Finar Seminar 1

92
7/30/2019 Finar Seminar 1 http://slidepdf.com/reader/full/finar-seminar-1 1/92 SEISMIC RESISTANT DESIGN OF MULTISTOREY BUILDING PRESENTED BY SANTHOSH T S SUJAY RAGHAVENDRA N SUBRAMANYA M B VINAY N GUIDED BY JEEVAN N Lecturer BIT, Bangalore

Transcript of Finar Seminar 1

Page 1: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 1/92

SEISMIC RESISTANT DESIGN OF 

MULTISTOREY BUILDING 

PRESENTED BYSANTHOSH T S

SUJAY RAGHAVENDRA N

SUBRAMANYA M B

VINAY N

GUIDED BYJEEVAN N

Lecturer

BIT, Bangalore

Page 2: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 2/92

CONTENTS

INTRODUCTION

TYPE OF STRUCTURE

PRELIMINARY DESIGN

LOADINGS

ANALYSIS

DESIGN

CONCLUSION

REFERENCE 

Page 3: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 3/92

INTRODUCTION

The multistoried buildings have been designed by considering following concept

and design tools.

Economy

Serviceability

Indian Standard Code practice

STAAD Pro (tool for the analysis and design)

Page 4: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 4/92

  METHODS OF ANALYSIS

Kani’s method 

Slope deflection method

Moment area method

Page 5: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 5/92

STAAD PRO.

STAAD is a leading structural analysis and design software from “Research 

Engineers”.

It addresses the entire process of Structural Engineering. Model development,

 Analysis, Design, Detailing of reinforcement and even the design some

individual structural element.

Page 6: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 6/92

FEATURES AVAILABLE IN STAAD PRO

 Any kind of structure could be modeled.

Member properties, member offsets, material constants and support

specifications could be easily assigned.

Loads in a structure can be specified easily.

Seismic analysis of structure can be done.

STAAD Pro offers various mode of operation such as pre processing ,post

processing, interactive design mode.

Page 7: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 7/92

DATA

Type : Multistoried ResidentialBuilding (G+4)

Plan : Shown in figure below

Use :RESIDENTIAL purpose

Geometric Details : Floor to Floor =3m

Loads :D.L., L.L., E.L.

Roof : R.C Slab

Wall : Bricks (230mm)

Concrete : Grade M20,

Steel : Fe415

SBC :250KN/m2 

Page 8: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 8/92

Page 9: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 9/92

Types of loads

Dead Load (D.L) (Self Wt of the member+ Wall load)

Live Load (L.L) (Load acting on the building)

Seismic Loads(E.L) (Earthquake Load)

Page 10: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 10/92

ANALYSIS 

Model

 Assigning of Structural Properties

 Assigning of Supports

 Assigning of Loads to different member

Different Load combination

Perform Analysis

Run Analysis

Output

Page 11: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 11/92

Page 12: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 12/92

Page 13: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 13/92

Model of Structure

Page 14: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 14/92

SPECIFYING MEMBER PROPERTIES

For beams 230 × 230mm

230 × 450mm

For columns 300 × 600mm

Slab thickness 120mm

Page 15: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 15/92

ASSIGINING MEMBER PROPERTIES:

Selecting members parallel to x and z axis to give beam properties.

Selecting members parallel to y axis to give column properties

Size of beam and column selected is initially assumed and then checked in

design whether it is safe or has to be redimensioned.

Column orientation can be done with the help of beta angle option in properties

tool bar.

Page 16: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 16/92

Page 17: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 17/92

SUPPORT SPECIFICATIONS:

Supports are specified as PINNED, FIXED, or FIXED with different

releases.

Supports are provided at the column to disperse the load to the soil.

Created with the help of command menu or support page.

Here all the supports are fixed.

