Fibre Epoxy Composites at Low Temperature Hartwig

9
The thermal and mechanical properties of carbon, glass and Kevlar fibre reinforced epoxy composites are discussed, with particular reference to the behaviour of these materials at cryogenic temperatures. The effects of production techniques and various fibre arrangements are determined. Fibre-epoxy composites at low temperatures* G. Hartwig and S. Knaak Keywords: low temperature techniques, composite materials, fibre-epoxy composites Nomenclature auc Ultimate compressive stress cr/crUT Fatigue endurance limit (tensile threshold) E Young's modulus V]LS Interlaminar shear strength F Fibre volume fraction to Fibre angle fi,L/L Integral thermal expansion RT Room temperature Indices t Relative thickness of angle-ply M Matrix Coefficient of thermal expansion F Fibre e Strain C Composite eUT Ultimate tensile strain X Thermal conductivity /x Poisson's ratio Polymers cr Stress PC Polycarbonate cruT Ultimate tensile stress PSU Polysulfone Fibre composites are attractive alternatives to ture ductile thermoplastics will improve the mechanical metals because of their high specific strength or properties. stiffness or their excellent fatigue behaviour. They are a Cryogenic applications of polymeric fibre necessary supplement to metals because of their low composites are mainly in superconductivity, space electrical and thermal conductivities, the latter being technology and handling of liquefied gases. They related to strength or stiffness. Their disadvantage include superconducting generators or pulsed magnets arises from the weak polymeric matrix and results in for fusion reactors which call for materials resistant to low interlaminar shear strength and low transverse fatigue and electrically resistive to eddy currents. strength. At low temperatures some properties of the Support elements for liquefied gas containers have to heterogeneous fibre-matrix system are superimposed by be optimized with regard to low thermal conductivity such peculiarities as additional thermal resistance at and mechanical strength. Transport vessels and boundaries (Kapitza effect) by which the thermal components used in space technology should be light conductivity is reduced. In the course of cooling the weight and resistant to fatigue. In several applications different thermal contractions of fibre and matrix give low thermal contraction is necessary. The cryogenic, rise to thermal residual stresses and strains which mechanical and thermal properties of important influence most of the mechanical properties. At low polymeric fibre composites will be presented. temperatures the majority of currently used matrices The dependence of mechanical properties on production are brittle and do not allow relaxation of residual techniques was studied for carbon fibre composites. stresses or stress concentrations to take place. In future developments the application of special, low tempera- Materials *Dedicated to Professor Dr. W. Heinz on the occasion of The fibres used in this work were E-glass fibres, his 60th birthday, high modulus carbon fibres (M40, Toray), high tensile 0011-2275/84/011639-09 $03.00 © 1984 Butterworth ~t Co (Publishers) Ltd. CRYOGENICS. NOVEMBER 1984 639

description

Mechanical properties of composite material epoxy-glass fibres at cryogenic temperature

