FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ......

189
FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET BRIDGE MAINEDOT WIN 16755.00 THOMASTON, MAINE PREPARED FOR: Calderwood Engineering, LLC Richmond, Maine PREPARED BY: GZA GeoEnvironmental, Inc. Portland, Maine September 2014 File No. 09.0025781.00 Copyright 2014 GZA GeoEnvironmental, Inc.

Transcript of FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ......

Page 1: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET BRIDGE MAINEDOT WIN 16755.00 THOMASTON, MAINE

PREPARED FOR: Calderwood Engineering, LLC Richmond, Maine PREPARED BY: GZA GeoEnvironmental, Inc. Portland, Maine September 2014 File No. 09.0025781.00 Copyright 2014 GZA GeoEnvironmental, Inc.

kate.maguire
Typewritten Text
MaineDOT Soils Report No. 2014-19C
kate.maguire
Typewritten Text
Page 2: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC
Page 3: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

TABLE OF CONTENTS Page

09.0025781.00 Page i 9/23/2014

1.0  INTRODUCTION 1 

1.1 BACKGROUND 1 1.2 OBJECTIVES AND SCOPE OF SERVICES 1 

2.0  SUBSURFACE EXPLORATIONS 2 

2.1 PREVIOUS EXPLORATIONS 2 2.2 REVIEW OF MAINEDOT LOGS 2 2.3 DESIGN PHASE EXPLORATIONS 3 

3.0  LABORATORY TESTING 3 

4.0  SUBSURFACE CONDITIONS 4 

4.1 SURFICIAL AND BEDROCK GEOLOGY 4 4.2 SUBSURFACE SOIL PROFILE 4 

4.2.1 Bedrock 4 4.2.2 Groundwater 5 

5.0  ENGINEERING EVALUATIONS 5 

5.1 GENERAL 5 5.2 APPROACH EMBANKMENTS 5 

5.2.1 Settlement 6 5.2.2 Global Stability 6 

5.3 EVALUATION OF FOUNDATIONS 7 5.3.1 Foundation Type Assessment 7 5.3.2 Pile Design Considerations and Load and Resistance Factors 7 5.3.3 Corrosion 8 

5.4 EVALUATION OF ABUTMENT PILES 9 5.4.1 Pile Type 9 5.4.2 Downdrag 9 5.4.3 Pile Loading Data 10 5.4.4 Design Subsurface Profiles 10 5.4.5 Wave Equation Analyses 10 5.4.6 Lateral Pile Resistance – Abutment Piles 11 5.4.7 Lateral Earth Pressure 12 

5.5 EVALUATION OF PIER PILES 13 5.5.1 Pile Type and Loading Data 13 5.5.2 Design Subsurface Profiles 13 5.5.3 Wave Equation Analyses 13 5.5.4 Lateral Pile Resistance – Pier Piles 14 5.5.5 Rock Anchors 15 

5.6 SEISMIC DESIGN CONSIDERATIONS 16 5.7 FROST PENETRATION 16 

6.0  RECOMMENDATIONS 16 

6.1 SEISMIC DESIGN 16 6.2 EMBANKMENT CONSTRUCTION 17 6.3 ABUTMENT AND WINGWALL DESIGN 17 

Page 4: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

TABLE OF CONTENTS (Continued)

09.0025781.00 Page ii 9/23/2014

6.4 PILE DESIGN 18 6.4.1 Abutment Pile Design 18 6.4.2 Pier Pile Design 19 

6.5 ROCK ANCHOR DESIGN 20 

7.0  CONSTRUCTION CONSIDERATIONS 21 

7.1 PILE INSTALLATION CONTROL 21 7.2 PILE INSTALLATION AND CONCRETE FILL 21 7.3 PILE OBSTRUCTIONS 21 7.4 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING 21 7.5 REUSE OF ON-SITE MATERIALS 22 

FIGURES

FIGURE 1 LOCUS PLAN

FIGURE 2 BORING LOCATION PLAN

FIGURE 3 INTERPRETIVE SUBSURFACE PROFILE

APPENDICES

APPENDIX A LIMITATIONS

APPENDIX B PREVIOUS TEST BORING LOGS

APPENDIX C DESIGN PHASE TEST BORINGS AND GZA REVIEW OF MAINEDOT CORES

APPENDIX D LABORATORY TEST RESULTS

APPENDIX E GEOTECHNICAL ENGINEERING CALCULATIONS

Page 5: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 1 9/23/2014

1.0 INTRODUCTION

This report presents the results of GZA GeoEnvironmental, Inc.’s (GZA’s) subsurface explorations and geotechnical evaluations for replacement of the Wadsworth Street Bridge, which carries Wadsworth Street over the St. George River in Thomaston, Maine. Our services were provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC (Calderwood Engineering) dated March 28, 2013, which incorporates GZA’s proposal dated January 4, 2013, and the Limitations contained in Appendix A of this report. 1.1 BACKGROUND

Bridge No. 2904 carries Wadsworth Street over the St. George River in Thomaston, Maine, as shown on the Locus Plan, Figure 1. GZA’s understanding of the project is based on the 90 percent progress drawings prepared by Calderwood Engineering and Maine Department of Transportation (MaineDOT), provided to GZA on August 26, 2014, and recent conversations with Calderwood Engineering. The project consists of replacing an existing, 235-foot-long, three-span bridge, the location of which is shown on the Boring Location Plan, Figure 2. The existing bridge is supported by abutments and two river piers. The abutments and piers appear to be supported on pile foundations. The replacement bridge is planned to consist of a 280-foot-long, four-span bridge, supported on integral abutments and pile bent piers. The superstructure will be comprised of hybrid composite beams (fiber reinforced polymer and structural concrete) supporting a cast-in-place concrete deck. The alignment of the replacement bridge is approximately 50 feet upstream from the current location, as shown on Figure 2. The approaches will be widened toward the west to accommodate the new bridge, resulting in a maximum fill height of approximately 16 to 20 feet. 1.2 OBJECTIVES AND SCOPE OF SERVICES

The objectives of our work were to evaluate subsurface conditions and to provide final geotechnical engineering recommendations for the proposed bridge replacement. To meet these objectives, GZA completed the following Scope of Services: Conducted site visits to observe surficial conditions at the ground surface, assessed

traffic, drilling access, and reviewed mapped surficial and bedrock geology of the site;

Reviewed the available data from previous subsurface exploration programs and reviewed recovered rock core samples from the MaineDOT Bangor storage facility;

Coordinated and observed a subsurface exploration program consisting of three test borings for the replacement bridge;

Conducted a laboratory testing program to evaluate engineering properties of the site bedrock;

Conducted geotechnical engineering analyses to evaluate foundation alternatives for the replacement bridge, embankment design considerations, and seismic design considerations;

Page 6: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 2 9/23/2014

Developed geotechnical engineering recommendations including foundation design recommendations for the preferred foundation type; and

Prepared this Final report summarizing our findings and design recommendations.

2.0 SUBSURFACE EXPLORATIONS

Previous exploration programs were completed by MaineDOT for the proposed bridge replacement in 2010 and 2011. GZA completed a final design subsurface exploration program in 2013. Details of these exploration programs are discussed below. 2.1 PREVIOUS EXPLORATIONS

Three test borings were drilled in 2010 and five in 2011 for the Wadsworth Street Bridge replacement. Details of the exploration programs are summarized below. Three test borings, BB-TSGR-101 through BB-TSGR-103, were drilled between November 1 and November 3, 2010 by MaineDOT. Two of the test borings (BB-TSGR-101 and BB-TSGR-103) were drilled through the roadway on the landside of the existing south and north abutments, respectively, and one boring (BB-TSGR-102) was drilled in the river, through the existing bridge deck. The locations of the borings are shown on Figure 2. The test borings were drilled through the overburden soils and terminated approximately 10 feet into bedrock. Depths of borings ranged from approximately 35 to 65 feet below ground surface (bgs). The borings were drilled using 3- and 4-inch casing and drive and wash drilling techniques. Standard Penetration Testing (SPT) and split spoon sampling was generally conducted at 5-foot increments through the overburden in each boring. Draft logs of borings BB-TSGR-101 through BB-TSGR-103 were prepared by MaineDOT and provided to GZA. Five test borings, BB-TSGR-201 through BB-TSGR-205, were drilled between September 27 and October 3, 2011 by Northern Test Boring, Inc. of Gorham, Maine. The test borings were completed using a barge-mounted drill rig in the river along the proposed bridge alignment, including one at each proposed pier and abutment location, as shown on Figure 2. The test borings were drilled through the overburden soils and terminated approximately 5 to 9 feet into bedrock. Depths of borings ranged from approximately 10 to 40 feet bgs. The borings were drilled using 3- and 4-inch casing and drive and wash drilling techniques. SPT and split spoon sampling was performed periodically and inconsistently in the borings. Draft logs of borings BB-TSGR-201 through BB-TSGR-205 were prepared by MaineDOT and provided to GZA. 2.2 REVIEW OF MAINEDOT LOGS

GZA requested access to the rock core samples from previous subsurface exploration programs to assess the bedrock classification and quality. After receiving approval from the MaineDOT Geotechnical Group, a GZA engineer visited MaineDOT’s laboratory in Bangor, reviewed the available rock core specimens, and prepared an independent description for core samples from both the BB-TSGR-100 and -200 series borings, with the exception of BB-TSGR-102, which was not located at the time of our visit. GZA also reviewed the draft test boring logs to assess consistency between soil visual descriptions and laboratory test reports. Where discrepancies were found, the visual descriptions were updated to correspond to the laboratory test results.

Page 7: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 3 9/23/2014

The final boring logs for the BB-TSGR-100 and -200 series borings, including GZA’s revisions, are included in Appendix B. 2.3 DESIGN PHASE EXPLORATIONS

GZA completed a design phase subsurface investigation program consisting of three test borings along the proposed bridge alignment, including one at each pier location. The test borings (BB-TSGR-301 through BB-TSGR-303) were completed using a barge-mounted drill rig. The as-drilled locations of the test borings were surveyed by MaineDOT personnel. Mudline elevations were determined at each test boring at the start of drilling by MaineDOT personnel and were provided to GZA. Elevations referenced in this report are in feet and refer to North American Vertical Datum of 1988 (NAVD 1988). The boring locations are shown on Figure 2. The test borings were drilled to depths ranging from approximately 14 to 32 feet bgs and were terminated approximately 5 to 6 feet into bedrock. Maine Test Boring, Inc. of Hermon, Maine provided drilling services and coordinated utility clearance. The drilling was completed between April 16 and April 18, 2013. GZA personnel monitored the drilling work and prepared logs of each boring that are included in Appendix C. The borings were drilled using 3-inch and 4-inch casing and drive-and-wash drilling techniques. SPT and split-spoon sampling were generally performed at 5-foot typical intervals in the borings using a 24-inch-long, 1-3/8-inch inside diameter sampler. SPTs were conducted using a safety hammer and rope-and-cathead system, according to MaineDOT requirements. Bedrock cores were obtained using NQ2 wire-line coring equipment.

3.0 LABORATORY TESTING

MaineDOT conducted a soil laboratory testing program on split spoon samples collected from the BB-TSGR-100 and -200 series borings. The results of the soil laboratory tests are included in Appendix D. The soil testing program consisted of the following: Gradation analysis/AASHTO Classification/Frost Classification assessments and natural

water contents of 11 soil samples;

Hydrometer analysis/AASHTO Classification/Frost Classification assessments and natural water contents of 16 soil samples; and

Atterberg limits testing of one soil sample. GZA retained Thielsch Engineering’s Geotechnical Laboratory in Cranston, Rhode Island to assess the engineering properties of the bedrock. The program included unconfined compression and modulus determinations on four representative bedrock core samples. Two rock core samples from the BB-TSGR-300 series and two from the BB-TSGR-200 were selected for testing. Results of the testing and photographs of each specimen after testing are included in Appendix D.

Page 8: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 4 9/23/2014

4.0 SUBSURFACE CONDITIONS

4.1 SURFICIAL AND BEDROCK GEOLOGY

According to the “Simplified Surficial Geologic Map of Maine” (Marvinney, 2003), surficial geologic units mapped at the Wadsworth Street bridge include the Presumpscot Formation, consisting of glaciomarine silt, clay and sand deposits, and Till. According to the Maine Geological Survey’s “Thomaston Prison Quarry, Thomaston, Maine” (Marvinney, 2002), bedrock at the Wadsworth Street bridge is of Ordovician and Precambrian ages. The Ordovician formation is described as schist and quartzite. The Precambrian is described as thinly bedded marble, quartzite, and schist. 4.2 SUBSURFACE SOIL PROFILE

Four soil units were encountered above bedrock in the explorations: Fill, Silt/Clay, River Bottom Deposit, and Glacial Till. The encountered thicknesses, generalized descriptions and engineering properties of the units encountered, in descending order from ground surface, are summarized in the following table. The subsurface conditions are also shown in relation to the bridge abutments and piers on Interpretive Subsurface Profile, Figure 3. Detailed descriptions of the materials encountered at specific locations are provided in the boring logs included in Appendices B and C.

Soil Unit Approx.

Encountered Thickness (ft)

Generalized Description and Properties

Fill 5 to 10 Brown, loose to dense, fine to coarse SAND, some Gravel, some Silt. Encountered in borings BB-TSGR-101 and BB-TSGR-103.

Silt/Clay 5 to 8 Gray to brown, very soft to stiff, Sandy SILT, trace Clay, occasional Gravel. Encountered in borings BB-TSGR-101, BB-TSGR-103, potentially BB-TSGR-205, and BB-TSGR-303.

River Bottom Deposit

4 to 25

Brown to dark gray, loose to medium dense, fine to coarse SAND, with varying amounts of Gravel and Silt. Occasional wood and shell fragments. Occasional cobbles/boulders noted in stratum. Encountered in all river borings with adequate samples to assess stratum, including BB-TSGR-102, BB-TSGR-202, BB-TSGR-203, BB-TSGR-204, BB-TSGR-205, BB-TSGR 302 and BB-TSGR-303, and BB-TSGR-103.

Glacial Till 2 to 12

Gray to brown, medium dense to very dense, fine to coarse SAND, with varying amounts of Silt and Gravel. Encountered in all borings. Cobbles/boulders were noted throughout this stratum, most prominently in borings BB-TSGR-102, BB-TSGR-204, BB-TSGR-205, and BB-TSGR-303

Top of Rock Encountered Top of Rock: El. -13.9 to -41.5

Encountered in all borings.

4.2.1 Bedrock

Bedrock descriptions are based on GZA’s review of core collected from previous and design-phase test borings. The rock encountered in the borings consisted of Metapelite and Metasandstone. The Metapelite was described as moderately hard to very hard, fresh to

Page 9: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 5 9/23/2014

moderately weathered, fine grained and gray to green. Primary joints were extremely close to moderately spaced, moderately dipping to high angle, undulating, rough, fresh to decomposed, and partially open to tight. Secondary joints were close to moderately spaced, low angle to horizontal, undulating, rough, fresh, and tight to open. The RQD ranged from 0 to 76 percent, with an average of 58 percent. The Metasandstone was described as very hard, fresh, fine grained, and white and gray. Primary joints were close to moderately spaced, low angle to horizontal, undulating, rough, fresh to discolored, and tight to partially open. Secondary joints were moderately spaced, moderately dipping to high angle, planar, rough, discolored, and tight. The RQD ranged from 67 to 83 percent, with an average of 68 percent. Four laboratory unconfined compressive strength / secant modulus / Poisson’s ratio tests were conducted on bedrock core samples of Metapelite and Metasandstone. The test results are included in Appendix D. The testing yielded unconfined compressive strengths ranging from 8.4 to 21.5 kips per square inch (ksi), Young’s modulus values ranging from 4,990 to 7,440 ksi, and Poisson’s ratios ranging from 0.07 to 0.21.

4.2.2 Groundwater

Groundwater levels recorded at each of the abutments varied tidally during the test borings due to the nature of the subsurface materials and the presence of free-draining, stone masonry retaining structures at the site. Two test borings (BB-TSGR-101 and -103) were drilled on land, through the existing approach embankments. Measured water levels at the time of drilling ranged from 18 to 19 feet bgs (El. -2.6 to El. -4.4). All other test borings were drilled within the limits of the river. Groundwater levels are anticipated to fluctuate due to tide, season, precipitation, infiltration and construction activity in the area. Therefore, groundwater levels during and after construction are likely to vary from those encountered at the time of the test borings.

5.0 ENGINEERING EVALUATIONS

5.1 GENERAL

GZA has conducted geotechnical engineering evaluations in general accordance with the 2012 AASHTO LRFD Bridge Design Specifications, 6th Edition (AASHTO), with 2013 Interims, and the MaineDOT Bridge Design Guide (BDG), as referenced herein. Supporting calculations developed by GZA for the project are attached in Appendix E of this report. 5.2 APPROACH EMBANKMENTS

The abutments will require construction of new fill embankments immediately west (left) of the existing embankments, with fill heights up to 19 feet above existing grades on the landside of the new abutments. The maximum side slope angles are anticipated to be 2 horizontal to 1 vertical (2H:1V), or flatter, with loam and seed surface treatments above the tidal range. Portions of the side slopes within the river tidal range are anticipated to be constructed with riprap scour protection.

Page 10: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 6 9/23/2014

Subsurface conditions beneath the proposed approach embankments include existing fill, soft to stiff silt and clay (Silt / Clay), loose to dense silty sand (River Bottom Deposits) and/or glacial till over bedrock.

5.2.1 Settlement

At the south (Abutment 1) approach, the new embankment is anticipated to be underlain by 5 feet or less of stiff Silt / Clay over medium dense to dense Glacial Till and bedrock. Based on SPT N-values, the Silt / Clay at this location is judged to be highly overconsolidated, and moderately compressible under the proposed embankment. Total embankment settlement is estimated to be on the order of 1-½ inches where the thickest Silt/Clay is present, most of which will occur during construction. Consolidation of the Silt/Clay will occur relatively quickly as the embankment is constructed. Consequently, post-construction settlement is estimated to be on the order of ½ inch or less. The north (Abutment 2) approach is underlain by approximately 10 feet of loose to medium dense River Bottom Sand, 7 feet of medium stiff to stiff Silt/Clay, an additional 8 feet of loose to medium dense River Bottom Sand, dense to very dense Glacial Till, and bedrock. Potential settlement resulting from embankment construction would occur primarily in the Silt/Clay stratum, and to a lesser extent in the River Bottom stratum. Three split spoon samples were conducted in the Silt/Clay stratum near Abutment 2; one in boring BB-TSGR-103 from 30 to 32 feet bgs (El. -15.4 to El. -17.4) and two in BB-TSGR-205 at depths of 8 to 10 and 15 to 17 feet bgs (El. -12.2 to -14.2 and El. -19.2 to -21.2). Recorded SPT N-values ranged from weight of hammer to 4 blows per foot, and the measured fines content (percent passing the No. 200 sieve) ranged from 58 to 72 percent, and one Atterberg limits analysis indicated it was non-plastic, resulting in a general classification of sandy SILT. Two in situ vane shear tests were attempted in BB-TSGR-103, one immediately below the split spoon sample (at 32 feet bgs) and another at 37 feet bgs, but neither could be advanced, due to the presence of sand and or gravel. Embankment settlement is a function of the grade raise and the overall thickness and compressibility of the deposits. Compressibility of the Silt/Clay was approximated for use in our evaluations based on the available data including SPT N-values, water content and sand content. Based on these data we judged the material to be lightly to moderately overconsolidated and of low to moderate compressibility. Given the high sand content and interbedded sand layers the rate of settlement was judged to be relatively high. Total embankment settlement is estimated to be on the order of 2 to 5 inches. Consolidation of the Silt/Clay will occur relatively quickly as the embankment is constructed, and elastic settlement of the sand will occur immediately as fill is placed. Therefore, we estimate that at least half of the settlement will occur during construction, resulting in approximately 1 to 3 inches of post-construction settlement. Since more than 0.4 inch of settlement could occur after pile installation, downdrag loading should be considered in the design of the piles at both abutments, as discussed in Section 5.4.2.

5.2.2 Global Stability

The south (Abutment 1) approach embankment will be constructed per MaineDOT standard specifications and details using engineered fill and controlled methods. In our experience, conventional earthfill embankments constructed over relatively stiff/dense overburden soils meet the minimum required safety factors for global stability.

Page 11: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 7 9/23/2014

A global stability analysis was performed for the highest portion of the proposed embankment along the northern approach (Sta. 27+71.5) using the analytical software Slope-W and the Modified Bishop method. Subsurface layering was developed based on the results of borings BB-TSGR-103 and BB-TSGR-205, and representative soil properties were developed for the existing sand and clay deposit and glacial till using the data from these borings. The average engineering properties for the embankment fill assume that the embankment material and construction methodology will be in accordance with MaineDOT Standard Specifications. Considering the significant sand content in the Silt/Clay layer, the strength was modeled in the drained condition. An effective friction angle of 30 degrees was assigned to the Silt/Clay deposit. The output from Slope-W, including soil properties, layering, and critical slip surface, is presented in Appendix E. The results indicate the calculated factor of safety against circular slope failure of the north approach embankment is approximately 1.3, which is the AASHTO minimum safety factor for a slope that does not support a structure. Therefore, it is GZA’s opinion that global stability is acceptable for the proposed grading along the northern approach. Boring BB-TSGR-205 encountered a layer of very soft organic silt immediately below the mudline. This material would be unstable if left in place beneath the new embankment, and should be removed prior to embankment construction, in accordance with the recommendations presented in Sections 6.2 and 7.3. The global stability evaluation assumed that the very soft organic silt would be removed prior to embankment construction. 5.3 EVALUATION OF FOUNDATIONS

5.3.1 Foundation Type Assessment

The project team considered conventional driven steel piles (H-piles and pipe piles) and fiber reinforced polymer (FRP) piles. MaineDOT undertook a test pile program including pile installation, load testing, and extraction of FRP piles at a different site during design development for this project. Due to concerns about the drivability of the FRP piles, MaineDOT opted not to pursue their use for this project. Therefore, driven steel piles were selected for the project. Calderwood Engineering selected HP-section piles to support the integral abutments and pipe piles to support the piers. Where embedment is limited at Pier 1, rock anchors will be installed through selected pipe piles to enhance shear resistance at the pile tip.

5.3.2 Pile Design Considerations and Load and Resistance Factors

Evaluations were conducted for axial compressive geotechnical resistance of the piles. The axial geotechnical static resistance of piles was calculated using the Nordlund Thurman method (using the analytical software SPILE®) and/or the Meyerhof SPT method in accordance with AASHTO Article 10.7. Supporting calculations are provided in Appendix E. The results indicate the abutment piles will gain support through a combination of side friction in the overburden soil (primarily in glacial till) and end bearing in glacial till or on bedrock. The pier piles will gain support primarily through end bearing in glacial till or on bedrock, with typically 15 percent or less of the resistance derived from skin friction in overburden soil. Based on our experience with similar soils, we anticipate that the piles will need to be driven into or near bedrock to achieve the required resistance. The side friction distribution was also used as an input in wave equation analyses conducted to assess the pile drivability for the abutments and the piers. It is our understanding that the pier and abutment piles will not be subject to axial

Page 12: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 8 9/23/2014

tensile (uplift) loading. Since the piles will gain support in primarily dense granular soil and/or bedrock, there is no reduction for group interaction in axial compression. It is our understanding that there are no design uplift loads on the piles. By utilizing end bearing steel H-piles and pipe piles, total and differential settlement will be limited to elastic compression of the piles and should be less than ½ inch. Piles should be designed at the strength limit state considering the structural resistance of the piles and a resistance factor (c) of 0.50 for H-piles and 0.6 for pipe piles, per AASHTO Section 10.7.3.2.3 and Section 6.5.4.2 for hard driving condition; the geotechnical resistance of the piles; and the potential loss of lateral support due to scour at the design flood event, if any. In GZA’s experience for end bearing piles on bedrock, the structural resistance or drivability resistance will control the geotechnical static resistance of the pile. Pile installation will be controlled based on dynamic pile testing with signal matching analysis. The piles should be driven to a nominal resistance calculated by dividing the maximum factored pile load by a resistance factor of 0.65, per AASHTO Table 10.5.5.2.3-1. AASHTO LRFD load factors should be applied to horizontal earth pressure (EH), vertical earth pressure (EV) and earth surcharge (ES) loads using the load factors for permanent loads (p) provided in AASHTO Table 3.4.1-2 for strength and extreme limit state design. A load factor (p) of 1.0 should be applied to downdrag loads in cohesive and cohesionless downdrag zones. A load factor of 1.5 may be applied to the passive pressure used to design the integral backwall (end diaphragm) to account for deformation of the backwall into the soil as a result of thermal expansion of the integral bridge deck.

5.3.3 Corrosion

The pier piles will extend through seawater (including the splash zone, inter-tidal zone, low-water zone, and immersion zone), and through the riverbed soils (buried zone). We understand that Calderwood Engineering and MaineDOT are developing coating details to inhibit pile section loss associated with corrosion. For unprotected piles, the corrosion rate has been found to vary between different zones for piles driven through seawater. The corrosion rates for steel piles installed through brackish water, as presented in the 2006 FWHA Publication FHWA NHI-05-042, Design and Construction of Driven Pile Foundations, are listed in the table below.

CORROSION RATES FOR UNPROTECTED STEEL PILES IN SEAWATER

Portion of Pile Typical corrosion loss

(inches/year) 95% maximum probable

corrosion loss (inches/year) Splash Zone

(near high water level) 0.0035 0.0071

Inter-tidal Zone (between high and low water)

0.0016 0.0043

Low Water Zone (near low water level)

0.0035 0.0071

Immersion Zone (between low water and river bed)

0.002 0.0055

Buried Zone 0.0008 0.002

Based on our discussion with Calderwood Engineering, we understand that a corrosion loss of 1/8 inch around the outside of the pipe piles has been included in the structural design, extending from the bottom of the pile cap to 5 feet below the mudline. GZA’s lateral pile evaluations also

Page 13: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 9 9/23/2014

considered 1/8-inch corrosion section loss. Once the coating deteriorates, the fastest anticipated corrosion rates would be in the splash zone and low water zone. Based on the typical corrosion loss rates presented above, the time required to incur 1/8-inch corrosion loss is approximately 35 years, plus the initial time required to fully breach the protective coating. The abutment piles will be installed on land; therefore, corrosion was not considered in the design. 5.4 EVALUATION OF ABUTMENT PILES

5.4.1 Pile Type

The abutments are planned to be supported on ASTM A572, Grade 50 (fy=50 ksi) steel H-piles. Each abutment will include a single row of six, HP14x117 piles.

5.4.2 Downdrag

Given the potential for greater than 0.4 inch of settlement to occur relative to the abutment piles, the piles should be designed to resist downdrag loading. Side friction contributing to downdrag load was estimated using the -method in accordance with NAVFAC DM 7.2-211, and as recommended by Sandford et al, “Bitumen Coatings Reduce Downdrag on Piles for Route 1 Interchange Bridges.” Beta values were assumed to be 0.35, 0.3, and 0.23 for the new fill, the river bottom sand, and the marine clay, respectively. Based on past practice, a load factor of 1.0 was applied to the calculated downdrag resistance, which was added to the maximum factored load provided by Calderwood Engineering. The evaluations are presented in Appendix E, and the results are summarized below:

ABUTMENT 1 DOWNDRAG LOADING Downdrag Component (LRFD 10.7.3.7) Load or Resistance (kips)

Nominal Downdrag Load (DD) 15

Factored Downdrag Load (p DD) 15

Maximum Factored Pile Load, Axial Compression 162

Total Factored Load (Rn / ) 177

Nominal Driving Resistance Required (Rndr) 272

ABUTMENT 2 DOWNDRAG LOADING

Downdrag Component (LRFD 10.7.3.7) Load or Resistance (kips)

Nominal Downdrag Load (DD) 66

Factored Downdrag Load (p DD) 66

Maximum Factored Pile Load, Axial Compression 162

Total Factored Load (Rn / ) 228

Nominal Driving Resistance Required (Rndr) 351

Page 14: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 10 9/23/2014

5.4.3 Pile Loading Data

The maximum factored axial compressive pile load for the strength condition provided by Calderwood Engineering is 162 kips per pile. Considering downdrag loads calculated and presented above, the total factored load is 177 kips at Abutment 1 and 228 kips at Abutment 2. Considering the resistance factor of 0.65 for drivability, the required nominal pile resistance is 272 kips at Abutment 1 and 351 kips at Abutment 2.

5.4.4 Design Subsurface Profiles

GZA developed design subsurface profiles for use in evaluating abutment foundations. The top of each profile is defined at the bottom of the integral abutment; material adjacent to The profiles are summarized in the following tables.

DESIGN SUBSURFACE PROFILE – ABUTMENT 1

(Borings BB-TSGR-101 and -201)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) /

Su (psf) for layer

New Fill 6 125 34º

Silt/Clay 4 118 1,000 psf

Glacial Till 11 130 38º

Depth to Bedrock 21 -- --

DESIGN SUBSURFACE PROFILE – ABUTMENT 2

(Borings BB-TSGR-103 and -205)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) /

Su (psf) for layer

New Fill 4 125 34º

River Bottom Deposit 11 120 30º

Silt/Clay 7 118 1,000 psf

River Bottom Deposit 7 120 30º

Glacial Till 12 130 38º

Bedrock 41 -- --

5.4.5 Wave Equation Analyses

The wave equation analyses for the abutments used the design soil profiles presented in Section 5.4.4, with an embedded pile length of approximately 21 feet at Abutment 1 and approximately 41 feet at Abutment 2. The pile type and section were established based on lateral loading and combined stress considerations. Therefore, the wave equation analyses set out to find a driving system that could install the proposed HP14x117 piles to resist the axial design loads presented in Section 5.4.3 (i.e., the required nominal pile resistance). It was assumed that the shorter, Abutment 1 piles will encounter harder driving conditions, with an assumed toe quake of 0.04 inches, and the longer Abutment 2 piles will encounter moderate driving conditions, with an assumed toe quake of 0.10 inches. The evaluation for both used an APE D19-42 open-end diesel pile driving hammer with a manufacturer’s rated energy of approximately 47,100 foot-pounds. The hammer has adjustable fuel settings to reduce the maximum energy, allowing installation of

Page 15: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 11 9/23/2014

piles with different sections and resistance requirements with a single hammer. A fuel setting corresponding to a chamber pressure of 1,247 psi, which is the lowest available, was used for the analysis. The results of the wave equation analyses are summarized below.

WAVE EQUATION ANALYSIS RESULTS – ABUTMENTS

Condition Driving System Required Nominal

Geotechnical Resistance (kips)

Maximum Driving Stress (ksi)

Final Penetration Resistance

(blows per inch) Abutment 1 (L=21 feet)

APE D19-42 (47,100 ft-lb)

272 18 4

Abutment 2 (L=41 feet)

APE D19-42 (47,100 ft-lb)

351 19 5

Since the driving stresses do not exceed the limiting driving stress of 45 ksi for ASTM A572 steel (50 ksi yield stress), and the calculated penetration resistance is within the MaineDOT range of 3 and 15 blows per inch, the analyzed hammer system is judged acceptable to install the piles to the nominal resistance noted. It is GZA’s experience that the optimum range of penetration resistance for diesel pile hammers is in the range of 6 to 10 blows per inch. Based on the estimated final penetration resistance of 4 to 5 blows per inch to achieve the required factored pile resistance for the APE D19-42 and the fact that a reduced chamber pressure was used, a hammer with a lower rated energy could also be used to install the piles. However, this hammer was selected in an effort to choose one hammer that could be used to install the abutment and pier piles to their required nominal resistances (see Section 5.5.3 for pier piles). It is noted that the HP14x117 piles can be driven to a final penetration resistance greater than 15 blows per inch with the APE D19-42 hammer without approaching the limiting driving stress of 45 ksi. Our calculations indicate nominal geotechnical drivability resistances on the order 650 kips at Abutment 1 and 550 kips at Abutment 2 could be achieved with the selected hammer with a final penetration resistance of about 15 bpi. Hard driving is anticipated in rock fill layers, glacial till and/or on or near the bedrock surface. Recommendations are provided for tip protection in Section 6.4 to reduce the potential for driving damage.

5.4.6 Lateral Pile Resistance – Abutment Piles

We understand that lateral pile analyses have been completed by Calderwood Engineering using L-Pile® software that use non-linear P-Y curves to model soil reactions. We recommend that the pile analysis results be used to check that the combined axial and bending demand meet AASHTO LRFD structural requirements. It is anticipated that the controlling analysis will be based on the maximum thermal deflection of 0.57 inches, as provided by Calderwood Engineering. GZA conducted preliminary lateral pile evaluations using L-Pile 5.0 to assess maximum pile stress and fixity, initially considering HP14x89 and HP14x117. Abutment 1 piles achieved a pinned condition, with negligible lateral translation at the pile toe under the design loads. Abutment 2 piles achieved a fixed condition. Geotechnical design parameters were developed for L-Pile® analyses corresponding to the design soil engineering properties tabulated in Section 5.4.4. The recommended design parameters are presented below.

Page 16: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 12 9/23/2014

The structural engineer should evaluate the minimum required pile embedment and combined stresses for the integral abutment bridge. The recommended representative geotechnical parameters for L-Pile® analyses are provided in the tables below. The top of the upper layer (Fill) corresponds to the bottom of the proposed pile cap, and the bottom lower layer (Glacial Till) corresponds to anticipated top of rock. Therefore, the combined layer thicknesses represent the anticipated embedded pile lengths (21 feet for Abutment 1 and 41 feet for Abutment 2).

SOIL PARAMETERS FOR L-PILE® INPUT ABUTMENT 1

Soil Model Layer Thickness k (pci) /

E50 φ' (deg)/ Su (psf)

Unit Weight γe (pci)

Reese Sand 2 150 34 0.072

Reese Sand 4 60 34 0.036

Stiff Clay 4 E50 = 0.01 1000 psf 0.032

Reese Sand 11 90 38 0.039

SOIL PARAMETERS FOR L-PILE® INPUT ABUTMENT 2

Soil Model Layer Thickness

(ft) k (pci) /

E50 φ' (deg)/ Su (psf)

γe (pci)

Reese Sand 4 60 34 0.036

Reese Sand 11 20 30 0.033

Stiff Clay 7 E50 = 0.01 1000 psf 0.032

Reese Sand 7 20 30 0.033

Reese Sand 12 90 38 0.039

5.4.7 Lateral Earth Pressure

Thermal expansion of the bridge will cause the backwalls and wingwalls of the integral abutment to move toward the backfill, which will result in earth pressures ranging from at-rest to passive earth pressure. The material properties will be controlled by the backfill material, which is proposed to consist of BDG Type 4 soil. Soil properties for Type 4 soil are provided in Section 6.3 of this report. A report prepared for the Virginia Transportation Research Council (VTRC) entitled, “The Behavior of Integral Abutment Bridges,” evaluated earth pressures on abutment backwalls and concluded that Rankine or Coloumb passive earth pressure could be conservatively used for design of most integral abutment bridges.

