cen t er woul d f e e l a f o r c e ,f,, as def i ned by t he so l i d l i n e .

    superposed on t h e qua d f i e l d s im p ly t r a n s l a t e s t h e

    so l i d l i ne t o t he dashed l i ne , and moves t he magneti cc e n t e r of t h e quad t o po i n t B . This type of d isp lace-ment works fo r beams of opp osi te cha rge, s in ce , whi le

    a quadrupole changes from focussing F) t o d e f o cu s s i ng

    (D) when th e si gn of th e beam changes, the s t ee r i ng

    f i e l d a l s o r e v e r s e s d i r e c t i o n ,more complicated when one considers two quadrupoles

     pos i t ioned c l o s e toge t her which act as a doublet . I n

    the s tandard approach, a series s t e e ri n g c o i l i s woundon the two quadrupoles and the same stee r in g f ie ld isap pli ed t o both magnets. From th e above argument on

    how t o e l e c t r i c a l l y d i s p l a c e a quadrupole ' s magnet icc e n t e r , o n e m i gh t c on c lu d e t h a t e q u a l f i e l d s a p p l i e d i nt h i s way wou ld e l e c t r i ca l l y d i sp l ace t he doub l e t (bo t h

    magnets are housed i n t he same c a s e ) . F i g . 2  showst ha t t h i s t ype of s t ee r i ng does no t p roduce t he des i r ede f f e c t .

    A  p a r t i c l e d i s p l a c e d

    A s t e e r i n g f i e l d

    The s i t ua t i on becomes

    D i p ol e s t e e r i n g f i e l d s a p p l ie d i n t h i s way w i l le l e c t r i c a l l y "tilt" t h e d o u b le t , n o t d i s p l a c e i t .

    kind of s te er in g, which w e w i l l c a l l " t i l t e d d o ub le ts t eer i ng ' ' (TD S) , works w e l l f o r a si ng le beam, butF i g .   2 shows th at op posi t ely charged beams f e e l equal

    a nd o p p o s i t e f o r c e s i n t r a v e r s i n g a t i l t e d d o u b l e t; o n e

     beam would b e s t e e r e d on to t h e ma ch ine a x i s wh i l e t h eo s c i l l a t i o n a m p l i t u d e of the o ther beam is i ncreased .

    Th i s d i f f i c u l t y can be overcome i n t he fo l l owi ng

    T h i s

    manner.

    i t y and consider a doublet which is FD f o r a p o s i t i v e l y

    charged beam.

    are shown i n  F i g . 3. displacement of th e doublet f rom A t o B r e q u i r e s t h a t

    equal and oppos i t e fo rce s be app l i ed t o t he quadrupo l es .

    Wecan accompl ish th i s by applying equal and opposi te

    Cons i der on l y t h e ho r i zon t a l p l ane f o r s i mp li c-

    The for ce diagrams for th is ar rangement

    It is e v id e nt t h a t a n e l e c t r i c a l

    *Work performed under th e aus pic es of th e U. S. Atomic

    Energy Commission.

    New Mexico

    s t e e r i n g f i e l d s t o t h e e nd s of t he doub l e t . Th i s is

    c a l l e d "d i sp l aced doub l e t s t ee r i ng" (DDS) .

     Now cons ider t h e f o r c e di agr am s (Fig. 4 ) f o r anega t ivel y charged beam. The f i r s t quadrupole i s now

    D and th e second quadrup ole is F and t h e s t e er i n g f i e l d s

    r e v e r s e t h e i r s i g n s . So w e s e e t h a t DDS e l e c t r i c a l l yco r r ec t s fo r mi sa l ignment s o f t he doub le t f o r nega t i ve l ya s w e l l as  p o s i t i v e l y ch ar ge d bea ms. Hence t h e mostversa t i le s t e e r i n g c o i l c o n f i g u r a t i o n i s one which al-l ows i ndependen t d i po l e f i e l d s t o be superposed i n bo tb

     p l ane s on each quadrupole. I f economics, or o ther con-s i d e r a t i o n s d i c t a t e less v e r s a t i l e c o n fi g u ra t i on s of

    s t e e r i n g m a gn et s, o r t h e a s s o c i a t e d p o s i t i o n s e n s in g e-qui pment , ana l y t i c t echn i ques are e f f e c t i v e i n d e t e r  -min ing t he bes t s t ee r i ng s t r a t egy . *

