Film boiling from horizontal plates with low thermal capacity

126
Scholars' Mine Scholars' Mine Masters Theses Student Theses and Dissertations 1967 Film boiling from horizontal plates with low thermal capacity Film boiling from horizontal plates with low thermal capacity K. M. Ragsdell Missouri University of Science and Technology, [email protected] Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Mechanical Engineering Commons Department: Department: Recommended Citation Recommended Citation Ragsdell, K. M., "Film boiling from horizontal plates with low thermal capacity" (1967). Masters Theses. 5156. https://scholarsmine.mst.edu/masters_theses/5156 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected].

Transcript of Film boiling from horizontal plates with low thermal capacity

Page 1: Film boiling from horizontal plates with low thermal capacity

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1967

Film boiling from horizontal plates with low thermal capacity Film boiling from horizontal plates with low thermal capacity

K. M. Ragsdell Missouri University of Science and Technology, [email protected]

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mechanical Engineering Commons

Department: Department:

Recommended Citation Recommended Citation Ragsdell, K. M., "Film boiling from horizontal plates with low thermal capacity" (1967). Masters Theses. 5156. https://scholarsmine.mst.edu/masters_theses/5156

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected].

Page 2: Film boiling from horizontal plates with low thermal capacity

FILl\1 BOILING FllOl'vi IIOHIZO:n_'AL PLATES

WITH LOW THEH :i\IAL CAPACITY

BY I It.··

KENNETH ~\1.·. H.AGSDELL

A

THESIS

subm i ttcd to the faculty of

THE UNIVERSITY OF 1\USSOlJHI AT HOLLA

in partial fuJfilllnent of the rcc{Ui1·cments f(ir the

Degree of

1\ti!dTEH. OF SCIENCE IN 1\TECHA:::--HCAL ENGINEEHING

Holla, l\1issouri

1967

----------------

Page 3: Film boiling from horizontal plates with low thermal capacity

i.

A3STHACT

The object of this investigation was to obtaiu dai~t for :,;:l.Lur:Jtcd film

pool boiling front a low th~:;rrn.al c:lpacity flat plat~ at atmo::;phcric pn:'ssure.

A test plate, constructed from resistance strip, was pl::-•ced horizontally in a

pool of liquid, and was heated electrically. Refrigerant-11 and nitro:~ en \Vere

used as the boiling liquids.

He<>.t transfer results WCL'C obtained in boLh fluids over a temperature range

of appPJximately 1200F0 (400-1 G00°F).

flat horizontal heated surfaces with one di1nension lH)flr 1h~ most d:~11gcrous

wavelength. No surface n1.aterial effect was obse:t.·ved.

Excellent correl::-Ition of the data is achieved by a ;;light modification to

the Bcn::nson equation.

Page 4: Film boiling from horizontal plates with low thermal capacity

ii.

ACKNO\V1JEDGEl\1ENTS

Thanks arc offered to the Nation8l Science FoundatiEHl for their support

of this p1·ojcct.

The professional advice and leadership of my advisor Dr. IIarry S::1.uer

is gratefully adcnmvlcdgcd and sincerely appreciated as a significant factor in

the successful completion of the project.

The help and advice of Lee Anderson ami LeHoy Tipton in the machine

shop work is appreciated.

The daHy advice of Dick Srnith in the \Iecbanical Engi_necring Laboratory

was very helpful and sincerely appt·cciatcd.

The part-time work of Hichard Baun1ann, Paul Shanlz and Hobert Lewis

in the laboratory is acknowledged.

The constructive criticism of Dr. L:yle Rhea and Dr. Virgll Flanigan

is appreciated.

Thanks go to Mrs. Kathy Taylor for typing the rnanuscript.

Sincere thanks and appreciation go to n1y wife Janet for her suggestions

and patience throughout the execution of this project. Her \Visdom in delaying

the birth of our first child until the finished manuscript was ready is appreciated.

Page 5: Film boiling from horizontal plates with low thermal capacity

iii.

TABLE OF CONTENTS

N"Ol\IEN(..;IJ;\rrui~J .. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . vii

LIST O:F T ABI~ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • ix

I. IN ,_1.,1-{ 0 D "U C 'l "'I 0 N . . • . • . Q • • • • • • • • • • • • • • • • • • • o • • • • • • • o • • • • • • • • o • 1

II. LITEHA TlTRE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 7

HI. EXPEHI:\IU~:NTAL INVESTIGATION . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 26

I\7 • "I~.I~:stJI..J'l.,S ••.•.•• 0 ................. ·~., •••• 0. ~ .••....... 0.. . . . . . . . . ·/±o

V. CONCLUSIONS AND HECOl\ll\IENDATIONS...................... 6g

1~. F~ I<' .Ef~ l .. :N C~ E S • • • • . . • • . . . . . . . • • . . . . . . . • . • • . . • • . . . • • . • • • • • • . • • 70

t\ T>T>.El'U) ICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . . 7 3

A. Discussion of Appl icd Hydroclygamics 73

B. Ex per irncntal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 S

C. Statistical Data A:wlysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D. Thcrmophysical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

VITA...................................................... 114

Page 6: Film boiling from horizontal plates with low thermal capacity

NOl\IENC LATUHE

SYI\1BOL SIGl\'IFICANCE

CAPITAL LETTERS

A Area

* Gr 1 Generalized Grashof Number

I

K

L

N

(Nu1) co

* p r

.6.T

. ~X

Current

Thermal Conductivity

Characteristic TJcngth

J)j splacmncnt Perpendicular to Interface

Nusselt Number Using Characteristic Lnngth L and Considering Convection Only in Film Boiling

Generalized Prandtl N11mhcr

Temper::1.turc of \Vn.ll l\{jnus Saturation Tcn1pcrature of Liquid

Temperature Drop in Transite Backing

Voltage D.cop Acro3s Test Section

Distance between Thermocouples in Backing

LOWER CASE LETTERS ------·-----·-···--"--·------

h

Acceleration clue to gravity

Gravitational Const.:'lnt

Heat Transfer Coefficient

Average Enthalpy Difference Between Vapor and Liquid

iv.

UNITS

amps

BTU hr. ft. °F

ft.

volts

ft .

ft. 2

sec.

lbs. ft. lll

ll~;;;. fscc. 2

BTU

hr. ft. 2°F

BTU lbs.

m

Page 7: Film boiling from horizontal plates with low thermal capacity

SIGNIF'ICANCE ------- --·-·- --------

LO'NER CASE LETTERS

Latent Heat of Vaporization

lll \Vave Number

q or Q Heat Gcne1·ated

X Distance Along Interface

GREEK LETTERS

0! c

v

w

p

SUBSCHIPTS

B. P.

c

d

f

Equivnlent Th::·rm<11 DiffLlsivity jn Film Boiling by Convection Only

Wavelength

Viscosity

Kinematic Viscosity

Wave Frequency

Density

Surface Tension

Burnout Point

Critical

Most Dangerous

.Film

v.

F~ITS

BTU lbs.

lll

ft. -l

BTU hr.

ft.

ft.

lbs. fhr ----2-

ft.

ft. 2

hr.

rad. sec.

lbs. lll ---r­rt.

lbs.f ---

ft.

Page 8: Film boiling from horizontal plates with low thermal capacity

vi.

SYMBOL SfGNIFICANCE UNITS

SUBSCRIPTS

1 Liquid

L.P. Lcidcnirost Point

t Transite

v Vapor

Page 9: Film boiling from horizontal plates with low thermal capacity

vii.

LIST OF ILLUSTHAT10NS

F[GUH.E 1 Typical Boiling Curve ........................... . 2

FIGURE 2 Film Boiling From a Flat Plate .................. . 6

FIGURE 3 Nukiyama' s Boiling Curve ....... : ...............• 8

FIGUHE 4 Film_ Correlation from Brentari :1nd Srnith ......... . 18

FIGUHE 5 Experin1ental Apparatus .•. o o o o o. o •• o o. o ••• o o ••• o. 27

FIGu'RE G Schematic of Test Set- Up ........................ . 28

FIGURE 7 1-Ieater 1\ssclnbly ................................ . 30

FIGUliE 8 Thermocouple Si_)ot \Veldcr ...................... . 31

FIGURE 9 Pcl\vcr Supply ................................... . 33

FIGURE 10 Power Generation Curve 34

FIGUHE 11 I-!eater in De,var ................................ . 35

FIGURE 12 Typical Recorder Output ........................ . 37

FIGURE 13 Heat Flux Hesults for H-11 on 0. 5 in. wide Inconel 41 Horizont:Ll Sucface ...................... o ••••••••

FIGURE 14 Heat Flux Hesults for TI-11 on l. 0 in. wide Kanthal 42 IIorizontal Surface .............................. .

FIGUHE 15 Heat Flux Hcsults for H-11 on 2. 0 in. wide Inconel 43 IIorizontal Surface ...... o ••••••••••••••••••••••••

FIGUHE 16 Heat Transfer Coefficient for R-11 on 1. 0 in.wide 45 Kanthal Horizontal Surface ....................... .

FIGURE 17 Heat Transfer Cccfficient for H-11 on an Inconel ·16 rrorizontal Surface .............................. .

FIGURE 18 II versus q/ A for H-11 on Horizontal Snrf~ce Showing 48 Heated Surface Si:~c Effect ....................... .

FIGUHE 19 Heat Flux Results for N2 on 0. 5 in. wide Inconel Horizontal Surface .............................. .

49

FIGURE 20 Heat Flux Results for N2 on 1. 0 in. wide Inconcl IIorizontal Surface ........•....•.•...............

50

FIGUHE 21 Heat FllL'{ Results for N2on 2. 0 in. wide Inconel I-Iorizontal Surface ........••.......•............•

52

Page 10: Film boiling from horizontal plates with low thermal capacity

FIGURE 22

FIGUHE 23

FIGURE 21

FIGUHE 25

FIGUHE 26

FIGUHE 27

FIGURE 28

FIGUHE 2!)

FIGUTU~ :JO

FIGUHE 31

Heat Flux Hesults for K Showing Heated Sudacc Size Effect ............... ~- .........................• He<1t Flux Ecsults for N on 0. 5 in. wide Kanthal Horizontal Surface ..... 2 ••.••••••••••••••.•.••••••• Heat Flux Results for N on 1. 0 in. wide Kanthal Horizontal Surface .... ~- ......................... . Heat Flmc Results for N on 1. 0 in. wide sand blasted K::mth<l1 Horizonlal Surf~fce .........•........... , .• Heat FllL'< Hesults for N on 1. 0 in. wide sand blasted KD-11thal Horizontal Surf:tce ..........•............. Heat Flux Hesnlts for N on 2. 0 in. wide Inconel Surface facing downwarJ ....••..........•.......•. Heat Transfer Coefficient Results for N on Inconcl Horizontal Su1·face; .............•.... ~ ...........• II versus q/ ./\. fol· N on 1. 0 in. wide Hodzontal

2 Su.t:f:<ce .........................................• II versus q/ A for N on Inconcl Horizontal Sue faces ..

2

l\ Todified Be ccnson Equation

viii.

53

51

55

56

!57

58

GO

Gl

62

63

Page 11: Film boiling from horizontal plates with low thermal capacity

ix.

LIST OF TABLES

TABLE I Hydrodynamic H.csults of Hoslct· and \\!c:::;tv;atct· 15

TABLE II Boiling Correlation Eqnations 25

TABLE III - Listing of Tests............................... . . . . 38

TABLE IV - 13oiling Hcscarch Data and Results Tabulation, run 529 79

TABLE V Boiling ncsearch Data and Results Tabulation, run 603 80

TABLE VI - Boiling Research D~1.ta and Results Tabubtion, run G05 t31

TABLE VII- Boiling· Hesc::n·ch Data and n.c~3tllts Talmbtlon, eun (J2l [32

TABLE VPl· Boiling- Research Data <lnd Hcsults Talmlalion, cun G2:.JA 83

TA8LE L'( - Boiling Research Data and Hcsults Tabulation, run G2:3B 84

TABLE X Boiling Hesearch Dat:J. and Results Tabulation, run G29 86

TABLE XI - Boiling Research Data and Results Tabulation, nm G30 87

TABLE XII- Boiling Research Data and Hcsults Tabulation, eun 704 89

TABLE XIII- Boiling Research Data and Hcsults Tabulation, run 706 90

TABLE XIV- Boiling Hescarch Data and Results Tabulation, run 711 92

TABLE XV- Boiling Hesearch Data and Results Tabulation, run 717 93

TABLE XVI- Boiling Research Data nnd Results Tabulation, P.m. 718A 95

TABLE XVII- Boiling Rescar....:h Data and Hcsults Tabulation, nm 718B 97

TABLE XVUI- Boiling Research Data and Results Tahulation, run 719 100

TABLE XIX- Boiling Research Data and Results Tabulation, run 721 103

TABLE XX- Statisti.cal Data for 0. 5 in. Inconel in Nitrogen 105

Page 12: Film boiling from horizontal plates with low thermal capacity

TABLE XXI- Statistical Data for 1. 0 in. In.concl in ·Nitrogen

TABLE XXII - Statistical Data for 2. 0 in. Inconcl in Nitrogen

x.

106

107

TABLE XXIU- Statistical Data for 0. 5 in. T.nconcl in Refrigcrant-11. 108

TABLE XXIV- SU"ttistical Data for 1. 0 in. Kanthal inRcfrigerant-11. 109

TABLE XXV- Statistical Data for 2. 0 in. Inconel in Rcfrigcrant-11. 110

TABLE XXVI- Statistic~ll Data for 1. 0 in. Kanth<ll in Rcfrigcra.nt-11. 111

Page 13: Film boiling from horizontal plates with low thermal capacity

I. JNTnODUCTION

Doil ing heat transfer is an intensely interesting field of cxpcri mental

and theoretical resea1·ch. At first glance the boiling process, .. vhich is

often observed in heating water on a kitchen stove, seems deceptively silnple.

As this boiling precess has been subjected to formal investigrrtion, the com-

plexities of the boiling m_echanisms have unfolded. (1) * In 1934 Nukiyama

published a paper representing his experimental results for pool boiling

frorn a wire and a flat plate to distilled water at atu10sphel'ic pressure.

Ntlkiyama displayed three distinct boiling regions, and set in motio;1 the~ des iee

to cxpl8.in the boiling mechanism in each of the three regions. Since this time,

a gceat deal of Tnoney and effort has been directed toward a br.::ttcr umlerstand-

ing of boiling heat transfer. This effort is motivated by the application of

boiling in steam generators, quenching operations, nuclear reactors and for

cooling jet engines, rockets and space vehicles. In the cpcnchit1g opc1a tion

of the heat treating of many metals, especially steels, it is very in1.po.ctant

to have a value for the heat transfer coefficient so tbat the temperature

history of the m.etal can be predicted.

Since the early work of Nukiyama, many authors have reported

experimental and/ or theoretical explanations of the different boiling regions.

These regions can best be defined and unden:;toocl 1vith the aid of a heat--flux

versus temix~rature difference gr::1.ph as shown in Figure 1.

* Numbers in parentheses refer to listings under References.

Page 14: Film boiling from horizontal plates with low thermal capacity

-··-----···~----·----·-----. ...._---..-.-,- ... _-

i

i ., I - _1 __ _

(_)

I ~.,

I I I I I

-~ --- --1 I

I "" ,, /

ll_ 0 0 0 0

1-

<1 '"'

LtJ 0

- ___ ,- -· ..__ .. _ - - ...:..- -- ..:a.._ -- - --- -- z .\

a1

I

_Q

I CCS l -I t -- --:~--- --- -··- -- --·- ---

I <(

--·---····-_!_· L_ ____

0 b 0 0 0 0 0 0 0

.•

"" ~ .. 0 0 0 0 0 0 ..

(j_.:l OS (JH/ n1B) \t I '0 'xnl.:l _l V3H

C) C)

0

0 0 0 ...

L!J c~ LJJ lL lJ -

L--:1

ltJ CY. :::)

1-<(

0:':: LLJ Q_

>-w 1-

2.

_,

(j)

:> r-. ;:j

0 c.o Q

·""' ~ 0

J:Q

'Cj C) . .-0.. :>,

E-i

rl

~~ gs ~ C) ~

~

Page 15: Film boiling from horizontal plates with low thermal capacity

3.

In ::cc,gion .:\ steam is produced ])y v:J.pori/.~ition at the liqu :d v::tpor

i.ntcrf~--..ce. The be;:-ct tran sfcr from the heater to the liquid t:1kc s place by

coJl{bction ~1nd ~.5inglc phase convection which m::t.intait1S upw~H·d lluw of :3upcr­

heatcd liquid. As the heater surface tcrc1pcrature it~crcascs into region B,

the fonn0.tion of bubbles of vapor at discrete points or nuclei on the beating

surfa~e gives this region the name, nucleate boiling. The nucleate region

can be further cUv idcd in.to the (a) individual bubble, and (b) the co ntinnous

colum.n regirnes.

As the heater tcr·lpceaturc increases, point E is n:.:achcd \\here a

further iilcreat>e in tcwpcraLurc will cause a rlccreasc in hc:•t flux. This

point is often c:1.llcd the hLlrnout point, the critic~l excess tcrnpcratUJ:e point,

or the hydrodynamic crisis point (:3). The term burnout point is the most

cornmon, because of tho destruction of power controlled heaters :ts tho power

level is raised above this ma:ximmn. Prediction of this burnout point is

possible :1_nalytically using Helmholtz. hydrodynamic instability criteria

(See Appendix A). 'Vhen the powe c is raised above the level 3llowed in the

mlclC.rl_te range, the only possibility is foe the system. to go into region D,

film boiling, alon::; a line sirnHaL· to E - F. Notice th:1.t the temperature

associ~ttcd w Hh point F is often nbove the melting point of the heater,

depending on the fluid and the hL~::lter material, and therefore burnout occurs.

As the heater surface tern perature is incrc~-cscd p::1 st point E, roc; ion

C is entered and tr·ansHion boiling occurs. TIY~re ai·e rc:::!.lly only two

distinct ccgions of boiling, nucleate and film. In region C unstable nucleate

Page 16: Film boiling from horizontal plates with low thermal capacity

1.

and filrn boiling coexist. The temperai1tres in region C arc too high for stable

nucleate but slill too low for stable filrn boiling. Therefore, the mcchanism

at any one point on the hc~1ter alternates between nucleate and film boiUng,

because the Clmount of vapor generated by film boiling is too sm.all to support

the v~1:~~or film and the amount of vapor generated by nucleate boiling is too

larg·e to allow enough liquid to rec.ch the heater in a stco.dy stre::nn. Since

both of these mechanisrns are present the vari~tbles that affect each sepa1·ately

should have an effect 11pon the tr~tnsiticn region. An exam.ple of this is surface

rongh11ess \':hich is known to l1<1.vc a pronounced effect upon nuclc~1te boiling,

~~.nd docs indeed effect 1.he ::::lope of t.hc tc~!nf:ition c:;urve. (4)

If the heater surface temperature is increased further in region C, a

point G is rc~chcd where ~ further increase in temperature will cause an

increase in heat f1tLx. This point G is often refer:ced to as the 1nini:nmn point

or the Lcidenfrost point. Prediction of this minimum point is possible

analytically using Taylor h:>·drodyna.mic instability criteria (Sec "\ppenclix A).

In 175G, Lcidcnfrost fiest studied the cvn.poration of small water (h·oplets on

a hot plate. (5) From. thi.s experiment the Lcidenfrost point has come into

the literature and is defined :1s "the plate temperature at which the droplet

evaporation time is (the) g-reatest11 • Or, conversely, as appl icd to pool

boiling, the Lcldenfrost point is that t.::;mperature at which the heat flux is a

minimum in film boiling. Scver:c•J investigators have offered methods for

predicting the location of this minhnum point and the rest of the film boiling

curve of \\·hich point Qis the lower limit; the nwst noteworthy of which are

Page 17: Film boiling from horizontal plates with low thermal capacity

5.

(t1) (G) (7) (8) Derrjnson, Dl·omley, Chang and ZLther.

As the tencperature of the heater is incrc:::tscd past the LeidL'n(eost

point, sLable film boiling occurs. In this region the hc:tte1· ::;urface is

separated from the Liquid by a blanket of vapor, as seen in Figu:r:e 2. Heat

transfer occurs by conduction through the vapor bb1nket, convection at the

liquid--vapor interface and lmblJle relc:asc at selected poinis nlong the interface.

Seve cal invcstigato1·s have observed w:::tve-like oscillation of the 1 iqHid-v:::tpor

interface in film boiling from a flat plate, where bubbles arc 1·cleased

at the ::J .. ntino<les of oscillatll)l1. As the i':;n•pcnltuL·c o( the heater ~mrf~Lce

the he<Jtcr surface becomes signific<l.nt, and nmst be cval~tated to allow

calculation of the hea.t transfee coefficient due to boiling.

It is interesting to note th<t.t as recently as 19;)9 no film boiling data

for flat plates had been published. (7) NeecUcss to say work has been clone

since this time, but the area is still too thinly populo..ted.

The object of this invcsti[~ation wa.s to obtain dala for saturated film

pool boiling fron1. a low thermal capacity flat plate at atmospheric pressure.

Page 18: Film boiling from horizontal plates with low thermal capacity

G.

0 )

I <J)

"..> ~

.---1

P-i , ... ~ ...... ~

~

/---, s s :-;j 0

r~

\ ) ( ~"" ~ H bO

\ 0 d . , / 0.. ..... ~ ~ ..... - >

..... \ 0

P=1

s \ ::::

~

\ C'1

r:£1

J s 0

I ...... ~

I

-" 1/ \ I

...

Page 19: Film boiling from horizontal plates with low thermal capacity

'7.

Jl. LITEHATUHE HEVIJ<::\V -------- -----~----- --- ~ -~-- ------- -- ------

The literature of relevance to this invcstlg:ltion L> illTanr;od into four

main 1?;roups, i.e., FiJm Boiling, Flat Surf:wcs; ?\uclcatc Boiling, Flat

Surfaces; Film Boiling, Other Surfaces; and Nucleate Boiling, Othcc Surfaces.

The groups arc listed here in order of decreasing value to this investigation.

Nnkiyama(l) first noted in a p~l.por published in l9::H that there was an

upper limit to tho hc~Lt tranderrecl in the boiling process. IIc discussed the

C:t1.::t that previous authors had :lss1nncd that the he:1 t Lr;l:1:~(cl: cocffici·3nt

:lppro::tcLcd a fixed value asymptotically, and Lh::t.t the hc'at flux, q/A, ii1c1·cascd

w i. th temlJcntturc difference without limit. As stated prcv ion~3ly, Nukiyarna

ckscl'ibcd three distinct regions of boiling, as seen in Figure 3. He descdbcd

,,-hat is now known as the nuclcntc region up to a m::1.xirnum. point b, ::'end a

region from d to c, kno'.vn now as the film boiling region, a~' the ::::phet'oidal

state.

1\ukiyama condueteu pool boiling experiments \vit.h elcctl'icaJly heated

wires and flat plates, and presented data to verify the cliff(~rent boiling regions.

He proved the existence of maximum and minimum v-alues for q/ A. He also

postulated in his p::tper that a sm~1Jl p::trt of the hc~Jter sudaee in nucleate

boiling is at an elevated temperature forming nuclu:.tion sites, ar;d. the rest

of the heater stays wetted and at ibe satm'a-tion temper~1turc of the boiling

liquid. The temperature that is recorded (for instance with a wire heater)

uslng resistance thermometry is simply the weighted average of tbis clcv'atcd

Page 20: Film boiling from horizontal plates with low thermal capacity

8.

l!.J 0 z Lu er.: ll.J '-'-Lt_

0

(I.) <l)

cr::: > ~~

:.:_) ~

1-·- u c/J

<;( Q ..... (Y- ~ .....

0 LLJ 1=0 o._ Ul

~ (d --- s l.LJ r;d

f- :>-, ..... 3 :;.--;

I

C'?

~y~

~ ;::.J d

....... ________ ... ._~---·-·-----------,---- ~

~

xnl.:J l'v'3H

Page 21: Film boiling from horizontal plates with low thermal capacity

9.

temperature and the lower saturation L:lnpeL·:.lture.