Lateral earth pressure evaluations for abutments are based on the BDG and the VTRC reference indicated above and summarized below: Passive earth pressure coefficients were developed using Rankine theory for Type 4 soil.

AASHTO Commentary C3.10.9.1 specifies that bridges in Seismic Design Category 1 are not required to include acceleration-augmented (earthquake-induced) soil pressures for design.

Design lateral earth pressure recommendations are provided in Section 6.3 of this report.

Page 17: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 13 9/23/2014

5.5 EVALUATION OF PIER PILES

5.5.1 Pile Type and Loading Data

The river piers are proposed to be supported on PP24x0.75 (battered) and PP24x0.625 (plumb), ASTM A252, Grade 3 Modified (fy=50 ksi) steel pipe piles. In order to eliminate potential mix-up during installation, the use of the single, heavier wall thickness piles should be considered for both plumb and batter piles. Each pier cap will be supported on a single row of five piles each, consisting of three plumb piles and two battered piles. Each outside pile will be battered at an inclination of 2.5:12. The maximum factored axial load for the strength condition provided by Calderwood Engineering is 442 kips per pile. Considering a resistance factor of 0.65, the required nominal pile resistance is approximately 680 kips.

5.5.2 Design Subsurface Profiles

GZA developed design subsurface profiles for use in evaluating pier foundations. The profiles are summarized in the following tables.

DESIGN SUBSURFACE PROFILE – PIER 1

(Boring BB-TSGR-301)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) /

Su (psf) for layer

River Bottom 2 120 30º

Glacial Till 3 130 38º

Depth to Bedrock 5 -- --

DESIGN SUBSURFACE PROFILE – PIER 2

(Boring BB-TSGR-302)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) /

Su (psf) for layer

River Bottom 14 120 30º

Glacial Till 5 130 38º

Depth to Bedrock 19 -- --

DESIGN SUBSURFACE PROFILE – PIER 3

(Boring BB-TSGR-303)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) /

Su (psf) for layer

River Bottom Deposit 6 120 30º

Silt/Clay 9 115 300 psf

River Bottom Deposit 4 120 30º

Glacial Till 7 130 38º

Bedrock 26 -- --

5.5.3 Wave Equation Analyses

The wave equation analyses for the piers used the design soil profiles for Piers 1 and 3 presented in Section 5.4.5, with embedded pile lengths of approximately 5 feet at Pier 1 and 26 feet at Pier 3. The pile type and section were established based on lateral loading and combined stress considerations. Therefore, evaluation set out to find a driving system that could

Page 18: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 14 9/23/2014

install the proposed PP24x0.625 piles to resist the design loads presented in Section 5.5.1 (i.e., the required pile resistance). Drivability was not evaluated for PP24x0.75 piles, as it is assumed that the larger pile section could be driven to an equal or greater drivability resistance as the smaller section. Because Pier 2 pile lengths will be between the Pier 1 (short) and Pier 3 (long) pile lengths, we concluded that Pier 2 would not control drivability considerations. It was assumed that the shorter Pier 1 piles will encounter hard driving conditions, with an assumed toe quake of 0.04 inches, and the longer Pier 3 piles will encounter moderate driving conditions, with an assumed toe quake of 0.10 inches. The evaluation used an APE D19-42 open-end diesel pile driving hammer with a manufacturer’s rated energy of approximately 47,100 foot-pounds and a fuel setting corresponding to the maximum chamber pressure of 1,710 psi. The results of the wave equation analyses are summarized below.

WAVE EQUATION ANALYSIS RESULTS

Condition (D corresponds to pile embedment below mudline)

Driving System Required Nominal

Drivability Resistance (kips)

Maximum Driving Stress (ksi)

Final Penetration Resistance

(blows per inch)

Pier 1 (D = 5 feet)

APE D19-42 (47,100 ft-lb)

680 33 7

Pier 3 (D = 26 feet)

APE D19-42 (47,100 ft-lb)

680 28 9

Since the driving stresses do not exceed the limiting driving stress of 45 ksi for ASTM A252 Grade 3 Modified (fy = 50 ksi) steel, and the calculated penetration resistance is within the MaineDOT range of between 3 and 15 blows per inch, the analyzed hammer system is judged acceptable to install the piles to the nominal resistance noted. It is GZA’s experience that the optimum range of penetration resistance for diesel pile hammers is in the range of 6 to 10 blows per inch. It should be noted that the PP24x0.625 piles could be driven to a final penetration resistance greater than 15 blows per inch with the APE D19-42 hammer without approaching the limiting driving stress of 45 ksi. Our calculations indicate nominal geotechnical drivability resistances on the order 1,000 kips at Pier 1 and 800 kips at Pier 3 could be achieved with the selected hammer with a final penetration resistance of about 15 bpi. Hard driving is anticipated in rock fill layers, glacial till and/or on or near the bedrock surface. Recommendations are provided for tip protection in Section 6.4 to reduce the potential for driving damage.

5.5.4 Lateral Pile Resistance – Pier Piles

Calderwood Engineering requested that GZA conduct lateral pile analyses to assess the effective depth to fixity for the pier piles for use in their structural analyses. Due to the overburden thickness of 5 feet at Pier 1, it was concluded that the pile tips would require anchors to prevent lateral translation; therefore, analysis of lateral soil resistance on those piles was not warranted. For Piers 2 and 3, GZA conducted preliminary lateral pile evaluations using GROUP® software (Version 8.0) to assess maximum pile stress and fixity, considering PP24x0.625 plumb and battered piles, in the currently proposed configuration. The design parameters used in our analyses are presented in the tables below.

Page 19: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 15 9/23/2014

SOIL PARAMETERS FOR GROUP® INPUT PIER 2

Soil Model Layer Thickness k (pci) φ' (deg) Unit Weight

γe (pci)

Distance from bottom of pile cap to mudline = 28 feet

Reese Sand 14 20 30° 0.033

Reese Sand 5 90 38° 0.039

SOIL PARAMETERS FOR GROUP® INPUT

PIER 3

Soil Model Layer Thickness k (pci) /

E50 φ' (deg) / Su (psf)

Unit Weight γe (pci)

Distance from bottom of pile cap to mudline = 23 feet

Reese Sand 6 20 30° 0.033

Soft Clay 9 E50 = 0.02 300 psf 0.030

Reese Sand 4 20 30° 0.033

Reese Sand 7 90 38° 0.039

The evaluation was conducted for two load cases: Service I and Extreme II, which were

judged to impose the highest vertical and lateral loads on the piers for unfactored and factored conditions, respectively. GZA conducted initial evaluations on a non-corroded section. The results of these analyses are summarized below:

Piers 2 and 3 achieve a pinned condition at 43 feet below the bottom of the pile cap,

which is approximately 4 and 6 feet above the pile tip at Piers 2 and 3, respectively.

The depth to pinned condition was not significantly different between the analyzed Service and Extreme load cases, but maximum deflection and pile stress were greater for the Extreme load case.

Pier 2, Extreme II load case controls the pier pile lateral design (excluding Pier 1) based on deflection and pile stress considerations. The maximum deflection and combined stress for this load case were approximately 0.9 inches and 21 ksi, respectively.

GZA subsequently conducted an analysis assuming a corroded pile section for Pier 2, Extreme Load Case. The depth to fixity was 43 feet below the pile cap, the same as the uncorroded analysis, but the maximum deflection and pile stress increased to 1.4 inches and 26 ksi, respectively. Recommended depths to a pinned pile condition are presented in Section 6.4.2. Calderwood Engineering selected PP24x0.75 battered piles to support the piers. GZA did not conduct additional GROUP analyses for the updated pile types.

5.5.5 Rock Anchors

We understand that the Pier 1 piles will be driven open-ended, cleaned-out and will have rock anchors installed to enhance constraint of at the pile toe due to the limited overburden thickness. We understand that the rock anchors will not be subject to direct uplift loading under service, strength or extreme load case conditions, but since they will be resisting shear deformation a rock anchor design tension load of 50 kips has been selected by Calderwood Engineering as an anchor design basis. Design recommendations for rock anchors are provided in Section 6.5 of this report.

Page 20: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 16 9/23/2014

5.6 SEISMIC DESIGN CONSIDERATIONS

The proposed bridge configuration, consisting of pile bent piers and integral abutments, is anticipated to primarily experience earthquake forces resulting from embedment of the abutment piles and integral abutments. Therefore, the subsurface profile considered for seismic design includes the proposed approach fills (including backfill behind and beneath abutments), and the soil and rock conditions encountered at Abutments 1 and 2. The soil profile at the abutments consists of a mixture of soft to stiff silt to sandy silt and loose to very dense sand, with bedrock generally ranging from about 35 to 55 feet below grade. LRFD allows consideration of the rock within the upper 100 feet of the profile. However, the profile used to determine the site class was conservatively evaluated by including only the soil, ignoring the beneficial effect of the rock, thereby reducing the effective thickness of the profile and neglecting the bedrock in the upper 100 feet. Because of the mixed soil profile, GZA used a property common to all layers in the profile, shear wave velocity (Vs), to evaluate the seismic site class. Values of Vs were estimated for the individual layers using available in situ and laboratory testing data. GZA’s evaluations indicate that the average Vs over the soil profile feet could range between approximately 620 and 650 feet/second. Since these fall between 600 and 1,200 feet/second, Table C3.10.3.1-1 indicates that the proposed bridge should be assigned to Site Class D. Seismic design parameters are provided in Section 6.1. 5.7 FROST PENETRATION

Fill soils are anticipated to be present at the abutments, either as existing fill or imported backfill. Based on the MaineDOT BDG Section 5.2.1, the Freezing Index for the site is 1300, and with low to moderate moisture content (±15 percent) soils, the estimated depth of frost penetration is 5.5 feet.

6.0 RECOMMENDATIONS

6.1 SEISMIC DESIGN

The United States Geological Survey Seismic Design Maps application, Version 3.10, was used to develop parameters for bridge design. Based on the site coordinates, the software provided the recommended AASHTO Response Spectra (Site Class D) for a 7 percent probability of exceedance in 75 years. These results are summarized as follows:

SITE CLASS D SEISMIC DESIGN PARAMETERS

Parameter Design Value

Fpga 1.6

Fa 1.6

Fv 2.4

As (Period = 0.0 sec) 0.10 g

SDs (Period = 0.2 sec) 0.21 g

SD1 (Period = 1.0 sec) 0.10 g

Page 21: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 17 9/23/2014

Per AASHTO Article 3.10.6, the site is assigned to Seismic Zone 1 based on a calculated SD1 of 0.10 g. Per AASHTO Article 4.7.4, bridges in Seismic Zone 1 need not be analyzed for seismic loads, but the minimum requirements specified in AASHTO Articles 4.7.4.4 and 3.10.9 apply. 6.2 EMBANKMENT CONSTRUCTION

The widened approach embankments will be constructed primarily in the inter-tidal zone (Abutment 1 approach) or below low water level (Abutment 2 approach). Therefore, fill placement at Abutment 1 could be completed in-the-dry working with the tides. At Abutment 2, we anticipate that fill placement would need to be conducted either inside of a cofferdam to be placed in-the-dry or will be conducted in-the-wet. Embankment construction in the wet should address permitting considerations for work in the river, which we anticipate would include the use of a silt curtain at a minimum. The current subgrade material beneath the Abutment 1 approach is anticipated to consist of medium dense sand and gravel. Therefore, conventional embankment construction procedures should be suitable, provided it can be unwatered. The current mudline beneath the Abutment 2 approach is anticipated to be underlain by 2 feet or more of very soft, organic silt. This material should be assumed to consist of “Muck” and should be fully removed in accordance with the MaineDOT Standard Specifications, Section 203.05 to expose suitable, inorganic soil as confirmed by the Resident and/or Engineer. Additional construction considerations are presented in Section 7.3. 6.3 ABUTMENT AND WINGWALL DESIGN

Backfill behind new abutments should consist of MaineDOT Section 703.19, Granular Borrow for Underwater Backfill, BDG Type 4 soil. Recommended soil properties for Type 4 soils to be used as backfill are as follows:

Internal Friction Angle of Soil = 32;

Soil Total Unit Weight = 125 pcf; and

Coefficient of Passive Earth Pressure, Kp= 3.3 (use for design of backwalls and wingwalls);

Live load surcharge should be applied as a uniform lateral surcharge pressure using the equivalent fill height values developed in accordance with AASHTO Article 3.11.6.4 based on the abutment/wingwall height and distance from the wall backface to the edge of traffic.

Foundation drainage should be provided in accordance with Section 5.4.1.4 of the BDG.

We recommend the use of French drains on the uphill side of abutments and wing walls to prevent buildup of differential hydrostatic pressure. Foundation drains should be sloped to drain by gravity and should daylight on the side slope of the approach embankment and/or through weep holes in the abutments.

Up to about 3 inches of post-construction settlement may occur beneath the Abutment 2 approach embankment. To limit the impact of this settlement on the bridge structure and limit the future abrupt transition from the approach roadway to the bridge (e.g., bump), we recommend use of an approach slab to ease the transition between the pile supported

Page 22: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 18 9/23/2014

bridge and the approach embankment. We recommend that Calderwood Engineers consider the anticipated differential settlement and confirm the suitability of the approach slab to survive these deformations without overstress.

6.4 PILE DESIGN

6.4.1 Abutment Pile Design

The proposed abutments may be supported on HP14x117 ASTM A572, Grade 50 steel (50 ksi yield stress) H-piles driven to the required nominal resistance, anticipated to be developed primarily in end-bearing on or near the bedrock surface.

Pile installation should be controlled based on dynamic pile testing with signal matching analysis.

The Abutment 1 piles should be driven to a nominal resistance calculated by dividing the maximum factored pile load of 162 kips by a resistance factor of 0.65, resulting in a required nominal pile resistance of 249 kips.

The Abutment 2 piles should be designed to resist downdrag loads. Therefore, the piles should be driven to a nominal resistance calculated by dividing the maximum factored pile load of 215 kips by a resistance factor of 0.65, resulting in a required nominal pile resistance of 331 kips.

Preliminary wave equation analyses indicate that the proposed ASTM A572 Grade 50 HP14x117 piles can be driven to a nominal resistance of 249 kips for 21-foot-long piles at Abutment 1 and 331 kips for 41-foot-long piles at Abutment 2 using a diesel hammer with a rated energy of about 47,000 foot-pounds, without exceeding the allowable driving stress of 45 ksi (0.9Fy for 50 ksi steel). The final penetration resistance was 4 to 5 blows per inch to achieve the required nominal pile resistance, both of which are within the MaineDOT range of 3 to 15 blows per inch. In GZA’s experience, the preferred range of final penetration resistance is 6 to 10 blows per inch. A smaller hammer could be used to achieve the required nominal resistance within the preferred penetration resistance range, but the hammer size should satisfy the requirements for abutment and pier piles.

For the purpose of estimating quantities, it should be assumed that the piles will penetrate to approximately El. -15 at Abutment 1 and El. -38 at Abutment 2. These assume that the top of rock elevations encountered in borings BB-TSGR-101 and BB-TSGR-201 are representative for Abutment 1, and top of rock elevations encountered in borings BB-TSGR-103 and BB-TSGR-205 are representative for Abutment 2, and the piles may penetrate a short distance into the bedrock (1 foot or less).

We recommend that lateral pile analyses show that the piles meet at least a pinned condition (no translation) under design loads, if a fixed condition is not evident.

We recommend that one pile at each abutment be dynamically tested to assess driving stress at the maximum factored load and that the combination of dynamic testing and signal matching be used to develop penetration resistance for production driving.

Splices should be made in accordance with MaineDOT Standard Specification Section 501.09 – Splicing Piles.

To limit driving damage and enhance the ability of the H-piles to achieve a pinned condition, we recommend that the H-piles be fitted with Associated Pile and Fitting, Rock Injector, HP-80500 Pile Points.

Page 23: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 19 9/23/2014

6.4.2 Pier Pile Design

The proposed piers may be supported on PP24x0.75 (battered) or PP24x0.625 (plumb), ASTM A252, Grade 3 Modified (fy = 50 ksi) steel pipe piles driven to the required nominal resistance, anticipated to be developed primarily in end-bearing on or near the bedrock surface.

Pile installation should be controlled based on dynamic pile testing with signal matching analysis.

The piles should be driven to a nominal resistance calculated by dividing the maximum factored pile load of 442 kips by a resistance factor of 0.65, resulting in a required nominal pile resistance of 680 kips.

Preliminary wave equation analyses indicate that the proposed ASTM A252 Grade 3 Modified (fy = 50 ksi) PP24x0.625 piles can be driven to a nominal resistance of 680 kips for 5-foot-embedded piles at Pier 1 and 26-foot-embedded piles at Pier 3 using a diesel hammer with a rated energy of about 47,000 foot-pounds without exceeding the allowable driving stress of 45 ksi (0.9Fy for 50 ksi steel). The final penetration resistance was 7 to 9 blows per inch to achieve the required nominal pile resistance, both of which are within the MaineDOT range of 3 to 15 blows per inch. PP24x0.75 piles could be driven to an equal or higher nominal resistance.

For the purpose of estimating quantities, it should be assumed that the piles will penetrate to average tip elevations of approximately El. -21 at Pier 1, El. -39 at Pier 2, and El. -42 at Pier 3. These assume that the top of rock elevations encountered in borings BB-TSGR-301, BB-TSGR-302, and BB-TSGR-303 are representative for Pier 1, Pier 2, and Pier 3, respectively, and the piles may penetrate a short distance into the bedrock.

We recommend that one pile per pile type at each pier be dynamically tested to assess driving stress at the maximum factored load and that the combination of dynamic testing and signal matching be used to develop penetration resistance for production driving.

Splices should be made in accordance with MaineDOT Standard Specification Section 501.09 – Splicing Piles.

To limit driving damage, the steel pipe piles should be fitted with protective driving tips. For Pier 1 piles that will have rock anchors installed through the pipe, the tips should consist of outside cutting shoes. Pipe piles at other locations should be fitted with 60-degree conical pile tips.

The Pier 1 piles will be cleaned out following initial installation, prior to rock anchor installation. Pile cleanout has the potential to be detrimental to the available pile resistance. Therefore, Pier 1 piles should be re-driven to the required penetration resistance following clean-out. Dynamic pile testing at Pier 1 should be conducted on the re-drive following cleanout.

Pier piles should be filled with Class “A” concrete and reinforced in accordance with the requirements of Calderwood Engineering.

Page 24: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 20 9/23/2014

6.5 ROCK ANCHOR DESIGN

Rock anchor design should be in accordance with Chapter 11 of AASHTO and the current edition of “Recommendations for Prestressed Rock and Soil Anchors,” by the Post-Tensioning Institute (PTI).

Based on the unconfined compressive strength and our experience with rock anchors in similar formations, we recommend a nominal grout-rock bond stress of 150 psi. A factored grout-rock bond stress of 75 psi is recommended for Strength Limit State design.

The resistance of the rock mass is typically checked assuming the weight of a conical rock mass extending upward from the midpoint of the bonded length, to the top of rock, and assuming an included cone angle of 75 degrees. A buoyant unit weight of 105 pcf is recommended for bedrock assuming that water levels will be at or above the top of rock. For the planned 12-foot-long anchor, the conical rock mass must extend 9 feet below the top of the anchor zone to provide sufficient weight to resist a 50 kip factored load. However, because uplift is not anticipated and 50 kips is used only as a design basis, the rock mass resistance is considered to be acceptable. Therefore, a 12-foot-long bond length is suitable for the rock anchors.

We recommend that all-thread bar-type anchors be used rather than wire strand-type. It has been our experience that corrosion protection is more straightforward and reliable, that they are more readily installed and tested, and that the lock-off is more reliable.

The anchors should be provided with double corrosion protection systems in accordance with PTI Class I protection criteria. Either two-stage grouting (i.e., anchor is grouted from the tip to the top of the bonded length, tested and tensioned prior to placing the grout through the unbonded length) or one-stage grouting (i.e., use of pregrouted encapsulations and or greased sleeve bond breakers) are acceptable for anchor installation.

Rock anchors should be tested in accordance with AASHTO Article 11.9.8.1, which is based on PTI criteria. We recommend that proof tests be performed on every anchor and that a performance test be performed on at least one anchor per foundation location. The maximum test load has traditionally been set at 1.33 multiplied by the design load (1.33 DL) per PTI standards, where DL is an unfactored load. We recommend that the maximum test load (1.33 DL) be established as the maximum of: (1) 1.33 multiplied by the maximum nominal Service load combination, or (2) 1.0 multiplied by the maximum factored Strength load combination. Rock anchor test load increments should then be established using ratios of DL designated in PTI.

The recommended maximum test load (1.33 times service load or 1.0 time factored load) is the minimum acceptable test load to confirm adequate anchor capacity. Calderwood Engineering may select a higher maximum test load if desired. However, the maximum test load should be less than or equal to the guaranteed ultimate tensile strength multiplied by a resistance factor of 0.8, and the maximum test load should not create a grout-rock bond stress exceeding the maximum factored grout-rock bond strength.

Page 25: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 21 9/23/2014

7.0 CONSTRUCTION CONSIDERATIONS

This section provides guidance regarding quality control during pile installation, excavation,

dewatering, and foundation subgrade preparation and protection. These items are given in the

paragraphs that follow.

7.1 PILE INSTALLATION CONTROL

We recommend that the pile installation be controlled using wave equation analysis and field

logging of the pile installation and that final penetration resistance be based on dynamic pile

testing with signal matching analysis. As previously noted, the piles should be driven to a

nominal capacity calculated by dividing the maximum factored pile load by a resistance factor of

0.65, per AASHTO Table 10.5.5.2.3-1.

AASHTO Table 10.5.5.2.3-1 requires that at least one load test with signal matching be

performed per substructure to use a resistance factor of 0.65. Therefore, it is recommended that

eight (8) PDA tests with Signal Matching be completed for the project, including one pile at each

abutment (two total) and one pile per pile type at each pier (six total). If only PP24x0.75 pipe

piles are used, the PDA tests on pier piles would be reduced from six tests to three.

Consistent with MaineDOT practice, one restrike test is recommended at the first abutment and

the first pier constructed. Additional PDA testing may be recommended if unanticipated

conditions are encountered during installation, including early pile take-up, pile driving

out-of-plumb, or otherwise unexplained variations in hammer performance.

7.2 PILE INSTALLATION AND CONCRETE FILL

Pipe piles at Piers 2 and 3 will be driven closed-ended, with a conical tip. Therefore, it is

anticipated that reinforcing cages and concrete fill can be placed immediately following

installation as desired by the Contractor.

Pipe piles at Pier 1 will be driven open-ended. Outside-flange, cast steel driving shoes are

recommended to protect the pile tips against driving damage and allow for easier installation of

rock anchors (as compared to inside-flange driving shoes). Piles should be cleaned out using air-

lift methods to the top of bedrock prior to installation of rock anchors. The cleaned-out piles

should be re-driven to the required penetration resistance. Dynamic pile testing with signal

matching analysis should be conducted during the re-drive.

A concrete plug should be poured in the lower portion of the pile following cleanout and prior to

anchor installation, to promote development of a seal between the rock anchor casing and top of

bedrock.

7.3 PILE OBSTRUCTIONS

Pre-drilling, pre-excavation or spudding may be necessary to bypass potential obstructions, such

as the boulders and rock fill encountered in boring drilled near Piers 2 and 3.

Page 26: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 Page 22 9/23/2014

7.4 EXCAVATION, TEMPORARY LATERAL SUPPORT AND DEWATERING

Excavation will likely be required to a depth of about 2 feet below mudline beneath the Abutment

2 approach to remove a layer of very soft, organic silt. The exposed soil beneath the organic silt

will likely consist of saturated sandy silt or silty sand, which could be difficult to manage during

fill placement. If fill placement at Abutment 2 is conducted in-the-wet, it may be feasible to

place a very thick initial lift of well-graded gravel or blasted rock fill before compacting to get the

embankment work level up to the inter-tidal zone, from where it can be worked around the tide

cycle.

Excavations for abutment foundations are anticipated to extend up to 7 feet below existing grades

on the east side of each abutment, extending into the existing embankment side slope. We

anticipate that sufficient space is available to prepare excavation slopes as sloped, open cuts. If

encroachment into the road is such that traffic cannot be maintained, a sheetpile wall would be

required to facilitate abutment construction. In all cases, temporary excavations should comply

with Occupational Safety and Health Administration excavation safety requirements.

Groundwater is anticipated to vary tidally and will likely be above the bottom of pile cap level at

Abutment 2 during high tide. Work that is required to be completed in the dry below high tide

should be phased to avoid high tide condition.

The contractor should be responsible for controlling groundwater, surface runoff, infiltration and

water from all other sources by methods which preserve the undisturbed condition of the

subgrade and permit foundation construction in-the-dry. Discharge of pumped groundwater and

river water should comply with all local, State, and federal regulations.

7.5 REUSE OF ON-SITE MATERIALS

Based on the test boring results, the three fill samples tested had greater than 20 percent passing the

No. 200 sieve, indicating the fill does not meet MaineDOT specifications for Granular Borrow

and/or Granular Borrow for Underwater Backfill and is unsuitable for use as structural backfill.

The material is considered suitable for use as Common Borrow.

If the contractor wishes to reuse excavated material as embankment fill or in other areas, we

recommend that the proposed material be stockpiled and tested for grain size distribution.

Stockpiled materials meeting the appropriate MaineDOT specifications may be reused on the

project.

p:\09 jobs\0025700s\09.0025781.00 thomaston bridge mainedot\report\final 25781 thomaston final gdr 092314.docx

Page 27: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

FIGURES

Page 28: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Copyright:© 2013 National Geographic Society, i-cubed

© 20

13 - G

ZA G

eoEn

viron

menta

l, Inc

. P:\0

9 Job

s\002

5700

s\09.0

0257

81.00

\Figu

res-C

AD\G

IS\Fig

ure 1-

Locu

s Plan

-0603

13.m

xd, 6

/3/20

13, 8

:51:57

AM, je

nnife

r.pisa

ni

1FIGURE

09.0025781.00JUNE 2014

CLSARBARB

ARBJAP

CALDERWOOD ENGINEERING

1 in = 2,000 ft

WADSWORTH STREET BRIDGE REPLACMENTMAINE DOT WIN 16755THOMASTON, MAINE

LOCUS PLAN

40 1,800 3,600900

Feet

SITE

UNLESS SPECIFICALLY STATED BY WR ITTEN AGREEMEN T, THIS DR AWING IS TH E SOLE PROPERTY OF GZAGEOENVIR ON MENTAL, INC . (GZA). THE IN FORMATION SHOWN ON THE D RAWIN G IS SOLELY FOR TH E U SE BY GZA'S C LIENTOR THE CLIENT 'S DESIGNATED R EPR ESENTAT IVE FOR THE SPECIFIC PROJEC T AND LOC ATION ID ENTIFIED ON THEDRAWIN G. THE DRAWIN G SHALL NOT BE TRANSFERR ED, REUSED, COPIED, OR ALTERED IN ANY MAN NER FOR USE AT AN YOTHER LOC ATION OR FOR ANY OTHER PU RPOSE WITHOUT THE PRIOR WRITTEN C ON SEN T OF GZA, ANY TRANSFER ,REUSE, OR MODIFICATION TO THE DRAWING BY TH E C LIENT OR OTH ER S, WITHOUT THE PRIOR W RITTEN EXPRESSCONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT AN Y RISK OR LIABILITY TO GZA.

PREPARED FOR:PREPARED BY: GZA GeoEnvironmental, Inc.

Engineers and Scientistswww.gza.com

DATE:DESIGNED BY:PROJ MGR:

PROJECT NO.DRAWN BY:REVIEWED BY:

REVISION NO.SCALE:CHECKED BY:

SOUR CE : TH IS M AP CONTAINS THE ESRI ARCGIS ON LINE USA TOPOGRAPHIC M APSERVICE, PU BLISHED DECEMBER 12, 2009 BY ESRI ARC IM S SER VICES AND UPDATED AS

NEED ED. TH IS SERVICE USES U NIFORM NATIONALLY RECOGNIZED DATUM AND CARTOGRAPHYSTANDAR DS AND A VARIETY OF AVAILABLE SOUR CES FR OM SEVER AL DATA PR OVIDERS

Page 29: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

EXISTING BRIDGE

-15

-15

-15

-15

-15

-15

BB-TSGR-204

BB-TSGR-103

BB-TSGR-205

BB-TSGR-202

BB-TSGR-203

BB-TSGR-102

BB-TSGR-301

BB-TSGR-302

BB-TSGR-303

-10

-10

-10

-10

-5

-5

-5

-5

-5

-5

BB-TSGR-201

Sill EL

G

G

W

IPF

Sill EL

Sill EL

G

Sill EL

W

Sill E

L

G

Sill E

L

G

W

G

STB

G

G

G

W

W

0

0

0

0

0

0

00

0

0

0

0

0

0

0

280.00'

É Brg., Abut. No. 1 É Brg., Abut. No. 2

70.00'70.00'70.00'70.00'

É Pier No. 1 É Pier No. 2 É Pier No. 3

E = 10.80'

T = 128.91'

L = 255.41'

R = 763.94'

= 19°09'20.2" Lt.

D = 7°30'00.0"

PI = 22+27.66

CURVE DATA #2

E =

23.48'

T =

154.7

5'L = 3

00.08'

R =

498.2

2' = 3

4°30'3

5.0" Lt.

D =

11°30'00.0"

PI =

29+69

.11

CURVE DATA

#3

22+00

23+00 24+00 25+00 26+00 27+00 28+00

29+00

PT =

ST

A. 23+

54.1

6

PC

=

ST

A. 28+

14.3

6

E

=

5.0

9'

T

=

110.9

6'

L =

221.3

0'

R

=

1206.2

3'

´

=

10°30'4

3.0

" Lt.

D

=

4°45'0

0.0

"

PI =

123

+85.9

6

CU

RV

E

DA

TA

#1

= Sta. 122+75.00 on Sunrise Terrace

Sta. 22+75.00 on Wadsworth Street

N19°34'42.21"E

= Sta.

229+4

5.00

on Water Street

Sta. 2

9+45.0

0 on

Wadsw

orth Stre

et

123

+00

124

+00

PROPOSED BRIDGE

MAG. 19XX

5

5

5

5

55

5

5

5

5

5

5

55

5

510

10

10

10

10

10

10

10

BB-TSGR-101

15

1515

15

15

1515

15

15

15

15

15

BB-TSGR-205

BB-TSGR-103

BB-TSGR-303

DE

SIG

N-

DE

TAIL

ED

BY

DA

TE

PR

OJ.

MA

NA

GE

R

FIE

LD

CH

AN

GE

S

RE

VISIO

NS

1

RE

VISIO

NS

2

RE

VISIO

NS

3

RE

VISIO

NS

4

CH

EC

KE

D-

RE

VIE

WE

D

HIG

HW

AY

Divisio

n:

Filena

me:...\

CA

D\

11_

Borin

g-Pla

n.d

gn

Userna

me:

Date:9/10/2

014

co

mm

on

DE

SIG

N2-

DE

TAIL

ED

2

DE

SIG

N3-

DE

TAIL

ED

3

WIN

ST

AT

E O

F M

AIN

E

DE

PA

RT

ME

NT O

F T

RA

NSP

OR

TA

TIO

N

DA

TE

SIG

NA

TU

RE

P.E.

NU

MB

ER

16755.0

0

WA

DS

WO

RT

H

ST

RE

ET

BRID

GE

ST.

GE

OR

GE

RIV

ER

TH

OM

AS

TO

NK

NO

X

CO

UN

TY

BRID

GE N

O. 2904

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Scale in Feet

PLAN

25 0 25 50

GE

OT

EC

H P

LA

NS

CL

S

__

__

__

__

__

__

__

__

__

_

__

__

__

_

__

__

__

__

__

__

11

BO

RIN

G

LO

CA

TIO

N

PL

AN

OF 69

SHEET NUMBER

MA

P

AR

B

__

__

__

_

SE

PT

2014

SE

PT

2014

ET

L/

AT

V

STP-1

675(5

00)

LEGEND:NOTES:

BY/FOR MAINEDOT)

DESIGNATION AND LOCATION OF 100-SERIES TEST BORING (DRILLED

NORTHERN BORING FOR MAINEDOT)

DESIGNATION AND LOCATION OF 200-SERIES TEST BORING (DRILLED BY

MAINE TEST BORING FOR GZA)

DESIGNATION AND LOCATION OF 300-SERIES TEST BORING (DRILLED BY

EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN

ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY

DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT

OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE

GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT

7) UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA

AND 3, 2010.

6) THE BB-TSGR-100 SERIES TEST BORINGS WERE PERFORMED AND OBSERVED BY MAINEDOT BETWEEN NOVEMBER 1

MAINEDOT BETWEEN SEPTEMBER 27 AND OCTOBER 3, 2011.

5) THE BB-TSGR-200 SERIES TEST BORINGS WERE PERFORMED BY NORTHERN TEST BORING AND OBSERVED BY

APRIL 16 AND 18, 2013 AND OBSERVED BY GZA PERSONNEL.

4) THE BB-TSGR-300 SERIES BORINGS WERE PERFORMED BY MAINE TEST BORING OF HERMON, MAINE BETWEEN

MAINEDOT.

3) MUDLINE ELEVATIONS AND BORING LOCATIONS FOR BB-TSGR-100 AND -200 SERIES BORINGS WERE PROVIDED BY

THE MUDLINE.

DETERMINED BY MAINEDOT BY SURVEYING THE TOP OF CASING AT THE BEGINNING OF DRILLING WHEN IT TOUCHED

2) AS-DRILLED MUDLINE ELEVATIONS AND BORING LOCATIONS FOR BB-TSGR-300 SERIES WATER BORINGS WERE

BRIDGE.DWG, CONTOURS.DWG, TOPO.DWG, AND WETLANDS.DWG).