    P r a c t i c e

    A t LAMPF t h e r e a r e 134 quadrupo les i n t he Al varezl i n ac and 103 d o u b l e t s i n t h e s id e- c ou pl ed s t r u c t u r e .Since i t would r eq ui re two power sup pli es per quadru-

     po l e f o r e l e c t r i c a l al ig nment, i t is r e a s on a b le t o i n-ves t i g a t e s t ee r i ng con f i gu ra t i ons wh ich min imize t r ans -

    v e r s e o s c i l l a t i o n s f o r a small number of s te er in g posi-t i o n s . H enc e, t h e f i r s t g o a l d u r i n g c o n s t r u c t i o n is t oa t t a i n t h e b e s t d o u bl e t a l ig nm e nt p o s s i b l e .

    l e t s i n t h e s id e- coup l ed s t ruc t u re are a l i g n e d t o 2.007 and 2 .4mr.  Nu mer ic al s i mul a t ions show t h a t a

    . O O

    displacement has approximately the same e f f e c t as

    a 0.25mr doub l e t ax i s tilt. The a l i gnmen ts i n t he s ide -coupled l i na c a re comparable to t hes e, and hence i t i s

    necessary to have a combination of TDS and DDS.

    The doub-

    I n t he s i de- coupled s t ructure, one doublet per mod -

    ul e i s wired to provide a combination of TDS and DDS.However , each doublet has s tee r in g i n only one plane.

    Based on numeri ca l s i mu l a t i ons , whi ch a l so c ons i der t he

    number and loc at i on of pos i t i on moni tors , i t has beenf ou nd t h a t s t e e r i n g i n one  p l ane i n two s uc e ss i v e mod -u l es and t hen i n t he o t her p l ane fo r t h e nex t t wo mod  -

    ul es ( i . e . , t h e p a t t e r n is HHVV and then repeats) i s anef f ec t i v e con f i gu r a t i o n .

    T he e f f e c t o f t h e e a r t h ' s m a g ne ti c f i e l d h a s a l s o be en cons ide re d. It is shown in ref ere nce 1 t h a t t h ee a r t h ' s f i e l d d i s p l a c e s t h e e q u il i br i um o r b i t .

    men t a l r esu l t s i mp l y t ha t t h i s d i sp lacemen t is 0.15 cmi n t h e s i de-c o up le d s t r u c t u r e .is d i sp l aced equal l y and oppos i t e l y fo r oppos i t e l y

    charged beams , hence t o mi n imize t r ans ver s e o sc i l l a t i o ns ,

    it is n e ce s sa r y t o s t e e r so that the beams are  pos i t ion-

    ed at t h e i r r e s p e c t i v e eq u il ib r iu m o r b i t s r a t h e r t ha n a tt h e d e si g n c e n t e r of t h e l i n a c .

    Experi-

    The equ i l i b r i um o rb i t

    I n t h e Al va re z l i n a c , t h e r e i s not enough posi t ioni n f or m a t io n t o e s t a b l i s h t h a t a n o ff a s i s equ i l i b r i um

    orb i t ex i s t s . However , i t i s e xp ec te d t h a t t h e e f f e c to f t he ear t h ' s f i e l d would be small  because of t h e s t e e li n t h e t ank wal l wh ich i s n o t p r e se n t i n t h e s i de-

    coupled l inac.

    If one wishes t o d o e f f e c t i v e s t e e r i n g , t h e p o s i t i o ni n fo rmat i on shou l d no t be separa t ed f rom t he s t eer i ng

    529

  • 8/17/2019 Firing Angle Document

    20/226

    magnet  by too many in terve n ing quadrupoles . I f th ere

    are many misaligned quadrupoles befo re t he pos it ion in-f o r ma t i o n , t h en t h e p o s i t i o n i n f o rm a t i o n is not very

    u s e f u l . The b es t co n f i g u ra t i o n seems t o b e t o h a ve p o s i t i o n in forma t ion i n two s u cces s i v e cells a f t e r t h es te er ing magnet.