Page 18: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 18/92

LOADING CALCULATIONS 

Thickness of slab= 120mm

Self weight of the slab =0.12*25    3KN/m²

Floor finish 1.25KN/m² 

Live load for residential

building (as IS-875 Part-2)   2KN/m²

Partition wall load  1KN/m²

 __________ 

7.25KN/m²

• Factored load= 7.25×1.5 10.875KN/m²

Page 19: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 19/92

LOADING CALCULATIONS (Continued) 

Thickness of 230mm wall

Wall load = t*h*d = 0.23*2.7*1811.178KN/m

Where t wall thickness in m

h height of floor in m

d density of brick in KN/m³

Thickness of 200mm wall

Wall load = t*h*d = 0.2*2.7*18 9.72KN/m

Where t wall thickness in m

h height of floor in m

d density of brick in KN/m³

Earthquake Load (as per IS 1893-2002)

Page 20: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 20/92

LOADING DATA ENTRY:

Dead load is calculated and live load is taken from IS-875 (Part-I and Part-II) code

of practice for design loads.

The slab load is given by floor with y range option in load command by entering the

diagonal co-ordinates of that particular slab.

Wall load is given as uniform forces from load command. Stair case, toilet and terrace loads are given by selecting specific area.

Page 21: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 21/92

Load distribution in one way Slab

Page 22: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 22/92

Load distribution for two way Slab

Page 23: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 23/92

FLOOR LOAD

Page 24: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 24/92

ROOF LOAD 

Page 25: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 25/92

SPECIFYING WALL LOAD

Page 26: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 26/92

WALL LOAD

Page 27: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 27/92

PARAPET WALL LOAD

Page 28: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 28/92

Seismic Definition as per IS:1893-2002(Part-1)

Page 29: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 29/92

TO FIND JOINT WEIGHT

Page 30: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 30/92

 To take Joint Weight Separate window is opened and then wind load is deleted in

that window . In this window only dead load and live load is taken and then all the

nodes should be pinned except the fixed support at the bottom and then combination

should be given.

For Dead load more than 3.5KN/m

Combination=(DL+0.5LL)

For Dead load less than 3.5KN/m

Combination=(DL+0.25LL)

Page 31: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 31/92

Earth quake load in +X Direction in a typical frame

Page 32: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 32/92

Earth quake load in –X Direction in a typical frame

Page 33: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 33/92

Earth quake load in +Z Direction in a typical frame

Page 34: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 34/92

Earth quake load in –Z Direction in a typical frame

Page 35: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 35/92

Load combination as per IS: 1893-2002(Part-I) 

In limit design of RCC and PSC structures the following load

combination shall be accounted 1.5(DL+LL)

1.2( DL+LL ± EL)

1.5(DL ± EL)

0.9DL ± 1.5EL

Page 36: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 36/92

3D MODEL OF STRUCTURE

Page 37: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 37/92

PERFORMING ANALYSIS:

 Analysis is done for the primary and combination loading conditions provided.

Depending on the type of analysis option selected, different types of output files

are generated during the analysis process.

Page 38: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 38/92

POST PROCESSING AND OUTPUTS

If there are no errors in the input, the analysis is successfully completed. The

extensive facilities of the Post-processing mode can then be used to view the

results graphically and numerically

To assess the suitability of the structure from the safety, serviceability andefficiency

To create customized reports and plots

Page 39: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 39/92

Bending moments in the entire structure

Page 40: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 40/92

Bending moments in in a typical frame

Page 41: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 41/92

Shear forces in a typical frame

Page 42: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 42/92

Bending moments in a typical beam

Page 43: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 43/92

Shear forces in a typical beam

Page 44: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 44/92

Column loads in a typical column

Page 45: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 45/92

Column moments in a typical column

Page 46: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 46/92

Net load acting over each footing by respective columns

Page 47: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 47/92

DESIGN OF VARIOUS COMPONENTS

Design of Slabs

Design of Beams

Design of Columns

Design of Staircase

Design of Footing

Page 48: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 48/92

DESIGN OF SLABS

Page 49: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 49/92

SLABS 

ONE WAY SLABS are those supported continuously on the opposite sides so that

the loads are carried along one direction only.

TWO WAY SLABS are those slabs that are supported continuously on all four

sides and are of such dimensions that the loads are carried to the supports

along both direction

Page 50: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 50/92

Continuous slab design

Continuous slabs are subjected to negative moments at supports and positive

moments at mid span. Hence the design is required at all critical sections.

Design procedure

 Assume a depth of l/30 th span.

Effective span shall be found as explained in Clause 22.2 Pg 34&35 is 456:2000

Find design moment and shear force.

Design for moment .

Check for shear.

Check for deflection control.

Design main steel and distribution steel.

Sketch reinforcement details.