1) BASE MAP DEVELOPED FROM ELECTRONIC FILES PROVIDED BY MAINEDOT ON MARCH 29, 2013 (FILES INCLUDED

20

20

20

20

25

25

25

25

25

25

30

30

30

30

35

35

35

40

40

40

45

4550

50

5560

andrew.blaisdell
Rectangle
andrew.blaisdell
Typewritten Text
FIGURE 2
andrew.blaisdell
Rectangle
Page 30: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

CORED BEDROCK

UNKNOWN (LACK OF SAMPLING)

SILT/CLAY

RIVER BOTTOM DEPOSIT

WEATHERED ROCK

FILL

COBBLES & BOULDERS

GLACIAL TILL

BORING STICK HATCH LEGEND:

LEGEND:

BOREHOLE DESIGNATION

REFUSAL

ROCK CORE

RQD OF CORE RUN

30

R

TOP OF CORED BEDROCK (FT-NAVD 1988)

OFFSET FROM BASELINE

-41.3

TOR

EL. -14.8

BB-TSGR-303(OFFSET 1.7' L)

WEIGHT OF HAMMERWOH

TEST (SPT) N-VALUE

ENERGY CORRECTED STANDARD PENETRATION

ELEVATION AT BORING LOCATIONGROUND SURFACE/MUDLINE

TOR

-18.9

28

EL. -14.1

BB-TSGR-202(OFFSET 6.2' R)

R

R

EL. -13.9

BB-TSGR-203(OFFSET 0.4' R)

TOR

-36.8

EL. -12.9

BB-TSGR-102(OFFSET 42.6' R)

TOR

-37.7

R

3

4

112

10

EL. -14.3

BB-TSGR-204(OFFSET 2.9' R)

TOR

-41.5

43

4

3

EL. -4.2

BB-TSGR-205(OFFSET 13.3' L)

TOR

-37.2

48

1

4

WOH

13

8

7

24

34

48

EL. 15.4

BB-TSGR-101(OFFSET 38.5' R)

TOR

-13.9

TOR

R

-15.0

18

EL. -2.0

BB-TSGR-201(OFFSET 13.3' L)

18

14

11

4

25

3

EL. 14.6

BB-TSGR-103(OFFSET 43.0' R)

TOR

-40.5

WOH

6

13

90

R

4

1

2

1

R

EL. -14.8

BB-TSGR-303(OFFSET 1.7' L)

TOR

-41.3

TOR

-23.3

57

EL. -14.1

BB-TSGR-301(OFFSET 6.4' L)

7

R

EL. -18.9

BB-TSGR-302(OFFSET 16.2' R)

TOR

-39.3

125

7

136

Dark gray

to brown,

SILT.

[SILT/CLAY]

Brown to dark

gray, very

loose to

medium

dense, fine to

coarse SAND,

some Gravel,

some Silt.

[RIVER BOTTOM

DEPOSIT]

Gray, hard, fresh,

fine-grained,

METAPELITE and

hard, fine-grained,

gray and white

METASANDSTONE.

Hard,

fine-grained,

white-green-gray

METASANDSTONE.

EL

EV

ATIO

N (F

EE

T

NA

VD88)

EL

EV

ATIO

N (F

EE

T

NA

VD88)

ABUT 1 PIER 1

PIER 2 PIER 3ABUT 2

MHHW EL. 5.39

MLT EL. 0.46

MLLW EL. -4.46

Brown, loose to

dense, fine to

coarse SAND,

some Gravel,

some Silt.

[FILL]

Brown, loose to

dense, fine to

coarse SAND,

some Gravel,

some Silt.

[FILL]

Gray to brown,

very soft to

stiff, SILT,

some Sand.

[SILT/CLAY]

Gray to brown,

very soft to

stiff, SILT,

some Sand.

[SILT/CLAY]

Gray, medium dense to

very dense, fine to

coarse SAND, some

Silt, to hard SILT,

some Sand, some

Gravel. [TILL]

Gray, medium dense to

very dense, fine to

coarse SAND, some

Silt, to hard SILT,

some Sand, some

Gravel. Approximately

2.5 to 15 feet of

Cobbles and Boulders

where noted. [TILL]

??

??

??

??

??

??

??

??

??

??

??

ESTIMATED TOP OF ROCK

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

24+00 25+00 26+00 27+00 28+00 29+00

24+00 25+00 26+00 27+00 28+00 29+00

BASELINE STATIONING

soft,

sandy

ROCK

TOP OF

ESTIMATED

BRIDGE

EXISTING

PROFILE,

MUDLINE

EXISTING

PROPOSED BASELINE

SURFACE/MUDLINE PROFILE,

EXISTING GROUND

NOTES:HIG

HW

AY

Divisio

n:

Filena

me:...\

CA

D\

12-Profile.d

gn

Userna

me:

Date:9/10/2014

co

mm

on

DE

SIG

N-

DE

TAIL

ED

BY

DA

TE

PR

OJ.

MA

NA

GE

R

FIE

LD

CH

AN

GE

S

RE

VISIO

NS

1

RE

VISIO

NS

2

RE

VISIO

NS

3

RE

VISIO

NS

4

CH

EC

KE

D-

RE

VIE

WE

D

DE

SIG

N2-

DE

TAIL

ED

2

DE

SIG

N3-

DE

TAIL

ED

3

WIN

BRID

GE P

LA

NS

DE

PA

RT

ME

NT O

F T

RA

NSP

OR

TA

TIO

N

ST

AT

E O

F M

AIN

E

DA

TE

SIG

NA

TU

RE

P.E.

NU

MB

ER

16755.0

0

WA

DS

WO

RT

H

ST

RE

ET

BRID

GE

ST.

GE

OR

GE

RIV

ER

TH

OM

AS

TO

NK

NO

X

CO

UN

TY

BRID

GE N

O. 2904

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

OF 69

__

__

__

__

__

__

__

__

__

__

__

__

12

P

RO

FIL

E

IN

TE

RP

ETIV

E

SU

BS

UR

FA

CE

OR LIABILITY TO GZA.

GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK

OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF

REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR

WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER,

USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE

TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR

IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE

REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION

FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED

INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY

DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL,

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS 3)

INFORMATION REFER TO THE EXPLORATION LOGS.

VARY AND ARE PROBABLY MORE ERRATIC. FOR MORE SPECIFIC

EXPLORATIONS AND SAMPLES. ACTUAL SOIL TRANSITIONS MAY

BEEN DEVELOPED BY INTERPRETATIONS OF WIDELY SPACED

BETWEEN STRATA ARE APPROXIMATE AND IDEALIZED, AND HAVE

CONVEY TRENDS IN SUBSURFACE CONDITIONS. THE BOUNDARIES

THIS GENERALIZED INTERPRETIVE SOIL PROFILE IS INTENDED TO 2)

BY MAINEDOT ON MARCH 29, 2013 ENTITLED Profile.dgn.

BASELINE PROFILE DEVELOPED FROM ELECTRONIC FILE PROVIDED 1)

STP-1

675(5

00)

MA

P

AR

B

CL

S

0

0

5

VERTICAL SCALE IN FEET

HORIZONTAL SCALE IN FEET

10 20 30

10 20 30

SE

PT

2014

SE

PT

2014

ET

L/

AT

V

__

__

__

SHEET NUMBER

andrew.blaisdell
Rectangle
andrew.blaisdell
Typewritten Text
FIGURE 3
andrew.blaisdell
Rectangle
Page 31: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

APPENDIX A

LIMITATIONS

Page 32: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 APPENDIX A - 1 9/23/2014

LIMITATIONS Use of Report

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose and location identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use. Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party’s sole risk, and without any liability to GZA.

Standard of Care 2. GZA’s findings and conclusions are based on the work conducted as part of the Scope of

Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location, or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report,as appropriate, to reflect the unanticipated changed conditions .

3. GZA’s services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.

Subsurface Conditions 4. The generalized soil profile provided in our Report is based on widely-spaced subsurface

explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.

5. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.

6. Water level readings have been made in test holes as described in the report at the specified

times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.

7. GZA’s services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.

Page 33: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

09.0025781.00 APPENDIX A - 2 9/23/2014

8. Recommendations for foundation drainage, waterproofing, and moisture control address the

conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

Compliance with Codes and Regulations

9. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

Page 34: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

APPENDIX B

PREVIOUS TEST BORING LOGS

Page 35: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

3D

4D

5D

24/15

24/24

24/15

24/8

24/10

2.0 - 4.0

5.0 - 7.0

10.0 - 12.0

15.0 - 17.0

20.0 - 22.0

11/13/11/8

4/3/3/4

7/3/2/5

5/5/4/3

3/4/13/14

24

6

5

9

17

34

8

7

13

24

SSA

24

25

24

42

57

17

37

41

36

60

6

14

18

25

30

7

48

47

69

112

14.9

10.9

5.4

0.4

-2.6

-8.6

Pavement0.5

Brown, moist, dense, fine to coarse SAND, some gravel,some silt.

4.5

Brown, wet, loose, Silty fine to coarse SAND, tracegravel, trace clay.

10.0Brown, wet, medium stiff, sandy SILT, trace gravel.

15.0Brown, wet, stiff, fine to coarse Sandy SILT, tracegravel, trace clay.Changed to NW Casing at 15.0 ft bgs.

18.0

Grey, wet, medium dense, fine to coarse SAND, somegravel, some silt, trace clay, (Till).

24.0

G#240060A-1-b, SMWC=5.7%

G#240061A-4, SC-SMWC=12.5%

G#240062A-4, ML

WC=23.5%

G#240063A-4, CL-MLWC=13.5%

G#240064A-2-4, SC-SM

WC=10.5%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-101Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) 15.4 Auger ID/OD: 5" Solid Stem

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/2/10; 07:30-13:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 24+99.9, 38.5 Rt. Casing ID/OD: HW & NW Water Level*: 18.0 ft bgs.

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-101

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 36: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

6D

R1

R2

24/19

49.2/27

60/48

25.0 - 27.0

29.3 - 33.4

33.4 - 38.4

5/14/20/25

RQD = 0%

RQD = 60%

34 48 14

20

21

60

45NQ-2

63

51

54

-12.7

-23.0

Grey-brown, wet, dense, Silty fine to coarse SAND, littlegravel, trace clay, (Till).

28.1Top of Bedrock at Elev -12.7Weathered BEDROCK.Roller Coned ahead of casing to 29.3 ft bgs.R1:Hard to moderately hard, moderately weathered, finegrained, gray, METAPELITE. Joints are extremely closeto close, high angle, undulating, rough, fresh todecomposed, partially open to open, healed joints inintact pieces. Hydrothermally altered.Rock Mass Quality = Very Poor.R1:Core Times (min:sec)29.3-30.3 ft (3:30)30.3-31.3 ft (4:10)31.3-32.3 ft (5:20)32.3-33.3 ft (6:08)33.3-33.4 ft (2:00) 55% RecoveryCore BlockedR2:Hard, fresh, fine grained, gray, METAPELITE.Primary joints are extremely close to moderately spaced,moderately dipping to high angle, undulating, rough,fresh, partially open, occasional silt seam. Secondaryjoints are close to moderately spaced, low angle tohorizontal, undulating, rough, fresh, tight to open. Highlyfractured zones 33.4-34.1 and 36.0-36.8.Rock Mass Quality = Fair.R2:Core Times (min:sec)33.4-34.4 ft (3:20)34.4-35.4 ft (7:25)35.4-36.4 ft (4:10)36.4-37.4 ft (4:30)37.4-38.4 ft (6:40) 80% Recovery

38.4Bottom of Exploration at 38.40 feet below ground

surface.

G#240065A-4, SC-SMWC=11.0%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-101Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) 15.4 Auger ID/OD: 5" Solid Stem

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/2/10; 07:30-13:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 24+99.9, 38.5 Rt. Casing ID/OD: HW & NW Water Level*: 18.0 ft bgs.

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-101

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 37: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

3D

MD

4D

R1

24/8

24/12

24/15

6/0

21.6/18

56.4/56.4

0.0 - 2.0

7.0 - 9.0

12.0 - 14.0

17.0 - 17.5

22.0 - 23.8

24.8 - 29.5

3/4/3/6

2/2/WOH/WOH

1/1/2/4

50(6")

19/33/47/50(3.6)

RQD = 100%

7

2

3

---

80

10

3

4

112

aHP

HP

HP

HP

8

14

7

3

3

17

23

11

6

14

15

17

26

33

17

19

17

60

50

65

b100

-18.9

-33.9

-37.7

aHP=Hydraulic PushBrown, wet, loose, fine to coarse SAND, some gravel,some silt, shells.

WOOD in wash water from 4.5-5.5 ft bgs.

6.0

Grey, wet, very loose, fine to coarse SAND, some gravel,trace silt.

Grey, wet, very loose, fine to coarse SAND, little gravel,little silt.

Changed to NW Casing at 17.0 ft bgs.BOULDER from 17.5-19.3 ft bgs.Roller Coned ahead to 22.0 ft bgs.

21.0

Grey, wet, hard, fine to coarse, sandy SILT, little gravel,trace clay, (Till).Roller Coned ahead to 24.8 ft bgs.

b100 blows for 0.8 ft.

24.8

G#240066A-1-b, SW-SM

WC=15.3%

G#240067A-1-b, SW-SM

WC=25.3%

G#240068A-4, CL-MLWC=12.7%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-102Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) -12.9 Auger ID/OD: N/A

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/2/10-11/3/10 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 26+33.6, 42.6 Rt. Casing ID/OD: HW & NW Water Level*: River Boring,

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

12" Concrete Bridge Deck.28.3 ft from Bridge Deck to Ground.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-102

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 38: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

R2 60/60 29.5 - 34.5 RQD = 95%

NQ-2

-47.4

Top of Bedrock at Elev. -37.7 ft.R1:Bedrock: Grey, green and white, fresh, mixture ofSCHIST and MARBLE with kyanite crystals and pyrite.(Rocks of Islesboro)Rock Mass Quality = Excellent.R1:Core Times (min:sec)24.8-25.8 ft (3:30)25.8-26.8 ft (3:15)26.8-27.8 ft (3:25)27.8-28.8 ft (3:30)28.8-29.5 ft (3:00) 100% RecoveryCore BlockedR2:Bedrock: Dark grey, fresh, SCHIST with fragments ofmarble. (Rocks of Islesboro)Rock Mass Quality = Excellent.R2:Core Times (min:sec)29.5-30.5 ft (3:30)30.5-31.5 ft (4:05)31.5-32.5 ft (3:15)32.5-33.5 ft (3:40)33.5-34.5 ft (3:20) 100% Recovery

34.5Bottom of Exploration at 34.50 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-102Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) -12.9 Auger ID/OD: N/A

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/2/10-11/3/10 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 26+33.6, 42.6 Rt. Casing ID/OD: HW & NW Water Level*: River Boring,

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

12" Concrete Bridge Deck.28.3 ft from Bridge Deck to Ground.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-102

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 39: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

3D

4D

5D

24/14

24/15

24/10

24/8

24/9

2.0 - 4.0

5.0 - 7.0

10.0 - 12.0

15.0 - 17.0

20.0 - 22.0

5/6/12/15

7/5/5/5

4/4/4/4

3/5/8/5

2/1/2/1

18

10

8

13

3

25

14

11

18

4

SSA

25

28

44

31

28

6

22

26

21

19

12

40

23

30

19

19

16

31

32

37

14.0

9.6

4.6

-3.9

Pavement0.6

Brown, damp, medium dense, fine to coarse SAND,some gravel, some silt.

5.0Brown, moist, stiff, fine to coarse, sandy SILT, somegravel.

10.0Brown, wet, medium dense, fine to coarse SAND, somegravel, little silt.

Similar to above.

18.5

Olive, wet, very loose, Silty, fine to course SAND, tracegravel, trace clay.

G#240069A-2-4, SMWC=8.0%

G#240070A-4, ML

WC=12.0%

G#240071A-1-b, SMWC=13.4%

G#240072A-4, SC-SMWC=13.9%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-103Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) 14.6 Auger ID/OD: 5" Solid Stem

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/1/10; 08:30-15:30 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+54.3, 43.0 Rt. Casing ID/OD: HW & NW Water Level*: 19.0 ft bgs.

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-103

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 3

Page 40: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

6D

7D

MV1

MV28D

9D

10D

24/6

24/20

24/6

24/15

24/20

25.0 - 27.0

30.0 - 32.0

32.0 - 32.0

35.0 - 35.035.0 - 37.0

40.0 - 42.0

45.5 - 47.5

2/1/1/1

WOH/WOH/WOH/WOH

Would not push

Would not push2/2/2/2

WOH/3/6/5

21/33/31/34

2

---

4

9

64

3

6

13

90

32

31

40

38

39

36

42

41

42

44

3

5

8

13

18

22

59

77

99

110

40

27

21

19

30

-13.4

-20.4

-28.4

Grey, wet, very loose, Silty fine to coarse SAND, somegravel, trace clay.

28.0

Grey, wet, very soft, SILT, some fine sand, little clay.

Failed 55x110 mm vane attempt.

35.0Failed 55x110 mm vane attempt.Brown, wet, loose, Silty, fine to coarse SAND, littlegravel, shells.Changed to NW Casing at 35.0 ft bgs.

Brown, wet, medium dense, fine to coarse SAND, somegravel, little silt.

43.0

Grey, wet, hard, fine to coarse Sandy SILT, trace gravel,trace clay, (Till).Roller Coned ahead to 50.0 ft bgs.

G#240073A-4, ML

WC=36.2%Non-Plastic

G#240074A-1-b, SMWC=29.5%

G#240075A-4, CL-MLWC=13.0%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-103Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) 14.6 Auger ID/OD: 5" Solid Stem

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/1/10; 08:30-15:30 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+54.3, 43.0 Rt. Casing ID/OD: HW & NW Water Level*: 19.0 ft bgs.

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-103

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 3

Page 41: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

50

55

60

65

70

75

11D

R1

R2

6/6

60/60

60/60

50.0 - 50.5

55.1 - 60.1

60.1 - 65.1

50(6")

RQD = 67%

RQD = 77%

--- 69

55

43

43

40

a30NQ-2

-35.4

-40.5

-50.5

50.0Grey, wet, very dense, fine to coarse SAND, some silt,some gravel.Roller Coned ahead to 55.1 ft bgs.

a30 blows for 0.1 ft.55.1

Top of Bedrock at Elev. -40.5 ft.R1:Very hard, fresh, fine grained, white,METASANDSTONE. Primary joints are close tomoderately spaced, low angle to horizontal, undulating,rough, fresh to discolored, tight to partially open.Secondary joints are moderately spaced, high angle,planar, rough, discolored, tight, healed fracturesthroughout.Rock Mass Quality = Fair.R1:CoreTimes (min:sec)55.1-56.1 ft (2:25)56.1-57.1 ft (2:25)57.1-58.1 ft (2:05)58.1-59.1 ft (2:00)59.1-60.1 ft (2:00) 100% RecoveryR2: Very hard, fresh, fine grained, white,METASANDSTONE. Primary joints are close tomoderately spaced, low angle, undulating, rough, fresh todiscolored, tight. Secondary joints are moderately spaced,moderately dipping, planar, rough, discolored, tight,healed fractures throughout.Rock Mass Quality = Good.R2:CoreTimes (min:sec)60.1-61.1 ft (2:20)61.1-62.1 ft (2:15)62.1-63.1 ft (2:00)63.1-64.1 ft (2:00)64.1-65.1 ft (2:00) 100% Recovery

65.1Bottom of Exploration at 65.10 feet below ground

surface.

G#245451A-2-4, SMWC=12.6%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-103Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: MaineDOT Elevation (ft.) 14.6 Auger ID/OD: 5" Solid Stem

Operator: Giguere/Giles/Daggett Datum: NAVD 88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: CME 45C Hammer Wt./Fall: 140#/30"

Date Start/Finish: 11/1/10; 08:30-15:30 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+54.3, 43.0 Rt. Casing ID/OD: HW & NW Water Level*: 19.0 ft bgs.

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-103

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 3 of 3

Page 42: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

R1

24/12

60/57

0.0 - 2.0

3.5 - 4.8

13.0 - 18.0

5/7/6/4

20/27/40(3.6")

RQD = 53%

13

---

18 30

27

111

OPENHOLE

50

62

88

106

NQ-2

-4.0

-15.0

-20.0

Brown, very wet, medium dense, gravelly, fine to coarseSAND, trace silt.

2.0

Grey, wet, very dense, silty, fine to coarse SAND, tracegravel.Roller Coned ahead to 13.0 ft bgs, set in NW Casing.Occasional Cobbles.

13.0Top of Bedrock at Elev. -14.99 ft.R1: Very hard, fresh, fine grained, gray to green,METAPELITE. Primary joints are very close to close,low angle to moderately dipping, undulating, rough,discolored, tight to partially open. Secondary joints aremoderately spaced, high angle, planar, rough, fresh todiscolored, partially open, silt seam, core consistentlypitted, occasional calcite stringers.Rock Mass Quality = Fair.R1:Core Times (min:sec)130.-14.0 ft (4:00)14.0-15.0 ft (4:15)15.0-16.0 ft (5:00)16.0-17.0 ft (5:00)17.0-18.0 ft (5:30) 95% RecoveryCould not get back down, ran out of time with the tide.

18.0Bottom of Exploration at 18.00 feet below ground

surface.

G#261759A-1-a, GP-GM

WC=17.6%

G#261760A-4, SC-SMWC=10.1%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-201Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -1.99 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/30/11; 12:30-16:30 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 24+91.7, 13.3 ft Lt. Casing ID/OD: HW & NW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 10.0 ft.Started Boring at High Tide, had only 3 hours to work on boring.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-201

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 43: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

R1

24/14

62.4/62.4

0.0 - 2.0

4.8 - 10.0

8/11/9/24

RQD = 53%

20 28 44

122

175

216

NQ-2

-15.1

-18.9

-24.1

Black, wet, medium dense, fine to medium SAND, littleSilt, shells, (Muck).

1.0Grey-brown, wet, medium dense, fine to coarse SAND,little silt.

4.8Top of Bedrock at Elev. -18.9 ft.R1: Medium hard, fresh to moderately weathered, finegrained, gray, METAPELITE. Primary joints are close tomoderately spaced, high angle, planar, rough, discolored,tight. Secondary joints are close to moderately spaced,low angle to horizontal, undulating, rough, fresh, tight,highly weathered seam 6.6-6.8', foliated along primaryjoints, calcite stringers throughout.Rock Mass Quality = Fair.R1:Core Times (min:sec)4.8-5.8 ft (5:06)5.8-6.8 ft (5:15)6.8-7.8 ft (4:30)7.8-8.8 ft (5:00)8.8-9.8 ft (5:25)9.8-10.0 ft (3:00) 100% RecoveryCasing was too crooked to get back down, barge moved.

10.0Bottom of Exploration at 10.00 feet below ground

surface.

G#261761A-1-b, SC-SM

WC=22.1%

qp=2,270 ksf

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-202Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -14.1 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/27/11; 12:30-17:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 25+61.5, 6.2 ft Rt. Casing ID/OD: HW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 20.0 ft.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-202

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 44: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

R1

15.6/12

16.8/13

60/49

7.0 - 8.3

20.0 - 21.4

22.9 - 27.9

2/2/50(3.6")

11/16/50(4.8")

RQD = 50%

---

---

aHP

8

42

36

25

OPENHOLE

20

30

28

47

50

88

NQ-2

-15.9

-30.9

-36.8

aHydraulic PushCurrent was to strong to get sample from 0.0-2.0 ft bgs.2.0 ft of black muck in wash water.

2.0

Grey, wet, dense, fine to coarse SAND, little gravel, littlesilt, (Marine).

Roller Coned ahead to 20.0 ft bgs, set in NW Casing.

17.0

Grey, wet, dense, silty, fine to coarse SAND, somegravel, (Till).

Roller Coned ahead to 22.9 ft bgs.

22.9Top of Bedrock at Elev. -36.8 ft.R1: Hard, fresh, fine grained, gray, METAPELITE.Primary joints are close to moderately spaced, low angleto horizontal, undulating, rough, fresh to discolored, tight

G#261762A-1-b, SC-SM

WC=24.7%

G#261763A-4, SC-SMWC=9.1%

qp=1,211 ksf

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-203Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -13.9 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/30/11; 06:00-11:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 26+28.9, 0.36 ft Rt. Casing ID/OD: HW & NW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.Started Boring at Mean Tide, spuds where not long enough at High Tide.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-203

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 45: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

-41.8

to partially open. Secondary joints are moderatelyspaced, moderately dipping, planar, rough, fresh, tight,occasional calite stringers throughout.Rock Mass Quality = Fair.R1:Core Times (min:sec)22.9-23.9 ft (3:50)23.9-24.9 ft (5:00)24.9-25.9 ft (5:30)25.9-26.9 ft (5:00)26.9-27.9 ft (5:30) 82% RecoveryAttempted R2, Core Barrel plugged up, ran out of timewith the tide.

27.9Bottom of Exploration at 27.90 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-203Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -13.9 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/30/11; 06:00-11:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 26+28.9, 0.36 ft Rt. Casing ID/OD: HW & NW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.Started Boring at Mean Tide, spuds where not long enough at High Tide.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-203

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 46: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

MD

MD

1D

24/0

24/0

24/10

0.0 - 2.0

9.0 - 11.0

11.0 - 13.0

1/1/1/1

4/1/2/2

8/16/15/8

2

3

31

3

4

43

aHP

13

13

14

16

5

7

WOC

WOC

26

37

92

OPENHOLE

-16.3

Black sandy MUCK in wash.aHydraulic Push

2.0Grey, wet, fine to medium SAND, some gravel in wash.

Grey, wet, dense, fine to coarse SAND, trace silt, tracegravel, shells, (Marine).Roller Coned ahead to 20.0 ft bgs.

0.3-0.5 ft Cobbles from 18.0-19.4 ft bgs.

Cobble from 20.0-20.6 ft bgs.Roller Coned ahead to 27.2 ft bgs.

G#261839A-1-b, SP

WC=28.3%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-204Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -14.3 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 10/3/11; 07:00-12:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+00.9, 3.9 ft Rt. Casing ID/OD: HW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-204

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 47: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

R1

R2

50.4/50.4

55.2/53

27.2 - 31.4

31.4 - 36.0

RQD = 76%

RQD = 83%

NQ-2-41.5

-50.3

27.2Top of Bedrock at Elev. -41.5 ft.R1: Top 12" gray, fine grained, METAPELITE.Bottom-very hard, fresh, fine grained, white/gray,METASANDSTONE. Joints are close to moderatelyspaced, low angle, undulating, rough, fresh, tight topartially open.Rock Mass Quality = Good.R1:Core Times (min:sec)27.2-28.2 ft (3:00)28.2-29.2 ft (3:30)29.2-30.2 ft (3:45)30.2-31.2 ft (4:00)31.2-31.4 ft (2:00) 100% RecoveryCore BlockedR2: Very hard, fresh, fine grained, white and gray,METASANDSTONE. Joints are moderately spaced, lowangle to moderately dipping, undulating, rough, fresh,partially open.Rock Mass Quality = Good.R2:Core Times (min:sec)31.4-32.4 ft (3:30)32.4-33.4 ft (4:00)33.4-34.4 ft (4:15)34.4-35.4 ft (4:20)35.4-36.0 ft (5:00) 96% Recovery

36.0Bottom of Exploration at 36.00 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-204Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -14.3 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 10/3/11; 07:00-12:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+00.9, 3.9 ft Rt. Casing ID/OD: HW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-204

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 48: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

1D

2D

3D

4D

R1

24/13

24/14

24/24

21.6/6

155/18

0.0 - 2.0

8.0 - 10.0

15.0 - 17.0

19.5 - 21.3

21.3 - 34.2

WOH/WOH/WOH/WOH

WOH/WOH/1/1

1/1/2/2

14/14/20/50(3.6)

RQD = 0%

---

1

3

34

1

4

48

aHP

8

15

15

17

15

16

24

36

36

29

26

85

b70

NQ-2

-6.7

-17.2

-22.1

-25.5

Black, saturated, organic SILT, some sand, (MarineMuck).aHydraulic Push

2.5

Grey, wet, very soft, sandy SILT, trace clay, (Marine).

13.0

Grey-brown, soft, SILT, some sand, (Marine).

Cobble from 17.6-17.9 ft bgs.17.9

b70 blows for 0.5 ft.Grey, wet, dense, sandy SILT, little gravel, (Till).

21.3R1: Apparent cobbles and boulders from approximately21.3-33.0'; no recovery over this interval.R1:Core Times (min:sec)21.3-22.3 ft (1:00)22.3-23.3 ft (0:45)23.3-24.3 ft (1:00)24.3-25.3 ft (0:40)

G#261764A-4, OL

WC=75.6%

G#261765A-4, CL-MLWC=36.8%

G#261766A-4, ML

WC=35.5%

G#261767A-4, CL-MLWC=13.3%

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-205Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -4.2 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/29/11; 09:00-14:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+70.1, 13.3 ft Lt. Casing ID/OD: HW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-205

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 49: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25

30

35

40

45

50

R2 60/60 34.2 - 39.2 RQD = 27%

-37.2

-43.4

25.3-26.3 ft (0:30)26.3-27.3 ft (0:40)27.3-28.3 ft (0:15)28.3-29.3 ft (0:30)29.3-30.3 ft (0:30)30.3-31.3 ft (1:00)31.3-32.3 ft (2:00)32.3-33.3 ft (4:00)

33.0Top of Bedrock at Elev. -37.2 ft.R1 Continued: Gray, METAPELITE.Rock Mass Quality = Very Poor.33.3-34.2 ft (3:00)Core BlockedR2: Hard, fresh, fine grained, gray, METAPELITE.Primary joints are close, low angle, undulating, rough,fresh, partially open, silt seam at 34.9'. Secondary jointsare close, high angle, undulating, rough, fresh, tight,calcite stringers throughout.Rock Mass Quality = Poor.R2:Core Times (min:sec)34.2-35.2 ft (5:00)35.2-36.2 ft (4:20)36.2-37.2 ft (4:45)37.2-38.2 ft (5:00)38.2-39.2 ft (5:00) 100% RecoveryCould not get back down and ran out of time with thetide.

39.2Bottom of Exploration at 39.20 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge #2904 carriesWadsworth Street over St. George River

Boring No.:BB-TSGR-205Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755.00

Driller: Northern Test Boring Elevation (ft.) -4.2 Auger ID/OD: N/A

Operator: Mike/Nick Datum: NAVD88 Sampler: Standard Split

Logged By: B. Wilder Rig Type: Diedrick D-50 on Raft Hammer Wt./Fall: 140#/30"

Date Start/Finish: 9/29/11; 09:00-14:00 Drilling Method: Cased Wash Boring Core Barrel: NQ-2"

Boring Location: 27+70.1, 13.3 ft Lt. Casing ID/OD: HW Water Level*: Tidal Water

Hammer Efficiency Factor: 0.84 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Auto Hammer #149Raft deck to ground 15.0 ft.GZA reviewed and edited draft logs provided by MaineDOT. Soil descriptions were edited as needed to make visual descriptions consistent with laboratory test data; GZA didnot visually observe collected soil samples. Rock RQD and descriptions were edited based on a visit by a GZA engineer to MaineDOT's laboratory in Bangor on April 17,2013 to observe the core samples based on our observations.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-205

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 50: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

APPENDIX C

DESIGN PHASE TEST BORING LOGS

Page 51: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

30

1D

2D

R1

24/1

24/12

60/60

2.0 - 4.0

5.0 - 7.0

9.2 - 14.2

7-27-30-26

73-87-38-54

RQD = 70%

57

125

57

125

5

14

25

70

125

RC

NQ2

-16.1

-19.1

-23.3

-28.3

No sampling.

-POSSIBLE RIVER BOTTOM DEPOSIT-2.0

Gray, wet, very dense, GRAVEL. Drill spoils consist ofgray Sand and Gravel. Roller bit action indicatessignificant gravel content.Gray-brown SILT in wash water at 4.0-4.5 feet.

-POSSIBLE TILL-5.0

Black, wet, very dense, Silty GRAVEL, little Sand.

-WEATHERED ROCK-

Advanced roller cone to 8.8', telescoped NW casing, andcleaned out to 9.2' with roller cone.

9.2Hard, fresh, fine-grained, gray METAPELITE.Primary joints are close to moderately spaced, low angleto moderately dipping, stepped, rough, fresh, tight topartially open.Secondary joints are moderately spaced, near horizontal,undulating, rough, fresh to discolored, tight.Rock Mass Quality = FairR1: Core Times (min/ft): 3.5, 3.0, 2.5, 3.0, 3.0100% Recovery.

14.2Bottom of Exploration at 14.20 feet below ground

surface.

qp = 3,091 ksf

Maine Department of Transportation Project: Wadsworth Street Bridge Boring No.:BB-TSGR-301Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755

Driller: Maine Test Boring Elevation (ft.) -14.1 Auger ID/OD:

Operator: Mike Porter Datum: NAVD88 Sampler: Standard SS

Logged By: Evan Lonstein (GZA) Rig Type: CME 45 on Barge Hammer Wt./Fall: 140 lb/30"

Date Start/Finish: 04/16/13 Drilling Method: HW/NW Drive Core Barrel: NQ2

Boring Location: N 208416.8 E 1623777.1 Casing ID/OD: 4"/4.5", 3"/3.5" Water Level*: Tidal

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-301

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 52: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

30

1D

2D

3D

4D

R1

24/6

24/1

24/21

5/5

61/61

5.0 - 7.0

10.5 - 12.5

14.6 - 16.6

20.4 - 20.8

21.4 - 26.5

6-4-3-2

7-3-4-4

50-69-67-63

100/5"

RQD = 98%

7

7

136

R

7

7

136

5

3

27

2

6

16

6

5

6

5

3

5

5

21

92

5

6

11

30

47

RC

NQ2

-32.7

-39.3

-40.3

-45.4

Drill cuttings include gray to olive Sand, Gravel, and Silt,with wood from 0' to 5.0'.

Gray, wet, loose, fine to coarse SAND, some Gravel,some Silt, shell fragments.

-RIVER BOTTOM DEPOSIT-

Dark gray, wet, loose, fine to coarse SAND/GRAVEL.Insufficient recovery for classification.Drill cuttings include wood from 10' - 13'.

13.8Increased drilling resistance at 13.8'.Gray-olive, wet, very dense, fine to medium SAND,some Gravel, little Silt.

-TILL-

Gray-olive, wet, very dense, fine to medium SAND,some Gravel, little Silt.

20.4Refusal at 20.4'. Telescoped NW casing to 20.4',advanced roller cone to 21.4', and began coring.

21.4Hard, fine-grained, fresh, gray, METAPELITE. Joints arevery close to wide, low angle, stepped, rough, fresh, tightto open.Rock Mass Quality = ExcellentR1 Core Times (min/ft): 3.0, 2.5, 3.0, 3.0, 2.5100% Recovery.