Transcript of Fibre Epoxy Composites at Low Temperature Hartwig

Thethermal and mechanical propertiesofcarbon,glassand Kevlar fibrereinforcedepoxy compositesarediscussed,wi thparticular referencetothebehaviourofthesematerialsatcryogenictemperatures. The effectsofproductiontechniquesand variousfibrearrangementsare determined. Fibre-epoxycompositesatlowtemperatures* G.Har t wi gandS.Knaak Keywords: low temperaturetechniques,composite materials, fibre-epoxy composites Nomencl at ur eaucUl t i mat ecompressi vestress cr/crUTFat i gueendur ancelimit(tensilet hreshol d) EYoung' smodul usV]LSI nt er l ami nar shearstrength FFi brevol umefract i ontoFi breangle f i , L / L Integralt her mal expansi on RTRoomt emper at ur eIndices tRelativet hi cknessofangle-plyMMat ri x Coeffi ci entoft her mal expansi onFFibre eStrainCComposi t e eUTUl t i mat etensilestrain XTher mal conduct i vi t y /xPoi sson' sratioPolymers crStressPCPol ycar bonat e cruTUl t i mat etensilestressPSUPol ysul fone Fi brecomposi t esareattractivealternativestotureductilet hermopl ast i cswilli mprovethemechani calmetalsbecauseoft hei rhighspecificstrengthorproperties. stiffnessor t hei rexcel l ent fatiguebehavi our. TheyareaCryogeni cappl i cat i onsofpol ymeri cfibre necessarysuppl ement tometalsbecauseoft hei rlowcompositesaremai nl yinsuperconductivity, space electricalandt her mal conductivities, thelatterbei ngt echnol ogyandhandl i ngofliquefiedgases.They relatedtostrengthorstiffness.Thei r di sadvant agei ncl udesuper conduct i nggeneratorsorpul sedmagnet s arisesfromt heweakpol ymeri cmat ri xandresultsinforfusionreactorswhi chcallformaterialsresistantto lowi nt er l ami nar shear strengthandlowtransversefatigueandelectricallyresistivetoeddycurrents. strength.Atlowt emperat uressomepropertiesoftheSupport el ement sforliquefiedgascont ai nershaveto het erogeneousfi bre-mat ri xsystemaresuper i mposedbybeopt i mi zedwithregardtolowt hermal conduct i vi t y suchpeculiaritiesasaddi t i onal t her mal resistanceatandmechani cal strength.Tr anspor t vesselsand boundar i es(Kapi t zaeffect) bywhi cht het her mal component susedinspacet echnol ogyshoul dbelight conduct i vi t yisreduced. Inthecourseofcool i ngtheweightandresistanttofatigue.Inseveralappl i cat i ons di fferent t her mal cont ract i onsof fibreandmat ri xgivelowt hermal cont r act i onisnecessary.Thecryogenic, risetot her mal residualstressesandstrainswhi chmechani cal andt her mal propertiesofi mpor t anti nfl uencemost ofthemechani cal properties.Atlowpol ymeri cfibrecomposi t eswillbepresented.t emperat urest hemaj ori t yofcurrent l yusedmatricesThedependenceof mechani cal propert i esonproduct i on arebrittleanddonot allowrel axat i onofresidualt echni queswasstudiedforcar bonfibrecomposites.stressesorstressconcent r at i onstotakeplace.Infut ure devel opment st heappl i cat i onof special,lowt empera-Mat er i al s *DedicatedtoProfessorDr.W.Heinz ontheoccasionofThefibresusedinthisworkwereE-glassfibres, his60t hbirthday,highmodul uscar bonfibres(M40,Toray), hightensile 0 0 1 1 - 2 2 7 5 / 8 4 / 0 1 1 6 3 9 - 0 9 $03. 001984Butterworth~tCo(Publishers)Ltd. CRYOGENICS.NOVEMBER1984639 Tabl e1.Fibrepropertiesfract urest rai nofBUTM ~ 4-6%at4.2ICTheyare candi dat esformat ri cesof futurecomposi t esfor F i b r e s oU T II,8UTII,EF I I ,EF *, cryogeni cappl i cat i ons? GPa%GPaGPaFor allmat ri cesnotonl yt hei rcryogeni c propert i esaredecisivebut atRTaddi t i onalT3 0 0 3. 51.52 3 0 ~24r equi r ement smust befulfilled.Thi sappl i esmai nl yto CarbonfibreM4 0 A2. 40. 64 0 0 thecreepcharact eri st i cof composi t eswhi chshoul dbe AS- 42. 