Final Exam Study Guid Physic 51

7

Click here to load reader

Transcript of Final Exam Study Guid Physic 51

Page 1: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 1/7

Faraday’s Law of nduction

ε  = −dΦB

dt  ; ΦB  =  B A sin(ωt); Φ =  ωt;

dΦB

dt  =   d

dtBA cos Φ; I  =   ε

R

If    B//  A   then ΦB   =   BA; If    B⊥  A   then ΦB   =BA cos 900 = 0; If other then ΦB  = BA cosΦ

Flux through theurns of coil

ε   = −N dΦB

dt  ;   A   =   πr2;   dA   =   Lvdt;

ε  =  B Lv;    F   =  I  L ×   B;  P   = F v;  ε  =NBAω

Careful with the sign (decrease -; increase +)

Lenz’s Law The direction of any magnetic induction; UseRHR

Motion emf  v L⊥  B)

ε   =   vBL;    F   =   qv ×    B;   F   = |q | vB;v  = ωL;  dε =  vBdL =  ωBLdL;  V ab =V a − V b =  EL =  vBL  =  ε

Motion emf  

closed conduc-ion loop)

ε  = 

(vX   B)d l;  d  = (v ×    B)d l;  dε  =

vBdl;  ε  = 

 vBdr; v  =  ωr

Faraday’s LawStationary inte-ration path)

    Ed l   = − dΦb

dt  =   ε; (  E   is around the

loop then 

   Ed l =  EC  = E 2πr)

Displacementurrent in the

egion (betweenlates or parallellates)

iD  =  dΦE

dt  ;  q  = C v;  C  =   0A

d  ;  v  = Ed;

q   =   Cv   =   EA   =   ΦE ; ΦE   =   EA;

 jD  =

  iD

A   = 

dE 

dt ;   iC  =

  dq

dt   = 

dΦE

dt   ;

  dE 

dt   =dT dt

 (P A

); R  =   ρLA

 ; E 0 =  ρJ C  =  ρI C A

  ;   dE dt

  =ωE 0

Total Electricaleld

 E  =    E c +   E n

Maxwell’s equa-ions in emptypace (no charger conductionurrent)

    Bd l   =   0µ0 d

dt

    Ed  A;

    Ed l   =

− ddt

    Bd  A;   ic   = 0;   Qencl   = 0; ΦE   = 

   Ed  A; ΦB  = 

   Bd  A

nterms of theorces

 F   = q (  E  + v ×   B)

Page 2: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 2/7

Mutually in-uced emf 

ε2  = −M di1dt

 ;  ε1 = −M di2dt

Mutual induc-ance

M   =   N 2ΦB2

i1=   N 1ΦB1

i2;   B1   =  µ0n1i1   =

µ0N 1i1l

  ; ΦB2   =   B1A   =   µ0N 1i1A

l  ;   M   =

N 2N 1µ0i1Ai1l

  ; n1 =   N 1l

elf-Inductance   L =   N ΦB

i  ; ΦB  = BA =   µ0NiA

2πr

elf-Inductancemf 

ε = −Ldidt

; N dΦB

i  = L di

dt

Energy stored in

n inductor

U  = L  I 

0  idi =   1

2 LI 2; L =   2U I 2

Magnetic energyensity in vac-um

u =   B2

2µ0;  u  =   U 

V    =   U 

2πrA =   1

2 µ0N 2I 2

(2πr)2

Magnetic energyensity in a ma-erial

u =   B2

2µ;  µ  =  K 

0

Time constantor an R-Lircuit

τ   =   LR

;   i  =   εR

(1 − e−(RL

)t) =  I 0e−(RL

)t;L =   −Rt

ln(1− iR

ε );  ε  =  I R

Fraction of theriginal energyonstant

U    =   U 0e−2(RL

)t;   U    =   12

Li2 =12 LI 0e−2(R

L)t;  U 0 =   1

2 LI 20 ;

How long after closing the switch will the current(or energy) through the inductor reach one-halfof its maximum value. (energy →  u  =   U max

2  =⇒

1−e−t

τ   =   1√ 2

; current→ i =   imax

2  =⇒ 1−e−

t

τ    =   12

)

Page 3: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 3/7

Angular fre-uency of oscil-

ation in an L-Circuit

ω   = 

  1LC 

  = 2πf ;   f   =   ω2π

;   T   =   1f 

;

q   =   Q cos(ωt + Φ);   i   = −ωQ sin ωt;Q =  Cε;

The charge is maximum at  t = 0 so  q  =  Q cos ωtwhere ω  = 0

nductor-

CapacitorCircuit

Magnetic Energy=   12

Li2; Electric

Energy=   q22C ;