    Acknowledgement--

    I would l i k e to thank Don Swenson f or sug ges tin gx

    f x

    t h e u s e of t h e f o r ce d i agr ams .

    \

    \

    References

    1. D. A. Swenson and K. R. Cr an d a l l , Los AlamosSc ie n t i f i c Laborato ry , Pr i vat e Communicat ion,Ju ly , 1968 .

    2. D. A. Swenson, Los Alamos S ci en ti f i c Laboratory,

    Pr iv a te Communication, August 1968.

    F q u a d , H + D quad, H-

    FIG. I

    f

    X

    f x

    f X

    f x

    F quad, H t D quad ,H+ D quad,H- F quad,H-

    FIG. 2 

    f x f x

    f x f x

    F q u o d ,

    H+ D quad, H+ D quad, H- F quad, H-

    FIG. 3 FIG. 4

    53 0

  • 8/17/2019 Firing Angle Document

    21/226

  • 8/17/2019 Firing Angle Document

    22/226

    V = - 2 MV v =o v = O V = + 2 M V

    V = - 2 MVQ

    +2MV

    I /

    --IONSOURCE

    PIERCE ELECTRODE PIERCE ELECTRODE

    ELECTR0NBEAM

    SYSTEM

    D-T ION BEAM

    F i g . 1. Line ar co l l id in g beam sys tem.

    where I i s to ta l curre nt (2000 amperes) ,pc

    i s i o n v e l o c i t y ( a bo u t 1 . 5

    eo i s t h e d i e l e c t r i c c o n st a n t

    r o i s the radius of the beam.(1.1 x 10-10 F/m)

    Approximate ly th i s force i s

    2Er - vB = 1200 I r / r v o l t s /m

    I f a r e l a t i v i s t i c e l e c t r o n beam

    9

    x 10')of f r e e s p a c e

    ( 5 )

    of I, amperes i s

    now introduced, co l l in ea r with the ion beam but t ra vel -

    l i n g i n t h e o p po s it e d i r e c t i o n , i t w i l l c o n t r i b u t e afocus ing force of

    where Pec i s t he e l ec t ron ve loc i ty (as sumed approx-i m a te l y e q u a l t o c ) . The i n t e r n a l f o r c e s i n a r e l a -t i v i s t i c beam approximate ly cance l each o the r and the

    electron beam w i l l exper i ence a focus ing force due tothe ion beam of approximately the s t r eng th given by

    Eq. ( 5 ) . I f the inward force s on ions and e lec t ro nsa r e set e q u a l, t h e e l e c t r o n c u r r e n t r e q u i r ed p r ov e s t o

     be ab ou t 80 ,0 00 am pe re s.

    Under the for ces j us t di scus sed, both beams w i l lcol l apse to a smal l d i amete r de te rmined by th e or ig -

    i n a l v a l u e s o f t h e i r e m i t t a n c e s. I f w e assume

    (opt imis t i ca l ly) an emi t t ance of 1 0 0 ~m.mrad f o r t h eion beam, the f in a l beam radius proves to be 1 . 4 nun.

    The charge den si ty in each io n beam i s about

    11 coulombs/m3 and the fusion power i s now 17 MW/m3.But t h e beam has become so s m al l t h a t t h e a c t u a l power generat ed per meter of beam i s  b a r e l y over100 wat t s .

    I n F i g . 1 we present a conf igu rat i on of e lect ro desfor t he l in ea r co l l id ing beam system. Thi s a r range-

    ment makes poss ibl e th e gene rat i on of 2-MeV beams ofions and ele ctr ons and t he dece ler at i on of both beamsfo r recovery of the energy s tor ed . One can sa f e ly

    conc lude f rom the pa ramete rs jus t presented tha t sucha system w i l l n e v e r b e b u i l t .

    3 . Proposed Configurat ion

    What evidently is requi red t o make a co l l id i ng beam syst em v i a b l e i s a method fo r s t or in g the ion beams u n t i l they i n t e r a c t . I€ t h i s c an b e do ne t h e

    input io n cur ren ts become qu i t e reasonab le . For an

    output of 1 W o f f u s i o n power a l l t h a t i s r e q u i r e d i san input of 60 each of deuterons and t r i tons.