(4), (9), (lO) . . . . Berenson has gn'en m.nch uu:>t::';ht 1nto the mechanisms of heat

tt·:-tnsfcr oceuring in nucleate and fil rn hoi.ling. In his invcstig~ltion of tlle

transition boiling region Bcn;nson has concluded that there arc only two

distinct regions of boiling heat transfer :-1nd tl:at trtll1sition boiling is a

combination of nucleate boiling and film boiling over tbat L'~l_nge of temperature

difference where neither is stable. Berenson also concluded th:1.t the burn-

out flLL-..;: is independent of SUL'f<',co rn:1terial, rm<ghncss, and dc;·~l nlinc.ss and

tlnt the film boiling curve is indcpcn•Jc:1t of Sltrfacc m::.tct·i.:J.l, clc:tnlincss,

:1.nd 1'o:.•g-hne~>s provided the 1·u:tglmcss height is le~,;s tlnn the fiLn thickness.

An interesting phcnor11cnon occurs at the Leiclcnfro;:;t point. Several n~inim.um

points may be observed depending llpon the cleanliness of the lw Ltcr material.

Dirty surfaces cause the syotcm to ch·op into ntwle~1.tc boiling at higher

temperature differences. A similar phenomenon occurs wlvm a 1vclting

agent is added to the boiling liqnid, that is,the minimum point occurs at a

higher temperature.

Berenson offers the following c(}uations for the predictions of the

Lcidcnfrost point:

(q/ A) L. P.

and

I

• 09p hi. v g

1/2 1/4

[(pl- P)] --·----p {· p

1 v (1)

Page 22: Film boiling from horizontal plates with low thermal capacity

10.

(~T)L.P. .127

I

p h V fer ---~-- ... '::\-

Kvf

2/3r- Jl/21_ .. 1/3

l Zr:C-~-p ) ~· ~!-~=-p- ).l _0 l V L'~ C l V _

\\·bich :1g:rcc with his chtta wHhin + 10~{. (2)

Also !_H'Csented is the following

equation for stable film boiling:

1/4

h .425 (3)

Chang·('l) in a petpcr pnhli:::hed in HJ;'5~J offers a t:1corctical F'lodcl for

film boiling frorn flat plat?s. By rnc~m:; of 1l'.C C01lccp1s of ccluiv:1l('nt U>crmal

d ;Ifusivit:y a gcncrali:?.ccl Prandtl number is recommended. Thns, a general

formula is obtained for both convection and boiling. Jn his paper, Chang

invcsth;ates film boiling from horizontal and vertical flat plates. Of

intcru;t to thi:; investigation are his rcf:;ults for 1he horizontal flat plate.

Chang suggests that a st:1ncling \vave exists over a plane t1ul·face

experiencing film boiling. Since the temperature of the flat heating surface

is higher th:::tn the vapor that surrounds it, heat is tl·ansmitted to the vapor

fih11 cf"l.using it to thicken.

The vapor film grows to f1. thickness that will no longer support the

boiling liquid, therefore, the film ruptures and heat and mass 1xansfer

occur at the anti-node of the standing wave.

This mechanism takes into account the fact that film boiling will not

exist in a given liquid at a wave lcn~th abo-ve :1. cedain critical value as

Page 23: Film boiling from horizontal plates with low thermal capacity

11.

discussed in Appendix A.

Chang analyzes the proble1n as set fo1·th in the above mcch:1nism to

arrive at a rcl::ttion between film thickness and time. Comparing the resulting

equation with the conduction equation for a homogeneous substance, he is able

to formulate an equivalent the"L·mal diffusivity;

a c

K 6. T v ---

2h p fg v

Chang further defines gor:.erali;-~cd Pr~111dtl rrnd Grashof ntlmbcr as

* p

r

v a

c and * Gr

1

2 3 gp L

v 2

J.Lv

p - p l v . --·-- - --~~---

pv

and thcl·cforc reduces his analysis to the following equ:t.tion:

1/3 (Nu1) =

co

(4)

(;))

(G)

~which he suggests is a general equation for film~ boiling on a horizontal sudace,

shnilar to the equation for simple convection. In this an:Jl_ysis the effect of

radiation ~was not considr]rcd, but its effect could be realized by considering

the added thickness of the vapor film due to the radiation.

It is interesting to note that Chang states that experimental data for

film boiling from flat pl<ltes is very scarce, and that he is therefore forced

to compare his theory with data from horizontal tubes. It is interesting to

ncte also that in the discussion of Chang's paper, Zarwyn brings up the

question of valiuiiy for the above analysis for a t1at horizontal plate facing

downwards. Chang states that the application of his theory would depend

Page 24: Film boiling from horizontal plates with low thermal capacity

12.

heavily upon the size of the nat plate.

Zuber (S) discusses extensively the three regions of boiling heat

transfer. He approaches the burnout point anillysis feom the transition

boiling region. The burnout point is the mc.lxilnum point in nucleate, but also

corresponds to the ma.ximum point in t1·ansitional boiling. Zuber maintains

that the burnout point is locilted on a q/ A vs. tempe:cature difference graph

by the application of Taylor-Helmholtz; hylhodynamic instability criteria.

Helmholtz instability is characterized hy that condition when the vapor

generated by the heater corresponds to the maximum eo1mtc~l'flow of vapor

and lir1uid normal to the heating sur[ilce \\ hich can occur in sit._•arly t1ow and

remain stable. Taylor instability occurs as a re::>nlt of the fact that in fHm

boiling a liquid of high density is above a comparatively lower density vapor

film. The result of the mathematics associated with the above instabilities

is the following equation for the burnout flux:

(q/ A) B. p.

1/2 _ r.CJmp 1 ~

-'- . 1 b7h p fg ,. p (p l· p )

L v l v

(7)

The Leidenfrost point is the minimum point in stable film boiling.

This point is extremely interesting because of the applicability of hydrodynamic

principles, and because this point corresponds Lo the transfer position from

film to nucleate boiling for power controlled heaters. Zuber has developed

the following formula for the heat flux at the Lcidenfrost point:

Page 25: Film boiling from horizontal plates with low thermal capacity

(q/ A)L~ P. . 177hf p g v

13.

(8)

The works of Chang and Zuber are mainly theoretical, relying primarily

upon 1nathem:1.tics of hydrodynamics to furnish relations between q/ A and

tmnpcrature difference. Several authors find fault with their wo1·k, b·~cause

of the simplifications 1nacle in developing an analytical moclel to represent

film boiling. With this in mind Hosler and Westwater (l 1) h:we investigated

film boiling from a flat plate with the objective of determining the ilctual

validity of these different theories.

Hosler and we~3L\V:l.tcr present data for film boiling fJ.'Otn a nat eight

by eight inch aluminum plate. Conventional q/ A vs. temperature <-lHfcrcnee

plots are presented, and photographic dflta is given to support h_ydrodynamic

calcul~1tions for the two test fluids; water and Freon-11. Hosler and

"\Nestwater state that significant edge effects will exist in film boiliPg in most

liquids with a heat transfer surface as small as 2 inches in diameter, as used

by Berenson.

The authors present relations often used when discussing film boiling,

that is the critical wave length and the n10st dangerous wave length:

1

:\ c

~g~gc~] 2

2 'IT and L 1 v

(9)

1

[ 3g if ]

2

2 IT g(Pl c_ P v)

(10)

Page 26: Film boiling from horizontal plates with low thermal capacity

Also presented is a simplified relation attributed to Chang for stable

film boiling,

where

a c

K 6.T v = ---

2hf p

(Ga)

for saturated pool boiling.

g v . . BTU Hosler ~1.nd \Vestl\·ater locate the TJe1dcnfrost pomt at 11,000 --- 2 o BTU o hr. ft.

and 285 F, ;:;nd 5700 ---- 2 and lGO F for \Vater and Freon-11 respectively. hr. ft.

11.

Jn the invcstign.tion by Hosler ami \Vcs1wate e, hydrorlyn8.mic measurements were

Ltkcn hom high speed motion pictures of the toiling. This in[cn·,nation is

presented in Table I. This photographic investigation shows that a square or

rectangular array of bubble relc:~.se areas docs not exist in fihn boili11g. A

very irregular array \Vas observed. Of particular interest is the f:.1.ct that

Hosler and \Vestwater observed th~lt the average spacing between bubbles

of the smne size was approximately equal to Ad, and the minim•un spacing

Yvas equal to A. c. The observed breakoff diameters \-.:ore 73% of A.d.

Hosler and Westwater go on to state that the method of Ch:lng for

predicting the film. boiling curve is not rcliable. Also, the method of

Berenson for predicting the film boiling curve is good, except the temperature

dUJercnce values at the Lcidcnfeost point are not generally reliable.

class, et al. (12) have pLtblishcd data for film boiling from a flat

electrically heated plate to liquid hydrogen. An interesting observation

made by the authors concerns surface roughness. They observed that the

Page 27: Film boiling from horizontal plates with low thermal capacity

15.

TABLE I

HYDHODYNA1\HC RESULTS OF UOSLEH lND \VESTWATER

for Freon-11

Di8x,1etcr at Breakoff

obsurved: average .................... 0. 38 in.

1naximu1n 0. 47 in.

1ninirnn1n .•................ 0. 30 in.

CcnJ,~r to Centcc ~7p~1.cing

observed: avcr::1gc ...................• 0. 57 in

1HG.Xill1Ull1 1. 25 in.

minimum .••.•.....•.•.•••. 0. 25 in.

Bubble Period

observed: average .................... 0. 17 sec.

rnaxin1un1 0. 26 sec.

minimum .••.•.•..••...•••• 0. OS sec.

Page 28: Film boiling from horizontal plates with low thermal capacity

16.

burnout point could be raised 10or:0 in some instances by covering the heat

trc1nsfcr surface with silicon grease. In the filn1 region the curve was

displaced to the right slightly.

Manson (l 3) expresses concern about the present theories of film

boiling and contends that present theories, hydroclyiw.mic analp;is included,

fail to consider the effect of surface material. This surf~lcc matcdal effect

n'lust be taken into account when heaters are coated with thct·mally noncon-

dncting mo.teri::1ls such as Tetlon. i'.Ianson obtained the following minimum

points for film boiling in Nitrogen for coated and ur,co::t.tccl coppc l' plates:

coated (. 001 in. Teflon) ......... . BTU G;500 ----- , :300°R

2 hr. ft

uncoated .. 2500 !!

Manson offers an ;:tnalog computer method for prediction of a non-unifonn

heat transfer coefficient which takes into account the surface material effect.

Gottfried, Lee and Bell (S) have investigated film boiling of lir1uid

droplets on a flat plate, which has peripheral importnncc to t!1is investir;:Jtion.

The authors conclude that the Leidcnfrost point is independent of droplet

size, therefore suggesting its applic~ttion to pool boiling. The authors define

the Leidenfrost point as the plate temperature at which the droplet evaporation

time is greatest.

Becntari and Smith (l 4)1mve made a si8nific~tnt contdbution to the

literature with their paper on correlation of pool boiling data for crJ'Ogenic

fluids. The authors have gathered together the \vorks of many of the eminent

researchers in the field. The synthesis of ideas which results is miraculously

Page 29: Film boiling from horizontal plates with low thermal capacity

not confusing. Correlations are offered for the major cryogenic l1uids

includinr; nit:;:ogcn in nucleate and film boiling.

The bunwut point is a favodtc area for analytical investigators,

because of its prediction with t1uid properties only. The authors offer

the following equation attributed to Kutatcladze;

(q/ A) = B.P.

1/2 . 1/4

15 . 7 h [p l [(5 (p ·- p >] fg v l v (11)

The Lci_dcnfrost point is represented by the fol101\'ing equation attl'i-

butcd to Zuber,·

(q; A) L.P. . l'/7h.f p g v

r ·] 1/4 ! (Jg (Pl - p ) l --- ---------- v2

(p !-- p ) l v -

(Sa)

Of p;J.rticular interest to this investigation arc the p:ecdictive film

pool boiling correlations offered for n.iirogen. This informat~on ca:1 be seen

in Figure 4:. The stable filrn region is given by cotTclaiions attributed to

Breen and TNestwatcr, and the mi.ninmm points are attl.·ibuted to Lienhard

and \Vong, or Berenson.

17.

Brentari and Smith have a section devoted to the discus::;ion of several

variables which effect boiling pcrform:t.nce. They say th:t.t a rnajor subcooling

effect may occur in normal film boiling, as a result of the increased rate of

condensation.

The effect of external force fields such as gravity arc expected to

have a large influence on the boiling phenomena in the film region. This

supports the ch:t.nge in heat tr:t.nsfcr characteristics as reported by Lyon

for a horizontal surface facing do,~·nward.

Page 30: Film boiling from horizontal plates with low thermal capacity

1-60' 000~ LL

C1

~ (f)

~ 40 '000~ :c ......... ~ I

1- r ro

l <( 20,0001-...........

C1

·~ ~

X j

~ l ~_j

.10 000~ LL l

i 1- ' f=- ~

<{ 0

i Lu

\ ~ - I I I

1 :r: L I 7,0001 I 200 400 600 800 ;ooo 1200 1400 1600

-· r- !·!J """' :- R ', - u """' :- r-, l :- :- r '\ :-- ' I r'\ .-1 ..... . I \.J - 1.. ' ·...: ... u· - - ·- ,. ~ \' . ,_ 1 L-l 41 Lin I 1\L. il i ._,,LJ't\.JL'

AT 0:-6. - r

FIGu"RE 4 - Film Correlation From Brentari and Smith

Page 31: Film boiling from horizontal plates with low thermal capacity

19.

Of particular interest to this investigation 'll'e the author~' conuncnts

concerning surface tcmperatn1·c variations. The authors :-:>Ul tc that, "It is

possible that surface tcn1pccature differences ma.y occur \\-:lich ill:J.y be at-

tributed to the heater surface and not to th8 boiling phenomena. Hc:tters

\V Hh a snulll n1ass per unit of heater surface, such as very thin mate rials,

1nay prodt~ce such temperature variations and subsequently a lower peak

f1 ux ... The source of energy for the heater rnay also influence the surface

temperature variations. Kutatcladze reports that electricaJly heated ~~Ltrfaces

have slighU y different heat transfer chaeacteristics than th:)~>c he~ ted by

v~1por condensation ... "

The autho1·s further note that chemical composition of the heat transfer

sul·face, especially its wetting cbar8ctcristics, nmy have a marked effect

upon lhe boiling curve.

(lS) · b ·1· I ll 1 Cole 'has studlCd pool 01 wg cue to sue c en argc powec surge with

a nickel ribbon, which was electrically heated by a direct power surge of 30

millisecond duration. For heat generation rates above that required for

st<lble film boiling, the ribbon temperature could be predicted by assuming

it to be eor11pletely insulated.

Several informative heat transfer texts are available today which cover

film boiling in general. Good examples of this are the texts by :\IcAclarns, (lG)

(17) (3) (18) b (19)P 1 I (20) Hohsenow and Choi, Kreith, Holman, Jaco , ar <cr am Boggs,

:1nd Tong. (21)

Page 32: Film boiling from horizontal plates with low thermal capacity

20.

Nucleate Boiling_, Flat Surfaces -------·---- -----------

I-Touchin and Licnhard(22)have conducted experiments with low thcnnal

eilpacity i1at plates to determine their burnout points. Up to the puhlic~1tiun

of this paper it was generally considered that the burnout point wa.s pl'cdictable

using hyc11·odynamic eon:siderations. The authors maintain that a thin ribbon

flat pla.te, therefore one of low thermal capacity, constiilttes a speeial case.

The authors state that such heaters display a burnont point that is below the

hydroclynamic crisis point.

As previously stated, then~ is a podion of the nuclc~llc hoilintj l'q;ion

whet·e continuous columns of vapoc exist. 1'he burnout mceh<~tlism pt'oposed

by Houcl1in and Lienhard fnnctions in this rq~ime. Burnout, tlnt is a transfer

into the film region, will occur loc<:::.lly at if-;olatcd circular points at the base

of selected vapor columns when the power generated is at a level which will

generate the Leidenfrost temperature at these isolD.tcd points. Observation

of the boiling eu1·ve indicates that, for heaters that function in thL:> n:anner,

there should be little difference in the power level at which a heater goes into

film as compared to the level at which it drops back into nucleate.

Usiskin and Siegel (23)have repurted data for boiling in reduced gravity

fields. Tlv~y found that the critical heat flux in wate1· varied approximately

with g to the one quarter power. Therefore, the burnout flux decreases

with decreasing gravity as predicted by iheory. The authors a.lso observed

that the bubbles ascended more slowly as gra.vity w:ts decreased; the bubble

dian1eter increased as gravitydecreased; and at ;;;cro gravity film and nucleate

Page 33: Film boiling from horizontal plates with low thermal capacity

21.

boiling take on a similar nppcarancc.

·~ (2·1) Chang presents a general wave theory foe boiling. He pL·csents the

theory in detail for nucle8.te boiling and makes some genc1·al remarks con-

cerning film boiling.

Several of the authors, \'.'hose \vorks bavc been previously n1entioncd,

have p1.:cscntcd excellent data in the nucleate range. Trends or points of

interest to this investigation will be included here.

(9) Berenson discusses the effect of surface rouglmess on the nucleate

boiling region. It has long been 0.ssun1ed that a rough surface w iJl produce

:_l smnlh~c temperature difference for a given pO\n~r sctling than a smooth

surfncc of cc.:_ual si:;;e. But what dor~:.; the wo1·~ "roughness" mean when used

in relation to wJClcate boiling? Surface A is roughe1· than surface 13 if it

has more likely nucleation sites. Therefore, rms values of roughness are

not always a reliable indication of "roughness". This can be verified by the

data presented by Berenson for nucleate boiling. Berenson also observed

th3t surface roughness docs not effect the m::~gnitude of the burnout fltL'IC.

nrcntari and Smith (l4)present a great deal of information concerning

correlation equations available today for predicting nucleate boiling curves at

v~Lrious pressures in cryogenic fluids. The authors state that, in reviewing

the avail:1ble literature and experimental data, correlation equations \vhich

prC'clict q/_A as a function of temperature difference cubed arc the most reli~cble.

Page 34: Film boiling from horizontal plates with low thermal capacity

Film Boil in[{, Other Surfaces ------------·--------------

Broml ey(G)has made significant theoretical and e:-:peri rncntal i nvcsti-

ga.ticns of stable film boiling. Bromley's theory and experimental data

represent st:1ble film boiling from a horizontal tube.

Bromley admits in the development of his theory for stable film

boiling, that very different situations do occur around the periphery of a

horizontal tube. He makes assumptions \vhich seern to fit approximately

t1vo-- thirds of the hPat transfer area; leaving out the top n.nd bottorn of the

tube. Dromlr::y justifies this procedure by assuming that the grc~1tcf:;t part

of the h(~at transfer occurs on the two-thirds of the Lube prcviou:3ly mentioned.

DiCieco and Schoenhals (25)have published works sho·.ving the effect of

pressure pulsation upon stable film boiling. They used a . 030 inch rli~uneter

platinc.nn wire, which was calibrated as a resistance thcrnwnwtcr, in

Freon-11 for their boiling experiments.

The authors state that a substantial increase in heat flux at a p~.rlicnlar

temperature in film boiling is attained by applying a pulsating pressure to the

boiling liquid. Theoretically, in every boiling 11uid, there is a certain pres-

sure which will cornpletely collapse the vapor film. DiCicco and Schoenhals

applied an approximately squr:.re pressure wave, with the peak pressure

being one-third of the value required for collapse of the film. The lower

lilnit was atmospheric pressure. Surprisingly the heat transfer rate for the

pulsating pressure was above the rate for the peak pressure at steady state.

The authors also offer data for film boiling at atmospheric pressure.

Page 35: Film boiling from horizontal plates with low thermal capacity

23.

Grassmann nnd Hauscr(2 G)havc conducted film boiling experiments

with wires submerged in water.

I 'l . (27) ' ynn, Draper a.nd Rous have p1·cscntccl expc1·imcntal cb.ta. for

nucleate, transition and filrn boiling from a horizontal tube in liquid nitrogen.

Hhea (2 S)has recently presented cbta for nucleate and film boiling from

oscillating spheres to liquid nitrogen. The author suggests the addition of

a vibrational Fruude number to the film boiling co1Tclati.on of Frcclcrking

and Clark to account for the effect of oscillation npon the hc~at lrunsfcr per-

fonnanee.

There h:cs been a gccat deal of work done on film boiling ft'U!H surfaces

other than flat plates. The authors and 1vorks discussed here therefore

represent only a cross section of the 1 itcrature available.

Nucleate boiling is a very efficient method of tronsfetTing heat at

high heat fluxes and low temperatures. Bcca.use of this, very much attention

has been given to nucleate boiling. For the sake of brevity only a few '.vorks

will be cited.

Jcns (2) covers the known facts concerning boiling heat transfer to about

1954. He discusses the fact that such a wide range of nomendature is used

in the literature to discuss a relatively small number of i1nportant ideas

that eonfusion sometimes results. Jcns makes an interesting ccmn1ent in

conclusion. He suggests that the status of boiling in 1954 was at a stage

where the obvious variables had been sufficiently investigated, and the more

Page 36: Film boiling from horizontal plates with low thermal capacity

2·1.

subtle variables ·would now be defined and Investigated.

(29) Levy · has developed a generalized corrcl:.Ltion fo1· nuclc~t.te boiling.

nThe derivation is based upon bubble growth rate close to the he~1t0d snrf~ce

and an cmpriciQl cletermination of the relation between heat transfer rate

at the heated surface and that at the bubble surface."

Engelhcrg-Forstcr(30)and Grdf have investigated Lhe cliffcccnt mcch-

anisms advocated in the literature for nucleate boiling and developed cor-

relations for each.

1.\Iany other authors have presented col-rel:llion eqn;Ltions [oL· ~;atncated

pool boiling; one of the most note-worthy being Hohscnow. (:3l)

The correlation equations presented in, the literature :uc collected

in Table II.

Page 37: Film boiling from horizontal plates with low thermal capacity

Stahle Film

Lcidcflfrost Point

(q/ A) L. P.

--; . 09p h v fg

(-~ T)L. p.

(q/ A)L. p. --

Burnout Point - ~-- --·---· ::._:::_::~

I

p v h.r 127 ---~-.Lg

. Kvf

.177hf p g v

TABLE II

1/4

J/3

{3) Be1.·enson

(Gb) Chang

{1) Berenson

(p ) 2/3 1/2 1/3

[ ~--L~ P _y_l [ ~-~2-~~ ---] ,. -~yf__ l <2 > p t- p g(p - p ) 0" (p - p )

l v l v -::. c l ,.- Dcrcnsoa

f~g(pl- ;~ J (p + p )

- 1 v

1/2

1/4

(8) Zuber

(7) Zuber

1/? 1/4 (q/A)B.P. - 15.7hfg[Pv] lT(pl--pv)] (11)

Kutateladzc

Page 38: Film boiling from horizontal plates with low thermal capacity

26.

l\lethod

A test plate, constructed from. a rcsisi::tnce stl'ip, wo.s pL,_cnl hori-

;~,ontally in a pool of liquid, and was heated electrically. Thermocouples

were spot welded to the unwetted side of the test pJ<rte, nnd the same side was

in turn cemented to transite as an insulating backing. Thus, the Quid was

essentially heated from one side of the test plate only. Direct current power

was supplied to the test plate fron1 a welding gcnei:a.tor. For added power

control to the test plate a carbon-pile rheostat w:~_s used. A potC:lltio;ncter

rncasnred the voltage drop accoss the test plate, ~--nd a ,-o] tmctcr \Ya:3 used. to

1nonitor the output volL1ge of the puwer supply. A potentiometer in conjunction

with a precision resistor \\·as used to m.easurc the cta-rent. An <:l.mmcter was

also used to indicate the current. The test plate temper[ttures and the bulk

temperature of the fluid were recorded on a multichannel recording potentia-

n1cter.

The rnain components of the boiling rrpparatus in ihe laboratory are

shown in Figure 5. The instrumentation is shown mounted in the console.

The dewar containing the heatc1· and test t1uicl can he seen on the table. A

schematic of the apparatus is gh·e11 as Figure G. This schematic serves as

a 1 isting of the equipment and shows the relationship of the curnponents.

JVIore detailed descriptions of the test sections, puwer supply and control,

and instrumentation are presented in the following sections.

Page 39: Film boiling from horizontal plates with low thermal capacity

JIJI.. 67

Page 40: Film boiling from horizontal plates with low thermal capacity

'' 4.