  12 Li2 +   q2

2C   =   Q2

2C   =   12 CV 2;

i = ± 

  1LC 

 Q2 − q 2;  i =   dq

dt;  ω  =   1

LC ;

q  =  Q cos(ωt + Φ)

Magnetic Energy = 0 when   t   = 0;   q   =   Q  when

i = 0;  q  = 0 when  i =  imax

Under-dampedL-R-C series

ircuit

ω

  1LC  −   R2

4L2 ; R  = 

4LC 

  One-half the undamped frequency →   ω

=   12 ω;

Potential across capacitor →   q

C ; potential across

inductor → Ldidt

; Amplitude A(t) = A0e−R

2L t

A sinusoidaloltage

v =  V  cos ωt;  ω  = 2πf 

A sinusoidalurrent (instan-aneous)

i =  I  cos ωt

Rectified averagealue of a sinu-oidal current

I rav  =   2π

Root-mean-quare valuef a sinusoidalurrent

I rms =   I √ 2

;  I rms = 

(i2)av

Root-mean-

quare valuef a sinusoidaloltage

V rms =   V  √ 2

Page 4: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 4/7

Amplitude of  oltage across resistor, acircuit

V R  =  I R; vR = iR  = (IR)cos(ωt)

Amplitude of  oltage across

n inductor, acircuit

V L   =   IX L;   X L   =   ωL;   vL   =   Ldidt

  =L  d

dt(I  cos ωt) =  −IωL sin(ωt);   vL   =

IωL cos

ωt +  π

2

Amplitude of  oltage across

capacitor, acircuit

V C   =  IX C ;   X C   =   1ωC 

;   q   =   I ω

 sin(ωt);q   =   CvC ;   vC    =   I 

ωC  sin(ωt);   vC    =

I ωC 

 cos

ωt −   π2

Amplitude of  oltage acrossn ac circuit (ineries)

V    =   IZ ;   V    =  V 2R + (V L−

V C )2;

V   = I  

R2 + (X L −X C )2

mpedance of anL-R-C series cir-

uit

Z    = 

R2 + (X L −X C )2 = R2 + (ωL −   1

ωC )2

Phase angle of anL-R-C series cir-

uit

tanΦ =   ωL−1

ωC 

R   =   V  L−V  C V  R

Average Powern a resistor

P av   =   12

V I    =   V  √ 2

I √ 2

  =   V rmsI rms;

V rms =  I rmsR; P av = I 2rmsR

Power in a resis-or

P (t) = iV   = i2R =  I 2R cos2(ωt);  V   =iR

Φ = 0 → cos Φ = 1

Average Powern an Inductor

¶av = 0

Power in an In-uctor

P (t) =   iv   =   iLdidt

  =−IL sin(ωt) cos(ωt); v  =  L  d

dtI  cos(ωt)

Φ = ±900 → cos Φ = 0

Average Power

n a Capacitor

P av = 0 Φ =

±900

→cos Φ = 0

Page 5: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 5/7

Average powernto a general acircuit

P av =   12 V I  cos Φ = V rmsI rms cos Φ cos Φ is power factor

nstantaneousower (fromource)

P source = vi =  V  cos(ωt + Φ)I  cos(ωt);P sourceave =   IV  

2  cosΦ = V rmsI rms cos Φ

The maximumnstantaneousower in resis-

ance

P   = V I  cos2(ωt); P max =  V I  = 2P av

L-R-C series cir-uit at resonace

X L   =   X C ;   ω0L   =   1ω0C 

;   ω0   =   1√ LC 

;

I    =   V  Z 

;   Z    = 

R2 + (X L −X C )2;

f 0  =

  ω0

2π ; I rms  =

  V  rms

Z    ; V R−rms =  I rmsR;V L−rms =  I rmsX L;  V C −rms  =  I rmsX C 

max I → min Z;  X L =  X C  at resonace;  Z  = R  atresonance

Terminal voltagef transformerrimary andecondary

V  2V  1

=   N 2N 1

; ε1 = −N 1dΦB

dt  ; ε2 = −N 2

dΦB

dt  ;

ε1ε2

=   N 1N 2

; V 2 =  V 1(N 2N 1

)

N 2 > N 1 → V 2 > V 1 → step-up;  N 2 < N 1 → V 2  <V 1 → step-down

Current in trans-

ormer primarynd secondary

V 1N 1   =   V 2N 2;   I 2   =   V  2R

 ;   V  1I 1

=   R

(N 2

N 1

)2;