26.5Bottom of Exploration at 26.50 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge Boring No.:BB-TSGR-302Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755

Driller: Maine Test Boring Elevation (ft.) -18.9 Auger ID/OD:

Operator: Mike Porter Datum: NAVD88 Sampler: Standard SS

Logged By: Evan Lonstein (GZA) Rig Type: CME 45 on Barge Hammer Wt./Fall: 140 lb/30"

Date Start/Finish: 04/17/13 Drilling Method: HW/NW Drive Core Barrel: NQ2

Boring Location: N 208474.2 E 1623814.0 Casing ID/OD: 4"/4.5", 3"/3.5" Water Level*: Tidal

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-302

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 1

Page 53: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0

5

10

15

20

25

30

1D

2D

3D

4D

R1

5D

R2

24/0

24/17

24/4

24/6

60/14

2/2

62/62

0.0 - 2.0

5.0 - 7.0

10.0 - 12.0

15.3 - 17.3

18.4 - 23.4

25.0 - 25.2

27.0 - 32.2

WOH-WOH-1-5

8-1-WOH-1

2-1-1-1

1-1-3-3

RQD = 0%

50/2"

RQD = 45%

1

2

4

R

1

2

4

3

3

5

6

7

7

8

7

7

6

5

WOH

3

3

3

6

7

16

115/"NQ2

140

65/0.2RC

-19.8

-27.8

-33.2

-39.8

-41.3

No recovery.Drill cuttings include brown to gray Sand, Gravel, andSilt from 0'-5'.

-POSSIBLE RIVER BOTTOM DEPOSIT-

5.0Dark gray, wet, very soft, organic SILT, little fine Sand,organic odor.

-SILT / CLAY-Roller bit bouncing occasionally, cuttings include wood.

Dark gray to brown, wet, very soft to soft, organic SILT,some fine to coarse Sand, little Gravel, organic odor,some wood fragments, possible Peat.

13.0

Dark gray, wet, loose, fine to coarse SAND, little Silt,occasional wood pieces.

-RIVER BOTTOM DEPOSIT-

18.4Drill action indicates cobbles and boulders at 18.4',advance core barrel. Recover indicates rock pieces withlengths less than 4.0", and gray Sand.

R1: Core Times (min/ft): 3.0, 1.0, 0.5, 1.0, 1.0

-COBBLES AND BOULDERS/POSSIBLE TILL-

25.0Gray, wet, dense, fine to coarse SAND, some Silt, traceGravel.-TILL-Advanced roller cone to 26.5', telescoped NW casing,cleaned out with roller cone to 27' and began coring.

26.5Hard, fresh, fine-grained, white/green/grayMETASANDSTONE. Primary joints are very close to qp = 2,001 ksf

Maine Department of Transportation Project: Wadsworth Street Bridge Boring No.:BB-TSGR-303Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755

Driller: Maine Test Boring Elevation (ft.) -14.8 Auger ID/OD:

Operator: Mike Porter Datum: NAVD88 Sampler: Standard SS

Logged By: Evan Lonstein (GZA) Rig Type: CME 45 on Barge Hammer Wt./Fall: 140 lb/30"

Date Start/Finish: 04/18/13 Drilling Method: HW/NW Drive Core Barrel: NQ2

Boring Location: N 208544.0 E 1623827.3 Casing ID/OD: 4"/4.5", 3"/3.5" Water Level*: Tidal

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-303

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Dept

h(f

t.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 1 of 2

Page 54: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

30

35

40

45

50

55

60

-47.0

moderately spaced, low angle, undulating, rough, fresh todiscolored, partially open. Secondary joints are veryclose to moderately spaced, moderately dipping,undulating, rough, fresh to discolored, partially open.Rock Mass Quality = PoorR2: Rock Core Times (min/ft): 3.0, 2.5, 2.0, 2.0, 2.5100% Recovery.

32.2Bottom of Exploration at 32.20 feet below ground

surface.

Maine Department of Transportation Project: Wadsworth Street Bridge Boring No.:BB-TSGR-303Soil/Rock Exploration Log

Location: Thomaston, MaineUS CUSTOMARY UNITS PIN: 16755

Driller: Maine Test Boring Elevation (ft.) -14.8 Auger ID/OD:

Operator: Mike Porter Datum: NAVD88 Sampler: Standard SS

Logged By: Evan Lonstein (GZA) Rig Type: CME 45 on Barge Hammer Wt./Fall: 140 lb/30"

Date Start/Finish: 04/18/13 Drilling Method: HW/NW Drive Core Barrel: NQ2

Boring Location: N 208544.0 E 1623827.3 Casing ID/OD: 4"/4.5", 3"/3.5" Water Level*: Tidal

Hammer Efficiency Factor: 0.6 Hammer Type: Automatic Hydraulic Rope & Cathead Definitions: R = Rock Core Sample Su = Insitu Field Vane Shear Strength (psf) Su(lab) = Lab Vane Shear Strength (psf)D = Split Spoon Sample SSA = Solid Stem Auger Tv = Pocket Torvane Shear Strength (psf) WC = water content, percentMD = Unsuccessful Split Spoon Sample attempt HSA = Hollow Stem Auger qp = Unconfined Compressive Strength (ksf) LL = Liquid LimitU = Thin Wall Tube Sample RC = Roller Cone N-uncorrected = Raw field SPT N-value PL = Plastic LimitMU = Unsuccessful Thin Wall Tube Sample attempt WOH = weight of 140lb. hammer Hammer Efficiency Factor = Annual Calibration Value PI = Plasticity IndexV = Insitu Vane Shear Test WOR = weight of rods N60 = SPT N-uncorrected corrected for hammer efficiency G = Grain Size AnalysisMV = Unsuccessful Insitu Vane Shear Test attempt WO1P = Weight of one person N60 = (Hammer Efficiency Factor/60%)*N-uncorrected C = Consolidation Test

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those

present at the time measurements were made. Boring No.: BB-TSGR-303

Dept

h (f

t.)

Sam

ple

No.

Sample Information

Pen

./Rec.

(in

.)

Sam

ple

Depth

(ft.)

Blo

ws

(/6

in.)

She

ar

Str

ength

(psf

)or

RQ

D (

%)

N-u

nco

rrec

ted

N60

Cas

ing

Blo

ws

Ele

vatio

n(f

t.)

Gra

phi

c Log

Visual Description and Remarks

LaboratoryTesting Results/

AASHTO and

Unified Class.

Page 2 of 2

Page 55: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

APPENDIX D

LABORATORY TEST RESULTS

Page 56: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240060

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/2/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 2.0-4.0

Boring No./Sample No.

BB-TSGR-101/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

5.7

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 81.0

¾ in. [19.0 mm] 91.8

½ in. [12.5 mm] 85.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 76.7

No. 4 [4.75 mm] 73.0

No. 10 [2.00 mm] 64.0

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 54.4

No. 40 [0.425 mm] 45.0

No. 200 [0.075 mm] 23.3

No. 60 [0.250 mm] 37.6

No. 100 [0.150 mm] 31.3

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 57: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240061

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 5.0-7.0

Boring No./Sample No.

BB-TSGR-101/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.72

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

12.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 95.5

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 96.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 94.4

No. 4 [4.75 mm] 92.9

No. 10 [2.00 mm] 88.4

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 76.3

No. 200 [0.075 mm] 49.1

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0313 mm] 31.5

[0.0207 mm] 25.2

[0.0126 mm] 18.9

[0.0091 mm] 15.7

[0.0063 mm] 12.6

[0.0032 mm] 9.5

[0.0014 mm] 6.3

Page 58: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240062

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/2/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 10.0-12.0

Boring No./Sample No.

BB-TSGR-101/3D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

23.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 93.5

¾ in. [19.0 mm] 96.5

½ in. [12.5 mm] 94.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 91.2

No. 4 [4.75 mm] 89.9

No. 10 [2.00 mm] 85.1

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 79.7

No. 40 [0.425 mm] 74.5

No. 200 [0.075 mm] 58.9

No. 60 [0.250 mm] 70.6

No. 100 [0.150 mm] 66.4

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 59: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240063

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 15.0-17.0

Boring No./Sample No.

BB-TSGR-101/4D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

13.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 1/7/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 97.0

¾ in. [19.0 mm]

½ in. [12.5 mm] 100.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 94.7

No. 4 [4.75 mm] 93.0

No. 10 [2.00 mm] 88.8

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 74.1

No. 200 [0.075 mm] 52.9

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0284 mm] 33.7

[0.0193 mm] 26.6

[0.0113 mm] 25.2

[0.0086 mm] 16.9

[0.0062 mm] 14.0

[0.0032 mm] 8.4

[0.0013 mm] 5.6

Page 60: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240064

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 20.0-22.0

Boring No./Sample No.

BB-TSGR-101/5D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.77

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

10.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 74.5

¾ in. [19.0 mm] 81.1

½ in. [12.5 mm] 76.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 73.0

No. 4 [4.75 mm] 71.7

No. 10 [2.00 mm] 68.8

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]

No. 40 [0.425 mm] 51.7

No. 200 [0.075 mm] 28.1

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0303 mm] 18.3

[0.0198 mm] 15.1

[0.0119 mm] 12.9

[0.0086 mm] 10.8

[0.0062 mm] 8.6

[0.0031 mm] 6.5

[0.0013 mm] 4.3

Page 61: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240065

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+99.9 Offset, ft: 38.5 RT Dbfg, ft: 25.0-27.0

Boring No./Sample No.

BB-TSGR-101/6D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.69

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

11.0

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 91.2

¾ in. [19.0 mm] 97.4

½ in. [12.5 mm] 93.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 88.4

No. 4 [4.75 mm] 86.8

No. 10 [2.00 mm] 80.5

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]

No. 40 [0.425 mm] 68.1

No. 200 [0.075 mm] 44.6

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0303 mm] 28.2

[0.0200 mm] 24.3

[0.0118 mm] 18.0

[0.0089 mm] 15.4

[0.0063 mm] 10.2

[0.0032 mm] 6.4

[0.0014 mm] 5.2

Page 62: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240066

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/2/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 26+33.6 Offset, ft: 42.6 RT Dbfg, ft: 7.0-9.0

Boring No./Sample No.

BB-TSGR-102/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

15.3

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 87.1

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 94.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 78.6

No. 4 [4.75 mm] 73.7

No. 10 [2.00 mm] 60.6

1 in. [25.0 mm]

No. 20 [0.850 mm] 46.8

No. 40 [0.425 mm] 31.4

No. 200 [0.075 mm] 9.8

No. 60 [0.250 mm] 20.0

No. 100 [0.150 mm] 13.8

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 63: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240067

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/2/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 26+33.6 Offset, ft: 42.6 RT Dbfg, ft: 12.0-14.0

Boring No./Sample No.

BB-TSGR-102/3D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

25.3

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 88.9

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 94.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 83.5

No. 4 [4.75 mm] 81.0

No. 10 [2.00 mm] 70.7

1 in. [25.0 mm]

No. 20 [0.850 mm] 54.9

No. 40 [0.425 mm] 31.0

No. 200 [0.075 mm] 10.4

No. 60 [0.250 mm] 21.7

No. 100 [0.150 mm] 15.7

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 64: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240068

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 26+33.6 Offset, ft: 42.6 RT Dbfg, ft: 22.0-23.8

Boring No./Sample No.

BB-TSGR-102/4D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.65

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

12.7

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 90.8

¾ in. [19.0 mm] 97.6

½ in. [12.5 mm] 94.7

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 86.8

No. 4 [4.75 mm] 85.9

No. 10 [2.00 mm] 81.9

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]

No. 40 [0.425 mm] 74.1

No. 200 [0.075 mm] 51.7

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0284 mm] 31.6

[0.0193 mm] 25.0

[0.0120 mm] 17.1

[0.0086 mm] 14.5

[0.0064 mm] 10.6

[0.0032 mm] 7.9

[0.0014 mm] 5.2

Page 65: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240075

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 45.5-47.5

Boring No./Sample No.

BB-TSGR-103/10D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.67

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

13.0

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 94.8

¾ in. [19.0 mm] 97.1

½ in. [12.5 mm] 96.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 92.8

No. 4 [4.75 mm] 91.5

No. 10 [2.00 mm] 87.3

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]

No. 40 [0.425 mm] 78.4

No. 200 [0.075 mm] 51.9

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0292 mm] 29.8

[0.0200 mm] 23.0

[0.0121 mm] 16.2

[0.0090 mm] 10.8

[0.0065 mm] 9.5

[0.0033 mm] 5.4

[0.0014 mm] 4.1

Page 66: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

245451

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 50.0-50.5

Boring No./Sample No.

BB-TSGR-103/11D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

12.6

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 84.2

¾ in. [19.0 mm] 96.9

½ in. [12.5 mm] 88.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 80.9

No. 4 [4.75 mm] 78.7

No. 10 [2.00 mm] 73.8

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 69.7

No. 40 [0.425 mm] 66.3

No. 200 [0.075 mm] 30.0

No. 60 [0.250 mm] 63.2

No. 100 [0.150 mm] 54.6

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 67: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240069

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 2.0-4.0

Boring No./Sample No.

BB-TSGR-103/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

8.0

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm] 100.0

⅜ in. [9.5 mm] 82.3

¾ in. [19.0 mm] 90.5

½ in. [12.5 mm] 85.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 76.2

No. 4 [4.75 mm] 73.1

No. 10 [2.00 mm] 63.1

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 52.7

No. 40 [0.425 mm] 43.8

No. 200 [0.075 mm] 26.2

No. 60 [0.250 mm] 38.6

No. 100 [0.150 mm] 33.6

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 68: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240070

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 5.0-7.0

Boring No./Sample No.

BB-TSGR-103/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

12.0

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 87.1

¾ in. [19.0 mm] 95.0

½ in. [12.5 mm] 88.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 83.4

No. 4 [4.75 mm] 81.3

No. 10 [2.00 mm] 76.1

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 70.7

No. 40 [0.425 mm] 65.1

No. 200 [0.075 mm] 57.1

No. 60 [0.250 mm] 60.8

No. 100 [0.150 mm] 57.3

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 69: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240071

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 10.0-12.0

Boring No./Sample No.

BB-TSGR-103/3D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

13.4

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 94.9

¾ in. [19.0 mm]

½ in. [12.5 mm] 100.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 86.1

No. 4 [4.75 mm] 81.4

No. 10 [2.00 mm] 66.7

1 in. [25.0 mm]

No. 20 [0.850 mm] 46.4

No. 40 [0.425 mm] 31.9

No. 200 [0.075 mm] 15.3

No. 60 [0.250 mm] 26.5

No. 100 [0.150 mm] 22.0

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 70: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240072

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 20.0-22.0

Boring No./Sample No.

BB-TSGR-103/5D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.67

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

13.9

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 94.0

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 95.3

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 92.2

No. 4 [4.75 mm] 90.3

No. 10 [2.00 mm] 85.9

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 73.4

No. 200 [0.075 mm] 46.4

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0297 mm] 28.8

[0.0197 mm] 23.3

[0.0118 mm] 19.2

[0.0086 mm] 15.0

[0.0063 mm] 13.7

[0.0032 mm] 9.6

[0.0014 mm] 5.5

Page 71: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240073

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

non plastic

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 30.0-32.0

Boring No./Sample No.

BB-TSGR-103/7D

Liquid Limit @ 25 blows(T 89), %

28

Plastic Limit (T 90), %

29

Plasticity Index (T 90), %

NP

Specific Gravity, Corrected to 20°C (T 100)

2.64

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

36.2

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/22/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm]

¾ in. [19.0 mm]

½ in. [12.5 mm]

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm]

No. 4 [4.75 mm] 100.0

No. 10 [2.00 mm] 99.9

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 99.2

No. 200 [0.075 mm] 65.4

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0301 mm] 47.1

[0.0200 mm] 37.7

[0.0118 mm] 33.0

[0.0086 mm] 25.9

[0.0063 mm] 23.6

[0.0031 mm] 18.9

[0.0014 mm] 9.4

Page 72: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

0 10 20 30 40 50 60 70 80 90 100 110Liquid Limit, LL

-10

0

10

20

30

40

50

60

Plasticity Index, PI

A-Line

U-Line

CH or OH

CL or OL

MH or OH

ML or OL

CL-ML

PLASTICITY CHART

10 20 30 40 5098765Number of Blows

24

26

28

30

32

34

Water Content, %

27.6

15

22

32

FLOW CURVE

25

Reference No. 240073

WIN 016755.00

Station 27+54.3

Boring No./Sample No. BB-TSGR-103/7D

TOWN Thomaston

Sampled 11/1/2010

Water Content, % 36.2

Tested By BBURRDepth 30.0-32.0

Plastic Limit 29

Liquid Limit 28

Plasticity Index NP

Page 73: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

240074

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location:

Sampled

11/1/2010

Received

11/30/2010

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+54.3 Offset, ft: 43.0 RT Dbfg, ft: 40.0-42.0

Boring No./Sample No.

BB-TSGR-103/9D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

29.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 12/17/2010

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 72.7

¾ in. [19.0 mm] 96.4

½ in. [12.5 mm] 78.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 68.0

No. 4 [4.75 mm] 65.7

No. 10 [2.00 mm] 59.1

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 52.0

No. 40 [0.425 mm] 44.7

No. 200 [0.075 mm] 15.3

No. 60 [0.250 mm] 39.4

No. 100 [0.150 mm] 30.7

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 74: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261759

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/29/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+91.7 Offset, ft: 13.3 LT Dbfg, ft: 0.0-2.0

Boring No./Sample No.

BB-TSGR-201/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

17.6

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/7/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 64.6

¾ in. [19.0 mm] 80.9

½ in. [12.5 mm] 73.4

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 55.2

No. 4 [4.75 mm] 50.4

No. 10 [2.00 mm] 39.5

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm] 31.4

No. 40 [0.425 mm] 24.6

No. 200 [0.075 mm] 10.0

No. 60 [0.250 mm] 19.9

No. 100 [0.150 mm] 15.4

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 75: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261760

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/27/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 24+91.7 Offset, ft: 13.3 LT Dbfg, ft: 3.5-4.8

Boring No./Sample No.

BB-TSGR-201/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.75

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

10.1

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/17/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 98.0

¾ in. [19.0 mm]

½ in. [12.5 mm] 100.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 96.0

No. 4 [4.75 mm] 94.0

No. 10 [2.00 mm] 84.8

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 73.1

No. 200 [0.075 mm] 49.0

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0321 mm] 34.1

[0.0122 mm] 20.9

[0.0088 mm] 15.8

[0.0062 mm] 28.8

[0.0063 mm] 13.1

[0.0031 mm] 10.5

[0.0013 mm] 5.3

Page 76: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261761

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/27/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 25+61.5 Offset, ft: 6.2 RT Dbfg, ft: 0.0-2.0

Boring No./Sample No.

BB-TSGR-202/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.60

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

22.1

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm] 100.0

⅜ in. [9.5 mm] 67.9

¾ in. [19.0 mm] 72.9

½ in. [12.5 mm] 70.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 64.4

No. 4 [4.75 mm] 61.8

No. 10 [2.00 mm] 49.0

1 in. [25.0 mm] 72.9

No. 20 [0.850 mm]

No. 40 [0.425 mm] 30.2

No. 200 [0.075 mm] 19.0

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0340 mm] 18.5

[0.0219 mm] 15.4

[0.0129 mm] 10.8

[0.0093 mm] 9.2

[0.0066 mm] 7.7

[0.0033 mm] 6.2

[0.0014 mm] 4.6

Page 77: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261762

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/30/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 26+28.9 Offset, ft: 0.36 RT Dbfg, ft: 7.0-8.3

Boring No./Sample No.

BB-TSGR-203/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.64

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

24.7

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 97.9

¾ in. [19.0 mm]

½ in. [12.5 mm] 100.0

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 92.7

No. 4 [4.75 mm] 81.6

No. 10 [2.00 mm] 73.9

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 44.9

No. 200 [0.075 mm] 18.7

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0349 mm] 18.4

[0.0220 mm] 18.4

[0.0130 mm] 13.8

[0.0092 mm] 13.8

[0.0065 mm] 11.5

[0.0032 mm] 9.2

[0.0014 mm] 4.6

Page 78: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261763

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/30/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 26+28.9 Offset, ft: 0.36 RT Dbfg, ft: 20.0-21.4

Boring No./Sample No.

BB-TSGR-203/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.75

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

9.1

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 86.6

¾ in. [19.0 mm] 94.1

½ in. [12.5 mm] 90.9

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 82.6

No. 4 [4.75 mm] 80.7

No. 10 [2.00 mm] 73.9

1 in. [25.0 mm] 100.0

No. 20 [0.850 mm]

No. 40 [0.425 mm] 59.7

No. 200 [0.075 mm] 40.3

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0329 mm] 23.9

[0.0207 mm] 21.7

[0.0122 mm] 17.4

[0.0089 mm] 13.1

[0.0063 mm] 10.9

[0.0031 mm] 8.7

[0.0013 mm] 6.5

Page 79: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261839

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

10/3/2011

Received

10/19/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+00.9 Offset, ft: 3.9 RT Dbfg, ft: 11.0-13.0

Boring No./Sample No.

BB-TSGR-204/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

28.3

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/27/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 27,

T 11)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 100.0

¾ in. [19.0 mm]

½ in. [12.5 mm]

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 99.2

No. 4 [4.75 mm] 98.8

No. 10 [2.00 mm] 88.8

1 in. [25.0 mm]

No. 20 [0.850 mm] 57.7

No. 40 [0.425 mm] 23.6

No. 200 [0.075 mm] 4.8

No. 60 [0.250 mm] 13.6

No. 100 [0.150 mm] 8.0

Wash Method

Procedure A

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

Page 80: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261764

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/29/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+70.1 Offset, ft: 13.3 LT Dbfg, ft: 0.0-2.0

Boring No./Sample No.

BB-TSGR-205/1D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.70

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

75.6

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 100.0

¾ in. [19.0 mm]

½ in. [12.5 mm]

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 99.1

No. 4 [4.75 mm] 98.8

No. 10 [2.00 mm] 96.2

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 83.7

No. 200 [0.075 mm] 71.8

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0297 mm] 61.6

[0.0192 mm] 55.4

[0.0116 mm] 43.1

[0.0085 mm] 36.9

[0.0061 mm] 33.9

[0.0031 mm] 24.6

[0.0013 mm] 18.5

Page 81: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261765

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/29/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+70.1 Offset, ft: 13.3 LT Dbfg, ft: 8.0-10.0

Boring No./Sample No.

BB-TSGR-205/2D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.64

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

36.8

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm]

¾ in. [19.0 mm]

½ in. [12.5 mm]

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm]

No. 4 [4.75 mm] 100.0

No. 10 [2.00 mm] 99.8

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 98.4

No. 200 [0.075 mm] 57.9

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0334 mm] 34.9

[0.0213 mm] 31.7

[0.0126 mm] 28.5

[0.0090 mm] 25.3

[0.0064 mm] 22.2

[0.0032 mm] 19.1

[0.0014 mm] 12.7

Page 82: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261766

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/29/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+70.1 Offset, ft: 13.3 LT Dbfg, ft: 15.0-17.0

Boring No./Sample No.

BB-TSGR-205/3D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.63

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

35.5

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 99.1

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 99.1

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 99.1

No. 4 [4.75 mm] 99.1

No. 10 [2.00 mm] 98.9

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 91.2

No. 200 [0.075 mm] 72.1

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0341 mm] 14.5

[0.0218 mm] 12.9

[0.0130 mm] 9.7

[0.0092 mm] 8.0

[0.0066 mm] 6.4

[0.0033 mm] 4.8

[0.0014 mm] 3.3

Page 83: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Reference No.

261767

M a i n e D O T , M a t e r i a l s T e s t i n g & E x p l o r a t i o n , 2 1 9 H o g a n R o a d , B a n g o r , M a i n e 0 4 4 0 1

Sample Description

GEOTECHNICAL (DISTURBED)

Sampler: WILDER, BRUCE H

Location: OTHER

Sampled

9/29/2011

Received

10/6/2011

WIN 016755.00 Town: Thomaston

Miscellaneous Tests

Comments:

Station: 27+70.1 Offset, ft: 13.3 LT Dbfg, ft: 19.5-21.3

Boring No./Sample No.

BB-TSGR-205/4D

Liquid Limit @ 25 blows(T 89), %

Plastic Limit (T 90), %

Plasticity Index (T 90), %

Specific Gravity, Corrected to 20°C (T 100)

2.75

Loss on Ignition (T 267)

Sample Type: GEOTECHNICAL

Depth

taken in

tube, ft tons/ft² tons/ft²

3 In.

tons/ft² tons/ft²

6 In. Water

Content,

%

Description of Material Sampled at the

Various Tube Depths

Vane Shear Test on Shelby Tubes (Maine DOT)

Direct Shear (T 236)

Shear Angle, °

Normal Stress, psi

Initial Water Content, %

Wet Density, lbs/ft³

Dry Density, lbs/ft³

Specimen Thickness, in

Water Content (T 265), %

13.3

Loss, % H2O, %

Paper Copy: Lab File; Project File; Geotech File

Reported by: FOGG, BRIAN Date Reported: 10/14/2011

S A M P L E I N F O R M A T I O N

A U T H O R I Z A T I O N A N D D I S T R I B U T I O N

T E S T R E S U L T S

U. Shear Remold U. Shear Remold

Sieve Analysis (T 88)

3 in. [75.0 mm]

⅜ in. [9.5 mm] 89.2

¾ in. [19.0 mm] 100.0

½ in. [12.5 mm] 93.6

SIEVE SIZEU.S. [SI]

% Passing

¼ in. [6.3 mm] 82.7

No. 4 [4.75 mm] 81.5

No. 10 [2.00 mm] 75.4

1 in. [25.0 mm]

No. 20 [0.850 mm]

No. 40 [0.425 mm] 71.1

No. 200 [0.075 mm] 62.8

No. 60 [0.250 mm]

No. 100 [0.150 mm]

Wash Method

GEOTECHNICAL TEST REPORT

Central Laboratory

Consolidation (T 216)

Trimmings, Water Content, %

Initial FinalVoid

Ratio

%

Strain

Water Content, %

Dry Density, lbs/ft³

Void Ratio

Saturation, %

Pmin

Pp

Pmax

Cc/C'c

[0.0289 mm] 49.1

[0.0196 mm] 37.4

[0.0119 mm] 28.0

[0.0086 mm] 23.4

[0.0061 mm] 21.0

[0.0031 mm] 16.4

[0.0013 mm] 11.7

Page 84: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

LABORATORY TESTING DATA SHEET

Project Name Wadsworth Street Bridge Replacement Location Thomaston, ME Reviewed By

Project No. 09.0025781.00 Assigned By Andrew Blaisdell

Project Manager Andrew Blaisdell Report Date Date Reviewed

Sample Data

Boring No.

Sampl

e

No.

Depth

Ft.

Lab

No.

Water

Content

%

Do

in.

L

in.

(1)

Unit

Wt.

PCF

(2) Wet

Density

PCF

Bulk

Gs.

(3)

Other

Tests

(4)

Strength

PSI

(5)

Strain

%

(6)

Conf.

Stress

(7) E

sec

PSI

EE+06

(8)

Poisson's

Ratio

st

PSI

Is50

PSI

Rock Formation or

Description or Remarks

BB-TSGR-202 R-1

5.8-

6.2 1 1.934 4.547 170.6 U 15,761 0.21 6.46 0.21

BB-TSGR-203 R-1

25.2-

25.6 2 1.987 4.535 171.8 U 8,411 0.16 4.99 0.15

BB-TSGR-301 R-1

11.5-

11.9 3 1.982 4.552 168.8 U 21,463 0.28 6.25 0.07

BB-TSGR-303 R-2

29.0-

29.4 4 1.983 4.628 178.7 U 13,897 0.15 7.44 0.14

(1) Volume Determined By Measuring Dimensions (3) P=Petrographic PLD=Point Load (diametrical),(5) Strain at Peak Deviator Stress

(2) Determined by Measuring Dimensions and PLA= Point Load (Axial) RST= Splitting Tensile (6) Represents Confining Stress on Triaxial Tests

Weight of Saturated Sample U= Unconfined Compressive Strength (7) Represents Secant Modulus at 50% of Total Failure Stress

(4) Taken at Peak Deviator Stress (8) Represents Secant Poisson's Ratio at 50% of Total Failure Stress

195 Frances Ave.

Cranston, RI 02910 401-467-6454

Compression Tests

5/26/20135/26/2013

andrew.blaisdell
Typewritten Text
Metapelite
andrew.blaisdell
Typewritten Text
andrew.blaisdell
Typewritten Text
Metapelite
andrew.blaisdell
Typewritten Text
Metapelite
andrew.blaisdell
Typewritten Text
Metasandstone
Page 85: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge Replacement

Thomaston, ME

Rock Unconfined Compression Testing

Boring No. BB-TSGR-202 File No. 09.0025781.00

Sample No. R-1 Date: 05/22/13

Depth: 5.9-6.3' Test No. U 1

0

2

4

6

8

10

12

14

16

18

20

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 86: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC
Page 87: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge Replacement

Thomaston, ME

Rock Unconfined Compression Testing

Boring No. BB-TSGR-203 File No. 09.0025781.00

Sample No. R-1 Date: 05/21/13

Depth: 25.2-25.6' Test No. U 2

0

2

4

6

8

10

12

14

16

18

20

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 88: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC
Page 89: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge Replacement

Thomaston, ME

Rock Unconfined Compression Testing

Boring No. BB-TSGR-301 File No. 09.0025781.00

Sample No. R-1 Date: 05/22/13

Depth: 11.5-11.9' Test No. U 3

0

2

4

6

8

10

12

14

16

18

20

22

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.05.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 90: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC
Page 91: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge Replacement

Thomaston, ME

Rock Unconfined Compression Testing

Boring No. BB-TSGR-303 File No. 09.0025781.00

Sample No. R-2 Date: 05/22/13

Depth: 29.0-29.4' Test No. U 4

0

2

4

6

8

10

12

14

16

18

20

22

-5.0-4.0-3.0-2.0-1.00.01.02.03.04.05.0

Str

ess (

ksi)

Lateral Strain (in/inX1000) Axial Strain (in/inX1000)

Page 92: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC
Page 93: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

APPENDIX E

GEOTECHNICAL ENGINEERING CALCULATIONS

Page 94: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

GZA Wadsworth Street Bridge

09.0025781.00SUBJECT: Downdrag, Abutments 1 and 2

Suite 700 SHEET: 1 of 9CALCULATED BY: A. Blaisdell, 9/22/14

207-879-9190 CHECKED BY:

Fax 207-879-0099

OBJECTIVE: Evaluate downdrag on HP14x117 piles supporting Abutments 1 and 2.

EVALUATION: The settlement evaluation indicates that up to 5 inches of total settlement may occur adjacent to Abutment 1

and up to 1.5 inches of total settlement may occur adjacent to Abutment 2. Based on the sandy nature

of the soils, we anticipate that at least half of the settlement will occur during fill placement, likely before the

piles are installed. However, rate of settlement data is not available, and the sequence of fill placement and

pile installation is unknown. Therefore, the piles must be designed to resist downdrag loading.

LRFD Section C3.11.8 indicates that downdrag loading should be calculated using either the alpha, lambda,

or beta method for clay and an effective stress method for sand. Based on historical Maine practice, the

beta method was used for sand and clay. Beta values were selected for new fill, river bottom sand,

and silt/clay equal to 0.35, 0.3 and 0.23, respectively. It was assumed that the portions of these layers

that experience greater than 0.4 inches of total settlement will contribute to downdrag. The nominal

downdrag load was calculated using effective stressescalculated using either 1-D stress increase

(Abutment 1) or Bousinesq theory (Abutment 2) as described on the following sheets.

A load factor of 1.0 was applied to the nominal downdrag load in accordance with past practice on

MaineDOT projects.

CONCLUSION: The nominal and factored downdrag load is estimated at 15 kips at Abutment 1 and 66 kips at Abutment 2.

Factored pile loads and required driving resistance are summarized below.

Abutment 1 Abutment 2

Maximum factored pile load (kips) 15 66

Factored Downdrag Load (kips)

Required Factored Driving Resistance (kips)

Required Nominal Driving Resistance (kips)

162 162

177 228

272 351

http://www.gza.com

Portland, Maine 04101

Engineers and

GeoEnvironmental, Inc. Scientists JOB:

477 Congress Street

25781 Downdrag.xlsx 1 of 1

andrew.blaisdell
Typewritten Text
C. Snow, 9/22/14
Page 95: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Calculation of Settle

men

t based

 on the Ho

ugh Metho

d (AAS

HTO LRF

D Eq

. 10.6.2.4.2‐2 an

d ‐3) a

ndDo

wnd

rag ba

sed on

 the Be

ta M

etho

d (AAS

HTO LRF

D Eq

. 10.7.3.8.6c‐1)

Wadsw

orth Street B

ridge Rep

lacemen

t, File No. 257

81.00

Calc by

ARB

9/22

/201

4Re

view

 by

Locatio

n:South Ap

proach (A

butm

ent 1

), im

med

iately beh

ind abutmen

t

Houg

h Metho

d Equa

tions

(10.6.2.4.2‐2)

(10.6.2.4.2‐3)

Hc'

vo'

D to m

idpt

v midpt

Assumed

 N /

C'Hi 

sublayer

Hi to

tal

Beta

vf'

Maxim

um 

Downd

rag

Calculated

 

Downd

rag

Layer

(ft)

pcf

psf

ftpsf

USCS

dim.

inin

psf

kips

kips

New

 Fill

462

.6‐‐

‐‐15

65‐‐

‐‐0

1.4

0.35

1565

1010

Silt/Clay

457

.611

52

1565

10 bpf / ML

401.4

1.4

0.23

1680

75

**

Se (in)

1.4

Downd

rag 

(kips)

15

Basis o

f Assum

ptions and

 Evaluation

1.  13.5' high (avg.) em

bankmen

t, all abo

ve water (q

=1,690

 psf) and

 11.5' high slo

pe in

 fron

t of abu

tmen

t (q=

1,44

0 psf)

2.  The

 soil layerin

g is based on

 the soil type

s, strata th

icknesses a

nd average N‐value

s in bo

rings BB‐TSGR

‐101

 and

 ‐20

1.3.  Stress increase at th

e midpo

int o

f each layer w

as calculated using 1‐D load

 spread

 based

 on average fill height o

f 12.5' (q

= 1,56

5 psf).  Bou

sinesq elastic

 theo

ry was not

assumed

 due

 to locatio

n of com

pressib

le layer immed

iately ben

eath embankmen

t.4.  The

 new

 fill will not se

ttle, but it will m

ove do

wn and im

pose dow

ndrag loading.