    We note fu r th e r tha t a pr ime requirement of thesys tem i s t h a t i t i n c l ud e s t r o n g r e s t o r i n g f o r c e s

    which w i l l  prevent coulomb s c a t t e r e d io n s fr om leaving

    the sys tem before t h e y h av e ti me t o t a k e p a r t i n af u s i o n r e a c t i o n .

    The sys tem t o be proposed i nclu des coin cide ntdeu tero n and t r i t o n beams of t he same momentum cir cu la -

    t i n g i n a p pr o xi m at e ly c i r c u l a r p a t h s i n a r a t h e r h i g hmagnetic f i e l d, focused by a cyl in dr ic al beam of elec-

    t r o n s t r a v e l l i n g a l o n g th e l i n e s o f f o r c e of t h e f i e l d .F igure 2  i s a c r o s s- sec t i on ske tch of the geometry .

    To s a t i s f y t h e r e l a t i v e v e l o c it y c r i t e r i o n and t o

    have the same momentum the deuteron energy must be

    845 keV; t h e t r i t o n e n e rg y w i l l  be 564 keV.t e r o n v e l o c i t y w i l l  be 9 x lo6 m/sec; t h e t r i t o n v e lo c

    i t y w i l l  b e 6 x l o6 m/sec. I n a f i e l d of 6 t e s l a , t h erad ius of cur vatu re of these beams w i l l  be 3.0 cm.

    The deu-

    B

    i

    iiiii

    CATHODEJ

    ( V = -v,

    1

     ANODE (V.0)

    PAR AX I ALELECTRON BEAM

     AND  AZ IMUTHA LLYCIR CULATl NGION BEAMS

    E

    PLATE ATCATHODEPOTENTIAL

    F i g . 2 . C r os s s e c t i o n t hr ou gh c y l i n d r i c a l c o l l i d i n g beam sy st em .

     4 . Dynamics o f th e E le ct ro n Beam

    We c o n si d e r f i r s t t h e be h a v io r o f t h e e l e c t r o n

    5 3 2

  • 8/17/2019 Firing Angle Document

    23/226

  • 8/17/2019 Firing Angle Document

    24/226

    have assumed (Bz = 6 T, p = 11.7 coulombs/m3), t h i s

    d i m e ns i o n le s s q u a n t i t y h a s t h e v a l u e 0 . 2 1 and t he valueof 6 giv en by (19) is 0 .26 6 1 - .1 .26 62 . I f 61 = 62,t h e o t h e r v a l u e o f ?jfor which 6 = 0 i s approximately

    - 6 1 -

    F or t h os e f a m i l i a r w i t h t h e no':ation of plasma

     physics , t h e q u a n t i t y ( 4 n p / € ) m/eBz) can be recognized

    as an ana log of the  p l a sma @ funct ion which is a meas-u r e of t h e r a t i o of  plasma p r es su r e t o ma gn et ic pres-sur e. In a plasma @ must be kept below unity.

    5. Dynamics of th e Deuteron and Tr it o n Beams

    We a ss um e, i n i t i a l l y , t h a t a small number ofd e u t er o n s and t r i t o n s a r e i n j e c t e d i n t o t h e sp ace-

    c h a r ge f i e l d c a l c u l a t e d in t h e p r e c e d i n g s e c t i o n f o r

    t h e e l e c t r o n s h e e t . T he se i o n s a r e t o move i n a f l a ts p i r a l w i th n e g l i g i b l e ve l o c i t y i n t h e z - d i r e c t i o n .

    The method of in j ec t io n in to th i s o rb i t w i l l  bed e s c r i b e d i n t h e n e xt s e c t i o n .

    Motion of the ions w i l l  be go ve rne d by

    2m.v

    where m i f s t he ion mass,v i is t h e i o n v e l o c i t y , given by mivi = - Bzero ,

    Er

    is given by (13) above.

