field based structural topology optimization using ... · Phase‐field based structural topology...

28
Phasefield based structural topology optimization using unstructured polygonal meshes Arun L. Gain Glaucio H. Paulino Department of Civil and Environmental Engineering University of Illinois at UrbanaChampaign 9 th July, 2012

Transcript of field based structural topology optimization using ... · Phase‐field based structural topology...

Page 1: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

Phase‐field based structural topology optimization using unstructured polygonal meshes

Arun L. GainGlaucio H. Paulino

Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐Champaign

9th July, 2012

Page 2: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

2

Introduction & Motivation

Topology optimization refers to optimum distribution of material in a given design space under certain specified boundary conditions so as to meet certain prescribed performance objective.

Implicit function methods: Topology represented in terms of implicit functions and evolved over time using certain PDEs.

Page 3: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

3

Introduction & Motivation

• Implicit function method such as level‐set function, although attractive, require periodic reinitializations, for example, to maintain signed distance characteristics for numerical convergence.

• Reinitializations often performed heuristically. 

• Phase field function does not have to be signed distance function so no need of any reinitialization.

Page 4: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

4

Motivation for using polygonal elements

Talischi C., Paulino G. H., Pereira A., and Menezes I. F. M. (2010) Polygonal finite elements for topology optimization: A unifying paradigm. International Journal for Numerical Methods in Engineering, 82: 671‐698

T6 elements Polygonal elements

• For simplicity, uniform grids are often used for topology optimization. Over‐constrained geometrical features of structured grids can bias the orientation of the members, leading to mesh dependent, sub‐optimal designs.

• Traditional density based topology optimization on Cartesian meshes suffer from numerical anomalies such as checkerboard patterns and one‐node connections.

Page 5: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

5

Motivation for using polygonal elements

• Explore general and curved domains rather than the traditional Cartesian domains (box‐type) that have been extensively used for topology optimization.

Talischi C., Paulino G. H., Pereira A., and Menezes I. F. M. (2012) PolyMesher: A general‐purpose mesh generator for polygonal elements written in Matlab. Structural and Multidisciplinary Optimization, 45(3): 309‐328

Page 6: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

6

Presentation Outline

1. Introduction & Motivation

2. Polygonal finite element method

3. Phase‐field method for topology optimization

4. Centroidal Voronoi Tessellation (CVT) based finite volume method to solve the Allen‐

Cahn equation

5. Implementation flow chart

6. Numerical examples

7. Future research directions

Page 7: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

7

Following objective functions will be considered for topology optimization using phase‐field method:

Compliance minimization

Compliant mechanismND Di

out

dD dsJ

u

f u g u

1 2inf ,iJ J P i

for

where,

Volume constraintD

P dD

Page 8: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

8

Brief review of polygonal finite elements used in this work

2, ,i i

i ij i

Q

sN

h

x xx x x

x x

Polygonal finite elements: Finite element space of polygonal elements is constructed using natural neighbor scheme based non‐Sibson interpolants (Laplace interpolants)

1 2, , . . . , nQ q q qwhere,

Belikov VV, Ivanov VD, Kontorovich VK, Korytnik SA, Semenov AY (1997) The non‐Sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Computational Mathematics and Mathematical Physics 37(1): 9‐15

0 1 1

, ,i i j ij iN N Nx x x

i iNx x x

Conforming shape functions:

Page 9: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

9

Review of the phase‐field method employed

Takezawa A., Nishiwaki S., and Kitamura M. (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. Journal of Computational Physics, 229: 2697‐2718

Evolution equation: Allen‐Cahn equation

2 0,f Dt n

on

where,

f

1

1

'' t

t

JJ

1

1

0 0 1 0 1 0', , ' '' t

t

Jf f f f

J

12

1

11 30 12

'' t

t

Jt J

Effective elasticity tensor: 1

0

*min

,, .p

k

C xC C x

C x

Page 10: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

10

Centroidal Voronoi Tessellation (CVT) based finite volume method is used to solve the Allen‐Cahn equation

Vasconcellos J. F. V. and Maliska C. R. (2004) A finite‐volume method based on voronoi discretization for fluid flow problems. Numerical Heat Transfer, Part B, 45: 319‐342

2 ft

Allen‐Cahn equation:

, , , 'p p pt D t t D

dt dD dt d f dt dDt

n

2, , , 'p p pt D t D t D

dt dD dt dD f dt dDt

Integral form:

Page 11: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

11

Centroidal Voronoi Tessellation (CVT) based finite volume method is used to solve the Allen‐Cahn equation

Simplifying each term:

1 1, p p

n n n np p p

t D D

dt dD dD Vt

3, ,p i

nn

iit t p p

dt d S dt S t P

n n

n

, i

i

n nnp p

ip p H

n

1

1

1 0

1 0, ' 'p

n n n np p p pn

p p p n n n nt D p p p p

r rf dt dD V t f V t

r r

for

for

, , , 'p p pt D t t D

dt dD dt d f dt dDt

nIntegral form:

Page 12: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

12

Centroidal Voronoi Tessellation (CVT) based finite volume method is used to solve the Allen‐Cahn equation

3

1

3

01 1

10

1

,,

np p n

pn np p p

np n n

p p p npn n

p p p

V Pr

V r t

V r t Pr

V r t

for

for

Semi‐implicit updating scheme:

1

1

1 30 12

'' tn n n np p p p

t

Jr

J

where,

Page 13: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

13

Implementation flow chart

Page 14: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

14

Numerical examples: Rectangular domain

• Objective: Compliance minimization

• Domain size: 2x1 with 20,000 polygonal elements

• For each FE iteration, 20 Allen‐Cahn equation updates using CVT based FV method

• 5 42 10 10 10 95min, , ,k

Cantilever beam problem

Page 15: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

15

Numerical examples: Rectangular domain

Cantilever beam problem

Q4 Elements

Polygonal Elements

Initial configuration Converged topology

Page 16: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

16

Numerical examples: Rectangular domain

Cantilever beam problem with different initial guesses

Converged topologyInitial configuration

Page 17: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

17

Numerical examples: Rectangular domain

Bridge problem – Study the influence of diffusion coefficient,  

• Objective: Compliance minimization

• Domain size: 2x1.2 with 15,360 polygonal elements

• For each FE iteration, 20 Allen‐Cahn equation updates using CVT based FV method

• 5 52 10 10 10,

Page 18: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

18

Numerical examples: Rectangular domain

Bridge problem – Study the influence of diffusion coefficient,

52 10

0 01 0 99 28 2. , . . %

510 10

0 01 0 99 46 3. , . . %

Page 19: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

19

Numerical examples: non‐Cartesian domain

Bridge problem on semi‐circular design domain

• Objective: Compliance minimization

• Domain size: 11,000 polygonal elements

• For each FE iteration, 20 Allen‐Cahn equation updates using CVT based FV method

• 5 42 10 10 10 60min, , ,k

Page 20: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

20

Numerical examples: non‐Cartesian domain

Initial configuration Converged topology

Bridge problem on semi‐circular design domain

Page 21: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

21

Numerical examples: non‐Cartesian domain

• Objective: Compliance minimization

• Domain size: 20,000 polygonal elements

• For each FE iteration, 20 Allen‐Cahn equation updates using CVT based FV method

• 5 42 10 10 10 250min, , ,k

Curved cantilever beam problem

Page 22: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

22

Numerical examples: non‐Cartesian domain

Curved cantilever beam problem

Page 23: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

23

Numerical examples: non‐Cartesian domain

Curved cantilever beam problem

Initial configuration Converged topology

Page 24: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

24

Numerical examples: non‐Cartesian domain

• Objective: Compliant mechanism

• Domain size: 6,000 polygonal elements

• For each FE iteration, 20 Allen‐Cahn equation updates using CVT based FV method

• 5 410 10 10 10min, , k

Inverter problem on circular segment design domain

Page 25: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

25

Numerical examples: non‐Cartesian domain

Curved cantilever beam problem

Initial configuration Converged topology

Page 26: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

26

Summary and Conclusions

• Phase‐field based topology optimization with polygonal elements offer a general 

framework for topology optimization on arbitrary domains.

• Meshes based on simplex geometry such as quads/bricks or triangles/tetrahedrons 

introduce intrinsic bias in standard FEM, but polygonal/polyhedral meshes do not.

• Polygonal/polyhedral meshes based on Voronoi tessellation not only provide greater 

flexibility in discretizing non‐Cartesian design domains but also remove numerical 

artifacts such as one‐node connections and checkerboard pattern in density based 

methods.

Page 27: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

27

We are looking at the following future research directions:

Implementation of phase‐field method in three‐dimensions using polyhedral meshes

Phase field method using polygonal meshes paves the way for medical engineering applications including craniofacial segmental bone replacement

Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topology optimization for designing patient‐specific large craniofacial segmental bone replacements. Proceedings of the National Academy of Sciences 107(30): 13222‐13227

Leonardo et al.

Page 28: field based structural topology optimization using ... · Phase‐field based structural topology optimization using unstructured polygonal meshes ... Cantilever beam ... topology

28

Questions and Comments?