Final NoAnimation

download Final NoAnimation

of 89

Transcript of Final NoAnimation

  • 8/12/2019 Final NoAnimation

    1/89

    AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

    Electronics and Communications Engineering Department

    Design and Implementation of Radar Pulse Compression A Thesis

    Submitted in partial fulfillment of the requirements of the degree ofMaster of Science in Electrical Engineering

    Submitted by

    Hossam Ahmed Said Mohamed Hanafy

    B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Alexandria University, 2003

    Supervised By

    Prof. Adel Ezzat El-Hennawy

    Dr. Abd El-Lateef El-Kouny Cairo, 2014

  • 8/12/2019 Final NoAnimation

    2/89

    1. Introduction2. Basic Concepts3. Matched Filter

    4. Types of pulse compression5. Mathematical Model of LFM PulseCompression

    6. Design of LFM Pulse Compression7. Implementation of LFM Pulse

    Compression8. Hardware Results9. Conclusion

  • 8/12/2019 Final NoAnimation

    3/89

    1 INTRODUCTION

  • 8/12/2019 Final NoAnimation

    4/89

    2

    ct R

  • 8/12/2019 Final NoAnimation

    5/89

    2 BASIC CONCEPTS

    a Definitions

    b Range Resolution

    c

    Motivation of Pulse Compression

    d Radar Block Diagram

  • 8/12/2019 Final NoAnimation

    6/89

    Target Range:

    Inter pulse period (IPP) and Pulse repetition frequency:

    Duty Cycle =

    2t c R

    IPP PRF /1

    T dt /

    dt P P t av

  • 8/12/2019 Final NoAnimation

    7/89

    An example, two targets with to small spacing:

    And now the other example: the spacing is large enough

  • 8/12/2019 Final NoAnimation

    8/89

    1 Short pulses are used to increase range resolution.

    2

    Short pulses = decreased average power.

    3

    Decreased average power = Decreased detection

    capability.

    4

    Pulse compression = Increased average power +Increased Range resolution.

  • 8/12/2019 Final NoAnimation

    9/89

  • 8/12/2019 Final NoAnimation

    10/89

    3 MATCHED FILTER

    a Matched Filter Concepts

    b Matched Filter Basics

  • 8/12/2019 Final NoAnimation

    11/89

  • 8/12/2019 Final NoAnimation

    12/89

  • 8/12/2019 Final NoAnimation

    13/89

  • 8/12/2019 Final NoAnimation

    14/89

  • 8/12/2019 Final NoAnimation

    15/89

  • 8/12/2019 Final NoAnimation

    16/89

  • 8/12/2019 Final NoAnimation

    17/89

  • 8/12/2019 Final NoAnimation

    18/89

  • 8/12/2019 Final NoAnimation

    19/89

  • 8/12/2019 Final NoAnimation

    20/89

    4 TYPES OF PULSE COMPRESSION

    a Phase Coded

    b

    Linear Frequency Modulation(LFM)