Page 41: Film boiling from horizontal plates with low thermal capacity

The iu \vidths;

one, ami two

. 005 or , 010 inc and all tl::st ;:;eci:Lons \Yere

approxl

GOO.

irrtately

to connect test into the bars, as shown in 7.

Si.x chrornel-alun:el therrnocouples \vere H' Vt'

solid st:1tc spot,,.

in Fig;ur·e insnlatlon \vas

out of heater plate.

w to the

heat tron rnethod a ter \vas con

that 1vould hc:::tt to a bon liquid one side.

ccrursc, loss out the insul To account this, two

were plac in the to the he[l tor

, a.nd

(. 4 7

junettuns an

ll tests.

Page 42: Film boiling from horizontal plates with low thermal capacity

'l -

Page 43: Film boiling from horizontal plates with low thermal capacity

Welder

.. c r

Page 44: Film boiling from horizontal plates with low thermal capacity

:32.

Pc.2~ver ~12l!Pl.Y and _Q_ont~~· The power \V:l s supplied to 'Lhr~ hc~ct t t·:1nsfcr

surface by a Lincoln 300 ampere direct current welding gcneratoc, as :seen in

Figure 9. Number 2 welding cable carried the power to the conduction Lars,

\vhich held the test section. The power delivered to a typical hcatcT is di:"pb.ycd

in Figure 10. The output of the welder W8.S controliable at the \\'elder by

adjusting a fine and a coarse setting. This power supply had sufficient c:.tpac i ty

to destroy all of the heaters tested. At the lowest setting, the welder \\'ould

deliver approximately 42 amperes to the test section. It was therefore

desirable to add another source of power control in the line. Thi ::> w :ls

accomplished by adding a one thousand \vatt carbon-pile rheostat. The c:wbon­

pile rheostat was a satisfactory method of controlling the curn~nt del iveccd to

the heater, especially at low power settings.

Instrumentation. As previously mentioned, the output of the power

supply was displayed on a YVeston voltmeter and a \Veston ammeter. The

voltage drop across the heater was measured with a Keithley GGOA differential

voltm_cter capable of measuring voltages to five significant figures. An

attenu8.ted voltage signal \vas then fed into an Electronik-16 potentiometric

multichannel 1·ccorder. The voltage drop across a ·weston precision resistor

was fed into the recorder to give a record of the current through the test

plate. Figure 11 shows a one- half inch heater in position in the dC\\-3X. The

thermocouple wires can be seen coming out the top of the dewar. The eight

thermocouples associated with each beater plus the bulk temperature thermo-

couple were fed into the recorder.

Page 45: Film boiling from horizontal plates with low thermal capacity

Jlll. e:r

or Sapply

Page 46: Film boiling from horizontal plates with low thermal capacity

00 000 r------------------------------------'

0 0

- Povve:r

- A s ·""·uf" .. v

Page 47: Film boiling from horizontal plates with low thermal capacity

11 ""

Page 48: Film boiling from horizontal plates with low thermal capacity

:) ().

1:) t_·oc8llure

ation W'-l'3 turned on to allow a sufficient '.v~u·m--up priot· to c:•.ch tc:-;t. The !water

and conduction Lll· assembly was then placed into the filled clcwar. ,\11 of the

electricHl and thcrn1ocouple circuits were checked,· and aftce C(lll il ihriutu had

been reached the wulde1· vvas turned on at its lowc[3t scttirig. 'l'hc \\·,_;]dcr was

tLn:ned ttp in stnall incren1enls until the burnout puint w:ts pa:sscd ~111d the s_y~,tcm

went into filrn boiling. The system. was obsc1·ved, ~md \\·hen C'luil ihi L'ttm w:1s

point was l'eachcd. The welder output was inct·c;1:;cd in st•1all inc,·cmcnts

until the test plate \\·as at a predetermined nc:-l:xintUm tcmpcc1.tun~ oc until

dc:struction of the heater occurrC'd. The power was shut uiT n nd the hc:e1 tPr

a:coscm.bly was inspected for sep:.n·ation. If it was in good sh:1pe, the above

process \\• as repeated.

The following items were l:1 ken f'-.t e:1ch clata point; the ~six plate

tr~rnpcratures, the bulk ten1pcratu1.·e, kmpl't';'_turcs in the b::tcking for the

calculation of heat loss, and the curre11t throu~h :tncl voH~1ge drop <'cross the

test pl<de. Figure 12 is a typical rcco1·der output r;hect. All of tl1e items

previously mcationed that wen.~ n0ccssary in the c;1kulatinils can be seen

in this figure. T;:~ble III is a list of the tests t!•at ·.·:ere run.

The reduced data can be found in Ap~Jen(Ux B. The ic~ts arc

Page 49: Film boiling from horizontal plates with low thermal capacity

:3 s.

TABLE HI

LISTING OF TESTS

[:_~r~~~;?~l:.~~~.:~~~:.·_· --~::~~~;:~-;~~:~: ~:~~~.~:·.~ ~ ··~. . -~---. -- . . ·-· ·- --~: f:~~-1~: 1~ ----(DATE) · · · ··1 -~Ii\~.r~~n.iA:-r·:·--'"1· srt:·~~· ... "~ · 1 · ·· L·;TN.r:~H

529 Hefrigerant-11 ~~T~t~~~~;1a~- :~-~--- -~-~---~-11~-~~~--. -----· ~-~Jin. rm s.

l ' 603 Hefrigerant-11

G05 Rcfdgerant--11

G21 Nitrogen

E%3A Nitrogen

G~3B N11roi~en

629 Nitrogen

G:JO Nitrogen

704 Nitrogen

'lOG Nitrogen

711 Nitrogen

717 Rcfrtgcrant-11

718A Nitrogen

'718B Refrigerant-11

719 Nitrcgen

721 Refrigcrant-11

Kautho1 A-1 1.0 h"'ch

Kanthal A-1 1.0 inch

Kanthal A-1 1.0 inch

Tnconel-- GOO ~.0 ii':ch

lncond-- GOO 2.0 inch

Kanthal A-1 1.0 inch

Inconcl-COO 2.0 i.nch

Inconcl- GOO 2.0 inch

Kanthal A-1 1.0 inch

Kanthal A-1 0.5 inch

Knnthal A-1 1.0 inch

Inconcl- GOO 0.5 inch

Inconel-GOO 0.5 inch

Inconcl-GOO 1.0 inch

Inconcl- GO 0 2.0 inch

5-8t<in. nns.

r:: 0 0

.J- '111n. rn1 s.

5·- PJJin. r 111 s.

5- f'pin. rrns.

Micror Finish

.i\Ii n·o e F ini.sh

;:;,;_nd blasted

·to- COJdn. rms.

5-G,'.~.in. rm.s.

s:11~cl bL1sted :)0-SOpin. nns.

::.\lir 1·or Fin ish

l\lirror Finish

J\Iirror F'jnish

J\lirror Finish

------·· ----------- ·----·-··------·------

Page 50: Film boiling from horizontal plates with low thermal capacity

1-G PLATE TEMPEHNl'UHES

7 BULK TEl\IPEHi\TURE.

8, 9 BACKING TEJ\IPER.A.TUL1ES

.,,)

-__ I

FIGUH E 12 - Typical Recorder Output

Page 51: Film boiling from horizontal plates with low thermal capacity

~lrretngcd in chco~wlogicn.l order with the test nullllx:r ::.ctu:1lly ~·crlcctin:~ the

elate of the test. In1portant information coilccrnill!~ cn.ch tc.;t, ~;uch :ts t·cft't·cnce

junction temperature, fluid, heater material, size :1nd Slu·f:lcc fini.;h c:1n be

found <1t the top of each pGge. The run nutnbcrs within each te:::;t nm con :sec-

uUvcly with each stable film boiling point obtained.

The avcr~1ge of the six heater therrnocouple emf's was ol>tainccl and

converted to the average herrter tcn1per:tLure, T 1 . using the i'\ation~1l nurcau 1'

of Stancbrds Circular No. 561. The aver8:;e bnJk tempCl'8.tun:: \'.a:; obt:lincd

in a shnilar 1nanner. The millivolt ouLputs from the thcTttlocottplcs in the

insnlakd b<i.cldng \vcee converted to tcmpcr:l.tuccs ~111d sttlJtL·::c:tcd to :~cl t.he

temperature drop in the backing.

The expression for the pcwer supplied to the test sed ion is ac.> follows;

J,~v (q/ A) s'·'r'Pl icd -== A

(3. 4129) •

The heat loss through the backing is calculrrted using,

(q/ A) loss c:: Kt .~TB

~X

·where K = . 47 (I3TU/hr. ft. °F). The heat flux associated with boiling from t

the flat plate was obtained by subtracting the heat lost out the backing from

the power dclh ered to the test section. The herrt trrrnsfcr coct'ficient, h,

was obtained using the standard relationsl1ip

h

Page 52: Film boiling from horizontal plates with low thermal capacity

10.

IV. RESULTS ~--- ------··-----

G0neral

Two test fluids were e1nploycd in the cxpcl'imcnts, rcfir~cr~ltd -1 t :•nd

nitrogen. There are significn.nt differences in the ch:tractei'it>tks uf thc:-:;e

fluids, ther~C:fo:;_'e, the results of tests in each fluid will be prcst'il!cd ~~c!p:lr:ltely.

the 0.5, 1.0 and 2.0 in. wide Ineoncl hori<wnl~cl hc~1tcd surf;tccs, r·<·~~tK·r·tivdy.

In Figure 13 the cln.ta taken in run 'llSB on n. 0. 5 inch mirroe fi11i~3lt•·d Inconcl

surface is ~__lisphtycd. In Figun3 l·t several runs :11·c di:~phy.·<l. :i.tlll:-> '>>~~,

G03 and G05 arc for smooth, !5-·8[-!. tn. rms.l. 0 in. K~1ntktl ll(Jt·i:;.,,nt:'l ~.·u L'f:H·c:,,

1\lso included in Figure 1·1 is run 717 for n. sn.nd bla~3tcd; :J0-~~0:~ in. t'ms, 1.0

In this figure as in several others presented different heated c;u ,·f0.cc m:t.t:Ti~1ls

were used on clilferent clays and good reproducibility of the tl~o.ta \\ 0::; obtained.

The physica1 set-up of the experimental apparatus cliclnot lend iU]clf lo invcs-

tig~tion of the film boiling cm·vc ncn.r the Lcidcnfrost point as pL'c:scntcd hy

Hosler and \Vcstwatcr. But the trend indicated by the Hosler ·md WcsL\~ttcr' s

data agrees very closely with the data presented over the lar8'-~r tcmpcr;ttnre

range in this investigation. The trend as suggested by the cL<.ta of II<Jslet·

<t.nd \Vcstw~:.tcr is slightly to the right of the best fit cuL-vc fur the chta prcsc·ntcd

for the 1. 0 in. hen.ted surface. This is to be expected, bcc:uu:3e of the Lnger

heated surface used by Hosler n.nd Wcst:water. This will he discus0cd more

fully later. The clata as presented in Figure 1~1 inclu.ding the t·oughCliCd test

Page 53: Film boiling from horizontal plates with low thermal capacity

. r--

lL

a (J)

cr:: :.J_ ...........

~ !-m

< .......... 0

.. X ~ _J

L1..

}-

<t: w ::c

! 00' 00 0 ,----------------------.-, t=_ ! I

so,ooo E- 0 I ~ @ i i 0 l - I

6 0 0 0 0 ~ RUN 713E c;-:·8 l ' L r-0 I

I 0\;) I L- -~ ' i 0' ' r 0 °0

40,000t-- 0 I 0 I . f-0 ! I I I i

2 0 ' 0 0 0 ~ ·~3[,'1 ?LUID: lli.ohlG:':I'.AN~-11 I I ,....-;;' ·"'•?:"' c:r;""P? '\ "::;'. ~

~ n~~_:::~~~·"r::·"· i.v.I~;.co~·rc'f 600 ! , ..... ~--.... .. ~ - ... -~~ ! 1/i'TV;1''"' Q C: .,.".! I h..L.i.J.J.n. - •..J l..-.. I I FINISH - MIRROR !

, I

I l 1 I 1 ~ 1 r j , ' I , I l ' I ( ! I

f 0 000 i ! I ' l I I j : I 1

' 400 600 800 !000 1200 !400 1600

T r.:-1\.~p..- !='RAT~ 'P:-..... 1v. ~ . u~\._ r . -.-~-"R~\\,.....,,-u; r :- :.j):.b;vt:., 6T - o ....

r

FIGURE 13- Heat F:ux :i.esults ior R-11 on 0. 5 in. \Vide Incone1 E:orizontal Surface -.....

Page 54: Film boiling from horizontal plates with low thermal capacity

f­LL

:r:

l-

l­<(

w -r

I 00, 000,----------------------------.. c_

. i

BO ~ ooo;­r I-

60,000C I

r r 40 'ooor

I

r--

1 r--

L \

20,000\--\ i l-

1 !

~I:h'H - J..O ::-;.

l o,ooof- {/~

s,oooFf·" _, ~--~

G .RU~ 529

LJ RUN 603

605

717

-------A1/~I-LU.GE D~\f:.~r_:~:o:~:

1-iAXlf.iUi'. DEVIA'l'IG~-i:

5-S 5-8

(SAND 3~ASTED; 50-90

(WITH BE.ST

5.28?~ l3. 8?%

I I

6 oootl·~· ----~·----~------~----~-----~----~----~ ' 20"0 1200

~T

000 400 f"'r"\,,... ouu n I ·- - ~ =>. -- \ : ·'"' r u ;- :- :..\::.i\uc.;

o,_ r

FIGURE 14- Reat Fbx Results for li.-11 Gn 1. 0 :n. w~C:o Ka.r.tha.l Horizontal SJ.rface

400 600 .,... (\;) .

Page 55: Film boiling from horizontal plates with low thermal capacity

a U)

<( ......... 0

._ <{

w :r:

I 00, 000 r-----------------------. F

80' 000 r-

60,000

r-­I

-i ~­!

r--

HEATED S:J~?,\CE:

l~ATER!AL - ::~CONEL 600

FINISH - H Iill\OR

40 '000 !=- 1

r 1

2UN 721

I \ ! i-1 L '='?Cr:-· T'T'"" c~r'"'~J" I LJ.:.~..o. •• -..i.. U!'{• ....!J

2 1 ;.v~~:.iisruvrA·rrou: o. 35~ 1

0 ' 0 0 0 - Hh.XII.:-J:·1 DZVIATION: -0.5:5% I I I

~ I \ I

10,000 ~--~----~----~----L---~----~1 700 800 900 1000

TEMPtRATURE DiFFERENCE, D.T - 0 r­r

FIGURE 15- Heat Flux Results for R-11 on 2. 0 in. wide .inconel Horizontal Surface

Page 56: Film boiling from horizontal plates with low thermal capacity

1·1.

has nn average deviation of 5. 28r;( from the best polynomial fit. nq 11 ·(·;·, !'(:ttive

results from the application of the le8..st squ:t.rcs mctl,ucl fur the be:-;l poly­

nomial fit to the datet can be found in Appendix C.

Figu1·e 15 displays the heat flux results for a 2. 0 in. wide Inconcl

heated sudace \Vith a mirror~finish. The avcr;1ge J.cvintion of the data from

the best fit polynomial curve is 0. 35%.

Figure 16 is interesting for several reasons. Prcscntcrl in Figure lG

is the heat transfer coefficient results for 1. 0 in. K:mthal hot·izunt:ll :;llt'f:tces.

Also hdudcd arc the plots of the cocrclation cqu3.ti.ons of Ck1n~ :11'<1 l~vr'('n~r>n,

and the data of Hosler and Westwater. Ag·ain the cla1:". prcscnlccl n.:t·ific:-:; the

trend suggc~>tcd by Hosler and Westwater. In considering this fi~lli'C it should

be noted that the em-relation equatwns o( Chang and Berenson are for infinite

horizonhJ.l flat plates vvith the effect of radiation not incluclcd. The effect of

radiation \V~ls not considered in the presentation of the data :oct fueth in Figure

16. But the effect could be qualihltively realized by rotatit:g the best fit

curve clockwise about its left end slightly. With this in mind it can be seen

that the equations as set forth by Chang and Berenson, when ~1pplicd to

rcfrigcrant-11, form good upper and lower lirnits to the actLwl results. The

data presented has an average deviation of 5. 26S~ from the best polynomial

fit curve.

Figure 17 includes the data from runs 71813 ~1nd 721 for 0. 5 in. and 2. 0

in.widc mirror--finish Inconel surfaces. The heat trnnsfcr coefficient results

arc presented in this figure.

Page 57: Film boiling from horizontal plates with low thermal capacity

I

z L.LJ

OLL 0

u_ u.. I--• II' -·- u_ 0 OG

(/)

w~ u_ I

U) .............

z:::=> < er: !-

< w

r .-

100 ~.ZS'I ~UID: .RE.FRIGERANr-11

60

40

20

! I ~ i L-

.1-!ATkJ::U. - :Ul\?HAL \CIJI'H - 1 IN.

L----' ,__

j t-i

; __

ROST,f,R 2c ~T.ST 1;JA'f-:::R

( D.\'I: A AND BZS'i FI'r)

0 200 400 r' ("'.A OUv

: , d-...

\ti ....-~ '" ouu

0 r:-· __.;

t\ .......

\_.1 ,.,

I I .,

:::;:G:! 529 .... """""''": 603 J...-~..; ;.'.;

~""C;·T 605 ..Z.Io) ...

":-pt7 ;--...~ ... ~ 71.7

ilOS:..2 ?

"'

;coo

C ~··w,·· ~~~~· J..n; 5-'' (j

( t.'''~-.·· .:;.·.. .lh; 5-3 (S::OCTE; 5-3

~II~. ._,n) ~ .. ·lo':)

v.IN • ~-;s)

~n;. r·:s) ~ ...

'

~

5.26% 14.ocX

(Z.J;.XD B~~.STED; 50-90 ~r;~. ,.... .. lfC) &~ ....

W:E.S?'JA?En ( iJI'l'H B~':' FI'r)

1200 400 1600

FIGURE 16- Heat Transfer Coefficient for R-11 on l. 0 in. \vide Kanthal norizontal s~rface

.;.... _,, .

Page 58: Film boiling from horizontal plates with low thermal capacity

:r: ...

' -' ····p ~

LL1

OLL -o ~ t ......_

LL.i-Lt.JLL 0 OG

(/)

~ L:J~

U...:L: (/) ...........

z :::::> <l-Q:::CD . ,...-

~ .-< w ::r:

1 00 I ,_ SOt-

! I r--I

sot-I I I

40t-I I I r-I !

l I l I

20 1 I L I I i I I

1 ol 200

0

(.\ __.J--:; c9 0 rB0 ~u-

0 Gr- D

- ..-., ,..., •.•• i !•!

[J L:J ...... --

0 RUN 718B (0.5 IN. \::IDTH)

[J RU!~ 721 (2.0 IN. \1/I:r£'~)

0

':'I'.S':.:' T11:Jil): REFRIGE..~.i'iT-11

ENT...:::IAL - I~CONEL 600 ~rll\IZH }:Il1.-qQ~

f''\ 0 r, 0 u iOOO 1200

0:: I

FIGURE 17- Heat Transfer Coefficient for R-11 on an lnconel Horizontal Surface

Page 59: Film boiling from horizontal plates with low thermal capacity

17.

The data in Figure 18 is presented sonlc'.Yh:lt diffen•n1ly than tlnt

usually found in the literature. Included in the presentation is the ]1'-•:tt tran::;fcr

coefficient versus heat flux for 0.5, 1.0 ancl2.0 in. wide heate-d ;-;ud~1ces.

This type of plot is significant when a power controlled heat tra.n:o[er ch_'l11ent

is used, ::1 s was the case in this investigation. The best polynomial fit cu cvc~s

are included for each of the three widths presented. The average dcdations

for the 0. 5, 1. 0 and 2. 0 in. wide heated surface data arc 2. OGc;, :3. ;Q(,; and

0. 23% respectively.

_N~t_l:'og~~· Figures 19, 20, and 21 show the heat flux cc~\ths o[ the

0. 5, 1. 0 and 2. 0 1vide Inconel horizcntal heated tJurfaccs, n:spl'Cti\·cly.

In Figure 19 the he~1t flux results for run 718A :1l'C presented. It cr~n be :;een

that the first three data points do not correspond with the gencl'al tn::nd of Llw

bulk of the data. They were not included in the best fit calcul~lt ions because

it is believed th:1t air was entrained upon the heated sudace d:uin~ the

beginning of these runs, causing the high heat flux values. (l'l) The cthr::r data

has an average deviation of 3. 01% from the best polynomial fit cut·ve. In

Figure 20 the heat flux results for a 1. 0 in. n<irror-finish Inconcl hol'izontal

surface arc presented. Notice that the only difference between the heated

surfaces described in Figures Hl and 20 is the width. Again the first five

data points in Figure 20 do not correspond with the trend of the rc:-;t of the

data and were not included in the best fit calculations for the n ·:.tson prcvit)usly

mentioned. These points ::md the ones discussed in Figure 19 s11g~cst a trend.

For the points included in the best fit calcubtions the avct'n.gc deviation is

Page 60: Film boiling from horizontal plates with low thermal capacity

J­z w

OL!.... -o u_ LLI­WLL. 0 00

(/)

0::: i...UCc: ll..::C (/} .......... z ~ <{f­a::: en r-

<(

w ::J:

100~,_-v------~~--------------~--------------------------~ RUN 7l8B (~ IN. WIDTH; INCONZL; HIRROR)

f-o 1-

RUN

RUN

529

503 80~ [] j A RUN 605 r-~ 0 lW:\ 717

i- 0 RUN 72~ !

601-----j

l

I I

r--

~ I

401-

1 ~ I I

'' ~.J.. IN.

(l IN.

(l IN.

(: ::N •

(2 IN.

TLST l'LUID:

I I

VAP.IAELE

l.tifii'H; IGu\T :-i AL ; s:-~OOTH)

~iiJI'H; K.&'?I'HAL; <:;.!IX/I' :: ) ••• Jtl ,d

~-BEST FIT C"CW::<; 'V~RA,.,., ., ... , '"' C'1 1 .h.~ u~ ....;...:_;V.i.rt..Ll i•:

MAXIMUJvl D:2VIhTIO~:

FT'l' CTI~'!E -----A'Vl.llAGE DEVIA'I'ION: MAXIhlr.~ DZVIATION:

0 .. 2;;% -0.38%

2.C6% ? .567~

~ c I

3:~ I I ~

20~----------~------~----~--~~--~~~~ I ? ..... ,~ - 6 7 Q a JO .... ,

-\ v u v •

HEAT !:"JUX I - :1 Q/A r ~·! fr,J.-j ~ l ""( l U I il SQ FT X ,n-4 .v

FIGURE 18- H versus qJ A for H-ll on Horizontal Surface Si1owing Heated Surface Size Effect

Page 61: Film boiling from horizontal plates with low thermal capacity

C1

X ::J

I -<(

w I

I 00, 000 .-------------------------.

~ 80 '000 f-

' r---

60,000~ 1---

L ~ l l

40,000t­l

~ I r-1

i !

7ES'i' FLUID: NITROGE..'l"

F..EA?.'ED SURl"ACS:

20,000 l ; ~ \

! ,-1 i i i I

0 RU;'; T-2~'-. ~/

0 I:-J;~ '/:.~.~ \\

3.01~ 5.U%

10 9 000 L--~~--~~----~--~~--~----~~ 200 400 sec soc 1 ooo I 200 l400

..,.._., ·pr-R. -· ~~-. '- ;'/!' ! \... . A I ' ,_) ,_ 1._, L-t lU,\._ ;1 i ' i=" r:- R :.· N' ('\ c u. r . .__ ~.-1 uL.:.,

FIGGHE 19- Heat Flux Results for ::\ on 0.;:, in. \·:i(;~ L~co:-.d IIorizont~-.l Sudacc 2

Page 62: Film boiling from horizontal plates with low thermal capacity

J 00, 000 ;.._~------------------------.,

a (/)

-­' .......... :::,)

l­en

< ........... a

1-<t w :c

: ~­.....

