Figure’S1: Transferof P.ubique … · 2013-02-19 ·...

4
Figure S1: Transfer of P. ubique batch cultures from natural seawater to AMS1. : P. ubique transferred from natural seawater amended with pyruvate (50 µM), glycine (1 µM), methionine (1 µM) and vitamins to identically amended natural seawater medium. ●: P. ubique transferred from natural seawater amended with pyruvate (50 µM), glycine (1 µM), methionine (1 µM) and vitamins to identically amended AMS1. Points are the mean of triplicate cell density measurements. Error bars: ± 1.0 SD, n=3. When error bars are not visible, they are smaller than the size of the symbols. cell density (cells ml -1 ) 10 4 10 5 10 6 10 7 time (days) 0 2 4 6 8 10 12

Transcript of Figure’S1: Transferof P.ubique … · 2013-02-19 ·...

Page 1: Figure’S1: Transferof P.ubique … · 2013-02-19 · Figure’S4:’Effect’of’vitamin’additions’on’P.ubique’growth.P.#ubique!grown!in!AMS1! withoutadded!organic!carbon!and!differentdoses!of!freshly!prepared

Figure  S1:  Transfer  of  P.  ubique  batch  cultures  from  natural  seawater  to  AMS1.  ▲:  P.  ubique  transferred  from  natural  seawater  amended  with  pyruvate  (50  µM),  glycine  (1  µM),  methionine  (1  µM)  and  vitamins  to  identically  amended  natural  seawater  medium.  ●:  P.  ubique  transferred  from  natural  seawater  amended  with  pyruvate  (50  µM),  glycine  (1  µM),  methionine  (1  µM)  and  vitamins  to  identically  amended  AMS1.  Points  are  the  mean  of  triplicate  cell  density  measurements.  Error  bars:  ±  1.0  SD,  n=3.  When  error  bars  are  not  visible,  they  are  smaller  than  the  size  of  the  symbols.  

 

 

 

 

 

 

 

 

 

cell

dens

ity (c

ells

ml-1

)

104

105

106

107

time (days)0 2 4 6 8 10 12

Page 2: Figure’S1: Transferof P.ubique … · 2013-02-19 · Figure’S4:’Effect’of’vitamin’additions’on’P.ubique’growth.P.#ubique!grown!in!AMS1! withoutadded!organic!carbon!and!differentdoses!of!freshly!prepared

 

 

 

Figure  S2:    Flow  cytometry  profiles  and  corresponding  microscopic  images  at  different  pyruvate:glycine  molar  ratios.  All  cultures  were  grown  to  stationary-­‐phase  in  AMS1  containing  methionine  (10  µM)  with  the  following  glycine  and  pyruvate  concentrations:  A)  0  µM  pyruvate,  50  µM  glycine;  B)  0.1  µM  pyruvate,  50  µM  glycine;  C)  0.9  µM  pyruvate,  50  µM  glycine;  D)  5  µM  pyruvate,  50  µM  glycine;  E)  25  µM  pyruvate,  50  µM  glycine;  F)  50  µM  pyruvate,  0  µM  glycine;  G)  50  µM  pyruvate,  0.1  µM  glycine;  H)  50  µM  pyruvate,  0.9  µM  glycine;  I)  50  µM  pyruvate,  5  µM  glycine;  J)  50  µM  pyruvate,  25  µM  glycine.  For  each  treatment,  the  upper  panel  shows  relative  DNA  fluorescence  profiles  of  SYBR  Green  I-­‐stained  cells;  the  lower  panel  shows  microscopic  images  of  SYBR  green  I-­‐stained  cells.    In  (A),  †:  the  relative  DNA  fluorescence  of  single  cells;  ‡:  the  relative  DNA  fluorescence  of  doublets  

 

 

 

 

 

F G H I

A B C D E

J

F G H I

A B C D E

J

† ‡

Page 3: Figure’S1: Transferof P.ubique … · 2013-02-19 · Figure’S4:’Effect’of’vitamin’additions’on’P.ubique’growth.P.#ubique!grown!in!AMS1! withoutadded!organic!carbon!and!differentdoses!of!freshly!prepared

 

 

 

 

Figure  S3:  DNA  fluorescence  profiles  and  maximum  cell  densities  in  response  to  alanine  additions.  Top  panel:  Relative  DNA  fluorescence  time  course  of  batch  cultures  grown  in  AMS1  amended  with  limiting  pyruvate  (0.5  µM)  glycine  (1  µM),  methionine  (1  µM)  and  different  L-­‐alanine  concentrations,  as  indicated.    Bottom  panel:    Maximum  cell  densities  of  cultures  for  which  relative  DNA  fluorescence  values  are  shown  in  the  top  panel.    

 

 

 

 

 

 

14

15

17

19

0

2

4

10

alanine concentration

time

afte

r ino

culat

ion (d

ays)

2000 nM 500 nM 250 nM 125 nM 0 nM

2000 nM 500 nM 250 nM 125 nM 0 nM

cell d

ensit

y (x 1

06 cells

ml-1

)

Page 4: Figure’S1: Transferof P.ubique … · 2013-02-19 · Figure’S4:’Effect’of’vitamin’additions’on’P.ubique’growth.P.#ubique!grown!in!AMS1! withoutadded!organic!carbon!and!differentdoses!of!freshly!prepared

Figure  S4:  Effect  of  vitamin  additions  on  P.  ubique  growth.  P.  ubique  grown  in  AMS1  without  added  organic  carbon  and  different  doses  of  freshly  prepared  vitamins  (as  listed  in  Table  1).  Points  show  the  maximum  density  achieved  of  single  flasks  (triplicates  for  each  dose  are  shown).    

 

Figure  S4  Discussion:  Upon  exclusion  of  the  vitamin  mixture  and  in  the  absence  of  added  organic  carbon,  P.  ubique  grew  to  densities  of  ca.  2.0  ×105cells  ml-­‐1.  Higher  densities,  exceeding  1.2  ×106  cells  ml-­‐1,  were  observed,  in  a  dose-­‐dependent  manner,  when  a  freshly  prepared  vitamin  solution  was  added  (Figure  S4).    We  speculate  that  Pelagibacter  makes  efficient  use  of  organic  carbon  that  enters  the  cultures  as  reagent  contaminants  (for  example,  in  the  vitamin  stocks),  or  by  diffusion  from  plastic  culture  ware  and  the  air.    Previously  P.  ubique  has  been  shown  to  use  a  variety  of  volatile  organic  carbon  compounds  as  sources  of  electrons  for  respiration  (Sun,  et  al).    Also  in  support  of  this  interpretation,  we  note  that  the  growth  of  bacteria  in  water  purification  systems  is  not  uncommon  (Penna  et  al,  2002).  Collectively,  we  conclude  that  unintentional  trace  levels  of  nutrients  entering  our  experiments,  coupled  with  the  low  amounts  of  carbon  required  by  P.  ubique,  is  a  probable  explanation  for  the  observed  growth  without  added  carbon.  

0.00E+00  

2.00E+05  

4.00E+05  

6.00E+05  

8.00E+05  

1.00E+06  

1.20E+06  

1.40E+06  

1.60E+06  

0   2   4   6   8   10   12  

maximum

 density  (cells  ml-­‐1)  

Dose  of  vitamin  mix  added  (fold)