Page 51: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 51/92

DESIGN OF TWO WAY SLABS Dimension

 Along X Lx

 Along Z Ly

Bending moment coefficients for rectangular panels supported on four sides withprovision for torsion at corners are given in table 26 of IS 456:2000

Bending moments per unit width in a slab are given by

Mx = αx w lx2

My = αy w lx2

Moments are factored.  Check for depth of slab

d= ((Mmax)/(0.138*f ck*b d) )0.5 

Check whether Mu<Mulim and design as singly reinforced section

Then provide main reinforcement by calculating A st 

along X direction

along

Z direction

Page 52: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 52/92

Now check for shear stress

determine pt=100A st/bd

from table 19 Pg 73 IS 456; find c 

Since thickness of slab is less than 150 mm, enhance factor k=1.3 has toprovided

now v = Vu/bd

If  v<  c< cmax then shear reinforcement is not required.

Check for deflection control

for continuous slab (l/d)basic=26if (l/d)provided < (l/d) max deflection control is satisfactory.

Take care of crack width control

Provide reinforcement in edge strip, parallel to that edge with theminimum requirement=12% of overall depth

TORSION REINFORCEMENT

Provide torsion reinforcements at corners where two discontinuousedges meet.

Size of mesh = (1/5) short span

 Area of torsional reinforcement = (3/4)A st max

Page 53: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 53/92

DESIGN OF TWO WAY SLAB

Page 54: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 54/92

DESIGN OF ONE WAY SLAB

R i f t d t il f th l b

Page 55: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 55/92

Reinforcement details of the slabs 

Slab

no 

End condition  Dimension 

c/c 

ly/lx  Type of 

slab 

Depth 

mm 

Reinforcement @ mid

span 

Reinforcement @ support   Distribution

bars 

Along

shorter

direction 

Along

longer

direction 

Along

shorter

direction 

Along longer

direction 

1  One short 

edge

discontinuous 

4.545X3.605  1.26  Two way  120  10mm@

280c/c 

10mm@

2 50c/c 

10mm@

280c/c 

10mm@

250c/c 

2  Interior Panel 3.219X3.605  1.12  Two way  120  10mm@28

0c/c 

10mm@

250c/c 

10mm@

280c/c 

10mm@

250c/c 

3  Interior Panel  3.221X3.605  1.12  Two way  120  10mm@280c/c 

10mm@250c/c 

10mm@280c/c 

10mm@250c/c 

4  One short 

edge

discontinuous 

4.545X3.645  1.25  Two way  120  10mm@28

0c/c 

10mm@

250c/c 

10mm@

280c/c 

10mm@

250c/c 

5  Interior Panel  3.219X3.645  1.13  Two way  120  10mm@28

0c/c 

10mm@

250c/c 

10mm@

280c/c 

10mm@

250c/c 

6  Interior Panel  3.221X3.645  1.13  Two way  120  10mm@280c/c 

10mm@250c/c 

10mm@280c/c 

10mm@250c/c 

7  Interior Panel  4..545X3.645  1.25  Two way  120  10mm@28

0c/c 

10mm@

250c/c 

10mm@

280c/c 

10mm@

250c/c 

8  One short 

edge

discontinuous 

3.070X3.645  1.19  Two way  120  10mm@28

0c/c 

10mm@

250c/c 

10mm@

280c/c 

10mm@

250c/c 

9  One short  3.180X 1.43  Two 120  10mm@280c/c  10mm@250c/c  10mm@ 10mm@

Page 56: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 56/92

edge

discontinuous 

4.545  way  280c/c  250c/c 

10  Interior Panel  3.180X

3.219 

1.01  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

11  Interior Panel  3.180X

3.221 

1.01  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

12  Interior Panel  3.180X

4.545 

1.43  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

13  One short 

edge

discontinuous 

3.070X

3.180 

1.03  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

14  One short edge

discontinuous 

1.835X3.070 

Twoway 

120  10mm@280c/c  10mm@250c/c  10mm@280c/c 

10mm@250c/c 

15  Interior Panel  3.605X

4.545 

1.26  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

16  One short 

edge

discontinuous 

3.070X

3.605 

1.17  Two

way 

120  10mm@280c/c  10mm@250c/c  10mm@

280c/c 

10mm@

250c/c 

17 

One way slab 

1.315X

4.545 

3.46  One way  120  10mm@300c/c  8mm@340

c/c 

18  One way slab  1.315X

3.219 

2.45  One way  120  10mm@300c/c  8mm@340

c/c 

19  One way slab  1.315X

3.221 

2.45  One way  120  10mm@300c/c  8mm@340

c/c 

Page 57: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 57/92

DESIGN OF BEAMS

Page 58: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 58/92

DESIGN OF CONTINOUS BEAMS

Use of SP-16 for design of beams. Charts 1-18 give the moment of resistance /meter width for varying depths &