P in =  P out;  N 1N 2

=   I 2I 1

;  Roff  =  R

(N 2

N 1)2

Find the ratio; V 2 is standard source; V 1 is operate

(open); To get from  V 1   to V 2

eries Resistance   I    =   V  Rint+Rload

;   P delivered to load   =

I 2Rload =   V  2Rload

(Rint+Rload)2; Rload =  Rint

Filters and theLow-Pass

R   =   X C    =   1ωC 

;   V out   =V C  cos(ωt + ΦC ) where ΦC    =−π

2   ;   V C    =   IX C    =  I 

ωC ;V signal   =   V S  cos(ωt + ΦS ) where

ΦS  = tan−X C R

 = tan− 1(   −1

ωRC )

Transfer func-ion

V  C V  S

=   1

ωC  

R2+   1

ω2C 2

=   11+ω2R2C 2

Page 6: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 6/7

Gauss’s Law forlectric field

    Ed  A =   Qencl

0

Gauss’s Law formagnetism

    Bd  A = 0

Ampere’s Law 

   Bd l =  µ0(ic + 0dΦE

dt  )encl

Faraday’s Law 

   Ed l = −dΦB

dt

The speed of  he waves fromhe wavelength-requency

v =  c  =  λf ;   c = 3× 108m/s

peed of electro-magnetic waves

n vacuum

c = 

  1µ00

Electromagneticwave in vacuum

E    =   cB; 

   Ed l   =   −Ea;   dΦB

dt  =

Bac;   B   =   0µ0cE ; 

   Bd l   =   µ00dΦE

dt  ; 

   Bd l =  Ba;   dΦE

dt  = Eac

1) Transverse,    E ⊥  B, direction    E ×  B; 2) E  = cB, E ⊥  B are in phase; 3) In vacuum, definite and un-changing speed c; 4) Polarization, electromagneticwave require no medium

inusoidal Elec-

romagneticwaves

 E y(x, t) =   ˆ jE max cos(kx − ωt);

 Bz(x, y) = k̂Bmax cos(kx − ωt)

Electromagneticwave in vacuum

E max =  cBmax

peed of wave   c =  f λ

inusoidal elec-romagneticlane wave,ropagating in

x direction

E y(x, t) =   E max cos(kx + ωt);Bz(x, t) =   −Bmax cos(kx + ωt);λ =   c

f ;  ω  =  ck

Electromagneticwaves in differ-

nt materials

λ =   cf 

  =   vf 

;  v  =   c√ KK m

Remember to identify the wavelength of whichmaterials

Page 7: Final Exam Study Guid Physic 51

7/23/2019 Final Exam Study Guid Physic 51

http://slidepdf.com/reader/full/final-exam-study-guid-physic-51 7/7

Energy densityn electric and

magnetic fields

u =   12 0E 2 +   1

2µ0B2; B  =   E 

c  =√ 

0µ0E ;

u =  0E 2

Poynting vectorn vacuum (mag-itude/rate of 

nergy flow)

 S   =   1µ0

 E  ×    B;  S   =  0cE 2;   c  =   1√ 0µ0

;

S  =   EBµ0

ntensity of a si-usoidal wave inacuum

I    =   S av   =   E maxBmax

2µ0=   E 2max

2µ0c  =

12

 0µ0

E 2max   =   12 0cE 2max;   I   =   P 

A;   A  =

2πr2

Flow rate of elec-romagnetic mo-

mentum

1A

dpdt

  =   S C 

  =   EBµ0c

;   dpdt

  =   EBµ0c2

  =   S c2

;  S av =I 

Radiation Pres-ure (averageorce per unitrea due to the

wave)

P rad   =   S avc

  =   I c

; wave reflected →P rad   =   2S av

c  =   2I 

c ;   F   =   P radA;   F   =

ma; m  =  ρV 

Standing Electromagnetic wave → reflected wave

Wave functionsor the super-osition of two

waves

E y(x, t) =   E max[cos(kx + ωt)   −cos(kx − ωt)];   Bz(x, t) =Bmax[− cos(kx + ωt) −  cos(kx − ωt)];cos(A±B) = cos A cos B   ∓sin A sin B;   E y(x, t) =−2E max sin kx sin ωt;   Bz(x, t) =−2Bmax cos kx cos ωt

Nodal planes of  E 

x = 0,  λ2 ,λ,...

Nodal planes of  B

x =   λ4 ,  3λ

4 ,  5λ4 , ...

Wavelengthsdepending on nalue)

λn =   2Ln

  where  n  = 1, 2, 3, ..

Frequencies (de-ending on n

alue)

f n  =   cλn

=   nc2L

 where  n  = 1, 2, 3, ..