  • 8/12/2019 Final NoAnimation

    21/89

  • 8/12/2019 Final NoAnimation

    22/89

  • 8/12/2019 Final NoAnimation

    23/89

  • 8/12/2019 Final NoAnimation

    24/89

  • 8/12/2019 Final NoAnimation

    25/89

  • 8/12/2019 Final NoAnimation

    26/89

  • 8/12/2019 Final NoAnimation

    27/89

  • 8/12/2019 Final NoAnimation

    28/89

    5

    MATHEMATICAL MODEL OFLFM PULSE COMPRESSION

    a Correlation Processing

    b Stretch Processing

    c Modeling of LFM Pulse Compression

  • 8/12/2019 Final NoAnimation

    29/89

  • 8/12/2019 Final NoAnimation

    30/89

  • 8/12/2019 Final NoAnimation

    31/89

  • 8/12/2019 Final NoAnimation

    32/89

  • 8/12/2019 Final NoAnimation

    33/89

    )(t S R c

    RT

    )(c

    Rt S

    )(.c

    Rt S

    )2

    (.c R

    t S

  • 8/12/2019 Final NoAnimation

    34/89

    M

    i

    iir

    M

    iiir

    r

    M

    i ii

    t S t S

    t t S t S

    t ht S t S

    t t h

    1

    1

    1

    )()(

    )(*)()(

    )(*)()(

    )()(

  • 8/12/2019 Final NoAnimation

    35/89

    )()( * t S t hr

    )(*)(*)()(

    )(*)()(S*

    o

    t ht S t S t S

    t ht S t

    o

    r r

    )()()(

    )()()()(2

    *

    jw H jS jS

    j H jS jS jS

    o

    o

  • 8/12/2019 Final NoAnimation

    36/89

    )()( jkH jS o

    M

    iiio

    o

    t k t S

    t kht S

    1

    )()(

    )()(

  • 8/12/2019 Final NoAnimation

    37/89

    )2

    (2)( 2t K t f t c

    Where B

    K 2

    Kt f t f t dt

    d

    t f c )(

    )(2

    1

    )(

  • 8/12/2019 Final NoAnimation

    38/89

    )2

    (2 2

    )()(t

    K t f j c

    e

    T

    t rect t S

  • 8/12/2019 Final NoAnimation

    39/89

    )(*)()( t ht S t S o duut S uhduut huS t S o )()()()()(

    due

    T ut

    rect eeT u

    rect et S ut f jut K ju f j Ku jo cc )(2)(2 )()()(

    22

  • 8/12/2019 Final NoAnimation

    40/89

    t f jo

    ceT t

    rect KTt

    t T t K

    T t S

    2)