varying % of steel, for various values of f ck (15, 20) using f y=250,415,500.

Tables 1-4 of SP-16 give the reinforcements percentage needed for various values

of Mu/bd2 & f 

y, for f 

ck= 15, 20, 25, 30.

Tables 5-44 of SP-16 give the moment of resistance /meter width of various

thickness of slabs for different bar diameters and spacing for various values of f y

and f ck

Page 59: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 59/92

Using IS 456:2000

Effective depth may be taken as 1/15th to 1/20th span.

The critical sections for design are usually at supports and in the midspan.

IS 456:2000 permits use of design bending moment and shear force coefficientsin Clause 22.5.1 and table12 & 13 Pg 36, but in our case we have ready BM andSF at various c/s by STAAD results.

Factored moments and shear forces are taken.

Design of longitudinal reinforcements

If Mu>M

ulimthe section has to be reinforced as doubly reinforced.

we can calculate A st required at various c/s – at supports, at midspan

Shear reinforcements are provided in the form of stirrups-2 legged or 4 legged

Check for deflection is done. if (l/d)provided < (l/d) max deflection control issatisfactory. Modification factors kt, kc, kf are given in fig 4,5,6 pg 38 IS456

Clear cover -25 mm

CLASSIFICATION OF BEAMS

Page 60: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 60/92

Type of beam  Name of the member   Size of the 

beam 

(mm) 

Max +ve BM 

(kN-m) 

Max  –ve BM 

(kN-m) 

Max shear  

Force 

(KN) 

B1 

811,821,831,842,843,844,984,845,846,987,848,849,820,840

,219,224,314,319,409,414,504,509 230 X 450  22.4  61  64.2 

B2  841,1172,1173,850,235,425,520  230 X 450  18  44.8  54.07 

B3 

861,911,961,981,991,921,931,881,891,862,882,892,912,922

,932,962,982,992,913,933,864,894,914,934,964,994,905,91

5,945,955,906,916,946,956,867,897,917,937,96,997,918,93

8,869,889,899,919,929,939,969,125,129,130,230,317,325,3

27,330,412,420,422,1170,507,515,517599,600,602,604,605,

1041,995,996,1050,227,322,417,512 

230X 450  18.9  54.5  60.62 

B4 

1011,1021,1031,1043,887,1048,

1049,1020,1040,220,225,315,320,

410,415,505,510,971,871,972,893,

993,884,974,1044,815,835,816,836

847,977,1047,898,998,979,830,880

980,115,120,127,222,590,595,596, 

230 X 450  21.7  63.4  65 

B5  132,133,134,135,136,137,138,139,140,1148,228,229,231,23

3,234, 1150,323,324,326,328,329,418,419

421,423,1182,1175,1178,513,514,

516,518,519,607,608,609,610,611,612,613,614,615,1051,10

01,941, 951,901,851,852,902,942,952,1002

1052,853,903,943,853,1003,1053,

854,904,944,954,1004,1054,855,

1151,1183,1055,856,1149,1006,

1184,1056,857,907,947,1054,855,

1151,1183,1055,856,1149,1006,

1184,1056,857,907,947,957,1007,

1057,858,908,948,958,1008,1058,859,909,949,959,1009,1059,860, 910,950,960,1010,1060 