    In the coordina tes of the preceding sec t i on (20) becomes

    6 . I o n I n j e c t i o n

    Deuterons and t r i t o n s a r e t o b e i n j e c t e d i n s u ch af a s h i o n t h a t t h e y w i l l c o nt i nu e t o c i r c u l a t e i n t h e

    magnet ic f i e l d and w i l l  be unable t o es ca pe.i n j e c t i o n t h e y w i l l  be given a s l i t t l e a x i a l momentum

    as  p o s s i b l e . Esca pe of ions a t th e ends of t h e d e v i c e sw i l l  be prevente d by a l o c a l i n c r e a s e i n m a gn e ti c f i e l d

    The l o c a l i n c r e a s e i n a x i a l f i e l d w i l l  be accompanied by in t r o d u c t io n of a r a d i a l f i e l d component which w i l l

    se rve to rever se the pa raxi a l ve loc i ty of the ion beam.Fiel d bumps of t hi s type w i l l  be inclu ded a t bo th en dso f t h e d e v ic e a s i n d i c a t e d i n F i g . 2 .  

    During

    /

    INFLECTORyj\

    .,._.... ......

    CLOUD

    whence

    whose solut ion i s

    D l  AN D T  

    BEAM INJECTEDD  AN D T Z

    I O N B E A M

    6

    and cp a r e d et e rm i ne d b y i n i t i a l

    c o n d i t i o n s .

    We n o t e t h a t , s i n ce p r e p r e s e n t s t h e d e n s i t y o f a ne le c t r on space charge , the two terms i n w2  bo th ha ve

    t h e same s ign . For deute rons

    9w = ( 8 . 3 3 x + 6.33 x = 7.96 x 10 .

    The wavelength of this " b e ta t r o n o s c i l l a t i o n" i s 0.71 mm( f o r d e u t er o n s) .

     b e t a t r o n wa ve le ng th is 0.87 mo s c i l l a t i o n h a s i t s frequency determined almost com-

     p l e t e l y by t h e d e n s i t y of th e e l e c t r o n i c sp ace charge .

    F o r t r i t o n s , w = 6.50 x l o 9 and the

    Thi s very sh ort wave

    The ve ry s t rong res tor ing f orce provided by thee l e c t r o n c l o u d s ho ul d be e f f e c t i v e i n r e s t o r i n g t o

    th e i r or b i t s , i ons th a t have undergone coulomb sca t -

    t e r i n g e i t h e r by o t he r i o n s o r by e l e c t r o n s . T h is

    t o p i c is not ana lyzed i n th i s r epor t bu t mus t be givena t t e n t i o n i n f u t u r e s t u d i e s of t h i s d e v i c e .

    F ig . 3 . I n j e c t i o n f o r c y l i n d r i c a l c o l l i d i n g beamsystem.

    Severa l me thods of in j ec t ion w i l l o cc ur t o t h e

    r e a d e r . One  p os s ib l e method i s i l l u s t r at e d i n F ig . 3 .  This method u t i l i ze s molecular ions which pass through

    a n i n f l e c t o r t o b e d ef l e c t e d o nt o an o r b i t t h a t i n t e r  -s e c t s t h e e l e c t r o n c lo u d .

    10%of th e molecular beam should be s t r i p p e d b y e l e c t r o nc o l l i s i o n s t o  become at om ic i o n s wh ich then w i l l swi tch

    to o rb i t s through the el ec tr on cloud (we assume a

    s t r i p p i n g c r o s s s e c t i o n o f t h e o r d e r o f 10-16 cm2).remainder of th e molecular ions w i l l c o n t i n u e o n c i r c u l a ro r b i t s and r e t u r n t o t h e i n f l e c t o r . To p r ev e nt t h e i r

    l o s s  by a seco nd d e f l e c t i o n , they w i l l make t h e i r f i r s ten t r y in to t he inf l ec to r wi th a small component of

     p a r a x ia l v e l o c i t y . The i n f l e c t o r is to have a f i n i t ea x i a l e x t e n t and t h e p a r a x i a l v e l o c i t y o f t h e ions w i l l

     be su ch as t o a l low the beam t o m i s s t h e i n f l e c t o r on

    t he s econd and l a t e r revolu t ions . Thus the molecula r

    Something of the orde r of

    The

     beam w i l l r e- e n t e r t h e e l e c t r o n c l o u d s e v e r a l times

    534

  • 8/17/2019 Firing Angle Document

    25/226

    un t i l v i r t u a l l y a l l of t he beam has been r educed toatomic ions. This scheme has the v i r tu e of al lowingcon t i nuous i n j ec t i on . Pu l sed i n j e c t i on p rocedures may,

    however, prove t o be simpler and le s s demanding ofex t r a magnet ic f i e l d vo lume.