80' 000 t:-1

~-:--

6o,ooo!-;-

1

1

r-40, ooo r-

r }-i I t 1-

l • I

20,000f-! i r

10,000 200

0 !::]~! 719 v 0 ( ~·"r.> ... -vl INCLUD:sD IN BZST FIT)

400' 800 ! 000 I 200 T~HPC"PATllOC 1 ._.v:. :._,, • u,\._ D~:FERENCE, ~~ °F

FIGURE 20 - Heat Flu."\: Hesults for K on 1. 0 in. wide Inconel Horizontal Surface 2

!400

-· 0 .

Page 63: Film boiling from horizontal plates with low thermal capacity

2. 45o/c in Fi;jure 20.

Figure 21 is a presentation of the heat flux re:c>ults for 2. 0 in. \\"ide

1ni n·or--finisbed Inconel horizontal heated sudaccs. One of the l~c~ttcr;; tested

was cycled repeatedly from nucleate to film to nucleate etc ... , \\·ith the

darkened points obtained on the last return to film. It is believed th;1_t the hivh 0

heat flux values observed for these three points \\·ere clue to a sm:tll sei~:n·ation

of the heat transfer surface from the backing. The rc:-ot of the Lb t:c has an

average deviation of 1. 78% from the best polynomial fit.

Fignre 22 gives a comparison of the best p1Jlynomi:1l fit Cllt'\(';-, fuc tbc

0.5, 1.0 and 2.0 in. wide mirror--finishlnconcl hurizunt:;l hc:1.tcd ~;udaccs.

Fi6urc 23 and 24 present the results for 0. 5 and 1. 0 in. '.\·ide :-::mooth

Kanthal hol'izontal heated surfaces.

Figure 25 contains the heat flux results for a l. 0 in. wide K:1.nthal,

sand blasted, LJO- 60/L in. nns. , horizontal heated surbce.

ln Figure 26 all of the heat flux results for the 1. 0 in. heaters in

nitrogen arc presented. Tho best polynomial fit v,-as applied to a1l pojnts

except the ones representing the roughened surface. The a vcragc ck:\'iation

of the points included from the best fit curve is 5. 01 o/c.

In Figure 27 the results with a 2. 0 in. wide Inconcl hodzonial surface

with the heated sm'facc facing downward, are presented. For con1parison

the bcGt fit curve for a similar heater with the heated ~_;udace facing upward

is included.

Page 64: Film boiling from horizontal plates with low thermal capacity

I-Lt...

a (/)

er:: ~

...!.. ......... ::,)

l-en

<( ......... 0

.. ).< ~

I __. LL

!.....-I

<(

w :c

I 00, OOOr !

ao,oooF-.-

t-}-

60,000!--I-I ,...__ ' l

I 40 0001-

• ' 1 ~ r ! ·'

t-l

1-

I 20 ,OOOj-

~

I I ! 1

I . !

TF..S'I' FLUID: KIT~CGEN

r~J·Q:.::-iiAL - n~c.o~~z:. 6oo l;;'ID1'H - 2~0 IN. FINISH - iHlk'"'OR r- BES:!:' TI':' CURVE

\ - .. ---·-\ f, v::;lD'J.GE DEVIA?ION: 1. 70~~ 5-17% \ MA.Ilh'UM DEVIA'l'IOI~:

0 r.;;:: 623:.

... . . ..... V' r-·r·- 6?~..., ....... u.... '- ...

i I i

I l ( I

I I '

l 0. 00~1 00 / 0 r-.

--.. 1.) ~or o· u 800 lOOO i200 i4CO

'"" ' ,..... ·- ~ R :-- .. C r-: ,. ! ... ·- l...- 1, r- \I -- 'I • -1\ I....'

.2IGURE 21 - Heat Flux Results ior :\ on 2. 0 in. wide 1neor .. el Horizont..u Surface 2

Page 65: Film boiling from horizontal plates with low thermal capacity

0 (/)

. -·-;

I 00,000 /=-80,000E

I r-r-

60 '000 r-~ \

j-

.40?000~ ' ! I

l ~ j ! j

r-' I i I

2o,ooot-i ! (

' I ;-' l ' I

I t

i

!·1P.TE..'<IA1 - INCONEL 600 FIIGS3 - HIR.~R

1.0

2.0 IN.

IN. UID'l'H ~

'\ ~

BEST FOLYNO;t.IAL FIT CURVZS

I

I

l !

I I l

ru~ 000:-· --~--~------------~--~--~----~--~--~------~~ ' ' ,)

200 ..r. nu,...) -:v c ,., ,.... ovu

:'I . ' .... .

800 .. ....._ 0 0 J U'

- ·- ..- ......__ ---. N ,.... -:- r t-'>-1 !1 :1-, I ,\:._,~ Vi-'

FIG1JRE 22 - Heat Flux Rcsulis [or ;\,, Showiag Hcateci Si.<dz..cc Siz;e Effect ~

0:­i

400

Page 66: Film boiling from horizontal plates with low thermal capacity

0 ())

r­<(

LI.J I

I 0 0, 00 0[_----------------------. t___ i

80 '000~ RvN 711

I I /

60,000~ ~

F- /w )-. \-}/ '\;]

i //~ 4 0 ' 0 0 0 I ;'V ~ SFB~1 ;;'}"T SU:2VE

r-;, ~· --- ·- I s~/ ~·.'.J?:.2AGZ DEVIATIO:{: 3.'+ >J X .. ".::IKJ!-i DEVIATION: ?.&J'f,

~~~ I \.7 L v, I

i l

20,000t--l •

I I-I

I I

'I'ZST FLUID: NITROGEN

F..F.f.1'TD S'C'RFACE:

:..:ATZRIAL - KANTHAL A-1 '.:!If/f2 - 0.5 IN. FINISH·- SMOOTH; 5-8 ~IN. R~~

l Io,oooL.----~--~~--~--~--~1 --~--~~--~--~~

200 400 600 800 !000 1200 1400

TEMPERATURE DiFFEReNCE, ~~ - Or FIG1.JRE 23- Heat Flux Results for N2 on 0. 5 in. wida Kanthal Horizontal Surface

Page 67: Film boiling from horizontal plates with low thermal capacity

~ i!4 . z H

r-l I

;t_

.-..( co i~ I

~ ~j 11"'.

F; . ~ (-; r • ~=-~

~ f-4 .. ·c( .... ~ t:>~ !:~

0 0 ;~: <'...: I • Ul .. r:x ... r-i

1-l P'~ ~~ I 1--~ ::) I :J U:J t-i ~ f 1 ex: ._..~

~ ;:t. .. ~

~ r<l f;:{ (-<

E-; z E-< .,< 1-·l ~ tJj ~~ :"'!~ :::;;:

r,~

c~ ~.

LJ_J_l_, ___ Lj_ __ LI ____ j_l 0 C.) 0 0 0 C) 0 0 0 0 0 0 ~ ... ... ,.

0 0 0 0 0 OJ (0 ~ -

.L .:l oo ._") (:JH/nJB

..

---- ---·--·-··---·-···-. 0 C-:> (J)

t

a-- r--1 C'.J N '0 \..{)

•·. ,., % t.:-:l ~~ :-. N

/1 '--:. <1>

(_~

0 (X)

0 0 ........

C.) 0 (0

0 . -- C:)

t.O

0 0

·- ~ ... 1 ... -_. __ .J ______ 0 0

0 Q(Y)

0 0 0 0

... .. 0 0 N

v /'0 'xnl.::J 1 V3H

'r: ; I •) •

lt_ 0

• I --·

<]

"' C)

lJJ 0 d

'--<

CJ ;.... ::j

L ifl

w ~ ... B

~ c: 0

tJJ N ..• L,_ ....

0

IJ_ ~

'c:3 .... C'l

·~-j

~

'" llJ

:~ 0

CY. '.:j . ..... ~:J

> --1-- ~

. c: .. ...

·:.( 0

0:: . rl

IJJ !::

o_ 0 0\1

~> .<- ~

l.JJ ~ ... 0

1-- ....... U) .p

-;::j ·-' rl) ('.)

~·~ g ~ ... ~ +-' c-:1 C.) ...... ,., ...

ry C'1

~~~

f§ Cj ...... ~

Page 68: Film boiling from horizontal plates with low thermal capacity

0 !J)

<(

'-..... 0

' ,-.

< w

80,000~------------------------------------~ ,_____ I

60,000;-

40,000~ ~ I

! -I ' I r-'

20.,000f-~ ;

-I

TEST FLUID: !~ITRCXiEN

7INISH - SAXD BL!.STED; 40-60 ~IN. L;'.S

,. b.. -

RUN 706

i f

I I I

I ! 1

I ! !

1 o o o o~--1 ____ ~.__ ___ _._ ____ L_ ___ _L ____ L_ ___ _l

' ,... 800 900 jQQ 400 600 700 ;-r-~""'.-N1 C:­r-tc.Ktl' c., ~T

FIGURE 25- Heat Flux Results for ~2 on 1. 0 in. wide s:::.nd blasted Kanthal Horizontal Surface

Page 69: Film boiling from horizontal plates with low thermal capacity

I­LL

a (f)

OJ

...

l­<(

w I

100' 0 0 0 ,r----------------------------. !=.-

80 0 (1(1 f=_ • UV I

~ I-t-

(.._

60,000~ '-i r­i .-

40,000~ l

L I

TES':I' FLL'lJ: NITRCGEN

1-IEATI:-:D SU~R_?ACE:

r/IDTH - 1.0 IN.

TeMPERATURE 0~ j

FIGuRE 26- Heat Flux Results for K2 on 1. 0 in. wide sanci blasted Ka.nthal Horizontal SJ.rface

C.il -.J .

Page 70: Film boiling from horizontal plates with low thermal capacity

.-

a UJ

' r-eD

< ...........

0

X

!­<(

w ...I-

IOO,OOO~,----------------------------------~ J__ TE.ST FLUID: NITRCGEN 0 RUN 7o4 (HEATED FACE 00\•.'NWARD) \

ao, ooo; HE.4~9 suPu.1<'AC:: I L EATERIAL - n:coNEL 600 r\ I

6 Q " Q Q o,:- l;[iD':'n - 2.0 I::. V , FiraS!i - MI!<.~O.R

;

!--~-. I

40,000! r l

I ~

I 20 '000!-

1 L I I

,__,. , . .'..) v

B::f.ST FIT CURVU, HEATED FACE UP\Jlu'ID

IO,OOOL-----~------~----~------~------~----~

200 400 600 800 1000 i200 1400 - .............. -RA.,...UR 1 /'"'<I ,-,.-.-R-N·r.r-l t lVll""' t. ' j ' I c. L) ; j r- t. t i ; v t ~ LT

FIGURE 27 - Heat Flux Result~ for I\ on 2. 0 in. wide Inconel Surface facing downward 2

- 0;:-j

G"l 00 .

Page 71: Film boiling from horizontal plates with low thermal capacity

Figure 28 contains the heat transfer coefficient rcc;ults fo 1• thr' o r: - .. ) '

1. 0 and 2. 0 in. wide Inconcl horizontal heatecl stti'["""S. r 1 1 1 f cC'-v )1(' lJ( \'l 0!' ('(Jr!lp:1 J'i:-'())1

are the predicted results as presented by Chang and Berenson. Fl't·cnsun' s

equation seems to serve well as a lO\ver limit to 1hc heat transfer cucffkicnts

that can be experimentally expected.

Figure 29 presents the heat transfer coefficient versus heat flux rc~;ults

for the 1. 0 in. wide heated surfaces. The results for tbe rotJ:~hcncrl surface

are included for comparison, bnt not in the best fit caknlatilmS.

deviation of the points included from th~ bL:st polynomial fit is ·l. 0 lr}

Figure 30 shows the he::tt i.t·ansfer coefficient Yet·su:-o lv':d flu:-,: rc~ults

£or the 0. 5, 1. 0 8J1d 2. 0 in. wide Inconel he<1tcd surfaces.

Co£.relation With Modified Berenson Eou:1tion -----·---------~--~·------·--1-----

Examination of Figures lG and 28 display a fa'.'orah1c Ucnd for the

Berenson correlation equation in t1vo fluids of very cliUen~nt nature. The

Berenson equation does not include the effect of radiation bc.tt transfer to

the vapor film. l3rcntari and Srnith have published radiation heat transfer

rates for nitrogen. (l4)Using these values, the 2. 0 in. heat flux curve in

Figure 22 was adjusted for radiation loss. The heat transfer coefficient

shown in Figure 31 results from this adjustment. Although this data still

docs not agree with the I3erf'nson cquo.tion a sl igllt modification of Dcn;nson' s

coefficient from . 425 to . 512 rcsnlts in excellent correlation. The resulting

equation is therefore;

Page 72: Film boiling from horizontal plates with low thermal capacity

--• ......_

.... r---::>" ..::;_

w

0

u_ u.. w 0 (_)

~ w Ll... CJ)

z <(

~ l-

I-< L:J -..--l...

/00 ' 1--' 80 I

1--J r--i I

60 I r-

Lt. ~ 0 I

40 L_ • I r-- ' I u_ I

l """'' u {f) i

I i'.-'

r ...... ---L I

............ 20

I ::::> -I !-

! co

r I I

10 !

200

'I'.ES'l' FLUID: NITR<Xi&'I

H.E:~7ED SUF~ACZ:

XATERIAL - INCO~~ 600 FINISH - MIRROR

-~

BE.~SONJ

nrr· Guv

l 0 LUH 713A (0.5 IN. l;!IDI'J) I

-"·

'~;

0 v r:"l -

-..-..--... ... ,, ~V6..- '119 (1.0 I!{. '.:.'IIl~H)

RU:i G23A (2.0 IN. \1---,-·) ..l. ill ii

S:~J:·r G23B (2.0 IN. HIJY.·T·') ... _ .... ..~. ~u:~ 630 (2.0 T"·i ........ il.'I:JI'IT)

!000 1200 1 .r. u0Q I o-,·

,, 7 WI

0..-:-

FIG'L'RE 28- Heat T:raasfer Coefficie;J.t ::\esu:ts :or 0;"2 on Inconel Horizontal Surface

Page 73: Film boiling from horizontal plates with low thermal capacity

_ .. -~·----~----.-~ .... --... ··----.. ---------------~- ---- ·- --~-

7:: ;.~

8 0< (-< H .. ~ r-.l

u --: ..

:"') @ H :::. ::J '.I) ~ ~=-. p 10-• ,.:l Yl

~--:

r.~ Cxl r.~ E-< :X:

• -·~ H

~ . .. t~ ri

Q 1-i :c.

~--~ '":'_;~ -'T 1"\ Or.O . . ..:t Q'\

r-i I ()

<] <l\

: ~~ l.

) )

( )

' • -.: [. /':. -::: :.::

1,:]'\ (\J \Q

.. :::> ;-,.-:

<1

... <> . '] I.

~

~ > -

I ";) .. ...

I" 1,1 (•

·'(

' ~ ... ..; . ~~ f.' ~.~ ·~

•)

'J .. ., --

,."~~. ' • •(

' ) -. ,· •)

. ~ tJ ' ~ •( -:: ... :...--: . , .

~~ u ~~ C) •( .>:. ·:: :-...: ' i :~

,-j I.J'. ,s 0J .-~ \J;) ['- 0

,_ ' - . , --;·:;) '") ::;)

r~ r·; r.;

0 C>

oj_J0 _·_j _____ l ______ L ____ .L~l ... --------o 0 0 0 -. 0) C.O ~ N

H ' .:lo L..:1 OS tJH/IlJ.8

1 N ] I :] I _-1 J 3 0 0 cl 3 .:1 S i'-J V tll J.V3H

C)

())

<I)

'

r----

<o

(\J

. ,_, I C)

Cj U)

' l )

) __ J

1 I •

:-.. ·.(

LJJ :...r:

I •].

/ . . . .. .. ~

I .

·r,

: l

Page 74: Film boiling from horizontal plates with low thermal capacity

0 0 -

8 z \.[)

(_,.~ ·-=~ c:J ~·-l @ ~

f:-; 0 ~ 0 0 H .. z ~ z ~>:J ~--:

u H < ;)E; .. ~ Q ,._)

H ~ :.-r. b U) H ~~

~ Q 0j U) r,q ~--~

E--< ~I E-' z

~ -< 1--1 ;:.;; :r: ~.,. ...

~'-1 E--< :X:

L_L ____ I . ____ L ___ L __ j _ 0 CD

0 (()

. . . z ~--- z H ;.:c H

C\.1 C\.1 C\! '-' ,._.,

< 1=0 t<\ t<\ 0 C\.1 C\.1 t<\ \.() \.() \.()

s •v ·-· z m ~ P-1

0 ~ EJ

r~ ['] ') ''.1 r:. ·~

l:;-}-'~ ,J'r>

(;::' -} ('1 \· [t> [jfj>

__ j

. . z z 1--1 ~-~

,N .·~ rl '-' '-'

~ (0 u' .-I R ('- ---:,·~ z ~-.:>

b~ @

0 ,-- .. '· ' ... ---

--

--·

0 C\J

H , ~o !J DS ~H/n18 lN3181~J308 ~3~SNV~l 1V3H

( . ')

'-·

OJ

"l" r- I

0

({) ><

J- [f)

1.0 (lJ

LL v ro ...... ....

a ~ en (}) • -I , ..

'(j- ... ~ s:::

CY. 0 N

:r .... .......... 0

::r:: =~) ~--r

f--·-CJ

'"~ (•') c en C.· -H

r: ~

C':

<( ~ ~ . .......... 0 ......

Cj < (\.1 ~ ._, .. [f)

>( _, r:r:

:.:J ~-i CJ

·- ! > ..,~

u_ .. .... 0

1-· ~ ,,~

<( ~

~ LLI ;::.J

I Cl ....... ~""

Page 75: Film boiling from horizontal plates with low thermal capacity

0 0 -

H

0 -----·-··· ---····--· ·~----·--·---- ---~-- ·cJ

C.) l!.J --' f-- Lt J (_) :::;:--_: LJJ C) o=- (_) cc. ~::-:: 0-·­(_)

• VJz LLJ­::J _J (\J <(-....

> z

_J (_}..--

<( --z f- ~--· l '--' Z ·:.::C C3 l.'.J --C) ::=:: 0(< -- <r: I--· cr-: c<­LU z o __ L< >< o c~ L '..1 Lt_ • ··-

r I ....

0 co

C) (()

z 0 (f)

z LLJ o:: lJ J Q_j

0 LIJ

LL

0 0 2

l

( .:1 o .L .:1 b S 'J.NJ I 8l.:L-J?J08

/

)

/~·

) /~

z 0 (f)

z ltJ cr: L'-' co

/j

C) N

~lHI nJ tl) (J?J.:-lSNV~l 1 \f3H

(()

0 0 "-'[

0 0 C\..J

0 0 0

0 0 co

0 C) ([)

0 0

OC'\..1

LL 0

f-

<1 s::::

.._ 0 ...... +'

IJJ C'd ~

() o• ~

z~ s:::: LJJ 0

~1

n.::: s:::: 0

Lt.J ::..; (J)

LL ~

l.L "'C (J) ......

"-< ...... C::1 "0

0 :g

LtJ cr. r-i

,;.:,

::.) ~ ~,. .. ::::::.;

<( :::.> 0

(t:: ~

~ Ld 0.~ ~ .c:::.. LLJ r

Page 76: Film boiling from horizontal plates with low thermal capacity

( i-1.

[ 3 '

K h p (p - p ) (J"

h :=: • 512 -~~-£8 __ -"i_ _ _l _ __ y -~ ] rg-- (5------

,\ '1-; c J1 g '~ -,---vf c g (o 1 - p) '

1/4

This is a justifiable modification - - - ' since the origin~1} value of J3cecnson' s

coefficient was not obtained as part of his theoretical derivation, but was

obtained from existing experimental data.

Several theoretical investigators have staled that :-:ouchcc roughtwss

should not affect the stDble film boiling curve. (lO), (l1)They Curlhc-e ~;tate

that the important re~-cson that the roughness cantwt lnvc an c·Hcct ico lwc_·,:ltsc

the liquid never touches the heated surface in stable film boiling.

'l'he 1. 0 in. heated sur.faces used in this cxpcrimcntnl im·r,sti;~·:ltion

have the 1viclth dimension only approximately twice the vsJuc calcul:11cd for

the most dangerous wavelength. Therefore, according to Ta,yloc In:-;t<lbil ity

Criteria (sec Appendix A) there exists the possibility tlnt the vapor film

will not be uniformly supported in this direction, and t:w boiling 1 iqu id

may occa~3ionally touch the heated surface. Investigation of Figure 2G for

1. 0 in. wide hcat.cd surfaces .suggests a possible roughness effect. The trend

observed is opposite to that expected, if any was cxpcctcrl nt all. It is sug-

gested that tho roughness acts as a holding agent for the vapor fi.lm, and

actually helps support it in the width direction; tlKecfore, accuuntir.g for lhc

reduction in heat flux as compared to a smooth surface in nitrogen.

Figures 14 and 1 G show that no surface roughness effect is observed

Page 77: Film boiling from horizontal plates with low thermal capacity

formed on the heated surface e:tl'ly in the test. This dt•po~:;it 'X• ,,,1d ('()\ tT the

rouglu~ncd stn·face and rnake its outer appearance iclcntic:'l to a :'rn•)t'th

sucface with deposits. Therefore, the boiling results arc, as c> .. pLcit'd, the

same for roughened and unroughencd surfaces in refrigcrant-11.

Effect of Surface Size -----------------

In the literature it is generally accepted that a nat lvn·if',t,nLil pbtc c:1n

be assumed infinite for a particular fluid if its smallest dinH'Il:-iion is t•,rc·:<kr

4-1 - ( 1) u1an ten tirl1cs the most dangero,ls wavelength fur the fl11lll. · Then.::; and

1.0 in. heated surf:Lecs employed in this inycdi[;atiun :u··~ •:. dl1,, 1,,-_,- t1lis

lower lirn.it, :tnd therefore a surface size effect is cxpcdcd simil~'r tn the

diameter effect which occurs with Cjlindrical heaters. Jnv('::;tigation of

Figures 16, 17, and 13 for refrigcrant-11 and Figure 22 for nitt-,>gcn \\ill

~>uggest a surface size effect. This effect is possibly c:qgger:llcd by the

one-dim.cnsional method of calculating heat losses out the in:_;ubtcd side of

the heated sudace.

Effect of Surface l\latcrial --~·-------------·------

Figure 26, which includes Incand and ~<:anthal heated surfaces,

displays no surface material effect. Theoretical invcstigatot·s luxe predicted

thnt ;:-mch an effect should not appear in stable film boiling.

Effect of S1crf8ce Orientation --------------------------

In Figure 27 the results of a test with the heater turned face do\\ nw:wd

are presented. 'fhe best fit curve for a siE1ilar h'3atcr turned face upw.rrds

Page 78: Film boiling from horizontal plates with low thermal capacity

is included for coml)8Tison. Bv Jl · tl ' t .1 t: trmng 1e nca LT llLJside d<J\'.·n the g t':t\' ity

vector has been rotated 180 ° ·, this fibn·ure thc1'cfo 1·n 'tt'.' 1 1·c··,'tc•(l · ·r "' u " . a gt·~n Jty c•l t'ct

also. There is a definite effect and no attempt is made hcl'c to c:--;plain it;

but only to observe that it did indeed occur, and indicate that more woek is

needed is this area before a true understanding can ·be achieved.

The density, viscosity, surface tension, heat of' apol·iz:ttion, and

thennal conductivity arc all fluid pt'operties which affect boiling pc,·fllt·,n:1nce.

Lhe effect of these pcoperties on the boilin~ phenomenon. I,ll·~·:-,ti;~ati()n of

the thcrrnophysical properties for refriger<wt-11 and nitr''Gen in ,\pp• ndix D

will juslify the sin1ilaritics and differences observed in the boilin~~ <:l,:•l'al'lci'istics

of the two fluids as presented in the results. It is sug:;cstccl that the lY.odificd

Deeenson equation takes best account of the import<tnt boiling par~1mct(:rs.

Experimental Accur:tcy ---------------

Some error must be tolerated in ~1ll experimental imesti~<ltions. This

investigation v;as no exception.

