Fig. 9-CO, p. 233

91
Fig. 9-CO, p. 233

description

Fig. 9-CO, p. 233. Fig. 9-1, p. 235. Westerlies. Trade winds. Trade winds. Westerlies. Fig. 9-1, p. 235. Fig. 9-2, p. 235. Fig. 9-3, p. 235. North. Westerlies. Atlantic Current. Gulf. Stream. Canary Current. Stream. North. Equatorial Current. Trade winds. Equator. - PowerPoint PPT Presentation

Transcript of Fig. 9-CO, p. 233

Page 1: Fig. 9-CO, p. 233

Fig. 9-CO, p. 233

Page 2: Fig. 9-CO, p. 233

Fig. 9-1, p. 235

Page 3: Fig. 9-CO, p. 233

Fig. 9-1, p. 235

Westerlies

Trade winds

Trade winds

Westerlies

Page 4: Fig. 9-CO, p. 233

Fig. 9-2, p. 235

Page 5: Fig. 9-CO, p. 233

Fig. 9-3, p. 235

Page 6: Fig. 9-CO, p. 233

Fig. 9-3, p. 235

WesterliesNorth

Gulf

Trade winds

Stream

Page 7: Fig. 9-CO, p. 233

Fig. 9-4, p. 236

Page 8: Fig. 9-CO, p. 233

Fig. 9-4, p. 236

60°N

45°NWesterlies

Water moves eastward30°N

Trade winds

15°NB

Equator

Water moves westward

A

Page 9: Fig. 9-CO, p. 233

Fig. 9-5a, p. 237

Page 10: Fig. 9-CO, p. 233

Fig. 9-5a, p. 237

Wind

Surface water

Net Direction of Ekman transport

45°

Page 11: Fig. 9-CO, p. 233

Fig. 9-5b, p. 237

Page 12: Fig. 9-CO, p. 233

Fig. 9-5b, p. 237

Wind force

Direction of motionFriction

Page 13: Fig. 9-CO, p. 233

Fig. 9-5c, p. 237

Page 14: Fig. 9-CO, p. 233

Fig. 9-5c, p. 237

Wind force

Direction of motion

Net flow

Page 15: Fig. 9-CO, p. 233

Fig. 9-6, p. 237

Page 16: Fig. 9-CO, p. 233

Fig. 9-6, p. 237

B

Trad

e w

ind

N

At 15°N

30°–45°

90° to the right of wind direction is up here

Page 17: Fig. 9-CO, p. 233

90° to the right of winddirection is up here

At 15°N30°– 45°

Trade

win

d

Stepped Art

Fig. 9-6, p. 237

Page 18: Fig. 9-CO, p. 233

Fig. 9-7a, p. 238

Page 19: Fig. 9-CO, p. 233

Fig. 9-7a, p. 238

N60°N

North America

Hill’s center offset to west Europe

W E

Coriolis effect B15°N

Equator

Pressure gradient

S

Pycnocline

Page 20: Fig. 9-CO, p. 233

Fig. 9-7b, p. 238

Page 21: Fig. 9-CO, p. 233

Fig. 9-7b, p. 238

North Atlantic Current

Gulf Stream Canary

Current

Ekman transport forms dome

. . . Which sinks . . .com-pressing the layers beneath

Thermocline is pushed deeper

. . . forcing those layers to spread

Page 22: Fig. 9-CO, p. 233

Fig. 9-7c, p. 238

Page 23: Fig. 9-CO, p. 233

Fig. 9-7c, p. 238

Center of hill

Page 24: Fig. 9-CO, p. 233

Fig. 9-8a, p. 239

Page 25: Fig. 9-CO, p. 233

Fig. 9-8b, p. 239

Page 26: Fig. 9-CO, p. 233

Fig. 9-9, p. 240

Page 27: Fig. 9-CO, p. 233

Fig. 9-10, p. 240

Page 28: Fig. 9-CO, p. 233

Fig. 9-11, p. 241

Page 29: Fig. 9-CO, p. 233

Fig. 9-11 top, p. 241

Cold water

W

W C CCape Hatteras

Warm water

Page 30: Fig. 9-CO, p. 233

Fig. 9-11a/b, p. 241

Warm water

Warm water

C

W

Cold water

Cold water

Page 31: Fig. 9-CO, p. 233

Fig. 9-11c/d, p. 241

Cold water

Cold water

CW

CW

Warm water

Warm water

Page 32: Fig. 9-CO, p. 233

Fig. 9-12a, p. 242

Page 33: Fig. 9-CO, p. 233

Fig. 9-12b, p. 242

Page 34: Fig. 9-CO, p. 233

Table 9-1, p. 243

Page 35: Fig. 9-CO, p. 233

Fig. 9-13a, p. 243

Page 36: Fig. 9-CO, p. 233

Fig. 9-13a, p. 243

Without the Coriolis effect, ocean gyres would look like this:

With the Coriolis effect, they look like this:

Center of geostrophic “hill” is offset to the west.