    Another pos sib le i nj ec ti on method would involvei n j ec t i o n o f n eu t r a l a toms p roduced  by a c c e l e r a t i o na n d s t r i p p i n g of nega t i ve i ons . These t echn i ques a r ew e l l e s t a b li s h e d f o r u s e i n i n j e c t i o n i n t o t h e AGS.The ne ut ra l atom beam would be i n je cte d tangent t o the

    e l e c t ro n c l oud where a f r a c t i on o f t he o rde r o f 10%would be ionized and proceed on t h e d e s i r e d c i r c u l a ro r b i t s .

    The p rocedure fo r i n i t i a l l y combin ing t he deu t e ron

    and t r i t o n beams i n t o a s i ng l e beam i nvo l ves e l e c t ro -s t a t i c de f le ct ion . The two beams, having the samemomenta but d if fe re nt en er gie s can be combined by de-f l e c t i o n i n an e l e c t r o s t a t i c f i e l d .

    7 . Procedure with High Density Lon Beams

    The preceding sec t ion s de al t wi th the mot ion ofion beams of low in t en si ty i n a dense shee t of e lec -t r o n s . It h a s b e en shown t h a t , t o t h e f i r s t o r d e r ,the motion of both ele ct ron s and ions i s s t a b l e .There a r e l a rg e r es t o r i ng fo rce s on t he i ons wh ich canserve t o coun t e rac t t h e undes i r ab l e e f f e c t s o f cou lomb

    s c a t t e r i n g .

    I f , now, t h e e l e c t r o n d e n s i t y i s doubled and the

    i o n d e n s i t y i s r a i s e d t o t h e l e v e l of t h e o r i g i n a le l e c t r o n d e n s i t y , t h e n e t d e n s i t y and t h e e l e c t r i cf i e l d p a t t e rn w i l l  be unchanged. Onl y the d i s t r i b u t i o n

    of B, w i l l  be a f f e c t e d by t h e c i r c u l a t i n g i on c u r r e n t .For t he den s i t i es quo t ed , B w i l l drop by about 0 . 1 Tt h rough t he t h i ckne ss . Th i s d rop i s t o o s m a l l t oa f f e c t p e r c e p t i b l y t h e e l e c t r o n o r i o n m ot io ns .

    The procedure t o incr ease de nsi ty would be t ora is e the in jec ted ion cur ren ts . The pote nt i al maximum

    i n t he e l e c t ro n shee t woul d t hen d rop and t he e l ec t roncu r ren t supp l y wou ld au t omat i ca l l y add e l e c t ro ns t orestore the maximum value of the potent ial .

    When the io n dens ity ha s reached 11 .7 coulombs/m3,t h e f u s i o n r e a c t i o n s w i l l yield 3600 wat t s of f u s i o n

     power per me te r le ngt h of the sys te m. The deu t e ronand t r i t o n supp l i es a r e r equ i r ed t o p rovi de on l y abou t200 @ e a ch t o m a i n ta i n t h i s y i e l d .

    It would appear that the procedure of pushing ioncu r ren t and e l ec t ron c u r r en t up , mai n t a i n i ng a cons t an td i f f e r e nce be t ween t h e i r charge dens i t i es , can be con-t i n u e d i n d e f i n i t e l y t o y i e l d h i g h e r and h i g h er l e v e l s

    of fusi on power . No doubt , however , in st a b i l i t i e s w i l l pu t a s t op t o t h i s . The po i n t a t which t h is happens

    w i l l  be d i f f i c u l t t o p re d i c t t h e o r e t i c a l l y and mi gh tmore ea si ly be determined exper im ental ly .

    DISC USSIO N

    V. Ke lvin Neil (LL L):

    elect rostat ical ly ra the r than magnet ical ly?