One source of error is the induced emf due to the direct attachment of

• (~{;)) T

a thermocouple to an electncally heated plate. 'No crrot· occu1·s if the thcnno-

couple junctions arc points. However, the thcrmocoupl e j 1:nctions :uc fi11 ito in size

d t t l ·tl1Ctt'otl It ,,·as ori~dnally an therefore a voltage drop is p1·e8en <tcross ,w J J • ~

planned to correct the data for the inch.!cecl signal. An expcrimcnt::tl investi-

gation of the n1.agnitude of this emf was rnade by rcv(~rsing the eLit:rcnt at a

Page 79: Film boiling from horizontal plates with low thermal capacity

(j 7.

given equilibrium point and yielded a !rood indicatir)11 ()[ tl"' "l't'lll' ~ ,.._ ,__ f•>r a ::i1'1;lc

thenn.ocouple. However, because of different C)l'l.''Jlt.·t'l·,.,,,c rJf t'1·,r· '1 '- l 't.o _ l ;L' l'!lliiC't IU[l]l'S

as they we1·e spot welded to the heater, no single c~1li1J_cation or CtllTcdiun

curve could be obtained. It was also observed that the et-rors \\"L'l"C s•Jmc:.-hat

self-cancelling due to random attachment of the thermocouple junctinns. It

was therefore decided that ,for this investigation, a.ny L!r i·or due to the i nch:ct'cl

emf would be accepted and its maximum value rcpodcd. The rc·~:ulting

avceagc temperature of the test plate could be in error by as n11:ch as -'~ ;:;o°F,

r1Jtbough this is neither known nor .:;--:pcctcd to kt.ve l;:·r•n 1hc c:tse. TlK· r·:-:pLckd

error is less tban this value.

The "average" plate temperature used was the si111ple ~J t·ithcmctic

avera:;c of the six thennoconplcs <ltt~1chcd to the p1~•.tc. ~cc:t 1.lSI~ uf the rcL1tiYdy

hn·ge tcrnpcr~ture varin.tion with position (on the order of l00°F) >)11 tl:e heater

under son1e boiling conditions,this avc1·a;;c ~nay not represent the 1:1,::tn Y~1lue

of the surface tcmpcl·;:tture.

Heat loss through the tr~nsite insttlation b~cking w:ts dctc rmincd hy

instrumenting the backing with thermocouples as a heat meter. The :tccut"acy

of this method of dcterminin~~ tho beat loss ihrough the backing decreases as 0

the width of the heater decreases. Using three tempcr:Lture locations (c~>SL'n-

ti~lly two hc~t meters in ~cries) in the b;<cking ipdicatc•l that fo1· the 1. 0 and

2. 0 inch wide heaters. heat loss mcnsurcm.cnts \H't·e accurate to lOc~. For

future work with half-inch he~tet·s a complete thrcc-c1L11Cnsion:'l tcr"!1pcrature

profile within the backing will be needed for accnr'lte clclcrm.in;1Jion of this

heat loss.

Page 80: Film boiling from horizontal plates with low thermal capacity

68.

Precision instruments were used for nwasuring the current, voltage

drop across the test section, and thermocouple emfs. Errors introduced

because of the limitation on accuracy and readability of lhese instruments were

small comp~u·cd to the errors introduced by other factors as mentioned

above.

Page 81: Film boiling from horizontal plates with low thermal capacity

_CQ~_CLU:3IONS A~p HECOl\1!\IENDATIO~S ------------·- ----------

It is concluded that:

1. There nuty be a surface size and rou~hncss effect in :-ol:tl>ll' fil 111 l;r 1 il i 1w .~

for horizontal heated surfaces with one dimension nc:tr the 11111!-'t d:lnt-;ct·uus

wavelength.

2. The heated snl'face material does not affect the st:1blc film huilin~~ t·c;sion.

3. The orientation of the heated surface with rc~pect lo the g vcd•ll' d()cs

affect boiling performance in the stable film rc~ion.

·1. Film boiling pcrforn1ance for horizontal lwatl'd ~-;u d:tr·cs c·:: :1 ~)~' :'('('II J':' t ( ·] y

pn:dictcd usinr:; Lhe modified 8ercn::oon cr1uation ( L~.

5. The hc:~.t transfer coefficients predicted by Ch:tnt;' s c•1uat iun :~r·1·vc :-ls an

tipper I i rnit to the data observed in refrigerant- ll.

It is ruconnncncled that:

1. Further work be pc1·formcd with several Uuids in all an:.-;1 s n'p•J L'tC"d to

further verify the data, especially \Vith the heated surface fa('ii1!; du\Yn'-1 ~n·d.

2. A drup test app<lratus be designed in conjunction wilh the [H·c:-~( nt ~1pp;u·:ttus

to test the effect of reduced gravity fields on st2.ble film boiling.

:3. The app::1ratus be modified to study th2 effect of oscillation upon the

St8ble film l'Cgion.

4. The present apparatus be instrumented to stwly bucnout phcn• \ll1Ct'on of

lo\v thermal capacity flat plates.

Page 82: Film boiling from horizontal plates with low thermal capacity

'iO.

HEFEHENCES --------

1. Nukiyam.a, "The Maximum and ::\Iinimum Values of the Ik:1t Q Tt·an:,; 11 littcd From Metal to BoH in~ Watm: Uncle1· Atmospheric Prcs:.;ure," Tnt. ,J. Hea_t Mass Transfer, Vol. 9, 1966, p. 1-119.

2. Jens, "Boiling Heat Transfer: What is Known About It, 11 As;.rE, December 1954.

3. Kreith, _:Pri!1cipl es of I_!~~LTral!_Sf~l:. International Text buck Comp~1ny, Scranton, Pennsylvania, 1966, 2nd ed., Chap. 16, p. <1-19.

4. Berenson, "Transition Boiling He8.t Transfer from a Horizontal ~ud;tcc," -~'g"T_Te_s;hnicfl.l Report No. 17, 1960.

5. Gottf1·ied, Lee and Bell, "The Lcidenfrost Phcnomcnnn: Film f',ni1in:; of Liquid Droplets on a Flat Plate," l_J](. __ )_. __ !l_c_:l_t -~~0_ss_ :(r:1 nc:fc· r, Vol.

9, 1SG6, p. 1167.

6. Bromley, ''Heat Transfer in Stable Film Boiling," ~'__~g_;_~ic~1_}~i:'_~;~rlc~·Li~1_g

_:p_E_2_gress, Vol. 46, 1950.

7. Chang, 11\Vave Theory of IIcat Transfer in Film Boiling," _<I_o_:~X~l~l_l_c~f_l!t,::_t_!_

Tx_~.?:-~[_9r, Vol. 81, 1S59, p. 1.

8. Zuber, "Hydrodynamic Aspects of Doiliug Heat Transfer" AECU-11:}9, 19!)~).

9. Berenson, "Experiments on Pool--Boiling Heat Tran~.;fcr, n !~~t._.J~.T~::~_L\~2:_s_~

_'[!;<tnsfer, Vol. 5, 1962, p. 985.

10. Berenson, "Film lJoilL1g Heat Transfer From a Horizontal Sucface,"

ASME Paper No. GO- W A-14 7, 1961.

11. Hosler and Westwater, "Film Boiling on a Horizontal Plate", As;. IE, April

1962.

12. Class, DeHaan, Piccone and Cost, "Boiling Heat Transfer to Lir1uid Hytlrogea from Flat Surfaces," Inh Ac_!y_.~.!~Y~l~~. , Vol. 5,

1959' p. 254.

13. l\1anson, "A Periodic Nonuniform Heat Tr:.tnsfcJ.' 1\Tech<tnism in Film BoilinfY " Journal of Heat Transfe~, Feb. 19G7, p. 111.

\.~' ----------~--------

14. Brcntari and Smith, "Nucleate and Film Pool Boiling Design Correlations foro N H and H "Int. Adv. in Cry. Eng., Vol. 10, 1964

.?.' 2' 2 e' ----· p. 32!5.

Page 83: Film boiling from horizontal plates with low thermal capacity

15. Cole, "Investigation of Transient Pool Boilin:.r J)t•e to ,•:1,-lltl(_'Jl ~ , - L:t :·~;v P"\\.l'C

Surge, 11 NACA Technical Note No. :3i385, 1%6.

16. l\IcAdams, Heat Tran:smission lVIcGraw-Hill Boo].: ('o I ,. \' 1 ----·· , .... ·-·, llC., ~'1....'\\" 1)1'\.,

17.

N.Y., 1954, p. 387. -

Hohsonow and Choi, Jj_eat, 1\'Iass and J\Iomen~~~_I~~-n~[g_E, Pn:n t icc-1 I all Inc. , Englewood Cliff, New Jersey, 1961, p. 231.

'i I .

18. Holman, He;:!:t T~1sfer, McGrmv- Hill Book Comp:l.nj· Inc. , :\'c~\\. Yu1·k, ;..1. y. ,

1963, Chap. 9, p. 208.

19. Jakob, _!_Ieat_ Tx:.~'lilsfer, John Wiley and Sons, Inc. , New Yo dz, N. Y. , Vol. 1, 1958, p. 652.

20. Parker and Doggs, _fJuid __ l\Tecl_1ar~J-S?? atl_1_!_I~at--'Tt~ap:"fc~T_, Pt·dit!1it::t•·y l·:rliticm

Okhhoma State University, 1966.

21. Tong, BQ_iJ.it~g_gcat __ Transfcr an_c!_]'w~~~rJ~t~q_-~·~1~)~~ •. John \\"ilcs :tJHl ~::·1ns, Inc., New York, N.Y., 1965, Chap. 2.

22. Houchin and Lienhrrrd, II Boiling Burnout in Low Thermal c:··.p:,city Hc::t••l'S,"

ASME Pa~)er No. 66-WA/HT-40, 19GG.

2:3. Usikin and Siegel, "An Experimental Study of Goilin~ i11 l~cduc::.·d ~1nrl /':ceo

Gravity Fields," Jot~:_g~1l Q!_IIcat T~~nsfcr, 1961, p. 2·13.

24,. Change, "A Theoretical Analysis of Heat Transfer in ::\:1.tucal Cu:t:•·•:Lin:l :1 nd

in Boiling," AS.ME Paper No. 56-AA2, Oct. 1957.

25. DiCicco and Schoenhals, "Heat Transfce in Film BoilinG" \\·ith p,;J;:::aling

Pressures", ASl\IE Paper No. 63-V/A-'75, 1964.

26. Grossn1aru1 and Hauser, "Heat Transfer from \Vil·e to Subcoolcd and Boiling \Vater," Int. J. Heat Mass Transfe_r, Vol. 7, 1 9G·t, P. 211.

2'1. Flyru1, Draper and Hoos, "The Nucleate and Film Boiling Curve of Liquid Nitrogen at one Atmosphere," Int. _:~ch:_. __ i_~~-_S~ry:__~~~·, VoL 7,

1961' p. 539.

28. Hhea; "Boiling neat Transfer from an Oscill:Lting Sphere with a Cl·~·"G''nic Fluid at Atmospheric Pressure and Standrrrd Gravity," Ph. D. Thesis,

Kansas State University, 1967.

29. Levy, "Generalized Correlation of Boiling Heat Transfer,'' _l~ul.'naJ..J?f Heat Transfer Vol. 81, 1959, p. 37. ----·-~

Page 84: Film boiling from horizontal plates with low thermal capacity

30. Forster and Grief, "Heat Transfer io a Coiling Li<1u id - :'1 Tv'-·:.:; 11 i ;-; m ~' :t nd

Corrclations,"Journalof_llca!_'_l)·ans[cr, Feb. 1!)5~, p. t:L

,. ') I "•

31. Rohsenow, "A 1\'Iethod of Correlating Heat Tl'nnsfcr D:!b f<lC Slt·f:l,·e J~oilin 1_; of Liquids," AS.ME Paper No. 51-A-110, 1951.

32. Taylor, "The Instability of Liquid Surfaces When Acceh·catcd in a Dirccton

Perpendicular to Their Plane, I," Proceedings, Royal s~_cidy of London, Vol. 21, SeriesA, 1950, p. 192.

33. Lamb, _I~ydrodyn?-mics, Dover Publications, New York, N.Y., l:l!S, p. 1!15.

34. Milne--Thomson, TJ::lcol~~ici!-lJJydrod~~n::tmics, The ?\Iacl\1ilbn Co1np:1ny,

New York, N.Y., l9GO, Chap. XIV, p. 388.

35. Davnnport, J\1agee and Leppert, 1'Thermocouple AH;lch:11cnt to a Di ,.( d­

Currcnt He<ltcr, rr . .Jou,~:_i]}-~_1-_of J.IC:.~lJ:_I!::'~~!~sf~~·, ).fay 1 !lr1:?, p. I ~7.

36. Allred and Blount, "Experimental Sl:udics of Taylor In~1~1hnity, '' L.\ -I r;oo, Nov. 1953.

37. Perry, -~_l_~~.Lilt.9DJ_1<;:l}P,'j)19_1:'~t..e_ll:"l:lll1!)ooJs., 1\IcGraw·-IIill Dook Co., Tnc., New York, 1950, 3rd Ed., p. 229, :371.

38. Chclton and Mann, 11 Cryogenic Data Book," _\i~\!-2<;_T_S?<;:} 111i~' 1 1 ii_L1)2_~!_

..?.~~. 1959.

Page 85: Film boiling from horizontal plates with low thermal capacity

'i :~.

APPENDIX A

DI§_~2-~SSI_QB_Q_F AP:i?LIED IIYDHODYNA~HCS -----------···- --- ---------------

Hydrodynamics is a branch of physks \';hich dc~ds \'. ith l11L' prt)1Jll'll1S

associated with fluids in motion. Several authors, such as ~~ercnson, (lO)

l (7) r (8) . . C.tang and Zuber, have drawn upon different phases of hyd t·udyn:<n1 ic theory

to arrive at models to represent film boiling from a flat plate. The fact

that solid-yapor and vapor-liquid interfaces coexist in film huil irt'' 111:11-;.es ',

the p1:ohlcm very interesting. 13 (4) . z 1 1 1 . . l erenson ano ,u Jc:r 1:1ve :1 :-;o ln\·c~t ::r:!lc1 .,

a triple solid-vapor-liquid interface h~ls been pl'OH'I1 to (•xist. (l)

The following is a brief prt?sentation of the idca:o, ns~:.:1n·.ptiuns, and

to <::.lesser degree the mathematics set forth in th.:; litcr:1ture cc,ncc;·nin:~ the

<-'1.pplie~ltion of hydrodynamics to boiling at the buri10Ut poi:1t ~1nd in the ~;Lti)lc

filrn region. . (-1)

This p.ccsentation will draw upon the works of .3ct'c·nson,

Z 1 (8) (7) -"uocr, and Chang.

}::_aylor - Helmholtz; Instability ----------------~----~-- -- -~---- --·-----

Taylor (32) (:3G)wcts the first to study the pi·oblcm of a 1 iLpid \·at'''r inter-

f 1 l ' 1 t• T,::1..-lor visu:1lizcs a fluid ace subjected to small sinusoi( a pel·Lur Ja wns. .J

of density p existing at an interface. The heavier fluid is alJU\·c the li~~htcr 1

fluid ~'J 2 ;.~ p1

). Doth flu.ids arc e.-..:pericncing the pull of gravity ;tnd :-<lso :111

added acceleration in the opposite direction. Bcl'cnson interprds Taylor' 8

results to ~>tate that, when !he acceler:1tion is c[it~..'ctcd i\·om lhc J ightcr to

the heavier fluid, an instability will exist, that is, the intcrL"lce \\·ill pcriudic:llly

Page 86: Film boiling from horizontal plates with low thermal capacity

7 1 •

rupture with time. Hosler and Westwater (ll) say that Ta dor' s rc::t!l t s :.;h,,w

that, \Vhen _the acceleration is directed from the heel\' icr to the } i;_;h ((> t" rJ u id,

an instability will arise. There seems to be some qllestion 1111 Llw int ... ·t i!l'<·t:lt i()n

of Taylor's results. The present interpretation is that thct·c arc two :1ccl'l,•r-

ation factors of importance, the acceleration due to gr:1vity :md an :tc·,·el('ration

resulting from the buoyancy effect of the lower fluid.

In the literature several terms associated with a di:ocussion of film

boiling, such 2.s critical wavelength, most dangerous wavdcn~jth :md l·rikt·ia

for stability, are at best not universally or uniformally :1pplic•d :·nd 1il1d•_·,·:-1r>IHI.

Possibly it is unfortunate that the narne Taylor InsL1bil i'<> h:ts ,_·1 1111 c i ,-,1 n ·.·.ide

use, because this instability must exist in order for a system to op<:l-:lte in

~!ab~~ film boiling. Th;-1t is to say that stable film boiling i:; ch:tr:lckt·izcd by

the mathematics of Taylor Instability.

The basic mathematics of hydrodynamics for two ph~1sc iilfcrf.lces

. (:l;))' (:ll) '' subjected to small perturbations can be found ll1 several texts. l he

U::;u:1.l assumption is made that the liquid-vapor interface is subjL'ctcd to the

following small perturbatim:

-iwt N == N e cos mx

0

where the wave number is defined as follows:

111 -27T A.

(A-1)

(A-:2)

By making the appropriate simplifications applicable to a t\\·o phe1.sc it;tcrface

above a flat horizont<ll plate, the irrotational flow kincm:ttic equation yil'lcls

the following frequency equation describing the oscillation of the intcl'facc:

Page 87: Film boiling from horizontal plates with low thermal capacity

,. r: ' . ) .

2 w

3 g crm

== _c __ p + p

1 v

g(p1 - P)m --~------

p + p 1 v

This equation assumes that the effect of V~tpor velocity and dll•:h ,; rc :<c. 1 i: i1 1J0 .... .... -.

The condition for stability is that JJ be re:1l. Inspcetinn uf the i nt(' rL1ce

equation shows that when ~i.! is imaginary the oscillation will g1·,_,,\. ,\ ith time

and the interface must rupture. Therefore, the left hand ~,ide uf c• 1u:lt ic ,11

(A- 3) is set equal to zero to find the range of instahil ity.

3 g crm gVJl- P)m c

== pl + pv p + p 1 v

[-~ V>J pv) l 1/2 2r.

n1 - ---- -g (J' A , and

c

therefore the critical wavelength,

(A- l)

The term wavelength as used here means the distance bet·.•;ccn the ;1.ntinc.dcs of

vibration of tho interface or the distance between the bubble relc:tsc areas.

Examiaation of tho above criteria for stability yields the fact that \\';;.Yclr·n;~ths

longer than A cannot exist in a system experiencing film boiling from a flat c

plate. In stable film boiling the wavelength and ampl itucle ch.'c l'L';l:,;e, and the

frequency increases as the surface temperature rises. There is a continuum

of wavelengths that can exist in stable film boiling, but only one '.,·avckngth,

the most dangerous wavelength, has the maximum growth rate. Thus, the

derivative of w2 with respect tom is taken which gives

Page 88: Film boiling from horizontal plates with low thermal capacity

7 G.

(.\- S)

therefore,

Hosler and \Vest.water have shown experimqnt:tlly that the minimum

wavelength present at the Lcidenfrosi point is A , r~.ncl the aycr;we \\ :l\ c·1 cn!:th c . ~ ..

present is A.d. With this in mind an experimentor could design a fb.t strip

heater to have a minimum point in stable film boiling :tt :tny c]esin·d pllsition :t1ong

the film boiling curve for an infinite plate.

Fluid properties have a significant effect upon Ad. P1·, pcrty \~Jm•s

used for Refirgerant-11 and Nitrogen arc listed below:

Nitrocren __ .:::_>;;!_

P 1 ==50. 44 Hm/cu.ft.

p = 0. 225 4f /cu. ft. v lll

-4 u = 5. G7 · 10 Hlft·

A.d = .139 in.

Refri[>crant--11 ·-----~---- ------

p -= ~n. 8 :' I cu. ft. l m

P -= 0. 307 _:i /en. ft. v m

-3 (f - 1. ;) 0 . 1 0 ,, /ft.

The density and surface tension of the liquid ,,-ere taken at saturation

temperature for the liquid and the vapor density \vas eyaluatec1 usinr~ the

perfect gas lmv at the average film temperature.

Berenson has greatly expanded this Taylor InsU:l)ility thco1·y to dcn•lop

equations (1) and (3).

It is interesting to think about what is actually happening to a system

in film boiling at the Lciclenfrost point. At this point the surface tcrnpcr:tture

Page 89: Film boiling from horizontal plates with low thermal capacity

'i7.

is just sufficient to gener8.te enough vapor to suppol't the int•_·rface :~t the

existing wavelength. An understanding of the trans it ion n·,;ion c: 111 lJe

developed with this simple model. If the tempcr::1ture is J1,,\ ,•red tu :] i;~htly

below the Lcidenfrost point, hydrodynamic eff8cts clcmar,d the brL':l~~ '.:p 11f the

vapor fihn, but the temperature is too high to allow stable lVWl(•ak huilin~r :1nd . '

transition boiling occurs. In the tTansiticn 1·cgion the v:1por gc1wr:1 tc·•l i :> too

large for stable film boiling to exist and too sn1all for 11l'dc:1k boil ill)~ to

exist continnously at any given point.

In conclusion, a brief discussion of the ph:y:~ical h·Jil iii:~ p1w''"'lWil:l

governed by Helmholtz Instability \\·ill be included. Zuber 1n:> (''\11 11. i\ l'ly

discussed the flooding effect which takes place at the bunuut puint. ·r::i s

flooding effect is mathematically clcscribccl·with the application nf !{, 1J, 1 h••ltz

Instability Criteria. In the nucleate region at high heat rltt--:cs coll'lll:ls of

vapor form in the boil:ing liquid. As the temperature of the 1w::.tu· :~·cK'~ up,

more and more vapor is being c:1xricd away from the hcakr ~;ul'fa,·e; 1b'l't fore

the columns of vapor become larger in diameter and begin to rub ~1:~~1.i11~;t !lne

another. At ihe burnout point the surface becomes flooded 'dth \-~lpur colunil1s,

and the relative velocity and surface tension effects of the cclumns c:1.use

them to coalesce into a continuous vapor bh1.11ket. If the system \\'Cl'C tempera-

turc controlled it ·would oscillate between nucleate <1ncl film :)oiling :J~ the

temperature was Increased slightly past the burnout point. It is\\ ith the

mathematics associated with these ideas that Zuber has developed cr1uation

(7).

Page 90: Film boiling from horizontal plates with low thermal capacity

78.

APPENDIX B

Page 91: Film boiling from horizontal plates with low thermal capacity

'rAHL..,; IV

EOILI.l';G RESEARCH DATA .AND }lli0~L'l'S TAoULATION SHEET

TEST NO. (Date) 529 Al-:BIENT ·rZ~1PERATURE REF~R~~CE JUNCTION Room Temperature, 82°F

.FLUID Refrigerant - 11

HEATER ~-:ate::-ial: Kantha1 A-1 Size: 1.0x4.125x0.010 Su::-::'ace Condition: Smooth;S-8/.Hn. rms.

' I J Run l'Jo. i ·------·-----------1 Current

a.lipercs I

1 2

118.1 144.4

3 4 5 ~-------·-

131.8 116.4 105.5 -------··-

4.19 4.03 3.60 3.28 \ v~~~~~e Drop across Heater }

~~------------------------------------~----3_._1_3 __________ ~------\ I Average Heater Te~perature, TR

~F ; Average Bulk Temperatt:.re, TB ' OF \

: Temperature Drop in Backing ~ OF

1106

75

124 ·---------·--- ---------·----

, .. 1lt-52 1276 1106 948

75 75 __ : ____ zLi 15 I

i I

222 1 ?_9_._ .. -1Z-6_: ___ lQL'

I

:

Po\JCr Su:;;p).icd to Test Section :Dtt:./:z--.1.!' sq ft 44,100 !_7_2_,_o_o_o_; 63, l.Q0 ___ 49L9_9_9_:_ 41,2Q9_; ____ l-----'·----

, '

l H.:::3.'i:. Loss throuc;h Backing ' 3tu/hr sq ft

Boiling Btu/hr t___. ____ _

: neat Trar,Gfcr Coe~ficient, h : Btt~/m~ sq ft o7

·--

1,031 1,377 1,201 1,031 ·------------------- ·-. ---

" ( " :· ·' ) .. j_ j

I,), llO

!.!, . 7 2

3.098

S73

L,J.04

Page 92: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 603 REFE?£~CE ~JNCTION

FLUID Refrigerant - 11

HEATER Materio.l: Kantha1 A-1 Size: 1.0 x 4.17 x 0.010 Surface Condition: Smooth: S-8/:-{ in, ms,

Run Xo. 1 2 3 4

j Current !