5.  Total se

ttlemen

t, rather th

an post‐constructio

n settlemen

t, is used

 for d

ownd

rag load

 calculatio

n, due

 to lack of information on

 rate of settle

men

t.6.   Be

ta value

s were selected

 based

 on historical M

aine

 practice.

7.  Che

ck re

ason

ablene

ss of e

stim

ated

 Clay/Silt settlemen

t by calculating correspo

nding eq

uivalent Coe

fficien

t of C

onsolidation.  Sho

uld at least b

e eq

ual to RR

.

**Ch

eck equivalent co

nsolidation coefficient fo

r Clay/Silt layer:

S=H*

C*log((

vo'+

v)/ v

o')C=

S/(H*log((

vo'+

v)/ v

o')C=

0.02

5  ‐‐‐For silt, correspon

ds to

 a m

oderate to high RR

 value

, OK for h

igh blow

 cou

nt m

aterial.

Settlemen

t Evaluation

Downd

rag Evaluatio

n

∆1

′∆ ′

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 2 of 9

Page 96: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Stiff Silt/Clay

Existing Fill

Till

Dis

tanc

e:

16.5

5ft

Distance:

3.95ft

Distance:

4.02ft

Dis

tanc

e:10

.42

ft

Average embankment height at analyzed crosssection = 13.5'+/- behind abutment, 11.5' +/- in front

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 3 of 9

Page 97: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Calculation of Settle

men

t based

 on the Ho

ugh Metho

d (AAS

HTO LRF

D Eq

. 10.6.2.4.2‐2 an

d ‐3) a

ndDo

wnd

rag ba

sed on

 the Be

ta M

etho

d (AAS

HTO LRF

D Eq

. 10.7.3.8.6c‐1)

Wadsw

orth Street B

ridge Rep

lacemen

t, File No. 257

81.00

Calc by

ARB

9/22

/201

4Re

view

 by

Locatio

n:North App

roach (Abu

tmen

t 2), im

med

iately beh

ind abutmen

t

Houg

h Metho

d Equa

tions

(10.6.2.4.2‐2)

(10.6.2.4.2‐3)

Locatio

nAb

utmen

t 2, Immed

iately beh

ind abutmen

t, center of abu

tmen

t

Hc'

vo'

D to m

idpt

v midpt

Assumed

 N /

C'H

i sublayer

Hi total

Beta

vf'

Maxim

um 

Downd

rag

Calculated

 

Downd

rag

Layer

(ft)

pcf

psf

ftpsf

USCS

dim.

inin

psf

kips

kips

New

 Fill

462

.6‐‐

‐‐18

75‐‐

‐‐0

5.1

0.35

1875

1212

RB11

57.6

317

717

354 bp

f / SM

353.1

5.1

0.30

2052

3232

Silt/Clay

755

.682

816

1559

2 bp

f / M

L25

1.5

2.1

0.23

2387

1818

**RB

557

.611

6722

1442

8 bp

f / SM

400.5

0.5

0.30

2609

184

Se (in)

5.1

Downd

rag 

(kips)

66

Basis o

f Assum

ptions and

 Evaluation

1.  17' high (avg.) em

bankmen

t, 2' below

 water and

 15' abo

ve (q

=2,000

 psf) and

 15' high slo

pe in

 fron

t of abu

tmen

t (q=

1,75

0 psf)

2.  The

 soil layerin

g is based on

 the soil type

s, strata th

icknesses a

nd average N‐value

s in bo

rings BB‐TSGR

‐103

 and

 ‐20

5.3.  Stress increase at th

e midpo

int o

f each layer w

as calculated using Bo

usinesq elastic

 theo

ry at the

 locatio

n of th

e abutmen

t in the 

center of the

 embankmen

t.4.  The

 new

 fill will not se

ttle, but it will m

ove do

wn and im

pose dow

ndrag loading.

5.  Total se

ttlemen

t, rather th

an post‐constructio

n settlemen

t, is used

 for d

ownd

rag load

 calculatio

n, due

 to lack of information on

 rate of settle

men

t.6.   Be

ta value

s were selected

 based

 on historical M

aine

 practice.

7.  Che

ck re

ason

ablene

ss of e

stim

ated

 Clay/Silt settlemen

t by calculating correspo

nding eq

uivalent Coe

fficien

t of C

onsolidation.  Sho

uld at least b

e eq

ual to RR

.

**Ch

eck equivalent co

nsolidation coefficient fo

r Clay/Silt layer:

S=H*

C*log((

vo'+

v)/ v

o')C=

S/(H*log((

vo'+

v)/ v

o')C=

0.04

0  ‐‐‐For silt, correspon

ds to

 twice anticipated

 recompressio

n inde

x, RR, con

sidered

 reason

able fo

r settle

men

t of

Silt/Clay, allows for so

me virgin con

solidation.

Settlemen

t Evaluation

Downd

rag Evaluatio

n

∆1

′∆ ′

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 4 of 9

Page 98: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Equivalentrectangularembankment fillsection

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 5 of 9

Page 99: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 6 of 9

Page 100: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 7 of 9

Page 101: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 8 of 9

Page 102: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Wadsworth Street Bridge - 09.0025781.00

Downdrag and Settment, Abutments

Page 9 of 9

Page 103: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

New Fill

Existing Sand/Clay

Bedrock

Rip Rap9.7

9.08.5

4.72.5

1.91.9

2.01.9

E991E991

2.33.0

4.27.1

18.6

8.78.3

6.73.8

2.31.8

1.71.6

1.61.6

1.72.0

2.63.5

5.712.1

8.28.0

5.33.3

2.11.7

1.61.5

1.41.5

1.62.0

2.53.3

4.99.7

8.07.5

4.53.0

2.01.6

1.41.4

1.41.4

1.62.0

2.43.2

4.68.4

7.96.3

4.02.8

1.91.5

1.41.3

1.31.5

1.72.0

2.43.1

4.47.6

7.85.5

3.62.6

1.81.5

1.31.3

1.41.5

1.72.0

2.53.1

4.37.1

7.74.8

3.32.4

1.71.4

1.31.3

1.41.5

1.82.1

2.53.1

4.26.7

7.64.4

3.12.2

1.61.3

1.31.3

1.41.6

1.82.1

2.53.1

4.26.5

7.64.3

2.92.1

1.61.3

1.31.5

1.61.8

2.12.5

3.14.1

6.2

7.63.9

2.62.0

1.51.3

1.31.4

1.51.7

1.92.2

2.63.1

4.16.1

7.54.0

2.51.8

1.41.3

1.31.4

1.51.7

1.92.2

2.63.2

4.16.0

7.54.3

2.31.7

1.41.3

1.31.4

1.61.7

2.02.2

2.63.2

4.15.8

7.54.0

2.21.7

1.31.3

1.41.5

1.61.8

2.02.3

2.73.2

4.15.8

7.51.7

2.11.6

1.31.3

1.41.5

1.71.8

2.02.3

2.73.3

4.15.7

E9981.7

2.01.5

1.31.3

1.41.6

1.71.9

2.12.4

2.73.3

4.15.6

E9983.5

1.91.5

1.31.4

1.51.6

1.71.9

2.12.4

2.83.3

4.15.5

1.3

Name: New Fill Unit Weight: 125 pcfPhi': 32 °

Name: Existing Sand/Clay Unit Weight: 120 pcfPhi': 30 °

Name: Bedrock

Name: Rip Rap Unit Weight: 140 pcfPhi': 40 °

Surcharge (Unit Weight): 250 pcf

File Name: 25781 embankment.gszTitle: Thomaston, Name: proposed embankmentDate: 9/8/2014Created By: Jennifer Baron

Slope W OutputProposed EmbankmentThomaston Bridge Stability Evaluation09.0025781.00GZA GeoEnvironmental, Inc.

Distance

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

Ele

vatio

n

-55

-45

-35

-25

-15

-5

5

15

25

andrew.blaisdell
Typewritten Text
ASSUMPTIONS, INPUTS AND RESULTS: 1) The Abutment 2 (north) approach controls from a global stability standpoint due to weaker underlying materials than Abutment 1. 2) Existing soil profile beneath new embankment (labeled herein as Existing Sand/Clay stratum) will primarily behave in drained fashion; use an effective friction angle of 30 degrees for all soil. 3) Existing very soft organic silt encountered beneath the proposed abutment footprint will be removed and replaced with granular fill. Replacement fill was assumed to have the same properties as the Existing Sand/Clay, which should be conservative. 4) Design parameters for New Fill and Existing Sand/Clay and design surcharge pressure are listed to the left. 5) Global stability was evaluated using the Bishop method. 6) The minimum calculated factor of safety is 1.3.
andrew.blaisdell
Typewritten Text
Page 104: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Abutments   SHEET:                        1 OF 11                    CALCULATED BY    J. Baron    9/3/14,      A. Blaisdell, 9/22/14  CHECKED BY  A. Blaisdell, 9/8/14          

Objec ve Evaluate the axial geotechnical resistance of the abutment piles for the Wadsworth Street BridgeReplacement in Thomaston, ME

Methodology Evaluate proposed pile sec on for governing factored axial compression resistance as follows.  

1. Nominal Compressive Resistance

2.  Factored Structural Compressive Resistance ‐ Strength Limit State

3.  Factored Structural Compressive Resistance ‐ Extreme/Service Limit State

4.  Geotechnical Resistance (Sta c Analysis)

5.  Geotechnical Resistance (Drivability Analysis)

6.  Factored Geotechnical Resistance ‐ Strength Limit State

7.  Factored Geotechnical Resistance ‐ Extreme/Service Limit State

References American Associa on of State Highway and Transporta on Officials, AASHTO LRFD Bridge Design Specifica ons:1.Customary U.S. Units, 6th edi on, 2012.  (AASHTO LRFD)

Soil Proper esConsider Wadsworth Street Bridge Interpre ve Subsurface Profile (see Figure 3), subsurface layering and proper es definedbelow:

DESIGN SUBSURFACE PROFILE – ABUTMENT 1 (Borings BB-TSGR-101 and -201)

Strata Designation Thickness (feet) Total Unit Weight

(pcf) Representative Φ’ (°) / Su

(psf) for layer

New Fill 6 125 34º

Silt/Clay 4 118 1,000 psf

Glacial Till 11 130 38º

Depth to Bedrock 21 -- --

DESIGN SUBSURFACE PROFILE – ABUTMENT 2 (Borings BB-TSGR-103 and -205)

Strata Designation Thickness (feet) Total Unit Weight

(pcf) Representative Φ’ (°) / Su

(psf) for layer

New Fill 4 125 34º

River Bottom Deposit 11 120 30º

Silt/Clay 7 118 1,000 psf

River Bottom Deposit 7 120 30º

Glacial Till 12 130 38º

Bedrock 41 -- --

Thomaston 14x117 09‐22‐14.xmcd 1 OF 5

Page 105: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Abutments   SHEET:                        2 OF 11                    CALCULATED BY    J. Baron    9/3/14,      A. Blaisdell, 9/22/14  CHECKED BY  A. Blaisdell, 9/8/14          

Structural Proper esHP14x117

Yield Strength of Steel Fy 50ksi

Area of sec on As 34.4in2

Young's Modulus of Steel Es 30000 ksi

Sec on Proper es  Ix 1220 in4

1. Nominal Structural Compressive Resistance Pn

Nominal Compressive Resistance: Pn 0.66λ

Fy Asλ AASHTO Eq. 6.9.5.1‐1

Determine normalized column slenderness factor 

λK l

rs π

2 Fy

E

rsAASHTO Eq. 6.9.4.1‐3 pg. 6‐74

λ 0 Where the pile is fully embedded, AASHTO 10.7.3.13.1.NOTE: Assump on may not be applicable for integral abutment pile, to be assessed by bridge designer.

Giving: Pn 0.66λ

Fy AsPn 1720 kip

2. Factored Structural Compressive Resistance ‐ Strength Limit State:

Factor for piles in compression under hard drivingcondi ons:

From Ar cle 6.5.4.2 ϕc 0.5

Factored Compressive Resistance for Strength Limit State:

Pr ϕc Pn AASHTO Eq. 6.9.2.1‐1 pg. 6‐71

Pr 860 kip

Thomaston 14x117 09‐22‐14.xmcd 2 OF 5

Page 106: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Abutments   SHEET:                        3 OF 11                    CALCULATED BY    J. Baron    9/3/14,      A. Blaisdell, 9/22/14  CHECKED BY  A. Blaisdell, 9/8/14          

3. Factored  Structural Compressive Resistance ‐ Service/Extreme Limit State:Resistance Factors for Extreme LimitStates:

From Ar cle 10.5.5.1 and 10.5.5.3 ϕ 1

Factored Compressive Resistance for Service/Extreme Limit State:

Pr ϕ Pn AASHTO Eq. 6.9.2.1‐1 pg. 6‐71

Pr 1720 kip

4. Geotechnical Axial Resistance ‐ Sta c Analysis

AASHTO Ar cle 10.7.3.2.3 states that the nominal resistance of piles driven to point bearing on hard rock is controlled by thestructural limit state.

Used SPILE to es mate side fric on resistance during driving using the Nordlund Thurman method, es mates 69 kips of sideresistance for Abutment 1 piles and 140 kips of side resistance for Abutment 2 piles.  SPILE output is a ached on Sheets 6 and 7.

Required nominal resistance of 272 kips for design of Abutment 1 based on a maximum factored load of 162 kips with adowndrag load of 15 kips and a 0.65 resistance factor. Required nominal resistance of 351 kips  for Abutment 2 based on amaximum factored load of 162 kips with a downdrag load of 66 kips and a 0.65 resistance factor.  

Es mated fric on distribu on and % sha  resistance using GRLWEAP based on design loads.

5. Geotechnical Axial Resistance  ‐ Drivability Analysis

σdr 0.9 ϕda fy AASHTO Eq. 10.7.8.1

fy 50ksi yield Strength of steel

ϕda 1.0 AASHTO Table 10.5.5.2.3‐1  Refers to Ar cle 6.5.4.2, Pg. 6‐28  

σdr 0.9 ϕda fy σdr 45 ksi Driving Stress in pile cannot exceed 45 ksi

 Evaluate nominal geotechnical capacity using GRLWEAP.

Abutment 1 ‐ Drive pile through 21 feet of soil to rock with toe quake representa ve of very hard driving condi ons (0.04in).  Pilelength is modeled as 21 feet with 14 feet of s ckup.

Es mated skin fric on is 28% of required nominal resistance. For short pile; driving stress is an cipated to control resistance. 

Thomaston 14x117 09‐22‐14.xmcd 3 OF 5

Page 107: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Abutments   SHEET:                        4 OF 11                    CALCULATED BY    J. Baron    9/3/14,      A. Blaisdell, 9/22/14  CHECKED BY  A. Blaisdell, 9/8/14          

Abutment 2 ‐ Drive pile through 41 feet of soil to rock with toe quake representa ve of moderate driving condi ons (0.1  in).   Pilelength is modeled as 41 feet with 14 feet of s ckup.

Es mated skin fric on is 42% of required nominal resistance. For long pile, higher final blow count is an cipated to control  

Drive piles with a APE D19‐42 open‐ended diesel hammer with a rated energy of 47,200  ‐lb.  The proposed  hammer  is  largerthan necessary to achieve the required nominal resistance for abutment piles, but is sized to achieve the required nominalresistance for pier piles.  A reduced fuel se ng is considered due to the lower  demand; chamber  pressure of 1247 psi (72%).

Allowable stress in piles during driving is 0.9 fy=45 ksi

GRLWEAP Output is a ached on Sheets 8 through  11.

Abutment 1: 

Rndr1 272kip Required nominal geotechnical resistance, pile driving stress=18 ksi, final penetra on resistance=4bpi.

Abutment 2: 

Rndr2 351kip Required nominal geotechnical resistance, pile driving stress=19 ksi, final penetra on resistance=5bpi.

6. Factored Drivability Resistance ‐ Strength Limit State:Strength Limit State Factored Drivability Resistance:

 Abutment 1:

Rndr1_factored Rndr1 ϕdyn ϕdynPDA, WEAP and CAPWAP used to establishing drivingcriteria

ϕdyn 0.65 AASHTO Table 10.5.5.2.3‐1

Rndr1_factored Rndr1 ϕdyn

Rndr1_factored 177 kip

 Abutment 2:

Rndr2_factored Rndr2 ϕdyn

Rndr2_factored 228 kip

Thomaston 14x117 09‐22‐14.xmcd 4 OF 5

Page 108: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Abutments   SHEET:                        5 OF 11                    CALCULATED BY    J. Baron    9/3/14,      A. Blaisdell, 9/22/14  CHECKED BY  A. Blaisdell, 9/8/14          

7. Factored Drivability Resistance ‐ Service/Extreme Limit States:Service and Extreme Limit State Factored Drivability Resistance:

Resistance Factors for Extreme Limit States:ϕserv_ext 1

From Ar cle 10.5.5.1 and 10.5.5.3

Rndr1_serv_ext Rndr1 ϕserv_ext

Rndr1_serv_ext 272 kip

Rndr2_serv_ext Rndr2 ϕserv_ext

Rndr2_serv_ext 351 kip

Summary of Results ‐ Axial Loading:

ASTM A572, HP 14x117Structural Resistance 

(kips)

Geotechnical Static 

Resistance (kips)

Required Resistance 

(kips)

Governing Resistance 

(kips)

Abutment 1: Strength Limit State, Design 860 n/a 177 177Abutment 1: Service/Extreme Limit State, Design 1720 n/a 272 272

Abutment 2: Strength Limit State, Design 860 n/a 228 228Abutment 2: Service/Extreme Limit State, Design 1720 n/a 351 351

Results indicate drivability controls, APE D19‐42 is suitable to penetrate overburden and achieve strength limit stateresistance.  The results indicate a smaller hammer could be used at the abutments to achieve the required geotechnicalcapacity, but use of the D19‐42 is feasible and appropriate for the piers. 

Thomaston 14x117 09‐22‐14.xmcd 5 OF 5

Page 109: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

ABUT1.TXT

ÚÄÄÄÄÄÄÄÄ ULTIMATE STATIC PILE CAPACITY/Federal Highway Administration ÄÄÄÄÄÄÄÄ¿³ Nordlund (1963, 1979) and Tomlinson (1979, 1980) methods ³³ ³³ Project Name : Wadsworth St. Bridge Client : MaineDOT ³³ File Name : Thomaston,ME Project Manager : Blaisdell ³³ Date : 05/09/13 Computed by : ETL ³³ ³³ Depth of Top of Pile = 0.00 ft. Pile length = 21.00 ft. ³³ Depth to Water Table = 2.00 ft. ³³ Type of Pile = H Pile ³³ HP 14x117 ³³ ³³ SKIN FRICTION CONTRIBUTION ³³ ³³ Layer Soil Thickness Effective Internal N-SPT Pile ³³ Type Stress Friction Perimeter ³³ (ft) (psf) Angle (ft) ³³ ³³ 1 Cohesionless 6.00 312.60 34.00 -- 4.85 ³³ 2 Cohesive 4.00 611.60 --- -- 4.85 ³³ 3 Cohesionless 11.00 1094.60 38.00 -- 4.85 ³³ ³³ ³³ Layer Soil Undrained Shear Adhesion Pile Sliding Skin ³³ Type Strength Taper Friction Resistance ³³ (psf) Angle (Kips) ³³ ³³ 1 Cohesionless -- -------- ---- 28.88 5.34 ³³ 2 Cohesive 1000.00 500.00 ---- ----- 9.70 ³³ 3 Cohesionless -- -------- ---- 32.28 53.81 ³³ ³³ ³³ Total Side Friction : 68.85 ³³ ³³ POINT RESISTANCE CONTRIBUTION ³³ ³³ Effective Internal SPT Pile End Bearing End Bearing ³³ Stress at Friction Value Area Capacity Resistance ³³ pile Tip Angle Factor ³³ (psf) (ft*ft) Nq (Kips) ³³ ³³ 1466.40 38.00 ----- 0.24 110.40 27.92 ³³ ³³ Limiting End Bearing Resistance : 64.17 ³³ ³³ ³³ Ultimate Static Pile Capacity : 96.77 ³³ ³ÀÄÄÄÄÄ Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu ÄÄÄÄÄÙ

Page 1

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 6 of 11

andrew.blaisdell
Text Box
69 kips/249 nominal=28% side resistance
Page 110: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

ABUT2.TXT

ÚÄÄÄÄÄÄÄÄ ULTIMATE STATIC PILE CAPACITY/Federal Highway Administration ÄÄÄÄÄÄÄÄ¿³ Nordlund (1963, 1979) and Tomlinson (1979, 1980) methods ³³ ³³ Project Name : Wadsworth St. Bridge Client : MaineDOT ³³ File Name : Thomaston,ME Project Manager : Blaisdell ³³ Date : 05/09/13 Computed by : ETL ³³ ³³ Depth of Top of Pile = 0.00 ft. Pile length = 41.00 ft. ³³ Depth to Water Table = 0.00 ft. ³³ Type of Pile = H Pile ³³ HP 14x117 ³³ ³³ SKIN FRICTION CONTRIBUTION ³³ ³³ Layer Soil Thickness Effective Internal N-SPT Pile ³³ Type Stress Friction Perimeter ³³ (ft) (psf) Angle (ft) ³³ ³³ 1 Cohesionless 4.00 125.20 34.00 -- 4.85 ³³ 2 Cohesionless 11.00 567.20 30.00 -- 4.85 ³³ 3 Cohesive 7.00 1078.60 --- -- 4.85 ³³ 4 Cohesionless 7.00 1474.80 30.00 -- 4.85 ³³ 5 Cohesionless 12.00 2082.00 38.00 -- 4.85 ³³ ³³ ³³ Layer Soil Undrained Shear Adhesion Pile Sliding Skin ³³ Type Strength Taper Friction Resistance ³³ (psf) Angle (Kips) ³³ ³³ 1 Cohesionless -- -------- ---- 28.88 1.43 ³³ 2 Cohesionless -- -------- ---- 25.49 11.98 ³³ 3 Cohesive 1000.00 500.00 ---- ----- 16.97 ³³ 4 Cohesionless -- -------- ---- 25.49 19.82 ³³ 5 Cohesionless -- -------- ---- 32.28 111.65 ³³ ³³ ³³ Total Side Friction : 161.84 ³³ ³³ POINT RESISTANCE CONTRIBUTION ³³ ³³ Effective Internal SPT Pile End Bearing End Bearing ³³ Stress at Friction Value Area Capacity Resistance ³³ pile Tip Angle Factor ³³ (psf) (ft*ft) Nq (Kips) ³³ ³³ 2487.60 38.00 ----- 0.24 110.40 47.37 ³³ ³³ Limiting End Bearing Resistance : 64.17 ³³ ³³ ³³ Ultimate Static Pile Capacity : 209.21 ³³ ³ÀÄÄÄÄÄ Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu ÄÄÄÄÄÙ

Page 1

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 7 of 11

andrew.blaisdell
Line
andrew.blaisdell
Text Box
89.6
andrew.blaisdell
Text Box
140 kips
andrew.blaisdell
Line
andrew.blaisdell
Text Box
Layer 5=2 ksf side resistance, seems too high Meyerhof SPT Method qs=N/50 (ksf), say N=80 qs=1.6 ksf, Skin resistance=89.6 kips
andrew.blaisdell
Group
140 kips/331 nominal = 42% side resistance
Page 111: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Wad

swor

th S

tree

t Brid

ge R

epla

cem

ent A

1

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Wad

swor

th S

tree

t Brid

ge R

epla

cem

ent A

1

Compressive Stress (ksi)

010

20

30

40

50

Tension Stress (ksi)

010

20

30

40

50

Blo

w C

ount

(bl

ows/

in)

Ultimate Capacity (kips)

0.0

16

.73

3.3

50

.06

6.7

83

.31

00

.00

40

0

80

0

12

00

16

00

20

00

Blo

w C

ount

(bl

ows/

in)

Stroke (ft)

0.0

16

.73

3.3

50

.06

6.7

83

.31

00

.00246810

AP

E

D 1

9-42

Ram

Wei

ght

4.

19

kips

Effi

cien

cy

0

.800

Pre

ssur

e

1247

(72

%)

psi

Hel

met

Wei

ght

3.

00

kips

Ham

mer

Cus

hion

348

25

kips

/inC

OR

of H

.C.

0.9

20

Ski

n Q

uake

0.1

00

inT

oe Q

uake

0.0

40

inS

kin

Dam

ping

0.0

50

sec/

ftT

oe D

ampi

ng

0

.150

se

c/ft

Pile

Len

gth

Pile

Pen

etra

tion

Pile

Top

Are

a

35.

00

2

1.00

34.

40

ft

ft

in

2

Pile

Mod

elS

kin

Fric

tion

Dis

trib

utio

n

Res

. Sha

ft =

28

%(P

ropo

rtio

nal)

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 8 of 11

Page 112: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

GZA Geo Environmental, Inc. 11-Sep-2014Wadsworth Street Bridge Replacement A1 GRLWEAP Version 2010

Maximum Maximum Ultimate Compression Tension Blow Capacity Stress Stress Count Stroke Energy

kips ksi ksi blows/in ft kips-ft

150.0 16.67 0.26 1.8 5.25 12.98 249.0 18.49 0.28 3.4 5.89 12.86 350.0 19.83 0.77 5.0 6.20 12.90 450.0 22.82 2.26 6.9 6.57 13.46 550.0 25.41 3.11 9.7 6.87 14.07 650.0 27.92 3.95 13.4 7.23 14.99 750.0 30.00 4.82 18.8 7.54 15.78 850.0 31.71 5.42 27.2 7.79 16.39 950.0 32.85 5.89 44.8 7.91 16.67 1050.0 34.08 7.00 82.4 8.15 17.28

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 9 of 11

Page 113: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Wad

swor

th S

tree

t Brid

ge R

epla

cem

ent A

2

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Wad

swor

th S

tree

t Brid

ge R

epla

cem

ent A

2

Compressive Stress (ksi)

0510

15

20

25

Tension Stress (ksi)

0510

15

20

25

Blo

w C

ount

(bl

ows/

in)

Ultimate Capacity (kips)

0.0

16

.73

3.3

50

.06

6.7

83

.31

00

.00

20

0

40

0

60

0

80

0

10

00

Blo

w C

ount

(bl

ows/

in)

Stroke (ft)

0.0

16

.73

3.3

50

.06

6.7

83

.31

00

.00246810

AP

E

D 1

9-42

Ram

Wei

ght

4.

19

kips

Effi

cien

cy

0

.800

Pre

ssur

e

1247

(72

%)

psi

Hel

met

Wei

ght

3.

00

kips

Ham

mer

Cus

hion

348

25

kips

/inC

OR

of H

.C.

0.9

20

Ski

n Q

uake

0.1

00

inT

oe Q

uake

0.1

00

inS

kin

Dam

ping

0.0

50

sec/

ftT

oe D

ampi

ng

0

.150

se

c/ft

Pile

Len

gth

Pile

Pen

etra

tion

Pile

Top

Are

a

55.

00

4

1.00

34.

40

ft

ft

in

2

Pile

Mod

elS

kin

Fric

tion

Dis

trib

utio

n

Res

. Sha

ft =

42

%(P

ropo

rtio

nal)

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 10 of 11

Page 114: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

GZA Geo Environmental, Inc. 11-Sep-2014Wadsworth Street Bridge Replacement A2 GRLWEAP Version 2010

Maximum Maximum Ultimate Compression Tension Blow Capacity Stress Stress Count Stroke Energy

kips ksi ksi blows/in ft kips-ft

150.0 16.29 1.61 1.7 5.23 13.14 250.0 18.04 2.03 3.5 5.83 13.22 331.0 18.66 2.53 5.0 6.05 13.14 350.0 18.82 2.58 5.4 6.11 13.25 450.0 19.49 3.42 7.9 6.36 13.84 550.0 20.08 4.03 12.1 6.59 14.38 650.0 20.66 4.62 19.1 6.83 14.93 750.0 21.43 5.25 33.3 7.01 15.35 850.0 21.81 5.79 74.5 7.16 15.73 950.0 22.42 6.21 601.2 7.32 16.10

25781.00 Wadsworth Street

Axial Pile Resistance - Abutments

Sheet 11 of 11

Page 115: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Piers   SHEET:                        1 OF 11                    CALCULATED BY    J. Baron    9/3/14           CHECKED BY  A. Blaisdell, 9/8/14          REVIEWED BY            

Objec ve Evaluate the axial geotechnical resistance of the pier piles for the Wadsworth Street Bridge Replacement inThomaston, ME

Methodology Evaluate proposed pile sec on for governing factored axial compression resistance as follows.  

1. Nominal Compressive Resistance

2.  Factored Structural Compressive Resistance ‐ Strength Limit State

3.  Factored Structural Compressive Resistance ‐ Extreme/Service Limit State

4.  Geotechnical Resistance (Sta c Analysis)

5.  Geotechnical Resistance (Drivability Analysis)

6.  Factored Geotechnical Resistance ‐ Strength Limit State

7.  Factored Geotechnical Resistance ‐ Extreme/Service Limit State

References American Associa on of State Highway and Transporta on Officials, AASHTO LRFD Bridge Design Specifica ons:1.Customary U.S. Units, 6th edi on, 2012.  (AASHTO LRFD)

Soil Proper esConsider Wadsworth Street Bridge Interpre ve Subsurface Profile (see Figure 3).  Piers 1 and 3 represent the shortest andlongest pier piles, respec vely.  Therefore those profiles are suitable to cover the full range of site condi ons; Pier 2 will notbe analyzed. Subsurface layering and proper es defined below.  Total distance from bo om of cap to top of rock isapproximately 30' at Pier 1 and 50' at Pier 3.

DESIGN SUBSURFACE PROFILE – PIER 1 (Boring BB-TSGR-301)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) / Su

(psf) for layer

River Bottom 2 120 30º

Glacial Till 3 130 38º

Depth to Bedrock 5 -- --

DESIGN SUBSURFACE PROFILE – PIER 3 (Boring BB-TSGR-303)

Strata Designation Thickness (feet) Total Unit Weight (pcf) Representative Φ’ (°) / Su

(psf) for layer

River Bottom Deposit 6 120 30º

Silt/Clay 9 115 300 psf

River Bottom Deposit 4 120 30º

Glacial Till 7 130 38º

Bedrock 26 -- --

Thomaston PP24x0.625.xmcd 1 OF 5

Page 116: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Piers   SHEET:                        2 OF 11                    CALCULATED BY    J. Baron    9/3/14           CHECKED BY  A. Blaisdell, 9/8/14          REVIEWED BY            

Structural Proper esPP24x0.625

Yield Strength of Steel Fy 50ksi

Area of sec on (with 1/8" corrosion loss, outside of pipe)

As 36.5in2

Young's Modulus of Steel Es 30000 ksi

Sec on Proper es:

Ix 3143.5 in4

Moment of Inter a

Sec on Modulus Sx 264.7in3

Radius of Gyra on rs 9.3in

1. Nominal Structural Compressive Resistance Pn

The structural engineer will calculate nominal structural compressive resistance in accordance with AASHTO Sec on 4, 6, and10, using the results of structural evalua ons and the proper es provided above.

2. Factored Structural Compressive Resistance Pr ‐ Strength Limit State:

Factor for piles in compression under hard driving condi ons:

From Ar cle 6.5.4.2 ϕc 0.6

Factored Compressive Resistance for Strength Limit State:

Pr ϕc Pn Pn AASHTO Eq. 6.9.2.1‐1 pg. 6‐71

The structural engineer will calculate factored structural compressive resistance in accordance with AASHTO Sec on 4, 6, and10, using the results of structural evalua ons and the proper es provided above.

3. Factored  Structural Compressive Resistance ‐ Service/Extreme Limit State:Resistance Factors for Extreme Limit States:

From Ar cle 10.5.5.1 and 10.5.5.3 ϕ 1

Factored Compressive Resistance for Service/Extreme Limit State:

Pr ϕ Pn Pn AASHTO Eq. 6.9.2.1‐1 pg. 6‐71

Thomaston PP24x0.625.xmcd 2 OF 5

Page 117: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Piers   SHEET:                        3 OF 11                    CALCULATED BY    J. Baron    9/3/14           CHECKED BY  A. Blaisdell, 9/8/14          REVIEWED BY            

4. Geotechnical Axial Resistance ‐ Sta c Analysis

AASHTO Ar cle 10.7.3.2.3 states that the nominal resistance of piles driven to point bearing on hard rock is controlled by thestructural limit state.

Used SPILE to es mate side fric on resistance during driving using the Nordlund Thurman method, es mates 6 kips of sideresistance for Pier 1 piles and 100 kips of side resistance for  Pier  3  piles.  SPILE output  is  a ached on Sheets 6 and 7.

Required nominal resistance of 680 kips for design of Piers 1 and 3 based on a maximum factored load of 442 kips and a 0.65resistance factor.

Es mated fric on distribu on and % sha  resistance using GRLWEAP based on design loads.

5. Geotechnical Axial Resistance  ‐ Drivability Analysis

σdr 0.9 ϕda fy AASHTO Eq. 10.7.8.1

fy 50ksi yield Strength of steel  (A252, Grade 3 Modified)

ϕda 1.0 AASHTO Table 10.5.5.2.3‐1  Refers to Ar cle 6.5.4.2, Pg. 6‐28  

σdr 0.9 ϕda fy σdr 45 ksi Driving Stress in pile cannot exceed 45 ksi

For drivability analysis, the uncorroded pile sec on area, As=45.9 in^2, is used.

Evaluate nominal geotechnical capacity using GRLWEAP.

Pier 1 ‐ Drive pile through 5 feet of soil to rock with toe quake representa ve of very hard driving condi ons (0.04in).  Pile lengthis modeled as 40 feet with 35 feet of s ckup.

Es mated skin fric on is 1% of required nominal resistance. For short pile; driving stress is an cipated to control resistance. 

Pier 3 ‐ Drive pile through 26 feet of soil to rock with toe quake representa ve of moderate driving condi ons (0.1 in).  Pile lengthis modeled as 55 feet with 29 feet of s ckup.

Es mated skin fric on is 15% of required nominal resistance. For long pile, higher final blow count is an cipated to control  

Drive piles with an APE D19‐42 open‐ended diesel hammer with a rated energy of 47,100  ‐lb.  The maximum fuel se ng  isconsidered ; chamber pressure of 1710 psi (100%).

Allowable stress in piles during driving is 0.9 fy=45 ksi

GRLWEAP Output is a ached on Sheets 8 through11.

Thomaston PP24x0.625.xmcd 3 OF 5

Page 118: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Piers   SHEET:                        4 OF 11                    CALCULATED BY    J. Baron    9/3/14           CHECKED BY  A. Blaisdell, 9/8/14          REVIEWED BY            

Pier 1: 

Rndr1 680kip Required nominal geotechnical resistance, pile driving stress=32ksi,final penetra on resistance=7 bpi.