230 X 450  9.5  32.9  32.3 

  812,832,813,833,983,814,834,826,837,818,838,

988 819 839 111 192 197 201 206 210 287 292 2

230X 450  26.52  71  77.7 

Page 61: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 61/92

B6 988,819,839,111,192,197,201,206,210,287,292,2

96,301,305,382,387,391,396,400,477,482,486,4

91,872,863,963,874,924,925,1152,1045,926,115

3,1046,877,927,868,968,879,1030,106,112,116,1

18,121,308,385,394,403,1155, 1160,

1165,498,575,581,582,584,586,587,591,593,825

,1162,1163,97,102,123,126,215,310,405,495,500

,572,

577,603,935,965,985,936,966,986,1157,1158,11

67,1168 

B7 

822,1022,823,873,973,1023,824,

1014,1024,865,875,885,1025,866,

876,886,1026,817,827,1017, 1027

,828,878,978,1028,829,1029,99, 100,

108,109,114,117,119,213,218,290,299,316,318,4

11,413,480,483,574,576,583,585,589,592,594,5

97,1012,1032,883,1013,1033,1034,895,1015,

1035,896,1016,1036,1037,888, 1018,

1038,1019,98,103,107,207,211,216,302,306,311,397,401,406,487,492,496,501,573,578,975,976,

193,198,202,288,293,297,383,388,392,478,483,

128,131,598,601,606,204,221,226,321,416,508,

511 

230 X 450  29.4  86.3  85.6 

Page 62: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 62/92

Page 63: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 63/92

REINFORCMENT DETAILS OF BEAMS

Page 64: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 64/92

Type of 

 beam 

 Name of the member   Size of 

the

 beam 

(mm) 

Reinforcement 

+ve BM 

(kN-m) 

Reinforcement 

-ve BM 

(kN-m) 

Reinforcement

shear force 

Starting  Curtailed 

B1 

811,821,831,842,843,844,984,845,846,987,

848,849,820,840,219,224,314,319,409,414, 504,509 

230 X

450 

4 bars of 12mm  5 bars of 

12mm 

3 bars of 

12mm 

8 mmФ @150c/c 

B2  841,1172,1173,850,235,425,520   230 X

450 

3 bars of 12mm  4 bars of 

12mm 

3 bars of 

12mm 

8 mmФ @150c/c 

B3 

861,911,961,981,991,921,931,881,891,862,

882,892,912,922,932,962,982,992,913,933,

864,894,914,934,964,994,905,915,945,955,

906,916,946,956,867,897,917,937,967,997,

918,938,869,889,899,919,929,939,969,125,

129,130,230,317,325,327,330,412,420,422,

1170,507,515,517599,600,602,604,605,1041,

995,996,1050,227,322,417,512 

230 X

450 

4 bars of 12mm  4 bars of 

12mm 

3 bars of 

12mm 

8 mmФ @150c/c 

 

B4 

1011,1021,1031,1043,887,1048,1049,1020,1040,220,225,315,320,

410 415 505 510 971 871 972 893

230 X450 

5 bars of 12mm  5 bars of 12mm 

3 bars of 12mm 

8 mmФ @150c/c 

Page 65: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 65/92

410,415,505,510,971,871,972,893,

993,884,974,1044,815,835,816,836

847,977,1047,898,998,979,830,880

980,115,120,127,222,590,595,596, 

B5  132,133,134,135,136,137,138,139,140,1148,

228,229,231,233,234,1150,323,324,326,328,

329,418,419,421,423,1182,1175,1178,513,514,

516,518,519,607,608,609,610,611,612,613,

614,615,1051,1001,941,951,901,851,852,902,942,952,100

2,1052,853,903,943,853,1003, 1053,

854,904,944,954,1004,1054,855,

1151,1183,1055,856,1149,1006,

1184,1056,857,907,947,1054,855,

1151,1183,1055,856,1149,1006,1184,1056,857,907,947,957,1007,

1057,858,908,948,958,1008,1058,

859,909,949,959,1009,1059,860, 910,950,960,1010,1060 

230 X

450 

3 bars of 12mm  3 bars of 

12mm 

3 bars of 

12mm 

8 mmФ @150c/c 

B6 

812,832,813,833,983,814,834,826,837,818,

838,988,819,839,111,192,197,201,206,210,287,292,296,301,305,382,387,391,396,400,

477,482,486,491,872,863,963,874,924,925,

1152,1045,926,1153,1046,877,927,868,968,

879,1030,106,112,116,118,121,308,385,394,

403,1155,1160,1165,498,575,581,582,584,586,587,591,59

3,825,1162,1163,97,102,123,126,

215,310,404,495,500,572,577,603,935,965, 985,936,966,

986,1157,1158,1167,1168 

230 X

450 

5 bars of 12mm  6 bars of 

12mm 

4 bars of 

12mm 

8 mmФ @150c/c 

Page 66: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 66/92

Typical Beam Design 

BEAM 4 

M20 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3645.0 mm SIZE: 230.0 mm X 450.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