    2(

    1sin

    )(

    )2

    ()()(T t

    rect Bt TSat S o

  • 8/12/2019 Final NoAnimation

    41/89

    6

    DESIGN OF LFM PULSECOMPRESSION

    a LFM-1

    b LFM-2

    c

    LFM-3

    d LFM-4

    D i S f LFM P l C i

  • 8/12/2019 Final NoAnimation

    42/89

    Design Steps of LFM Pulse Compression

  • 8/12/2019 Final NoAnimation

    43/89

    LFM-1Phase Curve

  • 8/12/2019 Final NoAnimation

    44/89

    LFM-1

    Frequency Curve

    LFM-1Frequency Curve

  • 8/12/2019 Final NoAnimation

    45/89

    LFM-1Amplitude Curve

  • 8/12/2019 Final NoAnimation

    46/89

    LFM-1Resolving 1 Target

  • 8/12/2019 Final NoAnimation

    47/89

    LFM-1Resolving 1 Target

  • 8/12/2019 Final NoAnimation

    48/89

    LFM-1Resolving Multi Targets

  • 8/12/2019 Final NoAnimation

    49/89

    LFM-1Resolving Multi Targets

  • 8/12/2019 Final NoAnimation

    50/89

    LFM-1Problem

  • 8/12/2019 Final NoAnimation

    51/89

    LFM-2Phase Curve

  • 8/12/2019 Final NoAnimation

    52/89

    LFM-2Frequency Curve

  • 8/12/2019 Final NoAnimation

    53/89

    LFM-2Amplitude Curve

  • 8/12/2019 Final NoAnimation

    54/89

    LFM-2Resolving 1 Target

  • 8/12/2019 Final NoAnimation

    55/89

    LFM-2Resolving 1 Target

  • 8/12/2019 Final NoAnimation

    56/89

    LFM-2Resolving Multi Targets

    2

  • 8/12/2019 Final NoAnimation

    57/89

    LFM-2LFM-2Over Clocking

    LFM 2

  • 8/12/2019 Final NoAnimation

    58/89

    LFM-2Over Clocking

    LFM 3

  • 8/12/2019 Final NoAnimation

    59/89

    LFM-3Phase Curve

    LFM 3

  • 8/12/2019 Final NoAnimation

    60/89

    LFM-3Frequency Curve

    LFM 3

  • 8/12/2019 Final NoAnimation

    61/89

    LFM-3Amplitude Curve

    LFM 3

  • 8/12/2019 Final NoAnimation

    62/89

    LFM-3Resolving 1 Target

    LFM 3

  • 8/12/2019 Final NoAnimation

    63/89

    LFM-3Resolving 1 Target

    LFM 3

  • 8/12/2019 Final NoAnimation

    64/89

    LFM-3Resolving Multi Targets

    LFM 3

  • 8/12/2019 Final NoAnimation

    65/89

    LFM-3Over Clocking

    LFM 3

  • 8/12/2019 Final NoAnimation

    66/89

    LFM-3Over Clocking

    LFM 4

  • 8/12/2019 Final NoAnimation

    67/89

    LFM-4Phase Curve

    LFM 4

  • 8/12/2019 Final NoAnimation

    68/89

    LFM-4Frequency Curve

    LFM 4

  • 8/12/2019 Final NoAnimation

    69/89

    LFM-4Amplitude Curve

    LFM 4

  • 8/12/2019 Final NoAnimation

    70/89

    LFM-4Resolving 1 Target

    LFM 4

  • 8/12/2019 Final NoAnimation

    71/89

    LFM-4Resolving 1 Target

    LFM 4

  • 8/12/2019 Final NoAnimation

    72/89

    LFM-4Resolving Multi Targets

  • 8/12/2019 Final NoAnimation

    73/89

    7

    IMPLEMENTATION OF LFMPULSE COMPRESSION

    a FPGA

    b Generation of LFM waveform

    c Processing of LFM Waveform

  • 8/12/2019 Final NoAnimation

    74/89

    8,256 Logic Elements 36 M4K RAM blocks 165,888 Total RAM bits 18 Embedded Multiplier 2 PPLs 182 maximum user I/O

    pins

    The Cyclone II FPGAdevelopment kit (Red Core)comes with ALTERA(EP2C8Q208C8N) chip

  • 8/12/2019 Final NoAnimation

    75/89

    1 Reduction of Hardware complicity, size and cost.

    2 Availability for R & D future works.

    3

    High MTBF (Mean Time Between Failures).4

    Low MTR (Mean Time to Repair).

    5 Low power consumption.

    6 Preventing errors due to backplanes, inner cables connections

    using in classic hardware design.

    7 Reduction of error due to high speed data rate (50 MHz).

  • 8/12/2019 Final NoAnimation

    76/89

  • 8/12/2019 Final NoAnimation

    77/89

  • 8/12/2019 Final NoAnimation

    78/89

  • 8/12/2019 Final NoAnimation

    79/89

  • 8/12/2019 Final NoAnimation

    80/89

  • 8/12/2019 Final NoAnimation

    81/89

    Phasor Concept 180 deg Phasor Concept 180 deg

  • 8/12/2019 Final NoAnimation

    82/89

    old old new Q I I 83

    6459

    Phasor Concept 22.5 deg

  • 8/12/2019 Final NoAnimation

    83/89

  • 8/12/2019 Final NoAnimation

    84/89

    8 PRACTICAL RESULTS

    a Generation

    b Processing

  • 8/12/2019 Final NoAnimation

    85/89

  • 8/12/2019 Final NoAnimation

    86/89

  • 8/12/2019 Final NoAnimation

    87/89

    9 CONCLUSION

  • 8/12/2019 Final NoAnimation

    88/89

    A software model was developed to simulate a practical LFM pulsecompression system

    LFM-1 Achieved27dB SNRDC

    coupling

    Frequenciesaround

    zero

    LFM-2 Achieved15dB SNR Bad

    resolutioncapability

    Overclocking

    complicityof thedesign

    Enhancedthe

    resolution

    DecreaseSNR to13dB.

    LFM-3 Achieved27dB SNRFull

    suppression forfrequenciesaround zero

    Pairedecho

    Canceledusing

    paired filter

    Overclocking

    Paired echolevel wasreduced

    Decreasingthe SNR.

    LFM-4 Achieved29dB SNRFull

    suppression forfrequenciesaround zero

    Withoutcomplicity

    (over clocking)

    Hardware was designed and implemented using FPGA kit(Red Core) with CYCLONE II (EP2C8Q208C8N) chip.

    Phase Vector Rotation

    HardwareResults SNR 29dB Pulse width 480 ns Resolution 72m

  • 8/12/2019 Final NoAnimation

    89/89