Pier 3: 

Rndr2 680kip Required nominal geotechnical resistance, pile driving stress=28 ksi, final penetra on resistance=9 bpi.

6. Factored Drivability Resistance ‐ Strength Limit State:Strength Limit State Factored Drivability Resistance:

 Pier 1:

Rndr1_factored Rndr1 ϕdyn ϕdyn

ϕdyn 0.65 AASHTO Table 10.5.5.2.3‐1 PDA, WEAP and CAPWAP used to establishing drivingcriteria

Rndr1_factored Rndr1 ϕdyn

Rndr1_factored 442 kip

 Pier 3:

Rndr2_factored Rndr2 ϕdyn

Rndr2_factored 442 kip

7. Factored Drivability Resistance ‐ Service/Extreme Limit States:Service and Extreme Limit State Factored Drivability Resistance:

Resistance Factors for Extreme Limit States:

From Ar cle 10.5.5.1 and 10.5.5.3 ϕserv_ext 1

Rndr1_serv_ext Rndr1 ϕserv_ext

Rndr1_serv_ext 680 kip

Rndr2_serv_ext Rndr2 ϕserv_ext

Rndr2_serv_ext 680 kip

Thomaston PP24x0.625.xmcd 4 OF 5

Page 119: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:   09.0025781.00  Wadsworth Street     

SUBJECT:  Axial Capacity ‐ Piers   SHEET:                        5 OF 11                    CALCULATED BY    J. Baron    9/3/14           CHECKED BY  A. Blaisdell, 9/8/14          REVIEWED BY            

Summary of Results ‐ Axial Loading:

ASTM A252 Grade 3, PP24x0.625

Geotechnical Static 

Resistance (kips)

Drivability Resistance 

(kips)

Pier 1: Strength Limit State, Design n/a 442Pier 1: Service/Extreme Limit State, Design n/a 680

Pier 3: Strength Limit State, Design n/a 442Pier 3: Service/Extreme Limit State, Design n/a 680

Results indicate APE D19‐42 is suitable to penetrate overburden and achieve geotechnical strength limit state resistance.

Structural engineer will assess nominal compressive resistance to assess whether it controls.  

Thomaston PP24x0.625.xmcd 5 OF 5

Page 120: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

PIER1.TXT

ÚÄÄÄÄÄÄÄÄ ULTIMATE STATIC PILE CAPACITY/Federal Highway Administration ÄÄÄÄÄÄÄÄ¿³ Nordlund (1963, 1979) and Tomlinson (1979, 1980) methods ³³ ³³ Project Name : Wadsworth St. Bridge Client : maineDOT ³³ File Name : Thomaston,ME Project Manager : Blaisdell ³³ Date : 05/09/13 Computed by : ETL ³³ ³³ Depth of Top of Pile = 0.00 ft. Pile length = 5.00 ft. ³³ Depth to Water Table = 0.00 ft. ³³ Diameter of pile = 24.00 in. ³³ Type of Pile = Pipe Pile ³³ ³³ ³³ ³³ SKIN FRICTION CONTRIBUTION ³³ ³³ Layer Soil Thickness Effective Internal N-SPT Pile ³³ Type Stress Friction Perimeter ³³ (ft) (psf) Angle (ft) ³³ ³³ 1 Cohesionless 2.00 57.60 30.00 -- 6.28 ³³ 2 Cohesionless 3.00 216.60 38.00 -- 6.28 ³³ ³³ ³³ Layer Soil Undrained Shear Adhesion Pile Sliding Skin ³³ Type Strength Taper Friction Resistance ³³ (psf) Angle (Kips) ³³ ³³ 1 Cohesionless -- -------- ---- 23.94 0.36 ³³ 2 Cohesionless -- -------- ---- 30.32 5.57 ³³ ³³ ³³ Total Side Friction : 5.93 ³³ ³³ POINT RESISTANCE CONTRIBUTION ³³ ³³ Effective Internal SPT Pile End Bearing End Bearing ³³ Stress at Friction Value Area Capacity Resistance ³³ pile Tip Angle Factor ³³ (psf) (ft*ft) Nq (Kips) ³³ ³³ 318.00 38.00 ----- 3.14 110.40 79.63 ³³ ³³ Limiting End Bearing Resistance : 843.83 ³³ ³³ ³³ Ultimate Static Pile Capacity : 85.56 ³³ ³ÀÄÄÄÄÄ Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu ÄÄÄÄÄÙ

Page 1

6 kips/680 kips nominal=1% friction

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 6 of 11

Page 121: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

PIER3.TXT

ÚÄÄÄÄÄÄÄÄ ULTIMATE STATIC PILE CAPACITY/Federal Highway Administration ÄÄÄÄÄÄÄÄ¿³ Nordlund (1963, 1979) and Tomlinson (1979, 1980) methods ³³ ³³ Project Name : Wadsworth St. Bridge Client : maineDOT ³³ File Name : Thomaston,ME Project Manager : Blaisdell ³³ Date : 05/09/13 Computed by : ETL ³³ ³³ Depth of Top of Pile = 0.00 ft. Pile length = 26.00 ft. ³³ Depth to Water Table = 0.00 ft. ³³ Diameter of pile = 24.00 in. ³³ Type of Pile = Pipe Pile ³³ ³³ ³³ ³³ SKIN FRICTION CONTRIBUTION ³³ ³³ Layer Soil Thickness Effective Internal N-SPT Pile ³³ Type Stress Friction Perimeter ³³ (ft) (psf) Angle (ft) ³³ ³³ 1 Cohesionless 6.00 172.80 30.00 -- 6.28 ³³ 2 Cohesive 9.00 582.30 --- -- 6.28 ³³ 3 Cohesionless 4.00 934.20 30.00 -- 6.28 ³³ 4 Cohesionless 7.00 1286.00 38.00 -- 6.28 ³³ ³³ ³³ Layer Soil Undrained Shear Adhesion Pile Sliding Skin ³³ Type Strength Taper Friction Resistance ³³ (psf) Angle (Kips) ³³ ³³ 1 Cohesionless -- -------- ---- 23.94 3.22 ³³ 2 Cohesive 300.00 150.00 ---- ----- 8.48 ³³ 3 Cohesionless -- -------- ---- 23.94 11.62 ³³ 4 Cohesionless -- -------- ---- 30.32 77.13 ³³ ³³ ³³ Total Side Friction : 100.46 ³³ ³³ POINT RESISTANCE CONTRIBUTION ³³ ³³ Effective Internal SPT Pile End Bearing End Bearing ³³ Stress at Friction Value Area Capacity Resistance ³³ pile Tip Angle Factor ³³ (psf) (ft*ft) Nq (Kips) ³³ ³³ 1522.60 38.00 ----- 3.14 110.40 381.28 ³³ ³³ Limiting End Bearing Resistance : 843.83 ³³ ³³ ³³ Ultimate Static Pile Capacity : 481.74 ³³ ³ÀÄÄÄÄÄ Hit arrow keys to display next screen. <F8> Print. <F10> Main Menu ÄÄÄÄÄÙ

Page 1

100 kips/680 kips nominal=15% friction

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 7 of 11

Page 122: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Tho

mas

ton,

ME

Pie

r 1

11

-Sep

-201

4G

ZA

Geo

Env

ironm

enta

l, In

c.

GR

LWE

AP

Ver

sion

201

0T

hom

asto

n, M

E P

ier

1

Compressive Stress (ksi)

010

20

30

40

50

Tension Stress (ksi)

010

20

30

40

50

Blo

w C

ount

(bl

ows/

in)

Ultimate Capacity (kips)

0.0

03

.33

6.6

71

0.0

01

3.3

31

6.6

72

0.0

00

40

0

80

0

12

00

16

00

20

00

Blo

w C

ount

(bl

ows/

in)

Stroke (ft)

0.0

03

.33

6.6

71

0.0

01

3.3

31

6.6

72

0.0

004812

16

20

AP

E

D 1

9-42

Ram

Wei

ght

4.

19

kips

Effi

cien

cy

0

.800

Pre

ssur

e

1710

(10

0%)

psi

Hel

met

Wei

ght

4.

00

kips

Ham

mer

Cus

hion

428

75

kips

/inC

OR

of H

.C.

0.9

20

Ski

n Q

uake

0.1

00

inT

oe Q

uake

0.0

40

inS

kin

Dam

ping

0.0

50

sec/

ftT

oe D

ampi

ng

0

.150

se

c/ft

Pile

Len

gth

Pile

Pen

etra

tion

Pile

Top

Are

a

40.

00

5.00

45.

89

ft

ft

in

2

Pile

Mod

elS

kin

Fric

tion

Dis

trib

utio

n

Res

. S

haft

= 1

%(P

ropo

rtio

nal)

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 8 of 11

Page 123: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

GZA Geo Environmental, Inc. 11-Sep-2014Thomaston, ME Pier 1 GRLWEAP Version 2010

Maximum Maximum Ultimate Compression Tension Blow Capacity Stress Stress Count Stroke Energy

kips ksi ksi blows/in ft kips-ft

400.0 23.49 0.99 3.8 8.53 20.46 500.0 26.90 1.35 4.8 8.96 21.17 600.0 29.93 2.31 5.9 9.39 22.10 626.0 30.80 2.57 6.2 9.54 22.49 680.0 32.39 3.23 6.8 9.80 23.22 700.0 32.95 3.44 7.1 9.89 23.43 800.0 35.68 4.15 8.6 10.34 24.67 900.0 38.05 5.26 10.5 10.73 25.73 1000.0 40.29 6.00 12.7 11.14 26.84 1100.0 42.28 6.63 15.5 11.49 27.81

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 9 of 11

Page 124: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

11-S

ep-2

014

GZ

A G

eo E

nviro

nmen

tal,

Inc.

G

RLW

EA

P V

ersi

on 2

010

Tho

mas

ton,

ME

11

-Sep

-201

4G

ZA

Geo

Env

ironm

enta

l, In

c.

GR

LWE

AP

Ver

sion

201

0T

hom

asto

n, M

E

Compressive Stress (ksi)

010

20

30

40

50

Tension Stress (ksi)

010

20

30

40

50

Blo

w C

ount

(bl

ows/

in)

Ultimate Capacity (kips)

0.0

8.3

16

.72

5.0

33

.34

1.7

50

.00

40

0

80

0

12

00

16

00

20

00

Blo

w C

ount

(bl

ows/

in)

Stroke (ft)

0.0

8.3

16

.72

5.0

33

.34

1.7

50

.004812

16

20

AP

E

D 1

9-42

Ram

Wei

ght

4.

19

kips

Effi

cien

cy

0

.800

Pre

ssur

e

1710

(10

0%)

psi

Hel

met

Wei

ght

4.

00

kips

Ham

mer

Cus

hion

428

75

kips

/inC

OR

of H

.C.

0.9

20

Ski

n Q

uake

0.1

00

inT

oe Q

uake

0.1

00

inS

kin

Dam

ping

0.0

50

sec/

ftT

oe D

ampi

ng

0

.150

se

c/ft

Pile

Len

gth

Pile

Pen

etra

tion

Pile

Top

Are

a

55.

00

2

6.00

45.

89

ft

ft

in

2

Pile

Mod

elS

kin

Fric

tion

Dis

trib

utio

n

Res

. Sha

ft =

15

%(P

ropo

rtio

nal)

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 10 of 11

Page 125: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

GZA Geo Environmental, Inc. 11-Sep-2014Thomaston, ME GRLWEAP Version 2010

Maximum Maximum Ultimate Compression Tension Blow Capacity Stress Stress Count Stroke Energy

kips ksi ksi blows/in ft kips-ft

400.0 20.97 1.53 4.1 8.46 21.00 500.0 23.64 1.87 5.5 8.76 21.48 600.0 26.03 2.54 7.2 8.96 22.02 626.0 26.58 2.65 7.7 9.05 22.25 680.0 27.89 2.82 8.8 9.22 22.72 700.0 28.26 2.88 9.3 9.27 22.87 800.0 30.02 3.24 12.3 9.55 23.58 900.0 31.62 3.65 16.4 9.84 24.43 1000.0 32.89 4.09 22.4 10.12 25.19 1100.0 34.04 4.59 31.6 10.41 25.98

25781.00 - Wadsworth Street

Axial Pile Resistance - Piers

Sheet 11 of 11

Page 126: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers and Scientists

JOB:  09.0025781.00  Wadsworth St BridgeSUBJECT: GROUP Evaluation of Bent Piers 2 and 3

SHEET:                        1 OF 55CALCULATED BY:     __JRB, ARB   4/14/14_

CHECKED BY:                                   _

Objec ve Evaluate the performance of the proposed bent pier founda ons under design axial and lateral loads.  Assess effec ve pointof fixed/pinned condi on for use in structural analyses.  The piers are assumed to be supported using five, PP24x0.625 pipepiles, including two plumb and three ba ered piles, driven to prac cal refusal on bedrock.

Results SummaryThe piles were found to achieve a pinned condi on under Extreme II loading near the bo om of the pile.  Therefore, it isrecommended that a pinned condi on be assumed at the pile  p (El. ‐38 at Pier 2 and El. ‐40 at Pier 3).

Approach and Input Parameters1. Soil and Rock Parameters‐ L‐Pile Typ.

Using data from test borings and laboratory tes ng, GZA developed representa ve subsurface profiles and engineeringproper es for soil and bedrock.  Subsurface profiles are presented for each  on Sheet 6.  Soil engineering proper es, soilmodels and LPile parameters, presented below, were selected to model the sha s in GROUP.

Stratum Soil ModelLayer 

Thickness (ft)k (pci) φ' (deg) γe (pci)

River Bottom Reese Sand 14 20 30 0.033Till Reese Sand 5 90 38 0.036

Notes: Depth to mudline from top of pile = 28 ft.

Pier 2 (Borings: BB‐TSGR‐102, BB‐TSGR‐203 and BB‐TSGR‐302)

Stratum Soil ModelLayer 

Thickness (ft)k (pci) / E50

φ' (deg) / Su (psf)

γe (pci)

River Bottom Deposit Reese Sand 6 20 30 0.033Silt/Clay Soft Clay 9 E50 = 0.02 300 0.03

River Bottom Deposit Reese Sand 4 20 30 0.033Till Reese Sand 7 90 38 0.036

Notes: Depth to mudline from top of pile = 23 ft.

Pier 3 (Borings: BB‐TSGR‐204 and BB‐TSGR‐303)

2. Basis of Evalua onGZA modeled the bent pier performance with the intent of assessing pile fixity.  The evalua on was not intended to calculateactual pile bent deflec on and stress, as several considera ons  were neglected, including concrete fill in the piles andbeneficial resistance of the bridge deck to lateral deflec on.  These assump ons  lead  to a conserva ve model of the actualcondi on.

The analy cal so ware GROUP was used to model the bent piers under design loading.  Piers 2 and 3 were selected forevalua on, as Pier 1 was judged to require rock anchors to fix the pile toe due to very thin overburden.  

GROUP Calc 04‐14‐14.xmcd

Page 127: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers and Scientists

JOB:  09.0025781.00  Wadsworth St BridgeSUBJECT: GROUP Evaluation of Bent Piers 2 and 3

SHEET:                        2 OF 55CALCULATED BY:     __JRB, ARB   4/14/14_

CHECKED BY:                                   _

3. Pile Bent Proper esGZA modeled the PP24x0.625 piles as hollow members (not concrete filled), which is conserva ve given that the piles will befilled with unreinforced concrete.  We modeled two condi ons: an uncorroded pile sec on, and a sec on including 1/8" ofsec on loss around the outsider perimeter of the piles, extending from the bo om of pile cap to 5' below mudline.   A crosssec on showing bent pier geometry is shown on Sheet 4.  

4. Design LoadsBent pier loads were taken from load combina on summary sheets provided by Calderwood Engineering, dated 3/4/14.Based on our review of the load combina ons and discussion with Calderwood, two load cases were selected for analysis:Service I and Extreme II (Ice loading).  The Extreme II loads were judged to control for the factored load cases.  Pier 3reportedly had slightly larger loads the Pier 2, so Pier 3 loads were assumed for both cases.  The design load diagrams  arepresented in Sheets 4 and 5.  

GROUP Calc 04‐14‐14.xmcd

Page 128: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street                      Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099

Engineers and Scientists

JOB:  09.0025781.00  Wadsworth St BridgeSUBJECT: GROUP Evaluation of Bent Piers 2 and 3

SHEET:                        3 OF 55CALCULATED BY:     __JRB, ARB   4/14/14_

CHECKED BY:                                   _

Analysis1. Uncorroded Sec on

GROUP analyses were ini ally conducted for Piers 2 and 3, Extreme II and Service I, for  the full, uncorroded pile sec on.GROUP output files and plots of deflec on, shear and moment vs. depth are presented on Sheets 6 through 22  (P ier  2, Extremeand Service) and 23 through 35 (Pier 3, Exterme only).  The results indicated the following:

a. The toe of the piles did not gain "fixity", defined as two points of inflec on in the pile deflec on curve.  b. The toe of the piles did achieve a "pinned" condi on, defined as one point of inflec on (i.e., deflec on crosses they‐axis from posi ve to nega ve once.c. Pier 2 exhibited more nega ve  p deflec on than Pier 2, therefore, Pier 3 was closer to fixed and Pier 2 controlslateral pile performance.d. Pier 2, Extreme II load case resulted in the largest deflec on (1.2") and maximum pile stress (21  ksi).e. Pier 2, Service I load case resulted in much smaller maximum deflec on (0.4") and maximum pile stress (10 ksi).

2. Corroded Sec onSubsequent GROUP analyses were conducted for Pier 2, Extreme II and Service I, for  the corroded pile sec on described above.GROUP output files and plots of deflec on, shear and moment vs. depth are presented on Sheets 36 through  55.  The resultsindicated similar results as the uncorroded sec on, summarized below:

a. The toe of the piles achieved a "pinned" condi on, defined as one point of inflec on (i.e., deflec on crosses the y‐axisfrom posi ve to nega ve once, at a similar depth as the uncorroded case, a few feet above the bo om of the pile.d. Pier 2, Extreme II load case maximum deflec on and pile stress increased to 1.4" and 26 ksi, respec vely.e. Pier 2, Service I load case maximum deflec on and pile stress were very similar to the uncorroded sec on, 0.4" and12 ksi, respec vely.

ConclusionBased on the results, a pinned pile condi on (pinned by the soil reac on) should be assumed to occur at the pile  p,corresponding to El. ‐38 at Pier 2 and El. ‐40 at Pier 3.

GROUP Calc 04‐14‐14.xmcd

Page 129: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 4 of 55

Page 130: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 5 of 55

Page 131: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt =========================================================================

GROUP for Windows, Version 8.0.15

Serial Number : 364300562

Analysis of A Group of Piles Subjected to Axial and Lateral Loading

(c) Copyright ENSOFT, Inc., 1987-2010 All Rights Reserved

=========================================================================

This program is licensed to :

gza GZA GeoEnvironmental, Inc.

Path to file locations : P:\09 Jobs\0025700s\09.0025781.00 Thomaston Bridge MaineDOT\Work\Calcs\GROUP\ Name of input data file : 25781 5 pile Bent Pier 2.gp8d Name of output file : 25781 5 pile Bent Pier 2.gp8o Name of output summary file : 25781 5 pile Bent Pier 2.gp8t Name of plot output file : 25781 5 pile Bent Pier 2.gp8p Name of runtime file : 25781 5 pile Bent Pier 2.gp8r

------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: March 25, 2014 Time: 11:51:34

***** INPUT INFORMATION *****

Thomaston

ANALYSIS TYPE = 3D ANALYSIS

UNITS SYSTEM = ENGL

* TABLE C * LOAD AND CONTROL PARAMETERS

** LOAD CASES **

Page 1GROUP Analyses, Pier 2 - Page 1 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 6 of 55

andrew.blaisdell
Text Box
Pier 2 PP24x0.625 piles Uncorroded Section No concrete fill included Extreme II and Service I Load Cases
Page 132: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt NUMBER OF LOAD CASES : 2

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL SCALE FACTOR : 1.0000

* CONCENTRATED LOADS *

NL VERT.LOAD HR.LOAD Y HR.LOAD Z MOMENT X MOMENT Y MOMENT Z COORD X COORD Y COORD Z LBS LBS LBS LBS-IN LBS-IN LBS-IN IN IN IN 1 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -180.000 0.00000 2 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -90.0000 0.00000 3 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 90.0000 0.00000 5 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 6 6.21300E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7 3.01600E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -30.0000 0.00000 8 82000.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 165.000 0.00000 9 0.00000 86000.0 0.00000 0.00000 0.00000 0.00000 120.000 -212.000 0.00000 10 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -215.000 0.00000 11 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -90.0000 0.00000 12 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 0.00000 13 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 90.0000 0.00000 14 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 215.000 0.00000

* EQUIVALENT CONC. LOAD AT ORIGIN *

VER.LOAD X,LBS HOR.LOAD Y,LBS HOR.LOAD Z,LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X,LBS-IN MOMENT Y,LBS-IN MOMENT Z,LBS-IN 0.00000 0.00000 8.79900E+06

* THE LOADING IS STATIC *

* CONTROL PARAMETERS * TOLERANCE ON CONVERGENCE OF FOUNDATION REACTION, = 1.00000E-04 TOLERANCE ON DETERMINATION OF DEFLECTIONS = 1.00000E-04 IN MAX NO OF ITERATIONS ALLOWED FOR FOUNDATION ANALYSIS = 100 MAXIMUM NO OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 FACTOR TO APPLY THE LOAD IN INCREMENTS = 1.0000 MINIMUM FACTOR FOR LOAD INCREMENTS = 1.0000 PRINT RESULTS ONLY AT PILE CAP

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL SCALE FACTOR : 1.0000

* CONCENTRATED LOADS *

Page 2GROUP Analyses, Pier 2 - Page 2 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 7 of 55

Page 133: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt

NL VERT.LOAD HR.LOAD Y HR.LOAD Z MOMENT X MOMENT Y MOMENT Z COORD X COORD Y COORD Z LBS LBS LBS LBS-IN LBS-IN LBS-IN IN IN IN 1 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -180.000 0.00000 2 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -90.0000 0.00000 3 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 90.0000 0.00000 5 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 6 4.97000E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7 3.81400E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -30.0000 0.00000 8 65600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 165.000 0.00000 9 0.00000 8750.00 0.00000 0.00000 0.00000 0.00000 -168.000 -30.0000 0.00000 10 0.00000 7860.00 0.00000 0.00000 0.00000 0.00000 -84.0000 -225.000 0.00000 11 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -225.000 0.00000 12 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -90.0000 0.00000 13 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 0.00000 14 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 90.0000 0.00000 15 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 225.000 0.00000

* EQUIVALENT CONC. LOAD AT ORIGIN *

VER.LOAD X,LBS HOR.LOAD Y,LBS HOR.LOAD Z,LBS 1.10200E+06 33060.0 0.00000

MOMENT X,LBS-IN MOMENT Y,LBS-IN MOMENT Z,LBS-IN 0.00000 0.00000 1.44876E+06

* THE LOADING IS STATIC *

* CONTROL PARAMETERS * TOLERANCE ON CONVERGENCE OF FOUNDATION REACTION, = 1.00000E-04 TOLERANCE ON DETERMINATION OF DEFLECTIONS = 1.00000E-04 IN MAX NO OF ITERATIONS ALLOWED FOR FOUNDATION ANALYSIS = 100 MAXIMUM NO OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 FACTOR TO APPLY THE LOAD IN INCREMENTS = 1.0000 MINIMUM FACTOR FOR LOAD INCREMENTS = 1.0000 PRINT RESULTS ONLY AT PILE CAP

* TABLE D * ARRANGEMENT OF PILE GROUPS

GROUP CONNECTY CONNECTZ PILE PROP P-Y CURVE L-S CURVE T-R CURVE 1 FIX FIX 1 0 0 0 2 FIX FIX 1 0 0 0 3 FIX FIX 1 0 0 0 4 FIX FIX 1 0 0 0 5 FIX FIX 1 0 0 0

GROUP CorX,IN CorY,IN CorZ,IN ALPHA,DEG BETA,DEG GROUND,IN SPR.y,LBS-IN SPR.z,LBS-IN 1 0.00000 -180.000 0.00000 0.00000 101.770 336.000 0.00000 0.00000 2 0.00000 -90.0000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000

Page 3GROUP Analyses, Pier 2 - Page 3 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 8 of 55

Page 134: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt 4 0.00000 90.0000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000 5 0.00000 180.000 0.00000 0.00000 78.2300 336.000 0.00000 0.00000

* TABLE E * PILE GEOMETRY AND PROPERTIES PILE TYPE = 1 - DRIVEN PILE = 2 - DRILLED SHAFT

PROP SECTS INC PILE TYPE LENGTH, IN E,LBS/IN**2 1 1 100 1 564.00 2.9000E+07

* PILE SECTIONS *

PROP SECT FROM,IN TO,IN CROSS SECT 1 1 0.00000 564.000 1

* PILE CROSS SECTIONS *

CROSS SECTION : 1 SECTION NAME : Section CROSS SECTION TYPE : CIRCULAR PIPE EXTERNAL DIAMETER : 24.0000 IN INTERNAL DIAMETER : 22.7500 IN SHEAR MODULUS : 1.0000 LBS/IN**2 HEAR MODULUS : , 1.00000 LBS/IN**2

* PILE CROSS SECTIONS PROPERTIES *

SECT DIAM,IN AREA,IN**2 Iz,IN**4 Iy,IN**4 GJ,LBS-IN**2 Mn,LBS-IN Vn,LBS 1 24.0000 45.8967 3136.93 3136.93 7.27768E+10 0.00000 0.00000

* TABLE F * SOIL DATA

SOILS INFORMATION

GROUND SURFACE = 336.000 IN

3 LAYER(S) OF SOIL

LAYER 1 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 336.000 504.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0333000 0.0333000 FRICTION ANGLE (DEGREES) 30.0000 30.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 20.0000 20.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 2 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER

Page 4GROUP Analyses, Pier 2 - Page 4 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 9 of 55

andrew.blaisdell
Text Box
River Bottom
andrew.blaisdell
Text Box
Till
Page 135: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt X COORDINATE (IN) 504.000 564.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0360000 0.0360000 FRICTION ANGLE (DEGREES) 38.0000 38.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 90.0000 90.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 3 THE LAYER IS A VUGGY LIMESTONE TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 564.000 600.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0560000 0.0560000 UNIAXIAL COMPRESSIVE STRENGTH (LBS/IN**2) 4000.00 4000.00 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 17000.0 17000.0

Note : Default values will be generated for ULTIMATE UNIT SIDE FRICTION and ULTIMATE UNIT TIP RESISTANCE when input values are 0.

* TABLE H * AXIAL LOAD VS SETTLEMENT

LOAD-SETTLEMENT CURVES GENERATED INTERNALLY

NUM OF CURVES 1

CURVE 1 NUM OF POINTS 19

POINT AXIAL LOAD,LBS SETTLEMENT, IN 1 -1.01646E+05 -2.03583 2 -95708.3 -1.03374 3 -92739.7 -0.53270 4 -59145.2 -0.12084 5 -41120.4 -0.0644811 6 -12109.1 -0.0142584 7 -6093.66 -7.14091E-03 8 -1218.73 -1.42818E-03 9 -121.873 -1.42818E-04 10 0.00000 0.00000 11 2609.58 1.17654E-03 12 26095.8 0.0117654 13 1.29603E+05 0.0585902 14 2.55285E+05 0.11594 15 6.17766E+05 0.30745 16 8.49006E+05 0.45463 17 8.73314E+05 0.86342 18 8.76283E+05 1.36447 19 8.82220E+05 2.36656

* TABLE I * TORS. MOM. VS ANGLE ROT.

TORQUE-ROTATION CURVES GENERATED INTERNALLY

Page 5GROUP Analyses, Pier 2 - Page 5 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 10 of 55

andrew.blaisdell
Text Box
Rock (Tip of Pile at Top of Rock)
Page 136: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt

NUM OF CURVES 1

CURVE 1 NUM OF POINTS 19

POINT TORS.MOMEN,LBS/IN ROT. ANGLE,Rad. 1 -92.9727 -0.16667 2 -92.9718 -0.0833340 3 -92.9714 -0.0416673 4 -92.9625 -8.33398E-03 5 -92.9515 -4.16732E-03 6 -92.8680 -8.33983E-04 7 -46.4353 -4.16992E-04 8 -9.28706 -8.33983E-05 9 -0.92871 -8.33983E-06 10 0.00000 0.00000 11 0.92871 8.33983E-06 12 9.28706 8.33983E-05 13 46.4353 4.16992E-04 14 92.8680 8.33983E-04 15 92.9515 4.16732E-03 16 92.9625 8.33398E-03 17 92.9714 0.0416673 18 92.9718 0.0833340 19 92.9727 0.16667

***** COMPUTATION RESULTS *****

Thomaston

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.20240E+06 1.02450E+05 0.00000

Page 6GROUP Analyses, Pier 2 - Page 6 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 11 of 55

andrew.blaisdell
Highlight
Page 137: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8o.txt

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.11495 1.13160 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 9.92887E-04

NUMBER OF GLOBAL ITERATIONS = 4

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.10200E+06 33060.0 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 1.44876E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.10213 0.34488 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 2.97538E-04

NUMBER OF GLOBAL ITERATIONS = 4

Page 7GROUP Analyses, Pier 2 - Page 7 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 12 of 55

andrew.blaisdell
Highlight
Page 138: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt ------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: March 25, 2014 Time: 11:51:34

***** COMPUTATION RESULTS *****

Thomaston

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

Page 1

GROUP Analyses, Pier 2 - Page 8 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 13 of 55

andrew.blaisdell
Highlight
Page 139: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.11495 1.13160 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 9.92887E-04

THE GLOBAL STRUCTURAL COORDINATE SYSTEM ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. X,IN DISP. Y,IN DISP. Z,IN ROT. X,RAD ROT. Y,RAD ROT. Z,RAD ********** *********** *********** *********** *********** *********** *********** 1 0.2937 1.1316 0.0000 0.0000 0.0000 9.9289E-04 2 0.2043 1.1316 0.0000 0.0000 0.0000 9.9289E-04 3 0.1149 1.1316 0.0000 0.0000 0.0000 9.9289E-04 4 2.5595E-02 1.1316 0.0000 0.0000 0.0000 9.9289E-04 5 -6.3765E-02 1.1316 0.0000 0.0000 0.0000 9.9289E-04

MINIMUM -6.3765E-02 1.1316 0.0000 0.0000 0.0000 9.9289E-04 Pile N. 5 1 1 1 1 1 MAXIMUM 0.2937 1.1316 0.0000 0.0000 0.0000 9.9289E-04 Pile N. 1 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP FOR. X,LBS FOR. Y,LBS FOR. Z,LBS MOM X,LBS-IN MOM Y,LBS-IN MOM Z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.2513E+05 -1.4035E+04 0.0000 0.0000 0.0000 3.1685E+06 1.4852E+04 2 4.2256E+05 1.0710E+04 0.0000 0.0000 0.0000 3.0457E+06 2.0858E+04 3 2.5312E+05 1.1166E+04 0.0000 0.0000 0.0000 3.0744E+06 1.7276E+04 4 5.6666E+04 1.1693E+04 0.0000 0.0000 0.0000 3.1073E+06 1.3121E+04 5 3.4492E+05 8.2917E+04 0.0000 0.0000 0.0000 3.0356E+06 1.9338E+04

MINIMUM 5.6666E+04 -1.4035E+04 0.0000 0.0000 0.0000 3.0356E+06 1.3121E+04 Pile N. 4 1 1 1 1 5 4 MAXIMUM 4.2256E+05 8.2917E+04 0.0000 0.0000 0.0000 3.1685E+06 2.0858E+04 Pile N. 2 5 1 1 1 1 2

THE PILE COORDINATE SYSTEM (LOCAL AXES) ---------------------------------------

Page 2

GROUP Analyses, Pier 2 - Page 9 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 14 of 55

Page 140: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt * PILE TOP DISPLACEMENTS *

PILE GROUP DISP. x,IN DISP. y,IN DISP. z,IN ROT. x,RAD ROT. y,RAD ROT. z,RAD ********** *********** *********** *********** *********** *********** *********** 1 5.6672E-02 1.1677 0.0000 0.0000 0.0000 9.9289E-04 2 0.2043 1.1316 0.0000 0.0000 0.0000 9.9289E-04 3 0.1149 1.1316 0.0000 0.0000 0.0000 9.9289E-04 4 2.5595E-02 1.1316 0.0000 0.0000 0.0000 9.9289E-04 5 0.1684 1.1208 0.0000 0.0000 0.0000 9.9289E-04

MINIMUM 2.5595E-02 1.1208 0.0000 0.0000 0.0000 9.9289E-04 Pile N. 4 5 1 1 1 1 MAXIMUM 0.2043 1.1677 0.0000 0.0000 0.0000 9.9289E-04 Pile N. 2 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP AXIAL,LBS LAT. y,LBS LAT. z,LBS MOM x,LBS-IN MOM y,LBS-IN MOM z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.2536E+05 1.1785E+04 0.0000 0.0000 0.0000 3.1685E+06 1.4852E+04 2 4.2256E+05 1.0710E+04 0.0000 0.0000 0.0000 3.0457E+06 2.0858E+04 3 2.5312E+05 1.1166E+04 0.0000 0.0000 0.0000 3.0744E+06 1.7276E+04 4 5.6666E+04 1.1693E+04 0.0000 0.0000 0.0000 3.1073E+06 1.3121E+04 5 3.5458E+05 1.0815E+04 0.0000 0.0000 0.0000 3.0356E+06 1.9338E+04

MINIMUM 5.6666E+04 1.0710E+04 0.0000 0.0000 0.0000 3.0356E+06 1.3121E+04 Pile N. 4 2 1 1 1 5 4 MAXIMUM 4.2256E+05 1.1785E+04 0.0000 0.0000 0.0000 3.1685E+06 2.0858E+04 Pile N. 2 1 1 1 1 1 2

* EFFECTS FOR LATERALLY LOADED PILE *

* MINIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 -4.1100E-02 0.0000 -3.1700E+06 0.0000 -1.5200E+04 0.0000 -659.00 0.0000 2730.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 2 -4.0200E-02 0.0000 -3.0500E+06 0.0000 -1.5200E+04 0.0000 -650.00 0.0000 9210.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 3 -3.9900E-02 0.0000 -3.0700E+06 0.0000 -1.5000E+04 0.0000 -647.00 0.0000 5520.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000

Page 3

GROUP Analyses, Pier 2 - Page 10 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 15 of 55