----------------------------------------------------------------------------

SECTION 0.0 mm 911.2 mm 1822.5 mm 2733.7 mm 3645.0 mm

----------------------------------------------------------------------------

TOP 459.52 257.46 257.46 257.46 257.46

REINF. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)

BOTTOM 257.46 257.46 257.46 257.46 462.63

REINF. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)

----------------------------------------------------------------------------

SUMMARY OF PROVIDED REINF. AREA

----------------------------------------------------------------------------

SECTION 0.0 mm 911.2 mm 1822.5 mm 2733.7 mm 3645.0 mm

----------------------------------------------------------------------------

TOP 5-12í 3-12í 3-12í 3-12í 3-12í

REINF. 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s)

BOTTOM 3-12í 3-12í 3-12í 3-12í 5-12í

REINF. 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s) 1 layer(s)

SHEAR 2 legged 8í 2 legged 8í 2 legged 8í 2 legged 8í 2 legged 8í

REINF. @ 150 mm c/c @ 150 mm c/c @ 300 mm c/c @ 150 mm c/c @ 150 mm c/c----------------------------------------------------------------------------

Page 67: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 67/92

Typical Beam Drawing 

5#12mmØ 3#12mmØ8mmØ

@150c/c

8mmØ@150c/c

AtSupport

At midspan AtSupport

8mmØ@150c/c

4#12mmØ

Page 68: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 68/92

DESIGN OF Columns

Page 69: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 69/92

DESIGN OF COLUMN

There are three cases in columns:

 Axially loaded short columns

Column subjected to combined axial load and uniaxial moment

Column subjected to combined axial load and biaxial moments

Effective length of compression members is as given in table 28 of is 456:2000.

The load on the column may be cental or eccentric. check for slenderness.

Using SP 16 chart no:48,50,63 design of longitudial reinforcements

Diameter of main and secondary bars

Assign the above properties to the members along Y 

Provide clear cover of 25mm around.

 

Page 70: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 70/92

Classification of columnsGround And First Floor

Type of 

column

Column number Size of 

column

Pu

(KN)

Mx

(KN-m)

Mz

(KN-m)

C1 141,151,236,246,331,341,426,436,521,531,616,626,152,247,332,342,427,437,532,627,413,153,

238,248,333,343,428,438,523,533,618,628,154,

249,334,344,429,439,534,629,155,345,430,440,

1154,525,535,620,630,156,346,431,441,1156,526

536,621,631,157,252,337,347,432,442,537,632,

148,158,243,253,338,348,433,443,528,538,623,

633,159,254,339,349,434,444,539,634,150,160,

245,255,340,350,435,445,530,540,625,635.

300X600 1008 52.28 61.52

C2 142,617,237,522,144,239,524,619,145,240,250,

335,146,241,251,336,147,242,527,622,149,244,

529,624.

300X600 1325 56.57 10.46

C3 1159,1161 300X600 630.87 42.59 6.38

Rest of the Floors

Page 71: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 71/92

Type of 

column

Column number Size of 

column

Pu

(KN)

Mx

(KN-m)

Mz

(KN-m)

C4 161,171,181,256,266,276,351,361,371,446,456,

466,541,551,561,636,646,656,172,182,267,677,

362,372,457,467,552,562,647,657,163,173,183,

258,268,278,353,363,373,448,458,468,543,553,

563,638,648,658,174,184,269,279,364,374,459,

469,554,564,649,659,175,185,1144,270,280,1146

365,375,450,460,470,1180,1164,1169,1174,1177

555,565,640,650,660,176,186,1145,271,281,1147366,376,451,461,471,1181,1166,1171,1176,1179

556,566,641,650,660,176,186,1145,271,281,1147

366,376,451,461,471,1181,1166,1171,1176,1179

556,566,641,651,661,177,187,272,282,367,377,

462,472,557,567,652,662,168,178,188,263,273,

283,358,368,378,453,463,473,548,558,568,643,

653,663,179,189,274,284,369,379,464,474,559,

569,654,664,170,180,190,265,275,285,360,370,380,455,465,475,550,560,570,645,655,665.