Page 37: Fig. 9-CO, p. 233

Fig. 9-13b, p. 243

Page 38: Fig. 9-CO, p. 233

Fig. 9-13b, p. 243

Steep slope

Top of hillGulf

Stream Canary CurrentSargasso

Sea

Gentle slopeN

Narrow, deep, warm, strong currents

Broad, shallow, cold, weak currents

Page 39: Fig. 9-CO, p. 233

Fig. 9-14, p. 244

Page 40: Fig. 9-CO, p. 233

Fig. 9-14, p. 244

High-pressure air mass

High-pressure air mass

Pacific Ocean

Atlantic Ocean

Page 41: Fig. 9-CO, p. 233

Fig. 9-15a, p. 246

Page 42: Fig. 9-CO, p. 233

Fig. 9-15a, p. 246

N

~5°N

Equator 0° latitude

Upwelling

South Equatorial Current~100 m

(330 ft)

Southeast trade wind

Equatorial undercurrent (>100 m)

Page 43: Fig. 9-CO, p. 233

Fig. 9-15b, p. 246

Page 44: Fig. 9-CO, p. 233

Fig. 9-15b, p. 246

Global Wind-induced Upwelling (cm/day)

Page 45: Fig. 9-CO, p. 233

Fig. 9-16a, p. 247

Page 46: Fig. 9-CO, p. 233

Fig. 9-16a, p. 247

Wind from north

20° Oregon-California

18° 16°Ekman transport

To the west

ThermoclineOffshore current

Upwelling

Continental shelf

Page 47: Fig. 9-CO, p. 233

Fig. 9-16b, p. 247

Page 48: Fig. 9-CO, p. 233

Fig. 9-17, p. 247

Page 49: Fig. 9-CO, p. 233

Fig. 9-17, p. 247

Wind from south

Ekman transport

20° Oregon-California

18° 16°

To the east

Thermocline

Downwelling

Page 50: Fig. 9-CO, p. 233

Fig. 9-18a, p. 248

Page 51: Fig. 9-CO, p. 233

Fig. 9-18b, p. 248

Page 52: Fig. 9-CO, p. 233

Fig. 9-18b, p. 248

Windrows (convergences where seaweed, debris, and foam accumulate)

DivergenceSea surface Helical vortices

Win

d~ 50 m ~165 ft

~6 m ~20 ftDownwelling

(2–6 cm/sec) Level of no motionUpwelling

(1–2 cm/sec)

Page 53: Fig. 9-CO, p. 233

Fig. 9-19a, p. 249

Page 54: Fig. 9-CO, p. 233

Fig. 9-19a, p. 249

LMoist air

rises Rainfall

180°H

0

200 m

Page 55: Fig. 9-CO, p. 233

L

180º

0

200 m

Moist airrises

Rainfall

H

Surface winds

Upwelling

Thermocline

Warm-waterpool

Stepped Art

Fig. 9-19a, p. 249

Page 56: Fig. 9-CO, p. 233

Fig. 9-19b, p. 249

Page 57: Fig. 9-CO, p. 233

Fig. 9-19c, p. 249

Page 58: Fig. 9-CO, p. 233

Fig. 9-20a, p. 250

Page 59: Fig. 9-CO, p. 233

Fig. 9-20a, p. 250

H

Dry air descends

L

H

180°

Indonesia Drought conditions Rainfall

Water is 0.5°–1.0°C warmerWater is

1°C warmer

Shallower thermocline 0

South America

Deeper thermocline 200 m

Page 60: Fig. 9-CO, p. 233

Fig. 9-20b, p. 250

Page 61: Fig. 9-CO, p. 233

Fig. 9-20c, p. 250

Page 62: Fig. 9-CO, p. 233

Fig. 9-21, p. 251

Page 63: Fig. 9-CO, p. 233

Fig. 9-21, p. 251

0 0 0 0

150 15050 50Temperature

Wat

er d

epth

(m

)