Page 141: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt 4 -3.9600E-02 0.0000 -3.1100E+06 0.0000 -1.4700E+04 0.0000 -645.00 0.0000 1230.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 518.88 0.0000 564.00 0.0000 564.00 0.0000 0.0000 5 -3.9700E-02 0.0000 -3.0400E+06 0.0000 -1.5000E+04 0.0000 -645.00 0.0000 7730.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000

Min. -4.1100E-02 0.0000 -3.1700E+06 0.0000 -1.5200E+04 0.0000 -659.00 0.0000 1230.0 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 4 1 1

* MAXIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 1.1700 0.0000 1.4800E+06 0.0000 1.1800E+04 0.0000 233.00 0.0000 1.4900E+04 9.1000E+10 9.1000E+10 x(IN) 28.200 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 2 1.1300 0.0000 1.4500E+06 0.0000 1.0700E+04 0.0000 224.00 0.0000 2.0900E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 3 1.1300 0.0000 1.4400E+06 0.0000 1.1200E+04 0.0000 225.00 0.0000 1.7300E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 4 1.1300 0.0000 1.4300E+06 0.0000 1.1700E+04 0.0000 227.00 0.0000 1.3100E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 5 1.1200 0.0000 1.4400E+06 0.0000 1.0800E+04 0.0000 223.00 0.0000 1.9300E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000

Max. 1.1700 0.0000 1.4800E+06 0.0000 1.1800E+04 0.0000 233.00 0.0000 2.0900E+04 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 2 1 1

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.10200E+06 33060.0 0.00000

Page 4

GROUP Analyses, Pier 2 - Page 11 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 16 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Callout
Max stress=21 ksi
andrew.blaisdell
Callout
Max deflection=1.2"
Page 142: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 1.44876E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.10213 0.34488 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 2.97538E-04

THE GLOBAL STRUCTURAL COORDINATE SYSTEM ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. X,IN DISP. Y,IN DISP. Z,IN ROT. X,RAD ROT. Y,RAD ROT. Z,RAD ********** *********** *********** *********** *********** *********** *********** 1 0.1557 0.3449 0.0000 0.0000 0.0000 2.9754E-04 2 0.1289 0.3449 0.0000 0.0000 0.0000 2.9754E-04 3 0.1021 0.3449 0.0000 0.0000 0.0000 2.9754E-04 4 7.5347E-02 0.3449 0.0000 0.0000 0.0000 2.9754E-04 5 4.8568E-02 0.3449 0.0000 0.0000 0.0000 2.9754E-04

MINIMUM 4.8568E-02 0.3449 0.0000 0.0000 0.0000 2.9754E-04 Pile N. 5 1 1 1 1 1 MAXIMUM 0.1557 0.3449 0.0000 0.0000 0.0000 2.9754E-04 Pile N. 1 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP FOR. X,LBS FOR. Y,LBS FOR. Z,LBS MOM X,LBS-IN MOM Y,LBS-IN MOM Z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.7798E+05 -3.3321E+04 0.0000 0.0000 0.0000 9.9408E+05 7747.1 2 2.7982E+05 3401.0 0.0000 0.0000 0.0000 9.3696E+05 9680.9 3 2.2501E+05 3446.0 0.0000 0.0000 0.0000 9.3976E+05 8497.4 4 1.6632E+05 3494.1 0.0000 0.0000 0.0000 9.4275E+05 7230.3 5 2.5287E+05 5.6039E+04 0.0000 0.0000 0.0000 9.0167E+05 9092.1

MINIMUM 1.6632E+05 -3.3321E+04 0.0000 0.0000 0.0000 9.0167E+05 7230.3

Page 5

GROUP Analyses, Pier 2 - Page 12 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 17 of 55

Page 143: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt Pile N. 4 1 1 1 1 5 4 MAXIMUM 2.7982E+05 5.6039E+04 0.0000 0.0000 0.0000 9.9408E+05 9680.9 Pile N. 2 5 1 1 1 1 2

THE PILE COORDINATE SYSTEM (LOCAL AXES) ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. x,IN DISP. y,IN DISP. z,IN ROT. x,RAD ROT. y,RAD ROT. z,RAD ********** *********** *********** *********** *********** *********** *********** 1 8.2058E-02 0.3694 0.0000 0.0000 0.0000 2.9754E-04 2 0.1289 0.3449 0.0000 0.0000 0.0000 2.9754E-04 3 0.1021 0.3449 0.0000 0.0000 0.0000 2.9754E-04 4 7.5347E-02 0.3449 0.0000 0.0000 0.0000 2.9754E-04 5 0.1179 0.3277 0.0000 0.0000 0.0000 2.9754E-04

MINIMUM 7.5347E-02 0.3277 0.0000 0.0000 0.0000 2.9754E-04 Pile N. 4 5 1 1 1 1 MAXIMUM 0.1289 0.3694 0.0000 0.0000 0.0000 2.9754E-04 Pile N. 2 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP AXIAL,LBS LAT. y,LBS LAT. z,LBS MOM x,LBS-IN MOM y,LBS-IN MOM z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.8103E+05 3684.6 0.0000 0.0000 0.0000 9.9408E+05 7747.1 2 2.7982E+05 3401.0 0.0000 0.0000 0.0000 9.3696E+05 9680.9 3 2.2501E+05 3446.0 0.0000 0.0000 0.0000 9.3976E+05 8497.4 4 1.6632E+05 3494.1 0.0000 0.0000 0.0000 9.4275E+05 7230.3 5 2.5899E+05 3279.4 0.0000 0.0000 0.0000 9.0167E+05 9092.1

MINIMUM 1.6632E+05 3279.4 0.0000 0.0000 0.0000 9.0167E+05 7230.3 Pile N. 4 5 1 1 1 5 4 MAXIMUM 2.7982E+05 3684.6 0.0000 0.0000 0.0000 9.9408E+05 9680.9 Pile N. 2 1 1 1 1 1 2

* EFFECTS FOR LATERALLY LOADED PILE *

* MINIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR

Page 6

GROUP Analyses, Pier 2 - Page 13 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 18 of 55

Page 144: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2.gp8t.txt IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 -1.2700E-02 0.0000 -9.9400E+05 0.0000 -4800.0 0.0000 -214.00 0.0000 3940.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 2 -1.1900E-02 0.0000 -9.3700E+05 0.0000 -4550.0 0.0000 -202.00 0.0000 6100.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 3 -1.1900E-02 0.0000 -9.4000E+05 0.0000 -4530.0 0.0000 -202.00 0.0000 4900.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 4 -1.1900E-02 0.0000 -9.4300E+05 0.0000 -4510.0 0.0000 -201.00 0.0000 3620.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 5 -1.1400E-02 0.0000 -9.0200E+05 0.0000 -4340.0 0.0000 -193.00 0.0000 5640.0 9.1000E+10 9.1000E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000

Min. -1.2700E-02 0.0000 -9.9400E+05 0.0000 -4800.0 0.0000 -214.00 0.0000 3620.0 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 4 1 1

* MAXIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 0.3690 0.0000 4.6900E+05 0.0000 3690.0 0.0000 72.100 0.0000 7750.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 2 0.3450 0.0000 4.4100E+05 0.0000 3410.0 0.0000 67.700 0.0000 9680.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 3 0.3450 0.0000 4.4100E+05 0.0000 3450.0 0.0000 67.800 0.0000 8500.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 4 0.3450 0.0000 4.4000E+05 0.0000 3500.0 0.0000 67.900 0.0000 7230.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000 5 0.3280 0.0000 4.2100E+05 0.0000 3290.0 0.0000 64.800 0.0000 9090.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 0.0000

Max. 0.3690 0.0000 4.6900E+05 0.0000 3690.0 0.0000 72.100 0.0000 9680.0 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 2 1 1

Page 7

GROUP Analyses, Pier 2 - Page 14 of 20

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 19 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Callout
Max deflection=0.4"
andrew.blaisdell
Callout
Max stress=10 ksi
Page 145: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Deflection y dir (in)

Load Case 1

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Deflection y dir (in)

Load Case 1

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 15 of 20

Extreme II Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 20 of 55

andrew.blaisdell
Callout
Pinned @ 43'
Page 146: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Moment z dir (lbs-in)

Load Case 1

Dep

th (

in)

-4E6 -3.5E6 -3E6 -2.5E6 -2E6 -1.5E6 -1E6 -5E5 0 5E5 1E6 1.5E6 2E6

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Moment z dir (lbs-in)

Load Case 1

Dep

th (

in)

-4E6 -3.5E6 -3E6 -2.5E6 -2E6 -1.5E6 -1E6 -5E5 0 5E5 1E6 1.5E6 2E

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 16 of 20

Extreme II Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 21 of 55

Page 147: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Shear y dir (lbs)

Load Case 1

Dep

th (

in)

-1.4E4 -1.2E4 -1E4 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 1E4 1.2E4

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 17 of 20

Extreme II Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 22 of 55

Page 148: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Deflection y dir (in)

Load Case 2

Dep

th (

in)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Deflection y dir (in)

Load Case 2

Dep

th (

in)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 18 of 20

Service I Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 23 of 55

andrew.blaisdell
Callout
Pinned @ 43'
Page 149: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Moment z dir (lbs-in)

Load Case 2

Dep

th (

in)

-1E6 -9E5 -8E5 -7E5 -6E5 -5E5 -4E5 -3E5 -2E5 -1E5 0 1E5 2E5 3E5 4E5 5E5

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 19 of 20

Service I Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 24 of 55

Page 150: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Shear y dir (lbs)

Load Case 2

Dep

th (

in)

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Shear y dir (lbs)

Load Case 2

Dep

th (

in)

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 40

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 - Page 20 of 20

Service I Load Case

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 25 of 55

Page 151: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt =========================================================================

GROUP for Windows, Version 8.0.15

Serial Number : 364300562

Analysis of A Group of Piles Subjected to Axial and Lateral Loading

(c) Copyright ENSOFT, Inc., 1987-2010 All Rights Reserved

=========================================================================

This program is licensed to :

gza GZA GeoEnvironmental, Inc.

Path to file locations : P:\09 Jobs\0025700s\09.0025781.00 Thomaston Bridge MaineDOT\Work\Calcs\GROUP\ Name of input data file : 25781 5 pile Bent Pier 3.gp8d Name of output file : 25781 5 pile Bent Pier 3.gp8o Name of output summary file : 25781 5 pile Bent Pier 3.gp8t Name of plot output file : 25781 5 pile Bent Pier 3.gp8p Name of runtime file : 25781 5 pile Bent Pier 3.gp8r

------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: March 26, 2014 Time: 10:31:49

***** INPUT INFORMATION *****

Thomaston pier 3

ANALYSIS TYPE = 3D ANALYSIS

UNITS SYSTEM = ENGL

* TABLE C * LOAD AND CONTROL PARAMETERS

** LOAD CASES **

Page 1

GROUP Analyses, Pier 3 - Page 1 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 26 of 55

andrew.blaisdell
Text Box
Pier 3 PP24x0.625 piles Uncorroded Section No concrete fill included Extreme II Load Case
Page 152: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt NUMBER OF LOAD CASES : 1

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL SCALE FACTOR : 1.0000

* CONCENTRATED LOADS *

NL VERT.LOAD HR.LOAD Y HR.LOAD Z MOMENT X MOMENT Y MOMENT Z COORD X COORD Y COORD Z LBS LBS LBS LBS-IN LBS-IN LBS-IN IN IN IN 1 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -180.000 0.00000 2 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -90.0000 0.00000 3 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 90.0000 0.00000 5 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 6 6.21300E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7 3.01600E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -30.0000 0.00000 8 82000.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 165.000 0.00000 9 0.00000 86000.0 0.00000 0.00000 0.00000 0.00000 120.000 -215.000 0.00000 10 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -230.000 0.00000 11 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -90.0000 0.00000 12 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 0.00000 13 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 90.0000 0.00000 14 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 230.000 0.00000

* EQUIVALENT CONC. LOAD AT ORIGIN *

VER.LOAD X,LBS HOR.LOAD Y,LBS HOR.LOAD Z,LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X,LBS-IN MOMENT Y,LBS-IN MOMENT Z,LBS-IN 0.00000 0.00000 8.79900E+06

* THE LOADING IS STATIC *

* CONTROL PARAMETERS * TOLERANCE ON CONVERGENCE OF FOUNDATION REACTION, = 1.00000E-04 TOLERANCE ON DETERMINATION OF DEFLECTIONS = 1.00000E-04 IN MAX NO OF ITERATIONS ALLOWED FOR FOUNDATION ANALYSIS = 100 MAXIMUM NO OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 FACTOR TO APPLY THE LOAD IN INCREMENTS = 1.0000 MINIMUM FACTOR FOR LOAD INCREMENTS = 1.0000 PRINT RESULTS ONLY AT PILE CAP

* TABLE D * ARRANGEMENT OF PILE GROUPS

GROUP CONNECTY CONNECTZ PILE PROP P-Y CURVE L-S CURVE T-R CURVE 1 FIX FIX 1 0 0 0 2 FIX FIX 1 0 0 0

Page 2

GROUP Analyses, Pier 3 - Page 2 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 27 of 55

Page 153: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt 3 FIX FIX 1 0 0 0 4 FIX FIX 1 0 0 0 5 FIX FIX 1 0 0 0

GROUP CorX,IN CorY,IN CorZ,IN ALPHA,DEG BETA,DEG GROUND,IN SPR.y,LBS-IN SPR.z,LBS-IN 1 0.00000 -180.000 0.00000 0.00000 101.770 276.000 0.00000 0.00000 2 0.00000 -90.0000 0.00000 0.00000 90.0000 276.000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 90.0000 276.000 0.00000 0.00000 4 0.00000 90.0000 0.00000 0.00000 90.0000 276.000 0.00000 0.00000 5 0.00000 180.000 0.00000 0.00000 78.2300 276.000 0.00000 0.00000

* TABLE E * PILE GEOMETRY AND PROPERTIES PILE TYPE = 1 - DRIVEN PILE = 2 - DRILLED SHAFT

PROP SECTS INC PILE TYPE LENGTH, IN E,LBS/IN**2 1 1 100 1 588.00 2.9000E+07

* PILE SECTIONS *

PROP SECT FROM,IN TO,IN CROSS SECT 1 1 0.00000 588.000 1

* PILE CROSS SECTIONS *

CROSS SECTION : 1 SECTION NAME : Section CROSS SECTION TYPE : CIRCULAR PIPE EXTERNAL DIAMETER : 24.0000 IN INTERNAL DIAMETER : 22.7500 IN SHEAR MODULUS : 1.0000 LBS/IN**2 HEAR MODULUS : , 1.00000 LBS/IN**2

* PILE CROSS SECTIONS PROPERTIES *

SECT DIAM,IN AREA,IN**2 Iz,IN**4 Iy,IN**4 GJ,LBS-IN**2 Mn,LBS-IN Vn,LBS 1 24.0000 45.8967 3136.93 3136.93 7.27768E+10 0.00000 0.00000

* TABLE F * SOIL DATA

SOILS INFORMATION

GROUND SURFACE = 276.000 IN

5 LAYER(S) OF SOIL

LAYER 1 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 276.000 348.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0333000 0.0333000

Page 3

GROUP Analyses, Pier 3 - Page 3 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 28 of 55

Page 154: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt FRICTION ANGLE (DEGREES) 30.0000 30.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 20.0000 20.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 2 THE SOIL IS A SOFT CLAY TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 348.000 456.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0304000 0.0304000 UNDRAINED COHESION, C (LBS/IN**2) 2.08000 2.08000 STRAIN AT 50% STRESS 0.0200000 0.0200000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 3 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 456.000 504.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0333000 0.0330000 FRICTION ANGLE (DEGREES) 30.0000 30.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 20.0000 20.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 4 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 504.000 588.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0360000 0.0360000 FRICTION ANGLE (DEGREES) 38.0000 38.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 90.0000 90.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 5 THE LAYER IS A VUGGY LIMESTONE TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 588.000 600.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0565000 0.0565000 UNIAXIAL COMPRESSIVE STRENGTH (LBS/IN**2) 4000.00 4000.00 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

Note : Default values will be generated for ULTIMATE UNIT SIDE FRICTION and ULTIMATE UNIT TIP RESISTANCE when input values are 0.

* TABLE H * AXIAL LOAD VS SETTLEMENT

LOAD-SETTLEMENT CURVES GENERATED INTERNALLY

NUM OF CURVES 1

Page 4

GROUP Analyses, Pier 3 - Page 4 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 29 of 55

andrew.blaisdell
Text Box
River Bottom Sand
andrew.blaisdell
Text Box
Silt/Clay
andrew.blaisdell
Text Box
River Bottom Sand
andrew.blaisdell
Text Box
Till/Boulders
Page 155: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt CURVE 1 NUM OF POINTS 19

POINT AXIAL LOAD,LBS SETTLEMENT, IN 1 -1.13869E+05 -2.04023 2 -1.08728E+05 -1.03834 3 -1.06158E+05 -0.53740 4 -77363.8 -0.12673 5 -59238.5 -0.0701930 6 -16323.4 -0.0155872 7 -8212.41 -7.80571E-03 8 -1642.48 -1.56114E-03 9 -164.248 -1.56114E-04 10 0.00000 0.00000 11 5757.53 2.51866E-03 12 57644.3 0.0252232 13 2.81782E+05 0.12451 14 5.42150E+05 0.24276 15 1.27046E+06 0.60311 16 1.74193E+06 0.86075 17 1.75907E+06 1.26752 18 1.76164E+06 1.76847 19 1.76678E+06 2.77036

* TABLE I * TORS. MOM. VS ANGLE ROT.

TORQUE-ROTATION CURVES GENERATED INTERNALLY

NUM OF CURVES 1

CURVE 1 NUM OF POINTS 19

POINT TORS.MOMEN,LBS/IN ROT. ANGLE,Rad. 1 -136.698 -0.16667 2 -136.697 -0.0833343 3 -136.696 -0.0416676 4 -136.683 -8.33427E-03 5 -136.666 -4.16760E-03 6 -136.537 -8.34270E-04 7 -68.2739 -4.17135E-04 8 -13.6548 -8.34270E-05 9 -1.36548 -8.34270E-06 10 0.00000 0.00000 11 1.36548 8.34270E-06 12 13.6548 8.34270E-05 13 68.2739 4.17135E-04 14 136.537 8.34270E-04 15 136.666 4.16760E-03 16 136.683 8.33427E-03 17 136.696 0.0416676 18 136.697 0.0833343 19 136.698 0.16667

Page 5

GROUP Analyses, Pier 3 - Page 5 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 30 of 55

Page 156: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8o.txt

***** COMPUTATION RESULTS *****

Thomaston pier 3

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.10839 0.88657 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 7.74613E-04

NUMBER OF GLOBAL ITERATIONS = 4

Page 6

GROUP Analyses, Pier 3 - Page 6 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 31 of 55

andrew.blaisdell
Highlight
Page 157: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8t.txt ------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: March 26, 2014 Time: 10:31:49

***** COMPUTATION RESULTS *****

Thomaston pier 3

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

Page 1

GROUP Analyses, Pier 3 - Page 7 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 32 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
Page 158: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8t.txt VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.10839 0.88657 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 7.74613E-04

THE GLOBAL STRUCTURAL COORDINATE SYSTEM ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. X,IN DISP. Y,IN DISP. Z,IN ROT. X,RAD ROT. Y,RAD ROT. Z,RAD ********** *********** *********** *********** *********** *********** *********** 1 0.2478 0.8866 0.0000 0.0000 0.0000 7.7461E-04 2 0.1781 0.8866 0.0000 0.0000 0.0000 7.7461E-04 3 0.1084 0.8866 0.0000 0.0000 0.0000 7.7461E-04 4 3.8679E-02 0.8866 0.0000 0.0000 0.0000 7.7461E-04 5 -3.1036E-02 0.8866 0.0000 0.0000 0.0000 7.7461E-04

MINIMUM -3.1036E-02 0.8866 0.0000 0.0000 0.0000 7.7461E-04 Pile N. 5 1 1 1 1 1 MAXIMUM 0.2478 0.8866 0.0000 0.0000 0.0000 7.7461E-04 Pile N. 1 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP FOR. X,LBS FOR. Y,LBS FOR. Z,LBS MOM X,LBS-IN MOM Y,LBS-IN MOM Z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.3985E+05 -1.5877E+04 0.0000 0.0000 0.0000 3.0446E+06 1.4700E+04 2 3.9980E+05 1.2105E+04 0.0000 0.0000 0.0000 2.9448E+06 1.9976E+04 3 2.4541E+05 1.2442E+04 0.0000 0.0000 0.0000 2.9601E+06 1.6671E+04 4 8.8021E+04 1.2784E+04 0.0000 0.0000 0.0000 2.9755E+06 1.3300E+04 5 3.2933E+05 8.0996E+04 0.0000 0.0000 0.0000 2.9212E+06 1.8559E+04

MINIMUM 8.8021E+04 -1.5877E+04 0.0000 0.0000 0.0000 2.9212E+06 1.3300E+04 Pile N. 4 1 1 1 1 5 4 MAXIMUM 3.9980E+05 8.0996E+04 0.0000 0.0000 0.0000 3.0446E+06 1.9976E+04 Pile N. 2 5 1 1 1 1 2

THE PILE COORDINATE SYSTEM (LOCAL AXES) ---------------------------------------

Page 2

GROUP Analyses, Pier 3 - Page 8 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 33 of 55

Page 159: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8t.txt * PILE TOP DISPLACEMENTS *

PILE GROUP DISP. x,IN DISP. y,IN DISP. z,IN ROT. x,RAD ROT. y,RAD ROT. z,RAD ********** *********** *********** *********** *********** *********** *********** 1 6.1768E-02 0.9185 0.0000 0.0000 0.0000 7.7461E-04 2 0.1781 0.8866 0.0000 0.0000 0.0000 7.7461E-04 3 0.1084 0.8866 0.0000 0.0000 0.0000 7.7461E-04 4 3.8679E-02 0.8866 0.0000 0.0000 0.0000 7.7461E-04 5 0.1505 0.8743 0.0000 0.0000 0.0000 7.7461E-04

MINIMUM 3.8679E-02 0.8743 0.0000 0.0000 0.0000 7.7461E-04 Pile N. 4 5 1 1 1 1 MAXIMUM 0.1781 0.9185 0.0000 0.0000 0.0000 7.7461E-04 Pile N. 2 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP AXIAL,LBS LAT. y,LBS LAT. z,LBS MOM x,LBS-IN MOM y,LBS-IN MOM z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.4014E+05 1.2983E+04 0.0000 0.0000 0.0000 3.0446E+06 1.4700E+04 2 3.9980E+05 1.2105E+04 0.0000 0.0000 0.0000 2.9448E+06 1.9976E+04 3 2.4541E+05 1.2442E+04 0.0000 0.0000 0.0000 2.9601E+06 1.6671E+04 4 8.8021E+04 1.2784E+04 0.0000 0.0000 0.0000 2.9755E+06 1.3300E+04 5 3.3893E+05 1.2115E+04 0.0000 0.0000 0.0000 2.9212E+06 1.8559E+04

MINIMUM 8.8021E+04 1.2105E+04 0.0000 0.0000 0.0000 2.9212E+06 1.3300E+04 Pile N. 4 2 1 1 1 5 4 MAXIMUM 3.9980E+05 1.2983E+04 0.0000 0.0000 0.0000 3.0446E+06 1.9976E+04 Pile N. 2 1 1 1 1 1 2

* EFFECTS FOR LATERALLY LOADED PILE *

* MINIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 -1.2700E-02 0.0000 -3.0400E+06 0.0000 -9300.0 0.0000 -245.00 0.0000 3050.0 9.1000E+10 9.1000E+10 x(IN) 588.00 0.0000 0.0000 0.0000 511.56 0.0000 588.00 0.0000 588.00 0.0000 0.0000 2 -1.1700E-02 0.0000 -2.9400E+06 0.0000 -9180.0 0.0000 -227.00 0.0000 8710.0 9.1000E+10 9.1000E+10 x(IN) 588.00 0.0000 0.0000 0.0000 505.68 0.0000 588.00 0.0000 588.00 0.0000 0.0000 3 -1.1900E-02 0.0000 -2.9600E+06 0.0000 -9070.0 0.0000 -231.00 0.0000 5350.0 9.1000E+10 9.1000E+10 x(IN) 588.00 0.0000 0.0000 0.0000 511.56 0.0000 588.00 0.0000 588.00 0.0000 0.0000

Page 3

GROUP Analyses, Pier 3 - Page 9 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 34 of 55

Page 160: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 3.gp8t.txt 4 -1.2100E-02 0.0000 -2.9800E+06 0.0000 -8980.0 0.0000 -234.00 0.0000 1920.0 9.1000E+10 9.1000E+10 x(IN) 588.00 0.0000 0.0000 0.0000 511.56 0.0000 588.00 0.0000 588.00 0.0000 0.0000 5 -1.1600E-02 0.0000 -2.9200E+06 0.0000 -9020.0 0.0000 -224.00 0.0000 7380.0 9.1000E+10 9.1000E+10 x(IN) 588.00 0.0000 0.0000 0.0000 505.68 0.0000 588.00 0.0000 588.00 0.0000 0.0000

Min. -1.2700E-02 0.0000 -3.0400E+06 0.0000 -9300.0 0.0000 -245.00 0.0000 1920.0 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 4 1 1

* MAXIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 0.9180 0.0000 1.3000E+06 0.0000 1.3000E+04 0.0000 249.00 0.0000 1.4700E+04 9.1000E+10 9.1000E+10 x(IN) 23.520 0.0000 364.56 0.0000 0.0000 0.0000 346.92 0.0000 0.0000 0.0000 0.0000 2 0.8870 0.0000 1.2800E+06 0.0000 1.2100E+04 0.0000 240.00 0.0000 2.0000E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 364.56 0.0000 0.0000 0.0000 346.92 0.0000 0.0000 0.0000 0.0000 3 0.8870 0.0000 1.2700E+06 0.0000 1.2500E+04 0.0000 242.00 0.0000 1.6700E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 364.56 0.0000 0.0000 0.0000 346.92 0.0000 0.0000 0.0000 0.0000 4 0.8870 0.0000 1.2600E+06 0.0000 1.2800E+04 0.0000 244.00 0.0000 1.3300E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 364.56 0.0000 0.0000 0.0000 346.92 0.0000 0.0000 0.0000 0.0000 5 0.8740 0.0000 1.2600E+06 0.0000 1.2100E+04 0.0000 237.00 0.0000 1.8600E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 364.56 0.0000 0.0000 0.0000 346.92 0.0000 0.0000 0.0000 0.0000

Max. 0.9180 0.0000 1.3000E+06 0.0000 1.3000E+04 0.0000 249.00 0.0000 2.0000E+04 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 2 1 1

Page 4

GROUP Analyses, Pier 3 - Page 10 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 35 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Callout
Max deflection=0.9"
andrew.blaisdell
Callout
Max stress=20 ksi
Page 161: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Deflection y dir (in)

Load Case 1

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Deflection y dir (in)

Load Case 1

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Extreme II Load Case

GROUP Analyses, Pier 3 - Page 11 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 36 of 55

andrew.blaisdell
Callout
Pinned at 43'
Page 162: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Moment z dir (lbs-in)

Load Case 1

Dep

th (

in)

-4E6 -3.5E6 -3E6 -2.5E6 -2E6 -1.5E6 -1E6 -5E5 0 5E5 1E6 1.5E6 2E6

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Extreme II Load Case

GROUP Analyses, Pier 3 - Page 12 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 37 of 55

Page 163: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Shear y dir (lbs)

Load Case 1

Dep

th (

in)

-1E4 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 1E4 1.2E4

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Extreme II Load Case

GROUP Analyses, Pier 3 - Page 13 of 13

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 38 of 55

Page 164: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o =========================================================================

GROUP for Windows, Version 8.0.15

Serial Number : 364300562

Analysis of A Group of Piles Subjected to Axial and Lateral Loading

(c) Copyright ENSOFT, Inc., 1987-2010 All Rights Reserved

=========================================================================

This program is licensed to :

Jennifer Baron GZA GeoEnvironmental, Inc.

Path to file locations : P:\09 Jobs\0025700s\09.0025781.00 Thomaston Bridge MaineDOT\Work\Calcs\GROUP\Input_Output\ Name of input data file : 25781 5 pile Bent Pier 2 - corroded section.gp8d Name of output file : 25781 5 pile Bent Pier 2 - corroded section.gp8o Name of output summary file : 25781 5 pile Bent Pier 2 - corroded section.gp8t Name of plot output file : 25781 5 pile Bent Pier 2 - corroded section.gp8p Name of runtime file : 25781 5 pile Bent Pier 2 - corroded section.gp8r

------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: April 14, 2014 Time: 09:36:41

***** INPUT INFORMATION *****

Thomaston - corroded section

ANALYSIS TYPE = 3D ANALYSIS

UNITS SYSTEM = ENGL

* TABLE C * LOAD AND CONTROL PARAMETERS

** LOAD CASES **

NUMBER OF LOAD CASES : 2

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL SCALE FACTOR : 1.0000

* CONCENTRATED LOADS *

NL VERT.LOAD HR.LOAD Y HR.LOAD Z MOMENT X MOMENT Y MOMENT Z COORD X COORD Y COORD Z LBS LBS LBS LBS-IN LBS-IN LBS-IN IN IN IN 1 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -180.000 0.00000

Page 1

GROUP Analyses, Pier 2 (Corroded) - Page 1 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 39 of 55

andrew.blaisdell
Text Box
Pier 2 PP24x0.625 piles Corroded Section - 1/8" loss on outside of the pile from bottom of cap to 5' below mudline No concrete fill included Extreme II and Service I Load Cases
Page 165: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o 2 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -90.0000 0.00000 3 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 90.0000 0.00000 5 39500.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 6 6.21300E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7 3.01600E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -30.0000 0.00000 8 82000.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 165.000 0.00000 9 0.00000 86000.0 0.00000 0.00000 0.00000 0.00000 120.000 -212.000 0.00000 10 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -215.000 0.00000 11 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -90.0000 0.00000 12 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 0.00000 13 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 90.0000 0.00000 14 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 215.000 0.00000

* EQUIVALENT CONC. LOAD AT ORIGIN *

VER.LOAD X,LBS HOR.LOAD Y,LBS HOR.LOAD Z,LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X,LBS-IN MOMENT Y,LBS-IN MOMENT Z,LBS-IN 0.00000 0.00000 8.79900E+06

* THE LOADING IS STATIC *

* CONTROL PARAMETERS * TOLERANCE ON CONVERGENCE OF FOUNDATION REACTION, = 1.00000E-04 TOLERANCE ON DETERMINATION OF DEFLECTIONS = 1.00000E-04 IN MAX NO OF ITERATIONS ALLOWED FOR FOUNDATION ANALYSIS = 100 MAXIMUM NO OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 FACTOR TO APPLY THE LOAD IN INCREMENTS = 1.0000 MINIMUM FACTOR FOR LOAD INCREMENTS = 1.0000 PRINT RESULTS ONLY AT PILE CAP

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL SCALE FACTOR : 1.0000

* CONCENTRATED LOADS *

NL VERT.LOAD HR.LOAD Y HR.LOAD Z MOMENT X MOMENT Y MOMENT Z COORD X COORD Y COORD Z LBS LBS LBS LBS-IN LBS-IN LBS-IN IN IN IN 1 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -180.000 0.00000 2 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -90.0000 0.00000 3 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 4 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 90.0000 0.00000 5 31600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 6 4.97000E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 7 3.81400E+05 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -30.0000 0.00000 8 65600.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 165.000 0.00000 9 0.00000 8750.00 0.00000 0.00000 0.00000 0.00000 -168.000 -30.0000 0.00000 10 0.00000 7860.00 0.00000 0.00000 0.00000 0.00000 -84.0000 -225.000 0.00000 11 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -225.000 0.00000 12 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 -90.0000 0.00000 13 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 0.00000 0.00000 14 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 90.0000 0.00000 15 0.00000 3290.00 0.00000 0.00000 0.00000 0.00000 180.000 225.000 0.00000

* EQUIVALENT CONC. LOAD AT ORIGIN *

VER.LOAD X,LBS HOR.LOAD Y,LBS HOR.LOAD Z,LBS 1.10200E+06 33060.0 0.00000

MOMENT X,LBS-IN MOMENT Y,LBS-IN MOMENT Z,LBS-IN

Page 2

GROUP Analyses, Pier 2 (Corroded) - Page 2 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 40 of 55

Page 166: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o 0.00000 0.00000 1.44876E+06

* THE LOADING IS STATIC *

* CONTROL PARAMETERS * TOLERANCE ON CONVERGENCE OF FOUNDATION REACTION, = 1.00000E-04 TOLERANCE ON DETERMINATION OF DEFLECTIONS = 1.00000E-04 IN MAX NO OF ITERATIONS ALLOWED FOR FOUNDATION ANALYSIS = 100 MAXIMUM NO OF ITERATIONS ALLOWED FOR PILE ANALYSIS = 100 FACTOR TO APPLY THE LOAD IN INCREMENTS = 1.0000 MINIMUM FACTOR FOR LOAD INCREMENTS = 1.0000 PRINT RESULTS ONLY AT PILE CAP

* TABLE D * ARRANGEMENT OF PILE GROUPS

GROUP CONNECTY CONNECTZ PILE PROP P-Y CURVE L-S CURVE T-R CURVE 1 FIX FIX 1 0 0 0 2 FIX FIX 1 0 0 0 3 FIX FIX 1 0 0 0 4 FIX FIX 1 0 0 0 5 FIX FIX 1 0 0 0

GROUP CorX,IN CorY,IN CorZ,IN ALPHA,DEG BETA,DEG GROUND,IN SPR.y,LBS-IN SPR.z,LBS-IN 1 0.00000 -180.000 0.00000 0.00000 101.770 336.000 0.00000 0.00000 2 0.00000 -90.0000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000 3 0.00000 0.00000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000 4 0.00000 90.0000 0.00000 0.00000 90.0000 336.000 0.00000 0.00000 5 0.00000 180.000 0.00000 0.00000 78.2300 336.000 0.00000 0.00000

* TABLE E * PILE GEOMETRY AND PROPERTIES PILE TYPE = 1 - DRIVEN PILE = 2 - DRILLED SHAFT

PROP SECTS INC PILE TYPE LENGTH, IN E,LBS/IN**2 1 2 100 1 564.00 2.9000E+07

* PILE SECTIONS *

PROP SECT FROM,IN TO,IN CROSS SECT 1 1 0.00000 396.000 2 1 2 396.000 564.000 1

* PILE CROSS SECTIONS *

CROSS SECTION : 1 SECTION NAME : 24" CROSS SECTION TYPE : CIRCULAR PIPE EXTERNAL DIAMETER : 24.0000 IN INTERNAL DIAMETER : 22.7500 IN SHEAR MODULUS : 1.0000 LBS/IN**2 HEAR MODULUS : , 1.00000 LBS/IN**2

CROSS SECTION : 2 SECTION NAME : Corroded CROSS SECTION TYPE : CIRCULAR PIPE EXTERNAL DIAMETER : 23.7500 IN INTERNAL DIAMETER : 22.7500 IN SHEAR MODULUS : 1.0000 LBS/IN**2 HEAR MODULUS : , 1.00000 LBS/IN**2

* PILE CROSS SECTIONS PROPERTIES *

SECT DIAM,IN AREA,IN**2 Iz,IN**4 Iy,IN**4 GJ,LBS-IN**2 Mn,LBS-IN Vn,LBS

Page 3

GROUP Analyses, Pier 2 (Corroded) - Page 3 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 41 of 55

Page 167: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o 1 24.0000 45.8967 3136.93 3136.93 7.27768E+10 0.00000 0.00000 2 23.7500 36.5210 2468.88 2468.88 4937.76 0.00000 0.00000

* TABLE F * SOIL DATA

SOILS INFORMATION

GROUND SURFACE = 336.000 IN

3 LAYER(S) OF SOIL

LAYER 1 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 336.000 504.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0333000 0.0333000 FRICTION ANGLE (DEGREES) 30.0000 30.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 20.0000 20.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 2 THE SOIL IS A SAND TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 504.000 564.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0360000 0.0360000 FRICTION ANGLE (DEGREES) 38.0000 38.0000 P-Y SUBGRADE MODULUS (LBS/IN**3) 90.0000 90.0000 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 0.00000 0.00000

LAYER 3 THE LAYER IS A VUGGY LIMESTONE TOP OF LAYER BOTTOM OF LAYER X COORDINATE (IN) 564.000 600.000 EFFECTIVE UNIT WEIGHT (LBS/IN**3) 0.0560000 0.0560000 UNIAXIAL COMPRESSIVE STRENGTH (LBS/IN**2) 4000.00 4000.00 ULTIMATE UNIT SIDE FRICTION (LBS/IN**2) 0.00000 0.00000 ULTIMATE UNIT TIP RESISTANCE (LBS/IN**2) 17000.0 17000.0

Note : Default values will be generated for ULTIMATE UNIT SIDE FRICTION and ULTIMATE UNIT TIP RESISTANCE when input values are 0.