! arr.peres 125.4 112,3 102,0 6 t

Vol~age Drop across neater ~ I volts

3.36 l 2.61 I 3.03 2. 77 ~

Average Reo.ter Temperature, T:.r ·~ OF ... .,

1000 878 765 693

Average Bulk Ter.~perature, TB OF 75 75 7L 7

Te;;rperature Drop in Backing 011' .. 289 285 223 166

I Pov.'~l~ Supplied -co Test Section '

\ ~ t Btu/hr sq ~"'C l49,100 39,700 32,800 29,100 l

\ Ee~t :Loss throus:~ :3ac:dng ' Etu/t-.r sq .c--

9,260 9,140 7,150 5.320 \ .. "' I

r~c:-~·.p0rU. t u:.~·.:! ~i:f\J:_"(;l~CC, .C..T en ,.., ' ' S25 so::. ,) (; \) 010 "i~ ~;_· - ...._ -;:: I .. ...)

' ............ .bV:..~::.:-.. 2; ~C0.7, ~,l~x, Qj' .h

::.~~~;~-.-: :::;q --~ 39' ~~~0 3G.500 25, (_J5C 2:; . I,-~ 0 J.v

)., b }It::c.:.."t '::::-u.:-• .3 f c:.. ... Co~~::.ci.er,.t, ... ::,~u/f: ~a.

:-- O? 3._1.J 37.2 I . " 43. 1 .) ~; ....

Page 93: Film boiling from horizontal plates with low thermal capacity

BOILii\G RESEAHCH DATA AND R.L:;SU:STS 'l'i'.i3L'LNI'ION SnEET

TEST NO. (Date) 605 REFERENCE JUNCTION 32°F ~=-~--------------------------

.FLUID Refrigerant - 11

F.EATER Material: Kanthal A-1 Size: 1.0 x 4.17 x 0.010 Su::::-face Condition: Smooth; 5-8,;.-\.in. rms.

I I i l<t;.n No. 1 2 4 5 I

i ~ Curl'~nt

125.0 120.0 109.0 100,0 93.0 l

! Vo; +~r-e \ .1- vcl.b Drop across Heater j volts 3.36 3.21 ,__;:;3.:.. • .:..00~ ___ .;;;.2.;.... 7;....0;.._ 2 .2Q_:, ____ _:_ ___ _:__ __ -i I

' i Average Hec..ter Temperature, m i ... H { 1

i OF . 1019 990 878 756 705 ! i----------------------------------------------~~~~----~~--l----~~--------~~----~~--~----------------~~------~ I •1. Average Bulk Temperature, TB 1

°F 7 5 7 5 7 5 7 5 ! 7 5 L-------------------------------------:-----~~~--~~~-----~~-~----~~-----~~+--------t--------T--------l , D ~~ B , . i \ Te:::'.pcrature rop ~·• acKl.ng 1

: O£ 314 302 2~5 ' ---~1~8~5~1 ____ ~1~6~5--~------~------~------~ !_· ----------------------------------------------~~~~--~~~~--~~~- I

Power Supplied to ~est Section Btu/r.= .sq ft /+8' 900 i 44' 800

·---------------------------------------------~--~----~----~----\

!

i 3S,l00 31,4oo: 21,100

\ Eta':. :.os::: through Bac:cL:r.g '· 3tu/hr sc;. :::'t 10,100 9,680 7,850 5,940 5,290 ·----------------------------------------~----~---~--~--~-------~~~~~~--~------------------------~

91) ,. r., () ,') .l 630

37,600 JJ,:::,oo 23,4~0 ~3,220 19,540

39.9 37.C': ') . i ~)...... . ... 3 J. 0

Page 94: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 621

.FLUID Nitrogen

liEATER I~ a. t e:-.ial: Kantha1 A-1

' \ c ..\.. ! urr\Jrlv c:;.r::percs

Vol:age Drop across Heater .. v .. ol-:s

\ ; Average 2eater Teraperature, ~ ()F

T •. n

Av0rage Bulk Temperature, TB OF

Tor:-.perature Drop in Backing

Power Supplied to Test Section Btu/f'.r .sq ft

1 ~~:.~~:--.: ;~ca:. :;,j_·~x, \-;;~· .. "2 ~ l:../:..--.:, :3C. ft.

AMBIENT TEMPERATURE REFZlli~~CE ~JNCTION

Size: 1.0 x 4.0 x 0.010 Su:::-face Condi tio:.1: Smooth; 5-8 /'A-; r;, rrr:s.

1 2

97.5 96.0

2.55 2.50

3L:.s 325

-320 -320

' 190 194 1 ' ~

30,500 29 ,• 400

5,6SO 5,840

o ~)s I. t; ,)4J

24. ;:;20 23.):;()

:r .~

'"' -· " _j • . ." '• ) _) I • ..._,

Page 95: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 623A AMBIENT TEMPERATURE REFERENCE JUNCTION

FLUID Nitrogen

HEAT&~ Hateric:.tl: Inconel - 600

1

\ C'.lr:-ent l amperes I

! i Voltage D:;.~o:p across Heater I ~

1 vo.J..ts

Averar;e Heater Temperature, TH OJ

\\ . .;\.v.:;rc::o.gc B-..:.lk Te~npera~ure, TB O:_t'

l

j

: 'I'c~;,pc:='a-c~rc Drop ir. 3ackir.g \ 0" { ::

-----

Size: 2.0 x 4.09 x 0.005

1 2 3

160.1 174.5 186. 7

3.10 3.1-tO 3.65

532 6S4 824

-320 -320 -320

177 191 209 ·-----------------------------------------------------

35,600 40,750 : _______________________________ ___ ....__ ~ ... - , , - , . ~ ,..... r .., ,....., ..,.. v ... _ Vv~.v"" .._,.._l._,~._ .... U

5. ·; 10 (l. 2; ~;

Surface Condition:

4 5 6

161.8 147.0 138.7

3. 15 2.87 2.72

530 433 367

-320 -320 -320

l7G lSO 118

:;o.0co ' 25,3JO : 22.600

-- ') ~ ,,.... : . ....) \' \) :. . 50,) 3,)40

Hirror Finish

7 8

129.0 117.5

2.50 2.31

267 176

-320 -320

105 f~O

'19.350 : 1(>.300 :--·----·

3.: ,Q ? '· r'"" L..o I ~ + \ ' \ I

---------- ------ '-------------- ------ ----------

'- .. ._-_ ,_J \_l ... ...,

... ) > ',·--, ---

__,'-+ •• ~ _I, __ , .J'+ .... .,,

-------~-··· ---- ------------------- ------------'

.. .... 0 ~· ...

Page 96: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 623B ~~lENT T&~PERATURE 85°F -=-..-:;..-- REFERENCE JUNCTION ~-~3~2~0_0 .F ____________________ ___

.FLUID Nitrogen

HEATER Xaterial: Inconel - 600 Size: 2.0 x 4.09 x 0.005 Surface Condition: Mirror ~ipisb

! T.::;::•perat-c.ro Drop in Backing I

t °F \<----------------------------------- 154 164 lS9 195

----~~--,----------

\ Po·.·:er .Supplied. to Test Section ~-"---/'nr c-o _..,_ ~lilA•• ~.a.•"'

Heat Loss t~~ouch 3acking "3~\l/l:r ~c.. ft

Do:.:..i.~-:::

;J~L./~-..1· ------------------------------

33 7 SCO

4,000

9!1-,·)

29. s:t0

34,800 :36,200 .3?-.,700 '44,700

4,700 l1-, 940

l, Ol!O l,l),,4

3li.: c,~ Jl, :::~.~;

5,080

. ') ' ''-'\.'

5,850

2. 71 2. 51

376 252

-320 -320

140 107 80

31,200 22,400 19,200

4,200 3,220 2' L.(;\)

939

2/. Ci.IO •. - \.I';

:r

Page 97: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 623B (cont'd) AMBIENT T~~PERATURE ___ s_s_oF __ __ REFERENCE JUNCTION _-;;;;...c3.,2~.~.0'-0-F.._ ___________ _

FLUID ___ N_i_t_r_o~g~e_n __________________ __

HEATER Material: Incone1 - 600 Size: 2.0 x 4.09 x 0.005 Surface Condition: Mjrra~ Fjnisr

! Run No. ' 9 10 11

\, Cu:~rent ~ t

!~· __ ar_._'P __ e_r_e_s ______________________________ ~ __ l~5~8~.~o~---!-~~~~~-~~~u_~--------~-----~------~------~------, i

145.0 132 0

\ Volt,,ge Drop across Heater I ~ \ VO.LtS

i

Average Heater Ter.-.perature, TR oy

1 Average Bulk Temperature, ~B I OF \

Te~perature Drop in Backing OF

Power Supplied to Test Section

3.10 2.3S 2.58

368 248 11+2

-320 -320 -320

113 112

1 ___ 3_t_u_·l_'_n_r __ s_c_. __ :_t ___________________________ ~j=2~9~,~4~0~0 ____ 2~4~,~8~C~0~~~2~0~.4~0~0-----------~-----~-------~----------~---~ Eeat Loss tLrou~n 2-t:~/r.lr sa. f~ 3.4CO 3.370

r. ~.

Page 98: Film boiling from horizontal plates with low thermal capacity

BOILII\ .. G RE:SEARCi-! DATA AND P..ZSL"""L'.f'S 'I'/~;3i.Jl...f'~r_:_--IoN SI-!El~

TEST NO. (Date) 629 AMBIENT T.ElV.PERATURE 80°F REFERENCE JUNCTION -320"F

li'LUID Nitrogen

HEATER Ha.terial: Kanthal A-1 Size: 1.0 X 4.09 X 0.010 Surface Condition: Smooth; 5-8;A.in. rms ..

;

I Rc.n Xo. 1 2 3 4 5 6 7 8

1 Curre:::1t j a:-:: :peres 95.0 100.0 102.0 99.2 93.0 89.5 64. 7 81.7 1

I ! Voltaga Drop across neater I 1' ! vo ·cs 2.50 2.63 2. 72 2.63 2.51 2.41 2.29 2.20

I I i Average Heater Temperature, Ta .,

' 1 \ OF 383 510 426 409 328 275 230 189 I !

\ i Average Bulk Te:nperature, TB I i

\ OF \ i -320 -320 -320 -320 -320 -320 -320 -320 I

t \ I i \ Te~n:pcr.:.turc Drop in Backing I • 0"':;" 209 228 235 225 197 180 164 141 j i ..

I

l Po\·Icr Supplied to Te3t Section l ' j i I i ' ' ft j 28,540 ' :28,051 i 25' 919 ! 23' 308 t PJ..."/".r sq 31,605 :33' 340 31,351 !21,599 I Jtr..l~ ..

I

\ Heat !..os;.:; tt.rOUJ:f• Backing I

Btu/r.r ft 0,287 6,358 7,069 6,768 5,956 5:414 4,933 4,241 \ sq \ I

Ji:'fcrcnce, AT Tcr..pora.turc ('i' .. r-1 ) 703 830 740 729 ,.. '· 0 595 550 509 0 '~ lP·+0 .c - ... ~

,; .._)

~ '7 2CJ .23") .,,

5~ ') 22 ,095 20 50) ' j t.:. 37 ::; j - 'i'lO 22 ,253 z!. I 4. "-" ..) J.l'. .· . .__._ :r ~ .

~r.: l r ..-,') 72 r. ' •J9 :-4. , 33. : ""\ ') : ,) 3: ,) 5 ::::9. -.:--,

.i ) • ~~""~ .)_ _;,4. 4D '-+li -' -·.

Page 99: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) _..;6~3~0 ___ _

FLuiD Ni trogcn

HEATER Xaterial: Inconel - 600

I

I Run No. I

j Curre:1t i a:;.ncres I •

' \ Voltace Drop across Heater ; volts

i ~ :r ._ T . T . .-.vcrao-e .. ea ... er empera~ure, H \ oy o

I \ Average Bull< Temperature, TB I OF ! I

\ Temperature Drop in Backing OF

Pm-18r Sur-plied to Tezt Section "OJ·••/'n~ cq f'i-~ v \,..l. ~·~ ......, .... v

3o::.lir-.c ~c; .... ~ :::...u.:(, rJ1\ i:Jt~j.--.-:: .sc;. ~:,

Kca~ Tra~cfc: Cccff~c~cnt, n 5tli./:-: sq :~ 0 ~

AMBIENT T~1PERATURE 85°F -~~---- REFEBENCE JUNCTION --~-~3~2~0~0~~~---------------------

Size: 2.0 X 4.09 X 0.005 Surface Condition: Hirror Finish

1 2 3 4 5 6 7 8

182.5 181.7 183.7 182,5 J 88. 2 176..0 l 67. 5 J 61. 7

3.61 3.60 3.61 3.60 3.72 3.41 3.30 3,16

782 789 819 813 878 719 651 582

-320 -320 -320 -320 -320 -320 -320 -320 . 1 I ' 135 151 133 133 128 151 143 135

I

• I

(39,585 ' ,39,303 39,476 42,065 ! i i 35,651 \33,212 :30,701

4,542 4,703 4. 7S3 4 .• 933 4,542 4,301 i 4,061

, !.. G2 1 .109 1 ' l::; <) . . 133 1 J19S 1 ,039 9-, 902 1 L I ~

3), ')24 c ' • 7 \) 1 35. o:)2 c ' C•93 ..-,- ,132 31 ,10') 2 ... \): 2. ·, . (J. \~1 .)•I j .._... • .Ji . '

X -l

'l'? ?'' :)1. ~' :)G. s ', 2 ~ ~

0~ 29. 94 2\--. .. -- 2') "3 J~. ~ ... ..:.-+ I J ,.__I. _;.lJ •

Page 100: Film boiling from horizontal plates with low thermal capacity

BOIL.l_I\_G RESEARC!-I DitTA P~ND R~s~~I'S 'l-.l\.BUL.·';.TION SHEET

TEST NO. (Date) 630 (con t 'd) AMBIEI'i'"T TEJV.PERATURE _.;;;8;.;;:5;_,0-::F;....._ RE..."'ERENCE JUNCTION __ -,..3.li:2:.:.0'-0'""F------------FLUID Nitrogen

HEATER !{aterial: Inconel - 600

I

! ~~ Xo. I

t '"'u ..... e -+-' v r ... n., \ a:aperes I \Voltage Drop across Heater i volts (

l \ Average Heater Terr.perature, TH ! OF I • 1 Av<::.rage Balk Temperature, TB l ""' i .... I

l Temperatt;.re Drop in. Backing

Size: 2.0 x 4.09 x 0.005 Surface Co~dition: Hirror Fi.nish

9 10 11

156.0 150.0 150.0

2.90 2.90

459 457

-320 -320

\ OF l------------------------------------------~~--~--~~--~--~~--~-------+---------r--------~-------~--------1 i

J.26 125

\ Pov:er Supplied to Test Section 1

i 3tu/ffi" sq ft l2s, 588 i-------------------------------~-~-----~~---~~----1

t I i I

:26' 1.37 :26,137

\ Ht::.J. t. Loss tr.rouch 3acking \ Btu/c .. r sq ft 3, 820 ·----~-----------------------------·~~------~----~--~----------~----------------r-------~----~

3 790 3 760

\ Tcr..peraturc Jiffcrcnce, .C.. T I 0.., (M r,1 '\

t .r J.. ~I - _J._:i3 J 779 777

·24,7(i3 22,347 22' 377

2CJ.45 2<'; r 03 23. 79

J: J:)

Page 101: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 704 REFERENCE JUNCTION --~-~3~2~Q~0~F~---------------------

' I

lt""'LUID Nitrogen

HEATER Material: Inconel - 600

j!kn No.

\Current 1 arn:pel .. es I

lv~ ... D p t I o.L ~..age rop across .. ea er volts

I

( \ Average Heater Terr.perature, TH \ oy i

Average Bulk Temperature, T3 0;5'

} ' i ;

l ~

Size: 2.0 x 4.16 x 0.005 Surface Condition: Mirror Finish

1 2 3 4 5

108.5 110.0 113.7 116. 5 169 7

2.13 2.15 2.24 2.30 3.40

217 246 306 327 985

-328 -320 -320 -320 -320

l T~~?eraturo Drop in Backing l l ____ t ____________________________________ i ____ ~8~6~~-----~8~5~~-----~9~6~~---~~~3~~----~8~4~~-------------------~--------~ i l 1

Po'.-.'<3r Su.:rrplicd to Test Section l 1 i

\! __ 3_c_~...._· ;_r-._r_s_L_1_f_t ________________ ~_2_7.-:.., _3_8_5_-';· _2_8-'z_0_2_s_-_ _;..!3_0--'-, _1_3_0 __ II, •

~cat Loss thrcush Eack1ng , i

31,752 ·68.372

\. __ B_c_~...._· /_:_ .... _r_s_C'_ .• _f_t. ______________ ,_..:.2-'-'..:.5_?_, 7 ___ 2_._. 5_5_7 __ ! 2 z s._s_s __ _ 2. 797 2.527 ~

S37 '.., ;)•+- I 1305

. (-L~' ! ' _! ) ')

,.. - , I -0),~ ... )~.)

I ...... '· ;_'

.. ) . ) ': ..... ~ .

Page 102: Film boiling from horizontal plates with low thermal capacity

BOILING HESZilRCH Di\.~'A AND RESU:J:..'l'S 'l';\f->;;LATION SHEE'.I'

TEST NO. (Date) 706 AJ\fBIENT TE.rv:PERATURE 85 °F _,.;;;,;;:;.....;;--._ REFERENCE JUNCTION ____ -.3~2~Q~0•F----------------------

FLUID Nitrogen

HE:.TER !·iaterial: Kanthal A-1 Size: 1.0 x 4.09 x 0.010 Surface Conditio:1: Sand blAsted: 40-00/--\.in. rm

! Xo. I :::illn ~ 2 3 4 5 6 z 8 .l

\Current \ a:nperes 100.0 q2.5 88.0 85 0 33.7 87.5 91 2 96 2 i ~

\Voltage Drop across Heater I volts 2.44 2.27 2.17 2.08 2.05 2.15 2.24 2.38 ! ·. I ;r I I Averace ·- ... Temperature, TH .-.. ea-.er I

\ oF 0 l 574 I 472 414 364 349 394 440 507

\ Average Bulk Temperature, TB \

\ OF ., i ' -320 -320 -320 -320 -320 -320 -320 -320 ~

\ Tc::1perature Drop in Backing ~ 1

\ OF 1 108 95 84 73 68 73 80 89 ' \ i i Section ' I Pov1er Supplied to ':i'est • I

' I 122,606 I ;

\ B~u/nr sc • +"·'- 29,321 25,232 22,948 21,246 20,619 !24,5L•S !27,513

\ .......

I through Backing \ Heat Loss

Btu/hr ....... 3,249 2' 85~) 2,527 2,196 2,045 2zl96 2.l,06 2. 677 \ sq .....

\ ~0;..~er~turc :Ji:'!:'crcr.ce, AT OF (':~' :; - 73) ~~94 1n 7 3/t l)S!t- :):)9 714 7 ·,,) ~27

-,..: i.: .,... ,.... ~:e:a~ ?lu:<, ;J~ .;:;v_ ...... ..~o..•J..U z~, -,·,, '.20J!.2: l~!.'-~sc;

1 C -;--.I : 20. -'• 10 22.: :.z 2·'·. , ... 3.-l)t. u/~~-: sc;. f~ 2(),072 ...... '_..)/ ..... ..._I l 1 ) /4

=-~Ica:, J:::a:-.. ~ .f (;~ :vc~::.cic:-.t, h . ~•-c../'r~ sq ..... 0 .:..,

:?,\~. :s '") ~ -") ~.- ?- - . 23. ss = S'. ' -,

;;J J.., ... &.A ..... 29. l ' '-"'. \ '-' G . ~ ) o,..J i.' • J .) • I• J

Page 103: Film boiling from horizontal plates with low thermal capacity

BOILING R~"'.:Sl:;/\.l?Cl-I DA'TA AND 1i?.I•:.:..>U.L....'r5 ~1'/\BULi\'.l.'ION .Slll..;~;<I.~

TEST NO. (Date) 706 (con' tj AMBIEJI.'T TEMPERATURE -~8.:..5'-0-F~- REF~~ENCE JUNCTION --~3~2~0~0~F~----------------------

FLUID ___ N~1~·t_r.~.o~c·e~n--------------------

HEATER !{aterial: Kanthal A-1 Size: 1.0 x 4.09 x 0.010 Surface Condition: Sar,d 8Lasted: 40-60.<-{in.rms.

i I 1 ?.un No. ' j Current l c..'T.peres

\Voltage Drop across Heater \ volts

\ Average Reate:- Temperature, TH \ Of

l\1, Average Bulk Te:r.perature, TB 01;' ..

1 ~er:.perature Drop in Backing

< . i, ,, " l ~

j

·'

~ ;l

9 10

97.5 100.0

2.40 2.44

529 559

-320 -320

11 12 13 14 lS

92.5 85.0 81.2 c.o.o 75.5

2.30 2.11 2.01 1. 99 1.89

452 366 314 285 234

-320 -320 -320 -320 -320

I Of 96 34 73 64 62 52 97 1----------------------__..._--~~--~~---~~--~-~~~T------~~~~----~ I

\ Po',;cr Supplied to Test Section \ B t u/r-.-:..~ sq ft

;

' ! I

2l,552 ;19,613 l9,'i3l 117,147 ;28,1.20 ;29,321 25,566 I

2,913 2,SSS 2,527 2,190 1,925 1,865 ~,564

-·.f.., "'- m Tc~pcraturc Jl ~arance,~ ..

o-. (m .., ) i.' 1 ... - ... ~)

:1 ..J ~~!t f) S/9 772 oSo 634 605 j')L,.

'2~).202 2\) ! n ') '4 j_J 2~. 03') 1 c,' 3 s \--) '1 'i 'n~,s 17 '2()\J i.). -;,-,}

'-,(). 0 ,' .. ~, l-, ~

• c ,) ")~ S3 2S. .. ~ . .~ .. . - -' r WI..-'•

-

Page 104: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 711 AMBIEl'o"T TEMPERATURE 91 °F REFERENCE JUNCTION -320°F --~~~-------------------

FLUID Nitrogen

HEATER Natel~i&l: Kanthal A-1 Size: 0.5 x 4.09 x 0.010 Surface Co::di tion: s~flooth; 5-8 ..A-{; n. rms.

j Run '\ . .o.<o. 1 2 3 4 5 6 7 8

\Current l

I l I a·nperes

59.2 62,5 62.5 "iZ. 5 5~ 0 50 5 ~q 0 46.0

I l I Volt<:..ge Drop across Heater I volts 3.17 3.70 3.33 3.05 2. 90 2. 71 2.61 2.48 ' ' ! I [

\Average u . Temperature, T I Hea"ter OF H ~ I • 157 429 254 158 108 48 10 -35 l I

l I

I Average Bulk Temperature, T ! I B I

\ OF -320 -320 -320 -320 -320 -320 -320 -320 i

l I ! \ Tc;nucrature Drop in Backing

I \ OF. ;

42 88 73 91 90 I 94 54 37

\ Po·,...;er Supplied Test Section i j to I

!32,858 I I

i30,706 i27,391 l Btu/r..r sq ft \45,057 !61,742 ;49' 970 42,105 37,600 I

throug~--. Backing I ' I:co.t Loss I I

\ ":l-'-u/"'"•.,.. ....., \, .... sq ft 1,263 2,647 2,196 2,"i37 2,707 2,828 1,624 ~' 113

\ ':'c:.pernturu lJilfc:Gl1Cc, A~ I ' I o-,

('::.' ·r '""' 47/ 74') '-i 7 ~~ 42c=l %S ~J JG 2,;; s l .. - .1. •• ; ...._,. / .; . l • ~

Eo:.:ir .. z .. ... ,-~cav ~lux, ~J•

' "' 3t\l/:c.~ sc;, ··~ :. -~ • 7 ·)!· ') 9. \)') ) L., ~; I -; -: .' ~ ~ ' . . :. '\ ~~ }/i '1\.~9) 10.03() 29. ~~:~2 2). z -... :.., ... "

Coe:~~ci.c:-.t, ,.

i :7-, r') L "--. v"' -- •""' -.-.... •• A,.t.t.,.;C:A."' ..... c;A.-l-.j .... ~- ...