300X600 551 44.12 11.59

C5 162,257,352,447,542,637,164,259,354,449,544,

639,165,260,355,545,166,261,356,546,167,262,

357,452,547,642,169,264,359,454,549,644..

300X600 741.77 63.93 23.00

Page 72: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 72/92

Page 73: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 73/92

Page 74: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 74/92

DESIGN OF COLUMN

COLUMN C2 

M25 Fe500 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 300.0 mm X 600.0 mm COVER: 50.0 mm

REQD. STEEL AREA : 3888.00 Sq.mm.

MAIN REINFORCEMENT : Provide 16 - 20 dia. (2.18%, 3926.99 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 300 mm c/c

SECTION CAPACITY (KNS-MET)

--------------------------

Puz : 3439.26 Muz1 : 155.67 Muy1 : 68.49

INTERACTION RATIO: 0.93 (as per Cl. 39.6, IS456:2000)

Page 75: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 75/92

DESIGN OF COLUMNS

REINFORCMENT DETAILS OF COLUMNSGROUND AND FIRST FLOOR

Page 76: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 76/92

GROUND AND FIRST FLOOR

Type of 

column

Column number Size of 

column

Main

Reinforcement

Transverse

reinforcement

C1 141,151,236,246,331,341,426,436,521,531,616,

626,152,247,332,342,427,437,532,627,413,153,

238,248,333,343,428,438,523,533,618,628,154,

249,334,344,429,439,534,629,155,345,430,440,

1154,525,535,620,630,156,346,431,441,1156,526

536,621,631,157,252,337,347,432,442,537,632,148,158,243,253,338,348,433,443,528,538,623,

633,159,254,339,349,434,444,539,634,150,160,

245,255,340,350,435,445,530,540,625,635.

300X600 12#20mmø 8mmø

@300mmc/c

C2 142,617,237,522,144,239,524,619,145,240,250,335,146,241,251,336,147,242,527,622,149,244,

529,624.

300X600 16#20mmø 8mmø@300mmc/c

C3 1159,1161 300X600 8#20mmø 8mmø

@300mmc/c

REST OF THE FLOORS

Page 77: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 77/92

Type of 

column

Column number Size of 

column

Main

Reinforcement

Transverse

reinforcement

C4 161,171,181,256,266,276,351,361,371,446,456,466,541,551,561,636,646,656,172,182,267,677,

362,372,457,467,552,562,647,657,163,173,183,

258,268,278,353,363,373,448,458,468,543,553,

563,638,648,658,174,184,269,279,364,374,459,

469,554,564,649,659,175,185,1144,270,280,1146

365,375,450,460,470,1180,1164,1169,1174,1177

555,565,640,650,660,176,186,1145,271,281,1147

366,376,451,461,471,1181,1166,1171,1176,1179

556,566,641,650,660,176,186,1145,271,281,1147

366,376,451,461,471,1181,1166,1171,1176,1179

556,566,641,651,661,177,187,272,282,367,377,

462,472,557,567,652,662,168,178,188,263,273,

283,358,368,378,453,463,473,548,558,568,643,653,663,179,189,274,284,369,379,464,474,559,

569,654,664,170,180,190,265,275,285,360,370,

380,455,465,475,550,560,570,645,655,665.

300X600 8#20mmø 8mmø@300mmc/c

C5 162,257,352,447,542,637,164,259,354,449,544,

639,165,260,355,545,166,261,356,546,167,262,

357,452,547,642,169,264,359,454,549,644..

300X600 12#20mmø 8mmø

@300mmc/c

Page 78: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 78/92

DESIGN OF FOOTING

Page 79: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 79/92

DESIGN OF FOOTING 

Define Parameters

Footing dimension

Safe bearing capacity of soil

Factor of safety-overturning

Factor of safety-sliding

 Vertical load

Lateral load

Moments along X – Y axis

Material data

Reinforcement details

Page 80: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 80/92

Design of isolated footing

Depth of footingh=p/w((1-sinө)/(1+sinө))2

where ө  angle of friction of soil

p safe bearing capacity

w unit weight of soil

Load on soil = P+10%P

where P axial load Determine the minimum depth required from the consideration of 

BM, Single shear, Double shear.