Plankton

Wat

er d

epth

(ft

)W

ater

dep

th (

m)

Wat

er d

epth

(ft

)

Dissolved nutrients

300 300100 100

Increasing temperature Increasing temperatureNormal Conditions During El Niño

Page 64: Fig. 9-CO, p. 233

Fig. 9-22a, p. 252

Page 65: Fig. 9-CO, p. 233

Fig. 9-22b, p. 252

Page 66: Fig. 9-CO, p. 233

Fig. 9-22c, p. 253

Page 67: Fig. 9-CO, p. 233

Fig. 9-22d, p. 253

Page 68: Fig. 9-CO, p. 233

Fig. 9-22e, p. 253

Page 69: Fig. 9-CO, p. 233

Fig. 9-23, p. 252

Page 70: Fig. 9-CO, p. 233

Fig. 9-23, p. 252

4

3

2

1

0

1

Sta

nd

ard

ized

Dep

artu

re

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010−3

−2

Page 71: Fig. 9-CO, p. 233

Fig. 9-24, p. 253

Page 72: Fig. 9-CO, p. 233

Fig. 9-24a, p. 253

Page 73: Fig. 9-CO, p. 233

Fig. 9-24a, p. 253

Santa Barbara

Los Angeles

UNITED STATES

San Diego

MEXICO

Normal

11°C

12°

13°

14°

15°

16°

17°

18°

19°

Page 74: Fig. 9-CO, p. 233

Fig. 9-24b, p. 253

Page 75: Fig. 9-CO, p. 233

Fig. 9-24b, p. 253

11°C

12°

Santa Barbara 13°

Los Angeles 14°

UNITED STATES

15°San Diego 16°

MEXICO 17°

18°

19°

El Niño

Page 76: Fig. 9-CO, p. 233

Fig. 9-25, p. 254

Page 77: Fig. 9-CO, p. 233

Fig. 9-25, p. 254

30 Ocean surface1.021

1.022

251.023

500 m (1,640 ft)20

1.025Density

(g/cm

3 )1.024

15 1.026

1.027

1,000 m (3,300 ft)T

emp

erat

ure

(°C

)

103,000 m

b

1.028

c 1.029

5a

Seafloor 4,000 m (13,100 ft)

033 34 35 36 37

Salinity (‰)

2,000 m

Page 78: Fig. 9-CO, p. 233

Fig. 9-26, p. 255

Page 79: Fig. 9-CO, p. 233

Fig. 9-26, p. 255

Warm, shallow currentsCold and salty deep currentsSome areas of deep-water formation

Page 80: Fig. 9-CO, p. 233

Fig. 9-27, p. 256

Page 81: Fig. 9-CO, p. 233

Fig. 9-28, p. 256

Page 82: Fig. 9-CO, p. 233

Fig. 9-28, p. 256

Heating Cooling

Po

lar

reg

ion

s

Eq

uat

ori

al r

egio

ns

Surface flow

Thermocline

Sinking

Deep spreading

Page 83: Fig. 9-CO, p. 233

Fig. 9-29, p. 257

Page 84: Fig. 9-CO, p. 233

Fig. 9-29, p. 257

Greenland

Strait of Gibraltar Mediterranean Water

Iceland Central Water

Antarctic Intermediate Water

NorthAfrica STC AC AD

0

Europe Antarctica

0

1,000 3,280

2,000 6,560

3,000North Atlantic Deep Water

9,840

Dep

th (

m)

Antarctic Bottom Water

13,120

Dep

th (

ft)

5,000 16,400

6,000 19,680

60°N 50 40 30 20 10Latitude

20 30 40 50 60 70 80°S

4,000

100

Page 85: Fig. 9-CO, p. 233

Fig. 9-30a, p. 258

Page 86: Fig. 9-CO, p. 233

Fig. 9-30b, p. 258

Page 87: Fig. 9-CO, p. 233

Fig. 9-30c, p. 258

Page 88: Fig. 9-CO, p. 233

Fig. 9-30d, p. 258

Page 89: Fig. 9-CO, p. 233

Fig. 9-30d, p. 258

Directional vanes

Paddle wheel impellor

Dial counter for number of revolutions between start and stop times

Page 90: Fig. 9-CO, p. 233

Fig. 9-30e, p. 258

Page 91: Fig. 9-CO, p. 233

Fig. 9-30f, p. 258