B~l.:/r..r GC, ··~ 0 _,

;' 1. ::::= - ., .-, i . "\) ~' .....

l): .. ,) : ~ ... ~ ~) .. r' .. J

Page 105: Film boiling from horizontal plates with low thermal capacity

BO:ILING RESEJ\l?.CII Dll.7'A AND RESUL'J'S '.l' .. \I3ULATION SHEET

TEST NO. (Date) 717 AMBIENT TE~PERATURE 85°F REFERENCE JUNCTION ~~0~------------------------

FLUID Refrigerant - 11

HEATER Material: Kanthal A-1

l j Run No.

i Current i : a."TTperes

1 I Voltage Drop across Heater 1 volts

\ Average Heater Temperature? TH ' OF

\

\ Average Bulk Ter..perature, TB I OF ' I

Size: 1,0 x 4.06 x 0 .. 010

1 2 3

148.2 137.0 128.7

4.05 3.83 3.64

1,378 1,279 1,180

75 75 75

Surface Condition: Sand blasted; r:;rJ-90 Min. rms.

4.

121.0 I

3.44 .,

1,089

75

5 6

112.5 132.5

3.20 3.90

957 1,258

75 75

z 8

I 140.5 145.5

4.30 4.60

1,268 1,449

75 75

159 258 237 268

\ Terr.ucrature Drop in Backing \ "F. 221 240 217 192 ~--------------------------------------------~~=-~--~~---~----~~ --~~~~--~~--~--~~-----~~~----~~~ I \ Pc·..;c:::- Supplied. to rl0st Section l' 'P~ /, ..(:"J_

:..JvU !'.r sq "'" \ \ Hco.t ~oss t:-:.~o~cri. Bc~ck.int; I

I 3tt;./!'.:::- .sq :t i----------------------------------------t Tc;·.-.vcr~tt;.r0 :Ji~~~c:-cr .. cc, ~ T t c;, -"'· (~""'~ n \

.~...~ ...... - - .Jr.. ') --------------· ,), __________________ __ 3e>::_: :.r-<;

~:.:_:/::~

Page 106: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 717 (con' t) AMBIEI'i"'T TEZ'1PERATURE _..;:8;.;;5;.,.0_:F;...__ REFERENCE JUNCTION

FLUID Refrigerant - 11

HEATER !~at erial: Kantha1 A-1 Size: 1.0 x 4.06 x 0.010 Surfo.ce Condition: Sand blasted; 50-90..t.(.in.rms.

j I n... l-r , .nun .r.o. 9

Current l amperes ;--

\ Vol~a~e ~rop across Heater i 0 ! volts

\ ; Average lieater Terr.perature, t °F ' 1 I

155.5

5.29

1,645

\ Average Bulk Tempe::-ature, TB ~

\, °F ! 75 Li----------------------------------------1.-----~--J_---------~--------~-------+---------+--------~---------~------~ i Temperature Drop in Backing ' : °F 327 ~-----------------------------------------~~~·--------~---------------~--------~-----------------------~ \ \ Po,,Ier S·.;.9plicd to Test Section \ BtL:./l-:.r sq, ft ~ 99 509 ~--------------------------------------------~~~·~~--~----------!--------------------:-----------~---------\ I H.ca'~ Loss t!'.rou;;:. Backing

r.:\~r.1'0Cr~t~4r0 Di.~~crc:r.cc' ~:: •) ~.,... ( :'. ; - r;: ~ ~ )

"'" ~_)

~~.:1. :.. ~

~I' 'v' J\.

-------------------

9, 330

1570

) i • • .,_

Page 107: Film boiling from horizontal plates with low thermal capacity

TEST NO. (Date) 718A ~;;..;..;~----

lu'ffiiEI\'T TEMPERATURE -~8~7-o.:..F __ REFERENCE JUNCTION ---3~2~0~°F ______________________ _

FLUID Nitrogen

HEATER Material:

i I Run No. I

1 Current ! c.mperes

:Lnconel - 600

l Voltage Drop across Heater \ volts I i Average Heater Temperature, TH \ Oc;' I .1:

----------------------------------~. \ A!~rage Bulk Temperature, TB

I

\ Temperature Drop in Backing . OT.;' ~-i ___ • ______________________________ __ i

l

Size: 0.5 X 3. 91

1 2

39.2 45.8

2.68 3.15

-25 103

-320 -320

197 260

\Power Supplied to Test Section 3t~,;./hr sq ft \26,434 : 36' 303

\ 'i:cu t Loss t::·~roi.le;h 3;;.c~cing \ Btt:/t.r wq f~

-- -~ .... :~ca .. t. ;: ~~..;.x, ~JI\ . . ~- ... o..J c... .... ~

:3,422

29".

,,, ...... '\I .. ,,

7,S2l

I ~ ') .._"' ..._~ J

" ' " ... ' .....

X 0.005 Surface Condition: Mirror Finish

3 4 5 6 7 8

52.0 57.0 59,2 62.0 65.0 55.5

3.63 fJ .• 05 L,, 22 4.44 4.73 4.00

304 598 684 793 937 655

-320 -320 -320 -320 -320 -J2Q

223 399 423 476 523 353 i ,

I i ' :4 7,498 .S8, 089 I 62,862 i 69,269 ! 77' 363 :ss,002

9, S()(i 12.002 12,874 14,318 .15,732 10,.-,u~

•) 2:. <1: t"- l. ,')().', l . 1 13 . 1 r ---..~. • ,·_::: ) I 'j ' ')

'\ ... ' ':: t. ~~' . I '} --, : . ' + •• ) ·-· . ~ J • '+ • . +

------

.... ··. + '

I ! I I , I i ,

! I

I I I

I I l ' I

-

Page 108: Film boiling from horizontal plates with low thermal capacity

BOILI:SG RE.S::;ARCH Df,TA AND R.J~SULTS TA30LA':'ION SHEET

rEST NO, (Date) 713.\(cont'd)

FLUID Ni trop:c:11

HEATER !-~at erial:

:iilln ~o.

, Current i z..:r.peras !

Inconel - 600

\ Voltace Drop across Heater volts

I

Averace Heater Te~pcrature, OF

1 ~ .. ~.,,..,..~,_,.rc i .;,.\; .... .._...,\.: ... '"""'""'

c.~

?o~~: ~upp:icd to ;_~ ~ :.;./{-.. :.:~ ~c. :"'-~

::.:;,, t ~o..Jc t;:~·ou...:~~ :.;~,C~(ir.c

I~ t. ~/l: ~ V'-l :~:,

0 •• ,',-, {""": \

\ ••• - • j

-----·-·--... 0 ~."'

..... }, .. ... v

REFERE:\CE JU:-ICTION -320°F ~~~~-------------------

Size: 0.5 x 3.91 x 0.005 Surface Condition: Mirror Finish

9 10 11 12 13 14

51.5 49.5 46.7 45.0 42.0 41.5

3.68 3.51 3.31 3.19 2.96 2.89

546 483 417 377 299 274

-320 -320 -320 -320 -320 -320

201 22?, 225 178

!.] • 710 30,178

s. \) Ci3 J • ~7 :) ~; 5,3:}4 4,271

'•!) 7 "-. ..., '

j). ~ ) '

, ... '• \ ~- • • l ) ~ 3. f'

Page 109: Film boiling from horizontal plates with low thermal capacity

TABLE .XVII

BOILING RESEARCH ;JATA .Arm RESULTS TABULATION SHEEI'

TEST NO. (Date) 718B REFERENCE JUNCTION --~3~2~0~F--------------------

FLUID Refrigerant - 11

F...EA':':SR ?~aterial: Inconel-600 Size: 0.5 x 3.91 x 0.005 Surface Condition: Mirror Finish

j Run ~o. 1 2 3 4 5 6 7 8 t

• j Current 1 a.T.peres 57.0 53.5 50.0 48.0 45.0 52.5 57.0 61.0 l l Voltage Drop across Heater \ volts ~-----------------------------~---4~·~1~2--~~3.~8~5~~~3~·~62~~-3~·~4~7--+-~3~·~13~-+~3~·~s~4---r~4~.1~2~+-4~·~4~5~ \ Average Heater Temperature, T .. l n i OF i 'A Bl'm i. m 1 verage u K ... empera~..ure, .J..B I op \

! ! Temperature Drop in Backing 1

867 801

75 75

701 668 568 715 872 980

75 75 75 75 75 75

! 0 1;' t • 336 247 209 186 166 230 274 346 ,:-----------------------------------,:--~~--~~--~~~--~~--~~~--~.--~~-4~--~~--~l --~~~~~~~

\ Pm·Jer Supplied to Test Section I i \ ' ! ' Bi.u/h"""' "'a ""'- l , I • ' 44 I !' ! !, ___ v ____ ~ __ u_._ ... _v----------------------':;_5_9~,_0_9_3 __ ~:5_1~,_8_28 __ ~;4_5~,_54_s ___ r_l~,~9-1_2 __ ~13_5~,--2 ___ 1:-5_o~,-72_9 __ ~s-9~,o-9_3 __ +16_8~,~3-0_5~ I I i I 1\ Heat Lo::;s through Backing ) \ j

Btu/hr sq ft ·~ 10 107 7,430 6, 287 l 5, 595 I 4 °93 6, 918 l :: ' • ' ...

\ Temperature Difference, AT \ °F (TH - T:) 792 726 626 593 493 640

8,242

797

l !10,408

905

OjA ~~8,986 !.44,398 ; 39,258 36,317 30,449 143,811 :,i50,851 !57,897 --------------~----~~------:·--~-------~----~-~-----~--~-----------~------~

! Heat T:-a..YJ.s:fcr Coefficient, h l Btu/n.r sq ft °F I 61.85 61. 15 62.71 61.24

! I

61.76 68.45 63.80 63.97

Page 110: Film boiling from horizontal plates with low thermal capacity

BOILII':G RESEARCH D/,TA M:D RES~~TS T/~BLJLATIOI'; SHEET - -·

TEST NO. (Date) 718B(cont'd2 AI<BIEi'I'T TE.'~?ERATU.RE -~<;.;.;.0_0 .:..F __ RE?EREXCE JUNCTION 1 o~ ----~-----------------------

FLUID Refriq;erant - l1

HEATE~ Xaterial: In~one1 - 600 Size: C.S x 3.91 x 0.005 Surface Condition: Mir~or Finish

lllil·--A •• Ko. 9 10 11 12 13 14 15 16 i

j Current , a.·:1peres 63.0 65.0 59.5 54.0 58.0 62.0 &6.2 67.0 '

; Voltage Drop across Heater \ voltG 4.62 4.80 4.43 4.00 4.33 !.; .• 60 4.99 5.09 I

i I

Ternperature, Tn I j A-:erage Eeater I

' OF tl I

I 1,010 1,036 926 779 894 971 11 064 1,073 I t '

1 Average Bulk Terr.perature, TB I o-:;-1 • 75 75 75 75 75 75 75 75

l memp-r--'-u.,..e I !

Drop ir~ Backir.g . i r ... •• 1;: 0." .. i

t °F I I 369 390 ! 335 271 320 364 420 431

l I i i \ Po\ver Supplied to Test Section l I j I ! I Btu/hr ft ' i '

54,352 :63) 194 171,765 !83,121 I

sq .]73, 239 !78,509 \66,325 85,813 ~ i

I i I . I

Loss through Bacldng I )

1 Heat I I I ~ : j I !12,634 I "3t-..,./hr sq ft ~11,100 jl1,731 8,152 9,626 12,965 l ilO, 077 110,949

\ Tc:;.perat'...:.re Difference, AT I I

I t 0 7 (T - TB) 935 961 851 704 819 I 896 989 998 I ... -- I ' tl

I B ·~. Q/A I ' · OJ.J.J.nrt Heat Flux, I l

l Btu/!'.; ' I I

.(.".;..

[66,778 :c:r 2L 8 I

\53' 568 ~0,816 sq .l..u 62,139 : . ..JO' > ·~6 200 !70,487 72' 848 I ' ' I

~ CD I r ... ,..,.. ... Coefficient, h ! ica~.. .~.ra.'1SJ..el:' ! 00

J Btu/r.r sq ft OF 66.45 69.48 66.09 65.62 65.40 16 7. 87 71.27 72.99

Page 111: Film boiling from horizontal plates with low thermal capacity

BOILIXG P.ESEARCE DA'l'A 1~1':D RE.SDLTS 'l:'AJJLATION SIEET

TEST NO. (Data) 718B(cont'd) A.''-GIEI\TT TE!'.PERATURE _-.9.-.0_°F--._ REFERENCE JUNCTION 32°F --~~~---------------------

FLUID Refrigerant - 11

HEATER ~{aterial: Inconel - 600

i l ilim No.

il ,..,.,...,.en._ . vv. ... .A. ~

\ a:nperes l i~--------------------------------------1 Voltage Drop across Heater 1 volts I \ Average Heater Temperature, T13 ' Of d.

I

Average Bulle Temperature, TB OF

1 Te:r.perature Drop in Backing l °F

Size: 0.5 x 3.91 x 0.005 Surface Condition: Mirror Finish

17

68.5

5. 72

1,161

75

I 455 --------------------------------------------~~--~----------r--------~-------~--------~---------~---------~-------1

PovJer Supplied to Test Section Btu/r.r so. ft

He a"': Loss t:r~ .. ousr~ Baclcins Btu/hr sq ft

~ 98,594

-----------------------------------------~13,686

To:-::pcrc:..turc Difference, AT ( ,...., IT' )

.J.. •• - ·~ r~ .!J 1086

3vilin.::; !:cat Flu;{, Q/A , B-:.:1/:lr :30. .::. ;. 84 908 ~------------------------------------·--~'----------------~-------l Heat Tra~.sfcr Coefficient, h 1 Btu/hr sa .ft °F l • 78.l8

Page 112: Film boiling from horizontal plates with low thermal capacity

BOILING RESEARCH DATA A~v RZSULTS 7ABULATION SHEET

TEST NO. (Date) 719 _.;..;;.;;. ___ _ REFEREXCE JUNCTION --~-~3~2~0~0•F-------------------

:FLUID Ni troo-en

HEATER Haterial: Incone1 - 600 Size: 1.0 x 4.03 x 0.005 Surface Condition: Mirror Fini~b

I

I

i Current ! 8 I ll a11peres 83 0 84 0 87 91 9" 7 98 0 1 00 8 ;4 ~~----------------------------------~-~~·~--~~~-~~~~·~5--~--~~·~2~~~~~~·~~~~-~~--~~~·~-,::. 105. I Voltage Drop across Heater

Run No. 1 2 3 4 5 6 7

volts ' t i ' I

l ~ 3.17 3.22 3.34 I 3.51 I 3.62 3.83 i 3.99 I 4.20 1 I I ' I

! ~ i '

I I I !

I I i

I I Average Heater Temperature, TH • i ! ., i ! ' I I 0" ' j l . ... ~ 2c;, 233 278 399 463 606 j 685 790 i l Jl. I i ! I I I

\ Average ~ i I

:

I I I ' Bulk Temperature, T I i B i

I I ' I o:r I ' . f I -320 I -320 -320 ! -320 -320 I -320 I -320 -320 . I I '

' I ' j I

l Temperatu:..4 e Drop in Backing i

I I op 228 223 224 136 146 256 256 283 I I I

I ! !

\ PoHer Supplied to Test Section \ I I l i I

l Btu/hr sq ft I

!49,031 !32,076 132,974 35,628 : 39,025 i41,351 145,758 54,018

l Heat Loss tf',:;:-oush Backing I i

1 Bt~/hr sc. ft 6,858 6,708 6,733 7,099 7,400 I 7,700 7,700 8, 513 ! I

' I I m M 'Y"' ...... :"'\ Difference, AT 1 ... e ... pc ... o. .. llr" \ O';;' ('"' m ) 571 553 598 719 788 I

926 1,005 1,110 ~ ~~ - ~0 I ! •• ....;

i i : I 7:) "l~~~:; ~ .... Flux, Q/A I ; I .f,.JO.J....~..~ ... 6 ... .,.eu ~,..

I I I

!38,058 I ; Et"J./hr sq f't (25,218 126,266 28,890 '31,926 33,951 ~41,331 i45} 505

! ..... 1 Heo.t 'l:'rar.,.zfer Coefficient, h 0

l Bt~/hr ...... OF I 0 sq ..... 44.16 47.49 48.31 44.40 43.08 41.09 41.12 r 4o. 99 I I

Page 113: Film boiling from horizontal plates with low thermal capacity

BOILING RESEARCH DATA AND RES'JLTS TI:BULATION SHE;:;T

TEST NO. (Date) 719(cont 1 d) REFERZNCE JUNCTION ----------------------------

FLUID 'Nit-rogen ------~---------------------

HEATER Xaterial: Inconel - 600 Size: 1.0 x 4.03 x 0.005 Sur:&ce Condition: Mirror Finish

I Ru.n ~ro. 9 10 11 12 13 }/+ 15 16 I l Cur:rent , a.1'.peres ' 110.8 97.5 93.0 90.5 87.5 83.2 79.5 74.2 )

j Voltage Drop across Heater I volts 4.42 3.88 3.69 3.54 3.42 3.25 3.09 2.87

! Average Heater Te1;;perature, m J. Y'!'

I OF n. 942 693 606 552 512 429 366 275

! Bulk Temperature, TB j Average ! OF -320 -320 -320 -320 -320 -320 -320 -320

\ To:-::pcrature Drop in Backing ' op 1 309 240 207 195 177 158 143 119 I ,_

; ' I I i Supplied to Test Section l I

' I Povler I 1 i

I I i I I

:Stu/hr sq l I

)32,964 ft I 59,703 46' 119 !41,836 : 39,056 j36 ,482 29,947 125,961 I '

j P.oo. t Lo.;;s t:c~rough Bac~dng :

! Btu/hr sq ft, 9,295 7,219 6,227 5,866 5,324 4,753 4,301 3,580 I 1 mr.c'p"·,,~.;..,..,c "~ -i"""'-...... cnce Am I ..t..'-••• {., .. t.i\ll..L.L - .u ...... """\,:;• 6 t •

i 07_,' ('"' - "' ) 1,262 1,013 926 872 832 749 686 595 ... ..LI-i .._B I

i Eoilir~z; Ecat Flux, Q/A I I I I ' B+ujr- sq

.,.._ 50,408 38,9GQ 35,609 33,190 ;31' 158 ; 28,211 25,646 :22,381 : "' .... ~ ....

I ' I ,_. I Hco.t 'l'ra:1sfcr Coefficient, h 0 ,_. 1 -c""v./rr" ~q ""'t o-. . l .... " .u. 0 .l. ~ 39.94 38.40 38.45 33.10 37.44 37.66 37.38 37.61

Page 114: Film boiling from horizontal plates with low thermal capacity

BOILIKG RESEARCH DATA A~D RESULTS TA3ULATION SHEET

TEST NO. (Date) 719(cont'd) AMBIENT TEMPERATURE 85 °F REFZRENCE JUNCTION --~3~2~0~0~F-----------------------

FLUID ~i trogen

HEATER Material: Inconel - 600

J Run No. !

I Current amperes

i I Voltage Drop across Heater I volts

\ Average Heater Temperature, Tu I OF u

j

I Average Bu~k Temperature, TB

Size: 1.0 x 4.03 x 0.005 Surface Co~dition: Mirror Finish

17

71 7

2. 77

I OJ:'

:~--------------------------------+-~~~~------~-------~-------r-------t-------t-------~------~ i '\ Temperature Drop in Backing . OF .

I Power Supplied to Test Section j Btu/hr sq ft '-----------------------------------------~--~-----t---------T---------1 Rea t Less through Backing \ 3tu/c.r sq ft ~--------------·---------------------------1 ""' .l".l" AT 1 To;;.pcrature .i..iJ ........ crcnce, 1 OF (Ti-I - TB)

: \ Boili::lt; Rca'.:. Flux, Q/A · \ Btu/hr sq :t I

\ Hoat Transfer Coefficient, h I Btu/nr sq ft °F l

Page 115: Film boiling from horizontal plates with low thermal capacity

BOILH;G RESEARCH DATA AI\TD RESULTS TABULATION SEEET

TEST NO •. (Date) 721 REFERENCE JUNCTION --~~._ ____________________ __

0

FLUID Refrigerant - 11

F~rER Xaterial: Inco~el - 600 Size: 2.0 x 4.12 x 0,005 Surface Condition: Mirror Finish

I Run No • 1 2 3 4 i ~---------------------------------------------~--~--------~-------~--~------------------~------~--------, j Current I l a:npe:::-es 170,5 163.5 154.5 i

! Voltage Drop across Reate~ I volts

i Te:r.peraturc Drop in Backing l " ...... ~

~----------------------------------------1

\ ?o,•c:r Suppli.cd to ~est Sec-tion

! ::l'-u/"r rq ... ... ...> v . •• "' ... "

! Heat Loss ttrouGh Backing

Btu/l:r sq ft

Eoilin.c :-rc.:..t Flux, Q/A Bt.u/r~r sq. ft

n0o.t 'l':car .. sfer Coefficient, h Btu/h= sq ft 0 ?

102 _;

~ i 36,400

3,350

885

:33,050

) 37.4

3.35 3.20 3.02 I

98 82 68

34,000 31,200 : 27' 800

2,950 2,470 2,045

840 782 726

31,050 28,730 25,755

37.0 36.7 35.4

i-1 0 ~ .

Page 116: Film boiling from horizontal plates with low thermal capacity

I 0 \.

APPENDIX C

STATISTICAL DATA ANALYSIS

Page 117: Film boiling from horizontal plates with low thermal capacity

nr:tT1\ T

O.Q1.7('1007nF n-:~,

0. 11)!)V100(';: 1")/t

(). \ 11 2°<i(')(;f.: ()i., f) • 1 ;> ') f:, Q <"< o n f 0 4 1"1 • (') 7 lr ~ ('I 0 7 () F 0 "), () • q l) ') <)(~ 0 7 () c ')-:>, 0. ocp an<l'f·F ')\ (). 73f)C!<l07rl>= ')?, 0.6'd>9<l()70F rq '),.f-,l~()OQ7{)r: ()':\ (; .. scnqoo7m= 03

NITRQ(.FN 0.5

LEAST SOUnRFS POLY ~OFFF. ARF:

1\( ()) = fl{ 1 }=

-o.qt+o~7770(: 04 0.574·~1 Q:)(\C ()')

f-1!=:'\ T FUIX

n • '· '/l o 0 n n., c n;::: () • 4 9~'~0(1 tl!lclr f) c:; n.s4ohn1vwr- ns ('.f~1A' . .'ltl•):jC (Fi ('. tr ')? .t.,.~<')nf)r: n.:;, (). r~Of'l.('.r',()()()\: ('.C)

0 • ~ ~ :· 7 n ry n nr-- :1 s 0 • ~ ? :I t<: ~~ 0 n c n r; 0.20V)(;ill)!')'= 0'1 O.(')<"l'l,()(V)Of= 1"15 0.?') 0 l('l(l()()C OS

t.\1 (. Ht<\T FL'iX

n.4':l.'.C\7?3nr: ns n. 1, R?ol? 1 nr: nc, 0 • r~ !, l~ ? f. ? '"l, 'I~- t; ~ ().A? l O:) 'J4 nr: ()"i () • I; r'- /-, It"). C, 1 () r: () ') ('\ • !+ :1 -~ C) L ·'" S:: c (' <:; t) • ) f"' 7 ~~? il ~) r, ;: n -) (). -:'\?~.>='s~i)7()~ nr~

0. 30')?r·.')O;:: r,.tc, n.7S0t'il460r: no:; o. ?44087601= 0''

AVFRA~F OFVIATIGN =

TABLE XX

Statistical Data for 0. 5 in. :l:r.conel in Nitrogen

'>.S641 ''"l..39fl'J, ().<"lC)~2

-1.??.R.4 -1.1030 -l.S7f.6 -?.lt:'>12 -~.r,iFi

-4.014" 0.1101 5.7940

- , - ~

H

1;(}.7()11) /1C).7(j()q

1.0.'-'.7] i 1 .... o • (J "> n '~-1, ~ • 4J) () () I;\). C"::,l't 7 l~l ... • ~-; 7 n r) /;.] • 1t 7 1 ·~ '-•?.'i0911 't 1_ • P. ':J()? 43.A19~>

...... 0

"'' .