Reinforcement in footing-in longer direction and shorter direction.

Check for shear stresses.

Reinforcement details.

Classification of footing 

Page 81: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 81/92

Type of footing Footing number Pu(KN) Mx(KN-m) Mz(KN-m) Fx(KN) Fz(KN)

F1 A6,C6,H6,J6,A5,J5,A4,C4,H4,J4,A3,C3,H3

,J3,A2,J2,A1,C1,H1,J1

980 61.47 50.956 31.82 27.581

Isolated footing

F2 B6,D6,E6,F6,G6,I6,B5,C5,D5,G5,H5,I5,B4,

D4,E4,F4,G4,I4,B3,D3,G3,I3,B2,C2,D2,E2,

F2,G2,H2,I2,B1,D1,E1,F1,G1,I1..

1180 60.85 55.314 36.48 58.59

Isolated footing

F3 E5,F5 1350 67.5 56.6 37.05 33.53

Isolated footing

F4 E3-E2’ 

F3-F2’ 

810

670

72

71

53.75

45

34

26.5

38

37.7

Combined footing

Details of footing 

Page 82: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 82/92

Type of 

footing

Dimensions of 

footing

(m)

Depth of 

foundation

(m)

Thickness of footing

(m) Reinforcement along

shorter span

Reinforcement along longer

spanAt edge At face

of 

column

F-1 2.3X2.3 1.5 0.5 0.75 12mmФ @135mmc/c 12mmФ @140mmc/c

F-2 2.5X2.5 1.5 0.5 0.75 12mmФ @135mmc/c 12mmФ @140mmc/c

F-3 2.6X2.6 1.5 0.5 0.75 12mmФ @135mmc/c 12mmФ @140mmc/c

Type of 

footing 

Dimensions

of footing

(m) 

Depth of 

foundation

(m) 

Slab

thickness

(m) 

Beam

dimensions

(m) 

Reinforcement in slab  Reinforcement in beam 

Main bars  Distribution

 bars 

Main bars  Shear 

reinforceme

nt 

F-4  2.85 X 4  1.5  0.675  0.3X0.8 12mmФ 

@155mmc/c

10mmФ 

@75mmc/c

5#25mmФ at

bottom

4leg vertical

stirrups of 

8mmФ at

170mm c/c

Combined footing

Page 83: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 83/92

Detailing in a typical footing

Page 84: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 84/92

Page 85: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 85/92

DESIGN OF STAIRCASE

Page 86: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 86/92

DESIGN OF STAIRCASE

Define Parameters

Type of staircase-2 flight

Floor height

Stair type for 2 flight-dog legged

Width of waist slab

Depth of waist slab

Stair hall dimension

Height of riser

Page 87: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 87/92

 Allowable ratio of thread/rise

Beam location

Width of support

Load data

Material data

Reinforcement data

Page 88: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 88/92

PLAN OF STAIRCASE

Page 89: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 89/92

Page 90: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 90/92

SUMMARY

 Analysis and design of residential building proposed to be constructed . The proposed

building is in the shape of a rectangle which consists of all the amenities required for a

residential building. One staircase and one lifts are provided for vertical movement

between various floors. The analysis is carried out by using a package called STAAD Pro,

and

seismic load is also considered.M20 grade concrete and Fe415 (HYSD) steel bars are used

as construction materials for structural elements. Design of structural elements is

carried out by limit state approach using IS456-2000 and SP-16.

Page 91: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 91/92

Conclusion

  There are three methods to design RCC structures (working stress

method, ultimate method, and limit state method) out of which the limit

state method gives an adequate section to satisfy strength and serviceability

hence we have adopted the limit state method of design.

In this project earthquake force is taken along with dead load and live

load. For all the combinations of loads the classical method such as Kani’s 

method, moment distribution method etc are not suitable hence the STAAD

program was used for the analysis of the structure for all the loading

combinations.

The detailing of reinforcement is made as per IS- SP34 code provision

which provides ductility to the structure and hence better performance.

Page 92: Finar Seminar 1

7/30/2019 Finar Seminar 1

http://slidepdf.com/reader/full/finar-seminar-1 92/92