    Blewett: Yes.

    V. Kelvin Neil:you're trying to get produces the helium?

    Blewett : Yes.

    V. Kelvin Neil:held? I 'm trying to get to one of the problems in TOKOMACwhere the hel ium is contained and, in effect , quenches thereaction.

    Blewett (restat i ng thequestionk:

    Your atoms are held in the device

    And each one of these reactions which

    And the helium is also then elect rostat ical ly

    The containment syste m

    is essent ial ly a n elect rostat ic containment system and thatone of the products of the reaction would be a helium ionand will the helium ions do the same  po is on in g of the reac-tion as they do in TOKOMAC r e a c t o r s ? I don't think I cangive a very good answ er to that , except to say that thehelium ions have about 4 MeV of energy which should beenough to kick th em out of this region.

    LeonKatz

    (Universi ty of Saskatchewan): pose d as a sou rce of energy or as a source of neut rons for b r e e de r s ?

    Is this being pro-

    Blewett:should say that it is be ing pr op os ed only as a n experiment.

    -4rie

    Van Steenbergen (BNL):acce l e r a t o r s i s no t an establ ished fa ct .

    These are sort of in terchangeable, aren ' t they? I

    Charge exchange injection of

    5 3 5

  • 8/17/2019 Firing Angle Document

    26/226

    WILL  NEGATIVE HYDROGEN I ON SOURCES SOON REPLACE PROTON SOURCESI N HIGH E NER GY ACCELERATOR S?"

    Th. S lu yt er s and K. P r e l e cBrookhaven National Laboratory

    Upton,  New York

    Although charge exchange in j ec t i on in to c i r cu l ar

    ac ce le ra to r s and s to rage r in gs has been p roposed qu i t esome t i m e a go , t h e a p p l i c a t i o n o f t h i s a t t r a c t i v e m et h-od has not been widespread because of low in te ns i t ie so f nega t ive hydrogen beams ava i la b le un t i l r ece n t ly .For s y n chr o t r on s and s t o r ag e r i n g s m u l t i t u r n i n j ec t i o no f p r o t on s v i a s t r i p p i n g of n eg a t i v e i o n s o f f e r s a

     b e t t e r and s impler a l t e r n a t i v e t o t h e p r e s en t i n j e c -t i on schemes by incre as ing t he phase space dens i ty o fth e coa s t i ng beam. For cyclo t rons in je c t io n o f pro-t o n s v i a s t r i p p i n g o f r e l a t i v e l y h i gh e n er gy n e u t r a l part icles ( o b t ai n ed by p a r t i a l s t r i p p i n g o f n eg a t i v eions ) may a l le v i a t e th e space charge p rob lem dur ing th eea r l y par t o f acc e le ra t ion . However, beam in te ns i t i e s

    o f nega t ive hydrogen ions ob ta ined by d i r ec t ex t r ac t io nfrom stand ard sources such as duoplasmatrons and Penn-ing sources were seldom h igher than seve ra l mi l l i am- peres , wh ic h was n o t s u f f i c i e n t fo r most o f p resen t c i r  -cu la r acc e le ra t o r s . I nd i r ec t method o f p roducing nega-t i ve io n beams vi a charge exchange of protons , al thougha t t h a t t i m e  pr om isi ng wi th respect t o t h e i n t e n s i t y ,

    had a disadv ant age of yie ld in g beams of a too low qua-l i t y and r equ i r ing a too complex mechan ica l s t ruc tu re .

    D ur in g t h e l a s t y ea r o r so severa l paper s and re- p o r t s appeared d e s c r i b i ng two new appro aches t o t h e p roduct ion of nega t ive hy drog en beams e x t r a c t e d d i r e c t -l y f rom a  pl as ma . One o f them was t h e ho llo w di schargeduoplasmatron,

    4 6 developed f rom a s ta nda rd so urce by p l ac i ng a rod a long th e main ax i s and r each ing in t o the

    anode d i scharge r eg ion .was obtai ned with a normalized emit tanc e less than 0.1cm-mad. An accompanying ele ct ro n cur re nt of 0.5 A, ar e l a t i v e l y l o w i o n cu r r en t d en