Page 118: Film boiling from horizontal plates with low thermal capacity

O.<l'FjtJOOI()t= 03 <J.l1V14QOO(ll= 114 ().i_~lji')Q()I"l()~ 04 0.17111C1()()()f 04 0 • l 0 l 7 ° <: 0 0 F 0 '+ o.o?Sl/0()7f'F rn o.P7l"C'l70f= rn n.P':l.1_<"'"lC7Qf rp, o. 740,<J(]Cl7()!= rn 0.(-.qt)Of"l07Qi= ()~

o.so4oor:no1== 03 0.5Sf->Q0070t 03

\!ITQOGF"J l.O T

())., 1)""'

- n • 3 7 'H·J) c:; ll n t:: n 1+ 0.43T7Lt44()C OS

~1 FA T FL!JX

() • 3 n n f., (') n n 11 r.: () c; n.41l.,t:onr;r nc:; 0.4Sf-110{i()i''\C 11'­(').t;I)I~J()!l!l.)C ;11)

0.31°0cnnor 0.::: o.~f)r_"',n~Jf"\f'\~ r,,; n.-:.l.31cnnnnr: nc:; O.':l.l16nn0rW nr:; 0.21;?1()()()0C: (1') 0./c:;Ac:;onnn~ ns 0.7?-:J,ROOOQ::: r,c; 0.2l02G!Inl)l= r15

(~Lt.. HFt\T FLilX

:) • 3 ;. . ., n 6 A't n r: n;;:; (') • '71.. 0 7 It?_ 7 ? () r: "1 ') 0 • • 4 4 1 q ? It 6 () c ') r, O."'i11°~<.<,r;.:: nc; 0 • 4 (! 'J ., 4 ?, R n I= 0 ;::, n • '> l-. ) P. f) 6't n::: n s n.?.l'=l'+i'·~'J' 'i') 1\ • ~ ? ? 1 ") 1 7 ;-J ;: ') c; n • ., 8r)') 1 '+H():= ':c; n.2c:;q7n01nF '1'1 0.??i31J?')i):':: 05 O.?f>538550C:: 05

AVFRAGE OEVIATinN =

TABLE XXI

lt.f-.;5QL. l. RLtn"> ?.Lt-77f:..

-l."SlQ -1.07.')4. -J.O()()?

-? .. th/1(1 -3. ·:pqq -l.Sf:l"i() -1_.?471--;

1. 1 Pi<J 2.2C)04

OF~RFF = 1

Statistical Data for 1. 0 in Inconel in Nitrogen

H

'+].1015 ,,,_.174ft 1.1.()()1)() ~q. q 1+1t 5 ':I,Q .4.').Jq ;P..4')')/ ';\O.()f..,jll

~ 7 ·'f 51 Q ~ 7 • f, ~ -;d-. 37.'3')()7 ':1.7.6134 37.7379

Page 119: Film boiling from horizontal plates with low thermal capacity

,_

c: •

C'\..

z U..' lL CY l: <! 0 0::: 1- \..L.

li z u. c u > _J c o_

V' U.' 0:: <!

0 V)

1-v < U-' ...J

1,{' I!" lr' lr' ecce

L! i.l LL u-ecce ,... (1' ('\.. ('\..

r"~ o:· r"< CC CO·CC'\.. trO'....tC' r- C', r.r: r-..: ~"<'-.,tCC ~·r-,:-c C'\.. • • • •

CC·CC I I

II II II II _,........,_,..._ c .-· ('\.. ('<'

_ ............. ---< c:.!< <::!

:r

z c 1-< ..... > lL c ~

X

....J I.L

1-<! LL I

(...:

' 4 L)

>< -, ~

....J u

1-<! l!.' l

~~~cc~~~-cc~o~r-..ctrc~r-..oc~oc~~c ~c~r-..r-.C'\..crr~.C'\..c~r~~~c-c~-~-ctr~N CX· -.:· 0 •D lf'· 1'-- -£· C• I"· C ...[ I:':<--' C tf"' 0: 1'-· r- .-~I'- ...-· ...-• r;· C ...- • ..., ..;t ~c-c-~('..~-r-..r---a-~-..t~O'-c~('..-ccr--tr . . . . . . . . . . . ' . . . . . . . . . . . . . . . c-C'\..-..tr-..c-N~c~ccr-~~~r-..ccc-cc~--1 I I I I I I I I I I I I I I I I

1.1 • .. r-· l: L."' tr tr tr 1.:' .l.f t:' \l' tr ~.:· tf L."' t.r t.: t.r tr u :r 1.; tr ·~ t·· u !.." c c C c C c c: C c c c c. C C c.:-.< c C c C· c c. c c- c~ (: (:-

II

\!. U. L· 'tc U L' L l! tl'l: I. 'LL L'. l: ·u '·" t.; L' U U t: l'. G I. L• U. tL CCCCCCCCCCC CC•C C CCC. C\":'C C<CC CO Cr<'~CCCC'~uC~\l'~~C~~t:"cr~~r~0~~0 ~~~~~cvr-oc-oar-c~r---~C~r~~~r-~rr~ c· C•l"- t" 1'-- c t.:'.C r·-(\.. tr~-7 r" 0 ('..:-.:; t.;' r" ...;t ,.-...c "- C ,_..,,....,~ c ...r; <" r-.. .J" rr 0' r- · ~ · .- 1'- o- c tr L.- .-< !!" c ~ •.:- : :· IJ ("' c i". c rc ¥ ..Cr""N r" C'. -~·(', C C r< 0: a 1'-· ~ C 1"-C c:. C' C··:t- C ~i"....-.C -..tctr~~c~-..tucC'~ai'-C...C~~~-.:r---~c-.c~C'\..~ c ('. (<' (<'. C". ('\, ,..... r '...-< C' r· (<' (<' r<· ('. r· ,..., .~-- (<' ,.,.. 0' r<. ~ ('.. (' ('. '"' ('..! c . . . ~ . . . . . . . . . . ' . . . . . . . . . . . . ...{._

cc·ccccccccccccccccccccccccc c-

~~~tr~tr~~~~~~~~~trVtr~~~~~~utr~ coccccccccccccccccccccccccc LL t;_· U LL Ll L! U. U. 1.~ l. U Ll u U L L. U U 1,;, t. c l'. G lJ L> L.c. I.!_, occcccccccccccccccccccccccc ccccccccccc.·cCccc ccccccccccc~ CC'CCCCC<.CCCCCCCCCC.CCC CCCCC C CCCCCCCCCC~C"CCCCCCCCCCCCCCrC II O~O:CC...CC'C~CCC'trCQC('..~~~~~-~~~~ ..,r C:.: ~- ~ 0:: C ~" C' IJ' r- C' ...S 0: C r > C:_ IF f'- C-( r· ~· C ~ f'-- (C r" ..:. ~ 0' ..:: t.r C 0 ..J;, ("'' CT C •-' rc CT ~ C' ..r tr ..::- li' ~ r-- -- c-- ,r -.t C" (', C C".C".f'<'.I".C"-.~·~--'"'( r< "- ~ ('... .--...-•<""·f'<'.r'·.r< r< ~ r ... ('...C".('._(\.., ,_ . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ccccccccccccccccccccccccccc <

u..,u .. U•UiU L..>U'lJ.U .. U.JU U.·U'l.L L: LL \J..U U.LL t •. L. U Lll-~~:.U. ecce ccc cccccccc c:c c.:cc c__,ccc GC o r-- c o 1"- 1'- r--· r-- r- r--- c c c c r-- r---,... c c: c c c c r r- ,... r-- ,.... ocoocccccccccccrccooccoccccc ocov-ococccococcocccccc2CCco 0 ("' (<',( 0 CCC C C ('('\! 1'- C' 0 C r·C C C'. i-C' C 0 C ( O· ...-"" c .... C:· (' ~-£ t(' lf'. c ..;: c lf' r." t.r ..- c c , .. ("' c I"' c ~ c ("' ..['· ~~-ot.r~crc~cc-r-..rcor--------~r--c¢~~"­c: .- ....., a:; ,.. . ...c lr' -r 0 ..-" .-' ,..... - <;; ...(_· 1.: ~ ~ ~- ...- ~ ·' ...- c c:· C' t-~ • • • • • • • • • • • • • • • • • • • • • • • • • • • ccccoccccc coccc·c:c cc cccccc-cc

> l.\.: c

> <

107.

~ C)

::;_c :.

" . ~ ~ ..... ~· Cl)

~ >-1 c ,_.

()

~ ..... ~

,.:~ . w ·~~ .....::l (:0 0

~ <:'! E-< ;....

~ '-'

;1 c! n ~d () ..... ~

'.fl ...... .... E (/).

Page 120: Film boiling from horizontal plates with low thermal capacity

HEAT FLUX

n.ttP,o~O<fROf ()'l 0.44~oo0or,r::: OS (). V~? ')OQO()I= ()') 0.lhl1°CH~or- ns 0. "':\'llttioqq(\r- OS ().41Rn<"J0'1()C:: ()I) O.S'I 0 Jt0. 0 Q()!= OS n.')7qooqorn-- ()!)

0.A71lnooor- OS 0 • r, 6 7 7 o 01 0 r::: () r; n.'3h'>c:;nnno~= q~:;

0 ·'t,:, I. oooqor= ()c:; n.slc:;f:.()oQn~ n') 0.60'l10t"JRr)[ ()')

Li=A<;T <;QU!\~ES

f'd ())-::-f\( ll=

H

() • (, l 0 c:; (' () () C)C

n • f-. l l 1t q o o n c: 0.f<~7lf':()O()r n • b 1 ? 'i (H) ., 1 c 0.Al_71)<1t"J')f")>=" 0 • oR/, 40f)<l'l!= n.flRonnnnr 0 • f, -:1, 0 7 0 0 'l ;. r n.r-.r:,r+t't00onr: 0 • (, Q 4 7 0, " I") () t= r..f..A')~0QO()f=

0. t.., SA 1 Qqonr: n. r-..c;<.ooqo('lr (). 64R1oO<lQC

hVFRAI,f. OtVIATTON =

R-11 ().5

POLY CfltFr. ,'.[)!=:

O.I),.C,4Q?8P.nr= ()')

O.lb01R7AI!F ()()

CALC. H

()? o • r, 1, '17 n n ') n F 0? {). (-.. '1, ~.q;,t; 7()1-1\? n • f, ? -, r, ~-. 0 ? n E .J? () • 1) ? '+ T 2: -'2, 7 () != (\? IJ.A?()?9.>J.71)C 0? ().(11"l·l1 6 St)r= 0? () • A l~ -., 7 A () () () c (\? 0 • (, r; ' ~. A 7 0 :; r n? n • t, r, _r._ ··, l 1+ ') (l r::: (':? () • f, 7 7 '1 7 () '!. t) != n? 0. f., r,-l, 7'P. Q ~- 'Jr: (';? I; • 6 lh '+ ~ !+ 1. () c 0? (\ • r, t, 'V<) ? ~ 0 F 02 () • A f, -_, 4 or.?() E

TABLE XXIII

I

02 n? ')?

0? ()? (\?

07 0? :"1"") 02 0? 1)7 ()?

02

Statistical Data. for 0. 5 in. Inconel in Rcfrigcrant-11

~ OFVIATinN

-3.')~0/t - :l,. f. 6 1r? -(). ()8')~ -?.014() -0 • It) 7()

7.')()(-,7

-n.<?Of-.0 -?..7?Cf0 -('.'"',()l?

?.43AA 1.n761 ':\.!Jl?'J 0 •. '\??:?

-2.328"

DfGRFF. = l

Page 121: Film boiling from horizontal plates with low thermal capacity

~ .. c u.: • CY

...... ·<:'

...... LL

I LL e:: LL

c· L:

> _j

c c.

V• lL c.-: <

c• v ~ v: < UJ ....J

(' CC'-CCC>

I t: u·u. CCC ,._ c r<"· o,J: ...... ..j" "' ..:: f'· i)'O::.--.t ,-r, ..c r<' "' ..C• C'-.U'.~

t . • CCC

' 1: II II ,_,_ __ "' c ..... "'

<l <~.<

z c ... 1-­<

> UJ c

::r::

0 ~ ~ 0

~

r,_ (', 1:'- C''\ ('.' C'- · r-_; N C'- ,..__. N ~ ('. C'- ·I'' C'- I' C'- C'- C'- r- · 1:' ('._ CCOCCOC'CC C•OCCCCCCCC'CC'CC

U. U. U. U U ll UJ IJ U \J ll U lt U l: '11 L1 tJ U U L l U c ccc c: occc c cc c c<:-c c c c·c r c c c C -:J·" -.t ... C'. r-- cr: Lr c· o· r" c ,..... i.f" ,• Lr o· o r· (f c .. r: ~ r<" rr. r-. Lr c •r- r-- r-- ..f· r·Lr r< < r- c ~- -.:::: ,,.. ...: •.. c ...j' ...::r--rr ,CUC" ,_(,_.,.._:: < r_r-'-:~·.J~-r:: ,~c. C~ ~r ... ~ C C_ t"-...: ""----~-...;:-c,cc l''· Lr.C" r--,c- C r- ,~: .. ; C c C ...r r"J1:;: ~~ ~· Cw •.•• ...- crcrr c c ~"" c -rc r--- ..:-..f.·..:- r. r-- ...:r "C· c: --::' ~- ... · \~ t.r ..::· c c. r· -.:r r c ~ l.i r <: r--- c C'- r-- c ....:- w ...t -..!' ....._~ ....j rr rr ·. r- ,~ r'" r,- r<" e~ t/'· ...; -..?" ........... ,.. ....: ~ L ... t.r <-

• • • t • • • • • • • • • • • • • • • • • • • c ccccccccccccccccccccccc ~

~ (' .. ('

r<'

"" (' C'-.' ("., C'-, (' "' \"- C'- (' r- (' C'-. (' '" (' (' (' (' (' r- (". cccocccccccccccccccccGc ~

L. \.1. LJ U L; U. U U U I~ U U ll L• U L '·'· li U U U U ll cccccccccccc:cccccccrccc ccccccccuccccccocccc-ccc coccccccccccccccccccccc cacccccoccccccc..ccccocc.:c 11 ~N~C'-~CCOOOCCCC~I'..f~C~~C·-.-~ C r-- <· ....-' c ~ r< o· C u ~- r:. r-·- i- r< 0 o· r. (' rr - ;; · c r-· c:: ..:t~ c< cY r- cr c: r--·t.:·-! ~-c <·tr r<-C'-·...r ~ i' 1"- c ~~~~-.t~r<-r<m~r<r<r<r<tr~.,j'.,j'~~lflf~ -······················· ,__ ccccccccccoccc·c.cccccccc· <1

~~~~lf~~i,J'~lflflf'lfl!lflflf'lflf~lflflf ccccccccccccccccccccccc

U.U·U lL l.L'-1 U:U.. U.U U.!U.•L'.. U U L.U ll U. l.L l1. 1- U..' oocccccccoocccc,cccc cc c c ooccr.c~OCCOcY~~cYC~CCCaC~Cr<" O~OCCOCCCCOCCCCCCOCCCCO o v- o c c o- c· c o o c c· c c c- c c o c c o c c ..f:,...;. ~· C C c<·lf ~ r--- C C·lf ~or<" ~ lf' r<"" f'-· ,( u· L.' C ..C ~ r'' 1'- ,_, c (( t!' ..[' r- . t!' !"'- -:!' (' L( .-' "' : .-- t!" r-- f'- ('. c '"' Clff'-~~OClfr<l'-~~r"C""C~I"'...j'~C'-0 ...:- ,[ lf -j- r< r<' r<· r- <' : r· r<· ("\, <' ....- -t: 1.: t.:- ...j' r<' :.. ~ ·C 1"- cr. . . . . . . . . . . . . . ' . . . . . . . . . occoccccccccccccccccccc

> u .. : c

~ ~ X w ~ ~ ~ [:-<

1 0 9.

......

...... }.. c ('j :.... Q t.o ..... ~ ... ...... () ,..,.. ...... c ...... (3 ..r.: .p c:: ~ .,... .... . c ......

0

rl

:.... 0

'-'-<

j ~ Q ~ ('j () ...... ...., rJl

·.-1 ...., E [fl

Page 122: Film boiling from horizontal plates with low thermal capacity

HEAT FLUX

O.l1040o~or: 1')5 o. '}l{)l~QOR(J[ OS 0.?~7?<J()OQf. OS o.?5759oqoF 05

P-11 ~.0 I

Lf-AST S()U·\RES POLY CfJEF~. f.R.F:

td ~d

i\ (

())= 1 ) = ?)=

0.46777P()()C.::. ()l n.lq1q,tn"'n·-= r;l

-O.::?Rl')A6?rr=-nl

H

o.?.T~oqnq()r ()?

o.:,1nooon0r n:> 0.1A6()Cl00()t: 0? 0.1'>199qq()£: 0?

CALC. H.

() • -:>, TVt- ") S 0 t) 1: 0? n. -:),71 ~0.970'= 0? 0. ?.f-.'1 11 S llOF 0? o.~54?9350E O?.

AVERAGE OFVIATlnN = 0.?.79R6510 o/,

TABLE XXV

Statistical Data for 2. 0 in. Inconel in Refrigerant-11

~ DEVT/\TTON

0.14.:;4 -0.1780

0.11.10 -O.OA?O

DEGRFE -= 2

,..... ,..... 0 .

Page 123: Film boiling from horizontal plates with low thermal capacity

~

0 .. • U.J ,......

0 <1

I.J,. I lL

c: u c l .

> ....J c 0..

v; u. c: <! -' c> v:

1-V:· < u. -J

"" cc

L~ U .. cc c· o: <'1'­...c ('. Cf'"' lr...t (' ~""'· ,.._, ('.J

0 •

co

II II

<<

z c .......

u H ~ u

< 1-

Li. c

"-' ('J (', " ('. (',. ". ("\.•" r-, (, '' <' <'. (',. (',. (',. (',, " (' i' ('\ ("\.' ccccccocccocccccccccccc

UJ u.. Q

<.= LL c

L. L· I~ l;_ L- u L. LL l.i U. U LJ. U. U.. U ~ •. U. ll' U.' U. U L:. U.' ccccccccccccccccccccr.:cc cc-cccrccccc-ccocccccccocc c- a c c c c c c c· c c c c c c c c c c c v u c c ·::ccc c: ecce c.:::ccccccc c cc:c 11 ,.;:- "- l{' ("' .. (< c c c c c c c c c 1.!' (',. ... c-::: c r- r- c,..... ' -:" C 1'- ..{ .-• C ...--' f<· C C Li •- C 1"- 1'- (""" 0 ([ C' '('. ('<" ,..... Z c r-- c: ~ r- r< c- I"· (1 (' r- t!' -t .- c -.[ !.'" (". ('.. ..r u· "' r- c r< ..:r...: -s ._,,....: r< C\.r·r "- r r•r ... u-. ...j' ~-.;t ~-.t w· lf •~" ,._. . . . . . . . . . . . . . . . .. . . . . . . . ._. cccccocccccccccccoccccc ~

...t~...j'~~~~f'~r<r<l'r<r<~<~~~-t-t~~ cococccccccococcccccccc

U. LL U · LL l.;.. 1,; U.: LL' LL U. U. LL U U.. 1.:- U.' ll: LL' u..· LL L:.. LL U ccccccoocccccocccoccccc ccccr-r-r-r-r-r-r-r-r-r-ccccr-ococ CCCG0000CCCCCCCCCCOCCCC occococcc-ccccooccC'cccco c-:::ccoooccccccc(',.r<~rcN~r<c r- r- c r< ('.. ..:- (" (' r- ("" -..+ (' c c c c c...-',-: (f (r 1'- ..{) Cf'<'CI'-C'C~-~,......C~<'I'~"-co',.....~r<~ - ,., .. ",.._)_. c: c- c_ -..L~ ...rca o:: ...r_ ..c ,.... .. ·...-·..-:,...... cr ~...~,_~~~ . . . . . . ' . ~ . . . .. . . . . . . . . . . cccoccc:ccccocc.occccccoo

> u.. C·

H

:> X X w ~ (:::)

~ F-e

Ill.

..... rl

..'. t: C"! ... Q

-~'' ;.. ._. Q ,y ,_. c: ....

.... ("j

..::::: ... c: ~

~~

c: .... 0

rl

... 0

'-'

5 ("j (". ,_. .... ("j :,) ..... ... rJl ..... ... ~ .... rf.J

Page 124: Film boiling from horizontal plates with low thermal capacity

112.

APPENDIX D

TIIERl\10PHYSICAL PROPERTIES

Density in ( lbs. 1 cu. ft.) - m .

p 1 --= 91. 3

p pv==RT, wherePispressurein(lbs.lsq.ft.), andR= 11. 21

(ft. lbs.f'lbs. m °F). The temperature, T, is the mean temperature

of the vapor film. tR)

hfg = 78.3

' hfg :-= 78. 3 [1 + (3,1Cpv~ Tl78. 3)] ~ ' hfcr includes the smsible heat added to vapor due to the fact that

b

the average temperature of the vapor is above the saturation

* tCinpcrature.

T 0 (11) vapor Thermal Conductivity in (BTUihr. ft. F)

Kvf ~= 0. 0018 t 1.14: · 10- 5T where Tis the average temperature

of the vapor film in °F.

Vapor Viscosity in (lbs. fhr. I sq. ft.)

(Sec Perry' s IIandbookt37)

Chang' s. equation for the prediction of heat transfer coefficients docs not · 1 · A. 1 T1lc··cfore Inc ude the sensible heat added to the vapor filn} in h1s va ue. 1 1

' to add .1 . · h alucs were calculated

a uegree of rcaltty to Chang' s equatwn f v and used instead of the simple latent heat of vapBrization,A.' that he suggests.

Page 125: Film boiling from horizontal plates with low thermal capacity

Surf_ac~ Tension in ( lbs.;ft.)

(f ;-:: 1. 3 . 10- 3

Vapor Specific Heat in (BTU/lbs. °F) m

(Sec Perry's Handbook) <37)

Nitrogen

Density in (lbs. /cu.ft.) lll

pl=50.47

p P v = R T , where P is pressure in (lbs.! sq.ft.), and H = 55.2

I I :~.

(ft. lbs. f/lbs. °F). The temperature T, is the mean kmrwr:!11i re lll

the vapor film. tR)

hf :-= 86. 0 g

(38)

I hfg c= 86.0 + . 224(T + 320), where Tis the avcr3gc temperature

. 0 of the vapor f1lm. ( F)

0

V_r.tpor _':!_'her mal C~nductlvity in (BTU/hr. ft. F) 12

Kvf ~ (241. 9) (6.15) 10-G T/1 + (235.5/T) (10 T)

where T is in °K.

Vapor Viscosity in (lbs. fhr. I sq. ft.)

(37) See Perr~ s Ilandbook

§urface Tension in (lbs. /ft.)

-4 u = 5. 67 . 10

Page 126: Film boiling from horizontal plates with low thermal capacity

I I 1 •

VITA

The author of this thesis, Kenneth :.rar-tin H:Jg~;dt•ll, ,, :ts h1rn 11r1

September :3, 1942, in JackSI)nville, Illinois. lfc~ att('nded ~·lclll•·J·I:lc_y :iJHi

secondary schools in St. Louis, .\Jissouri, and \\as gr~ll 1 natt.:d frl)t/1 \\'•·!l:-t11n

High School in June of 1960.

He entered the University of l\Iissouri Schoo] of :\Tint·:-; :tnd \1• t:dh11 :'\' . '~

in the fall of 1960, ::mel completed one year. On Fcbn~;1ry 11, !~11i:~ h1· ••:::rriC'd

lVIiss Janet Anna Norton, anrl they moved to 1\()lla in the l':dl of I ~If;:; ~ •• h·· • ••ldd

resmne his sf1H1ies at the University. He cu_'('i'.cd hi:..; L::.·h' ~··r .,f. 1·i· ~-~·r_•

entered the graduate sc.:hool at the University of :\fis~;nuri at Hrdla.