* TABLE H * AXIAL LOAD VS SETTLEMENT

LOAD-SETTLEMENT CURVES GENERATED INTERNALLY

NUM OF CURVES 1

CURVE 1 NUM OF POINTS 19

POINT AXIAL LOAD,LBS SETTLEMENT, IN 1 -1.00587E+05 -2.04302 2 -94711.6 -1.04051 3 -91773.9 -0.53926 4 -58537.5 -0.12503 5 -40705.5 -0.0673909 6 -11988.6 -0.0151153 7 -6033.84 -7.57229E-03 8 -1206.77 -1.51446E-03 9 -120.677 -1.51446E-04 10 0.00000 0.00000 11 2609.05 1.37428E-03

Page 4

GROUP Analyses, Pier 2 (Corroded) - Page 4 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 42 of 55

jennifer.baron
Text Box
River Bottom
jennifer.baron
Text Box
Till
jennifer.baron
Text Box
Rock (Tip of Pile at Top of Rock), 47' below top of pile: El. -38
Page 168: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o 12 26090.5 0.0137428 13 1.29536E+05 0.0684013 14 2.55140E+05 0.13527 15 6.17288E+05 0.35421 16 8.48335E+05 0.51892 17 8.72349E+05 0.92942 18 8.75287E+05 1.43068 19 8.81162E+05 2.43319

* TABLE I * TORS. MOM. VS ANGLE ROT.

TORQUE-ROTATION CURVES GENERATED INTERNALLY

NUM OF CURVES 1

CURVE 1 NUM OF POINTS 19

POINT TORS.MOMEN,LBS/IN ROT. ANGLE,Rad. 1 -91.0458 -7.44256 2 -91.0450 -7.35829 3 -91.0446 -7.31615 4 -91.0359 -7.28177 5 -91.0251 -7.27670 6 -90.9433 -7.26679 7 -45.5734 -3.63880 8 -9.27544 -0.73625 9 -1.10654 -0.0830232 10 0.00000 0.00000 11 1.10654 0.0830232 12 9.27544 0.73625 13 45.5734 3.63880 14 90.9433 7.26679 15 91.0251 7.27670 16 91.0359 7.28177 17 91.0446 7.31615 18 91.0450 7.35829 19 91.0458 7.44256

***** COMPUTATION RESULTS *****

Thomaston - corroded section

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS

Page 5

GROUP Analyses, Pier 2 (Corroded) - Page 5 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 43 of 55

andrew.blaisdell
Highlight
Page 169: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8o 1.20240E+06 1.02450E+05 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.13362 1.32766 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 1.16899E-03

NUMBER OF GLOBAL ITERATIONS = 4

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.10200E+06 33060.0 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 1.44876E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.11918 0.40407 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 3.49417E-04

NUMBER OF GLOBAL ITERATIONS = 4

Page 6

GROUP Analyses, Pier 2 (Corroded) - Page 6 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 44 of 55

andrew.blaisdell
Highlight
Page 170: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8t ------------------------------------------------------------------------- Time and Date of Analysis -------------------------------------------------------------------------

Date: April 14, 2014 Time: 09:36:41

***** COMPUTATION RESULTS *****

Thomaston - corroded section

***** LOAD CASES RESULTS *****

LOAD CASE : 1 CASE NAME : extreme II LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.20240E+06 1.02450E+05 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 8.79900E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.13362 1.32766 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 1.16899E-03

THE GLOBAL STRUCTURAL COORDINATE SYSTEM ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. X,IN DISP. Y,IN DISP. Z,IN ROT. X,RAD ROT. Y,RAD ROT. Z,RAD ********** *********** *********** *********** *********** *********** *********** 1 0.3440 1.3277 0.0000 0.0000 0.0000 1.1690E-03 2 0.2388 1.3277 0.0000 0.0000 0.0000 1.1690E-03 3 0.1336 1.3277 0.0000 0.0000 0.0000 1.1690E-03 4 2.8411E-02 1.3277 0.0000 0.0000 0.0000 1.1690E-03 5 -7.6798E-02 1.3277 0.0000 0.0000 0.0000 1.1690E-03

MINIMUM -7.6798E-02 1.3277 0.0000 0.0000 0.0000 1.1690E-03 Pile N. 5 1 1 1 1 1 MAXIMUM 0.3440 1.3277 0.0000 0.0000 0.0000 1.1690E-03 Pile N. 1 1 1 1 1 1

Page 1

GROUP Analyses, Pier 2 (Corroded) - Page 7 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 45 of 55

andrew.blaisdell
Highlight
Page 171: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8t * PILE TOP REACTIONS *

PILE GROUP FOR. X,LBS FOR. Y,LBS FOR. Z,LBS MOM X,LBS-IN MOM Y,LBS-IN MOM Z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.2474E+05 -1.3940E+04 0.0000 0.0000 0.0000 3.0753E+06 1.8214E+04 2 4.2643E+05 1.0579E+04 0.0000 0.0000 0.0000 2.9505E+06 2.5868E+04 3 2.5204E+05 1.1132E+04 0.0000 0.0000 0.0000 2.9832E+06 2.1250E+04 4 5.3851E+04 1.1760E+04 0.0000 0.0000 0.0000 3.0199E+06 1.6000E+04 5 3.4533E+05 8.2919E+04 0.0000 0.0000 0.0000 2.9440E+06 2.3880E+04

MINIMUM 5.3851E+04 -1.3940E+04 0.0000 0.0000 0.0000 2.9440E+06 1.6000E+04 Pile N. 4 1 1 1 1 5 4 MAXIMUM 4.2643E+05 8.2919E+04 0.0000 0.0000 0.0000 3.0753E+06 2.5868E+04 Pile N. 2 5 1 1 1 1 2

THE PILE COORDINATE SYSTEM (LOCAL AXES) ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. x,IN DISP. y,IN DISP. z,IN ROT. x,RAD ROT. y,RAD ROT. z,RAD ********** *********** *********** *********** *********** *********** *********** 1 6.5986E-02 1.3699 0.0000 0.0000 0.0000 1.1690E-03 2 0.2388 1.3277 0.0000 0.0000 0.0000 1.1690E-03 3 0.1336 1.3277 0.0000 0.0000 0.0000 1.1690E-03 4 2.8411E-02 1.3277 0.0000 0.0000 0.0000 1.1690E-03 5 0.1956 1.3154 0.0000 0.0000 0.0000 1.1690E-03

MINIMUM 2.8411E-02 1.3154 0.0000 0.0000 0.0000 1.1690E-03 Pile N. 4 5 1 1 1 1 MAXIMUM 0.2388 1.3699 0.0000 0.0000 0.0000 1.1690E-03 Pile N. 2 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP AXIAL,LBS LAT. y,LBS LAT. z,LBS MOM x,LBS-IN MOM y,LBS-IN MOM z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.2496E+05 1.1799E+04 0.0000 0.0000 0.0000 3.0753E+06 1.8214E+04 2 4.2643E+05 1.0579E+04 0.0000 0.0000 0.0000 2.9505E+06 2.5868E+04 3 2.5204E+05 1.1132E+04 0.0000 0.0000 0.0000 2.9832E+06 2.1250E+04 4 5.3851E+04 1.1760E+04 0.0000 0.0000 0.0000 3.0199E+06 1.6000E+04 5 3.5499E+05 1.0733E+04 0.0000 0.0000 0.0000 2.9440E+06 2.3880E+04

MINIMUM 5.3851E+04 1.0579E+04 0.0000 0.0000 0.0000 2.9440E+06 1.6000E+04 Pile N. 4 2 1 1 1 5 4 MAXIMUM 4.2643E+05 1.1799E+04 0.0000 0.0000 0.0000 3.0753E+06 2.5868E+04 Pile N. 2 1 1 1 1 1 2

* EFFECTS FOR LATERALLY LOADED PILE *

* MINIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 -4.4100E-02 0.0000 -3.0800E+06 0.0000 -1.6300E+04 0.0000 -688.00 0.0000 2720.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 2 -4.2800E-02 0.0000 -2.9500E+06 0.0000 -1.6200E+04 0.0000 -675.00 0.0000 9290.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 3 -4.2600E-02 0.0000 -2.9800E+06 0.0000 -1.6000E+04 0.0000 -674.00 0.0000 5490.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 4 -4.2400E-02 0.0000 -3.0200E+06 0.0000 -1.5700E+04 0.0000 -672.00 0.0000 1170.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 5 -4.2300E-02 0.0000 -2.9400E+06 0.0000 -1.6000E+04 0.0000 -670.00 0.0000 7730.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000

Min. -4.4100E-02 0.0000 -3.0800E+06 0.0000 -1.6300E+04 0.0000 -688.00 0.0000 1170.0 7.1600E+10 7.1600E+10

Page 2

GROUP Analyses, Pier 2 (Corroded) - Page 8 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 46 of 55

jennifer.baron
Text Box
Max pile stress 26 ksi
Page 172: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8t Pile N. 1 1 1 1 1 1 1 1 4 1 1

* MAXIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 1.3700 0.0000 1.5900E+06 0.0000 1.1800E+04 0.0000 247.00 0.0000 1.8200E+04 9.1000E+10 9.1000E+10 x(IN) 28.200 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 2 1.3300 0.0000 1.5700E+06 0.0000 1.0600E+04 0.0000 236.00 0.0000 2.5900E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 3 1.3300 0.0000 1.5600E+06 0.0000 1.1200E+04 0.0000 238.00 0.0000 2.1200E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 4 1.3300 0.0000 1.5500E+06 0.0000 1.1800E+04 0.0000 240.00 0.0000 1.6000E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 5 1.3200 0.0000 1.5500E+06 0.0000 1.0800E+04 0.0000 234.00 0.0000 2.3900E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44

Max. 1.3700 0.0000 1.5900E+06 0.0000 1.1800E+04 0.0000 247.00 0.0000 2.5900E+04 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 2 1 1

LOAD CASE : 2 CASE NAME : Service I LOAD TYPE : Dead, DL

* TABLE L * COMPUTATION ON PILE CAP

* EQUIVALENT CONC. LOAD AT ORIGIN *

VERT. LOAD, LBS HOR. LOAD Y, LBS HOR. LOAD Z, LBS 1.10200E+06 33060.0 0.00000

MOMENT X ,IN-LBS MOMENT Y,IN-LBS MOMENT Z,IN-LBS 0.00000 0.00000 1.44876E+06

* DISPLACEMENT OF GROUPED PILE FOUNDATION AT ORIGIN *

VERTICAL ,IN HORIZONTAL Y,IN HORIZONTAL Z,IN 0.11918 0.40407 0.00000

ANGLE ROT. X,RAD ANGLE ROT. Y,RAD ANGLE ROT. Z,RAD 0.00000 0.00000 3.49417E-04

THE GLOBAL STRUCTURAL COORDINATE SYSTEM ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. X,IN DISP. Y,IN DISP. Z,IN ROT. X,RAD ROT. Y,RAD ROT. Z,RAD ********** *********** *********** *********** *********** *********** *********** 1 0.1821 0.4041 0.0000 0.0000 0.0000 3.4942E-04 2 0.1506 0.4041 0.0000 0.0000 0.0000 3.4942E-04 3 0.1192 0.4041 0.0000 0.0000 0.0000 3.4942E-04 4 8.7728E-02 0.4041 0.0000 0.0000 0.0000 3.4942E-04 5 5.6280E-02 0.4041 0.0000 0.0000 0.0000 3.4942E-04

MINIMUM 5.6280E-02 0.4041 0.0000 0.0000 0.0000 3.4942E-04 Pile N. 5 1 1 1 1 1 MAXIMUM 0.1821 0.4041 0.0000 0.0000 0.0000 3.4942E-04

Page 3

GROUP Analyses, Pier 2 (Corroded) - Page 9 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 47 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Callout
Max deflection=1.4"
andrew.blaisdell
Callout
Max stress=26 ksi
Page 173: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8t Pile N. 1 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP FOR. X,LBS FOR. Y,LBS FOR. Z,LBS MOM X,LBS-IN MOM Y,LBS-IN MOM Z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.7798E+05 -3.3309E+04 0.0000 0.0000 0.0000 9.6685E+05 9607.4 2 2.8053E+05 3396.6 0.0000 0.0000 0.0000 9.1030E+05 1.2060E+04 3 2.2490E+05 3450.8 0.0000 0.0000 0.0000 9.1347E+05 1.0552E+04 4 1.6584E+05 3508.3 0.0000 0.0000 0.0000 9.1683E+05 8950.7 5 2.5274E+05 5.6013E+04 0.0000 0.0000 0.0000 8.7618E+05 1.1302E+04

MINIMUM 1.6584E+05 -3.3309E+04 0.0000 0.0000 0.0000 8.7618E+05 8950.7 Pile N. 4 1 1 1 1 5 4 MAXIMUM 2.8053E+05 5.6013E+04 0.0000 0.0000 0.0000 9.6685E+05 1.2060E+04 Pile N. 2 5 1 1 1 1 2

THE PILE COORDINATE SYSTEM (LOCAL AXES) ---------------------------------------

* PILE TOP DISPLACEMENTS *

PILE GROUP DISP. x,IN DISP. y,IN DISP. z,IN ROT. x,RAD ROT. y,RAD ROT. z,RAD ********** *********** *********** *********** *********** *********** *********** 1 9.5819E-02 0.4327 0.0000 0.0000 0.0000 3.4942E-04 2 0.1506 0.4041 0.0000 0.0000 0.0000 3.4942E-04 3 0.1192 0.4041 0.0000 0.0000 0.0000 3.4942E-04 4 8.7728E-02 0.4041 0.0000 0.0000 0.0000 3.4942E-04 5 0.1375 0.3841 0.0000 0.0000 0.0000 3.4942E-04

MINIMUM 8.7728E-02 0.3841 0.0000 0.0000 0.0000 3.4942E-04 Pile N. 4 5 1 1 1 1 MAXIMUM 0.1506 0.4327 0.0000 0.0000 0.0000 3.4942E-04 Pile N. 2 1 1 1 1 1

* PILE TOP REACTIONS *

PILE GROUP AXIAL,LBS LAT. y,LBS LAT. z,LBS MOM x,LBS-IN MOM y,LBS-IN MOM z,LBS-IN STRESS,LBS/IN**2 ********** *********** *********** *********** *********** *********** *********** **************** 1 1.8104E+05 3697.2 0.0000 0.0000 0.0000 9.6685E+05 9607.4 2 2.8053E+05 3396.6 0.0000 0.0000 0.0000 9.1030E+05 1.2060E+04 3 2.2490E+05 3450.8 0.0000 0.0000 0.0000 9.1347E+05 1.0552E+04 4 1.6584E+05 3508.3 0.0000 0.0000 0.0000 9.1683E+05 8950.7 5 2.5886E+05 3279.4 0.0000 0.0000 0.0000 8.7618E+05 1.1302E+04

MINIMUM 1.6584E+05 3279.4 0.0000 0.0000 0.0000 8.7618E+05 8950.7 Pile N. 4 5 1 1 1 5 4 MAXIMUM 2.8053E+05 3697.2 0.0000 0.0000 0.0000 9.6685E+05 1.2060E+04 Pile N. 2 1 1 1 1 1 2

* EFFECTS FOR LATERALLY LOADED PILE *

* MINIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 -1.3300E-02 0.0000 -9.6700E+05 0.0000 -5100.0 0.0000 -224.00 0.0000 3940.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 2 -1.2500E-02 0.0000 -9.1000E+05 0.0000 -4840.0 0.0000 -211.00 0.0000 6110.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 3 -1.2500E-02 0.0000 -9.1300E+05 0.0000 -4820.0 0.0000 -211.00 0.0000 4900.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 4 -1.2500E-02 0.0000 -9.1700E+05 0.0000 -4790.0 0.0000 -211.00 0.0000 3610.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000 5 -1.2000E-02 0.0000 -8.7600E+05 0.0000 -4620.0 0.0000 -202.00 0.0000 5640.0 7.1600E+10 7.1600E+10 x(IN) 564.00 0.0000 0.0000 0.0000 513.24 0.0000 564.00 0.0000 564.00 0.0000 0.0000

Page 4

GROUP Analyses, Pier 2 (Corroded) - Page 10 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 48 of 55

Page 174: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

25781 5 pile Bent Pier 2 - corroded section.gp8t

Min. -1.3300E-02 0.0000 -9.6700E+05 0.0000 -5100.0 0.0000 -224.00 0.0000 3610.0 7.1600E+10 7.1600E+10 Pile N. 1 1 1 1 1 1 1 1 4 1 1

* MAXIMUM VALUES AND LOCATIONS *

PILE DEFLECTION BENDING MOMENT SHEAR FORCE SOIL REACTION TOTAL FLEXURAL RIGIDITY y-DIR z-DIR z-DIR y-DIR y-DIR z-DIR y-DIR z-DIR STRESS z-DIR y-DIR IN IN LBS-IN LBS-IN LBS LBS LBS/IN LBS/IN LBS/IN**2 LBS-IN**2 LBS-IN**2 ***** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** ********** 1 0.4330 0.0000 5.0600E+05 0.0000 3700.0 0.0000 75.100 0.0000 9610.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 2 0.4040 0.0000 4.7700E+05 0.0000 3410.0 0.0000 70.400 0.0000 1.2100E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 3 0.4040 0.0000 4.7600E+05 0.0000 3460.0 0.0000 70.600 0.0000 1.0600E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 406.08 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 4 0.4040 0.0000 4.7500E+05 0.0000 3510.0 0.0000 70.800 0.0000 8950.0 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44 5 0.3840 0.0000 4.5500E+05 0.0000 3290.0 0.0000 67.500 0.0000 1.1300E+04 9.1000E+10 9.1000E+10 x(IN) 0.0000 0.0000 411.72 0.0000 0.0000 0.0000 406.08 0.0000 0.0000 400.44 400.44

Max. 0.4330 0.0000 5.0600E+05 0.0000 3700.0 0.0000 75.100 0.0000 1.2100E+04 9.1000E+10 9.1000E+10 Pile N. 1 1 1 1 1 1 1 1 2 1 1

Page 5

GROUP Analyses, Pier 2 (Corroded) - Page 11 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 49 of 55

andrew.blaisdell
Highlight
andrew.blaisdell
Highlight
andrew.blaisdell
Callout
Max deflection=0.4"
andrew.blaisdell
Callout
Max stress=12 ksi
Page 175: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Shear y dir (lbs)

Dep

th (

in)

-1.6E4 -1.4E4 -1.2E4 -1E4 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 1E4 1.2E4

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Shear y dir (lbs)

Dep

th (

in)

-1.6E4 -1.4E4 -1.2E4 -1E4 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 1E4 1.2

050

100

150

200

250

300

350

400

450

500

550

00

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 12 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 50 of 55

jennifer.baron
Text Box
Extreme II Load Case
Page 176: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Moment z dir (lbs-in)

Dep

th (

in)

-4E6 -3.5E6 -3E6 -2.5E6 -2E6 -1.5E6 -1E6 -5E5 0 5E5 1E6 1.5E6 2E6

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Moment z dir (lbs-in)

Dep

th (

in)

-4E6 -3.5E6 -3E6 -2.5E6 -2E6 -1.5E6 -1E6 -5E5 0 5E5 1E6 1.5E6 2E

050

100

150

200

250

300

350

400

450

500

550

00

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 13 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 51 of 55

jennifer.baron
Text Box
Extreme II Load Case
Page 177: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Deflection y dir (in)

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Deflection y dir (in)

Dep

th (

in)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

050

100

150

200

250

300

350

400

450

500

550

00

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 14 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 52 of 55

jennifer.baron
Text Box
Extreme II Load Case
Page 178: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Shear y dir (lbs)

Dep

th (

in)

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Shear y dir (lbs)

Dep

th (

in)

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 40

050

100

150

200

250

300

350

400

450

500

550

00

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 15 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 53 of 55

jennifer.baron
Text Box
Service I Load Case
Page 179: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Moment z dir (lbs-in)

Dep

th (

in)

-1E6 -9E5 -8E5 -7E5 -6E5 -5E5 -4E5 -3E5 -2E5 -1E5 0 1E5 2E5 3E5 4E5 5E5 6E5

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 16 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 54 of 55

jennifer.baron
Text Box
Service I Load Case
Page 180: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Deflection y dir (in)

Dep

th (

in)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

050

100

150

200

250

300

350

400

450

500

550

600

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

Deflection y dir (in)

Dep

th (

in)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

050

100

150

200

250

300

350

400

450

500

550

00

Pile #1

Pile #2

Pile #3

Pile #4

Pile #5

GROUP Analyses, Pier 2 (Corroded) - Page 17 of 17

25781.00 Wadsworth Street

Pile Bent Pier GROUP Analysis

Sheet 55 of 55

jennifer.baron
Text Box
Service I Load Case
Page 181: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

                      GZA                       GeoEnvironmental, Inc                      477 Congress Street, Suite 700                      Portland, Maine 04101                      207‐879‐9190                      Fax  207‐879‐0099                      http://www.gza.com

Engineers andScientists JOB:  09.0025781.00 Wadsworth St.           

SUBJECT:   Site Class for Abutments  SHEET:                        1 OF 9                      CALCULATED BY    ARB           8/20/14CHECKED BY                          ___

Objec ve Determine site class and seismic design parameters for proposed bridge.

Methodology Shear wave velocity was used to determine the site class in accordance with the AASHTO 2012 LRFD Bridge DesignSpecifica on, 6th Ed, Tables 3.10.3.1‐1 and C3.10.3.1‐1.  

The soil profile includes a mixture of sand and silt soils.  Therefore, the N‐bar method (Method B) is strongly influenced bylower blows in the silt that are not representa ve of the true shear wave velocity (Vs).  Therefore, Method A, based on  shearwave velocity, is used to determine site class.  Empirical rela onships based on correla ons with SPT N‐values were usedto calculate Vs.

Only the soil profile was included to analyze the site class, which varies from approximately 30 to 55 feet deep at theabutments; the presence of bedrock in the upper 100 feet was conserva vely neglected.  Four borings were drilled for thetwo abutments (BB‐TSGR‐101, ‐201, ‐103 and ‐205).  However, sampling was limited in borings BB‐TSGR‐201 and 205,making it difficult to iden fy the thickness of soil associated with available blow count data.  Therefore, only data fromborings BB‐TSGR‐101 and ‐103 was considered in the evalua on.

Empirical rela onships used to calculate Vs are summarized below:

Seed et al., 1986 (sands and silts):

G = 1,000 K2('m)1/2

K2 = 20(N1)601/3 

Vs = (G/)0.5

Sykora, 1987 (sands, silts and clays):

Vs (fps) = 250 N0.17  D0.2  (sands and nonplas c silts)

Vs (fps) = 195 N0.17  D0.2  (clays)

ResultsCalculated shear wave veloci es for the two empirical  methods considered range from 618 to 651  /sec (see Sheets 2‐3).Therefore, the site is classified as Site Class D , with average Vs between 600 and 1,200  /sec.  Design seismic parametersfor the site were generated using the online USGS Design Maps Tool, Version 3.10 (see Sheets 4‐9) and are presented below:

Fpga=Fa=1.6       Fv=1.4      As=0.10  g         Sds=0.21 g        Sd1=0.10g

References 1.   Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986), “Moduli and Damping for Dynamic Analyses ofCohesionless Soils,” ASCE, Journal of the Geotechnical Engineering, 112(11).

2.   Sykora, D.W. (1987), “Examina on of Exis ng Shear Wave Velocity and Shear Modulus Correla ons in Soils,” Misc,Paper GL‐87‐22, U.S. Army Corps of Engineers WES, Vicksburg, MS, 1987.

Seismic cover.xmcd 1 OF 1

Page 182: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

EMPIRICA

L SH

EAR WAV

E VE

LOCITY

 CAL

CULA

TION

Existing Grou

nd Surface Elevatio

n (ft NAV

D 88)

14.6

Borin

g BB

‐TSG

R‐101

Finish Groun

d Surface Elevation (ft NAV

D 88)

19New

 Fill Thickne

ss (ft)

4.4

SPT En

ergy Transfer R

atio

83Grou

ndwater Dep

th (ft)

19

Sample ID

Existing 

Midpo

int 

Depth

Fina

l Midpo

int 

Depth

Midpo

int 

Elev.

Soil Type

NN60

Total U

nit 

Weight

Total Stress

Water 

Pressure

Effective 

Stress

KoMean Effective 

Stress

(N1)60

Layer T

hickne

ss, 

diVs1, Seed et al 

1986

 (SPT

)di/V

s1Syko

ra 87 

Empiric

al 

Constant

Vs2, Sykora 87

 (SPT

)di/V

s2

(ft)

(ft)

(ft)

0‐6"

6‐12"

12‐18"

18‐24"

(bpf)

(bpf)

(pcf)

(psf)

(psf)

(ksf)

(ksf)

(bpf)

(ft)

(fps)

(ft/fps)

(fps)

(ft/fps)

NF

2.2

16.8

SAND

3030

125

275

00.28

0.40

0.17

834.4

537

0.008

250

522

0.008

1D3

7.4

11.6

SAND

1113

118

2433

120

899

00.90

0.40

0.54

514.5

679

0.007

250

677

0.007

2D6

10.4

8.6

SAND

43

34

68

120

1259

01.26

0.40

0.76

115.5

570

0.010

250

572

0.010

3D11

15.4

3.6

SILT

73

25

57

120

1859

01.86

0.40

1.12

75.0

591

0.008

195

468

0.011

4D16

20.4

‐1.4

SILT

55

43

912

125

2484

02.48

0.40

1.49

113.0

670

0.004

195

547

0.005

5D21

25.4

‐6.4

SAND

34

1314

1724

125

3109

125

2.98

0.40

1.79

206.0

768

0.008

250

817

0.007

6D26

30.4

‐11.4

SAND

514

2025

3447

125

3734

437

3.30

0.40

1.98

384.0

876

0.005

250

952

0.004

Total Profile Th

ickn

ess (ft)

32Av

g Vs1 (fp

s)651

Avg Vs2 (fp

s)618

Notes:

1.  Yellow cells indicate num

erical inpu

t data; white cells indicate value

s calculated using form

ulas.

2. Correlated Vs1 values develop

ed usin

g SPT N‐value

 data from

 boring Seed

 et a

l (19

86) e

mpirical re

latio

nship, usin

g the following eq

uatio

n:        V

s=[(2

0,00

0*N1,60

 0.333

  (' m) 0

.5)/] 0.5

        w

here N

1,60=o

verburde

n‐corrected SPT value, ' m=m

ean effective stress, =d

ensity, and

 20,00

0 is an

 empirical con

stant.

3. Correlated Vs2 values develop

ed usin

g SPT N‐value

 data from

 boring and Sykora (1

987) empirical re

latio

nship, usin

g the following eq

uatio

n:        Vs=25

0 N60

 0.17  D 

0.2  (sands and

 non

plastic

 silts) and

 Vs=19

5 N 0.17  D

0.2  (clays)

        w

here N

60=ene

rgy‐corrected SPT value, ' m=m

ean effective stress, =d

ensity, and

 20,00

0 is an

 empirical con

stant.

Split Spo

on Sam

pler Blows p

er 6"

25781 Vs Site

 Class.xlsx

/BB‐TSGR

‐101

 Boring Da

ta9/8/2014

Seismic Design, Thomaston

Sheet 2 of 9

Page 183: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

EMPIRICA

L SH

EAR WAV

E VE

LOCITY

 CAL

CULA

TION

Existing Grou

nd Surface Elevatio

n (ft NAV

D 88

)14

.6Bo

ring BB

‐TSG

R‐10

3Finish Groun

d Surface Elevation (ft NAV

D 88

)15

New

 Fill Thickne

ss (ft)

0.4

SPT Energy Transfer R

atio

83Grou

ndwater Dep

th (ft)

14.6

Sample ID

Existin

g Midpo

int 

Depth

Fina

l Midpo

int 

Depth

Midpo

int 

Elev.

Soil Type

NN60

Total U

nit 

Weight

Total Stress

Water 

Pressure

Effective 

Stress

KoMean Effective 

Stress

(N1)60

Layer T

hickne

ss, 

diVs, Seed et al 

1986

 (SPT

)di/V

s1Sykora 87 

Empiric

al 

Constant

Vs, Sykora 87

 (SPT

)di/V

s2

(ft)

(ft)

(ft)

0‐6"

6‐12

"12

‐18"

18‐24"

(bpf)

(bpf)

(pcf)

(psf)

(psf)

(ksf)

(ksf)

(bpf)

(ft)

(fps)

(ft/fps)

(fps)

(ft/fps)

NF

0.2

14.8

SAND

3030

120

240

0.02

0.40

0.01

282

0.4

365

0.00

125

032

30.00

11D

33.4

11.6

SAND

56

1215

1825

120

408

00.41

0.40

0.24

575.0

568

0.00

925

055

20.00

92D

66.4

8.6

SILT

75

55

1014

120

768

00.77

0.40

0.46

235.0

572

0.00

919

544

20.01

13D

1111

.43.6

SAND

44

44

811

120

1368

01.37

0.40

0.82

145.0

607

0.00

825

061

20.00

84D

1616

.4‐1.4

SAND

35

85

1318

120

1968

871.88

0.40

1.13

195.0

694

0.00

725

071

50.00

75D

2121

.4‐6.4

SAND

21

21

34

120

2568

399

2.17

0.40

1.30

45.0

556

0.00

925

058

80.00

96D

2626

.4‐11.4

SAND

21

11

23

120

3168

711

2.46

0.40

1.47

35.0

531

0.00

925

057

20.00

97D

3131

.4‐16.4

SILT

00

11

11

115

3743

1023

2.72

0.40

1.63

15.0

492

0.01

019

541

10.01

28D

3636

.4‐21.4

SAND

22

22

46

120

4343

1335

3.01

0.40

1.80

55.0

617

0.00

825

068

60.00

79D

4141

.4‐26.4

SAND

03

65

912

120

4943

1647

3.30

0.40

1.98

105.0

716

0.00

725

080

80.00

610

D46

46.4

‐31.4

SILT

2133

3134

6489

125

5568

1959

3.61

0.40

2.17

685.0

988

0.00

519

590

00.00

611

D50

50.4

‐35.4

SAND

5010

010

020

027

712

560

6822

093.86

0.40

2.32

205

5.0

1208

0.00

425

014

240.00

4

Total Profile Th

ickness (ft)

55Av

g Vs1 (fp

s)63

7Av

g Vs2 (fp

s)62

4Notes:

1.  Yellow cells indicate num

erical inpu

t data; white cells indicate value

s calculated using form

ulas.

2. Correlated Vs1 values develop

ed usin

g SPT N‐value

 data from

 boring Seed

 et a

l (19

86) e

mpirical re

latio

nship, usin

g the following eq

uatio

n:        V

s1=[(20,00

0*N1,60

 0.333

  (' m) 0

.5)/] 0.5

        w

here N

1,60=o

verburde

n‐corrected SPT value, ' m=m

ean effective stress, =d

ensity, and

 20,00

0 is an

 empirical con

stant.

3. Correlated Vs2 values develop

ed usin

g SPT N‐value

 data from

 boring and Sykora (1

987) empirical re

latio

nship, usin

g the following eq

uatio

n:        V

s=25

0 N60

 0.17  D 

0.2  (sands and

 non

plastic

 silts) and

 Vs=19

5 N 0.17  D

0.2  (clays)

        w

here N

60=ene

rgy‐corrected SPT value, ' m=m

ean effective stress, =d

ensity, and

 20,00

0 is an

 empirical con

stant.

Split Spo

on Sam

pler Blows p

er 6"

2578

1 Vs Site

 Class.xlsx

/BB‐TSGR

‐103

 Boring Da

ta9/8/20

14

Seismic Design, Thomaston

Sheet 3 of 9

Page 184: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 4 of 9

Page 185: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 5 of 9

Page 186: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 6 of 9

Page 187: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 7 of 9

Page 188: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 8 of 9

Page 189: FINAL GEOTECHNICAL DESIGN REPORT WADSWORTH STREET … · 5.5.3 Wave Equation Analyses 13 ... provided in accordance with GZA’s executed contract with Calderwood Engineering, LLC

Seismic Design, Thomaston

Sheet 9 of 9