82 1 0 sufficientlylow.However, inmost cryogeni cmagnetFibregl ass(E-glass)3. 0- 3. 43.17070appl i cat i onshi ghl oadsareappl i edonl yatlow Kevlar492. 82.11 4 0 ~1 1t emperat ures, wherecreepprocessesarenegligible.At RTt heyhavetowi t hst andtheintrinsicweightl oad * - a t T =4.2Konl y(egst ruct ural part sforsuper conduct i ngmagnet s andgenerators).car bonfibres(T300.Tor ayandAS4,Hercul es)andFor one-andt wo- di mensi onal l oadcondi t i ons Kevlar-49fibres( DuPont).Thepr i nci pal fibrethefollowingfibrear r angement swerechosen: propert i esareshowninTabl e1.uni di rect i onal (UD)layers;uni di rect i onal ( UDW)Mat eri al sampl eswerepr oducedbyf i l ament madef r omnearl yuni di rect i onal fabricswithafillofwinding, fortubes,aswellaswetl ay-upandpr epr egt hi nglasst hreadsforfixation;angl e-pl y(0 ,___ 45 ,90 ) t echni ques. Thr eeepoxyresinsyst emswereusedtomadefromUDpliesor0 and90 fabricsandcross- formthepol ymer i cmatrices. Allt hreearebasedonply(0 ,90 )madefromweaves. bi , phenol - Aandmanuf act ur edbyCi baGeigy.The syst emCy221/ Hy979isaflexiblel ami nat i ngresin:Ani sot ropyof composite properties thetwoothers, Ly556/ Ht 972andMy740/ Hy917,areMost propert i esof fibrecomposi t esareof a rigidatr oomt emper at ur eandareusedinpr epr egt ensori al nature.Theani sot r opyisduetothefibre t echni ques.ar r angement , theintrinsicfibreani sot r opy( car bonand Epoxyresinsarecross-l i nkedpol ymer sandshowKevl arfibres)andthef i br e- mat r i xinterfacialbond.brittlebehavi our atlowt emperat ures. Thetensile fract urest rai nforflexibilizedl ami nat i ngresinsisofFibreanisotropy theor der ofBUTM ~2%at4.2K.Thesyst emsusedin pr epr egt echni quesaremuchmor ebrittleandexhi bi t Fi breglassconsistsof ani sot ropi cmat eri al with anevenlowerfract urestrain.Sometypesof st rongcoval ent bondi ngbet weenat omswhi chresults t her mopl ast i cs(egPC,PSU)areductileint hei rinahi ghstrengthint hreedi mensi ons. Car bonfibres behavi our evenatlowt emper at ur esandshowaareani sot r opi candhavest rongcoval ent bondi ngonl y Table2.Propertiesofmatri xandfibrecomposi tes OUT,UT,E,Cuc,~t'lLS,dr/O'uT'b G Pa%G PaG PaM Pa% MAT RI XAT 4. 2K Epoxyr esi nCy2 2 1 / Hy 9 7 9 0 . 1 8 2. 28-0 . 3 7 -4 0 at 77K F I BRE- EPOXYCOMPOSI T ES( F I BRECONT ENT 6 0 VOL%) AT 4. 2K U ni di r ec t i onal II Wi t hcar bonT3 0 0 2. 01. 51 4 0 0 . 8 - 1 . 3 0 . 3 2 1 1 0 8 5fibreM4 0 A 1. 50. 52 4 0 -0 . 3 2 9 0 8 5AS4--1 3 0 --1 4 0 - Wi t hf i br eglass (E-gl ass)1. 1- 1. 81. 5- 1. 84 5 0 . 7 - 1 . 0 -1 7 0a- Wi t hKevl ar 4 9 1. 3- 1. 51. 2- 1. 31 0 0 0 . 3 2 -3 8a6 5U ni di r ec t i onal 1 Wi t hcarbon fibreT3 0 0 0 . 0 5 - 0 . 0 6 0 . 4 - 0 . 5 13-0 . 0 7 -- Wi t hKevl ar 4 9 --9. 5-0. 1-- Angl e- pl y ( 0 =,4-4 5,9 0) Wi t hcar bonT3 0 0 0. 51.15 3 -O. 31-6 5fibreM4 0 A I O7)(tensilethreshold)Thermalconductivity 85*/085%~ Asurveyoft her mal conduct i vi t y ofUDfibre lillisin6.andKevl arcomposi t esgivenFig.Fibre-glass s~*/,65*/,fibrecomposi t esdonot showagreatt emperat ure IIII 5~"~dependenceoft her mal conduct i vi t i es) H3t hei rvalues b50"1, 5o_NI ~bei ngfivetot entimeshi ghert hant hat oftheepoxy 4o*/,Tmatrix.Bycontrast,car bonfibrecomposi t esshowa zs*/,|very larget emperat uredependenceduetofreezingoutM,.ofel ect ront her mal fibreconduct i vi t yatlow temperatures.oInFig.7t het her mal conduct i vi t y ofcar bonfibre E-GlossT300M40AKevlor49composi t esisshownwithdifferenttypesand rovingCorbonfibresarrangement soffibres.AtRTallUDcomposi t eswith Fig.5Tensi l e strengthGUT, sti f f ness EII andfati gueendurancel i mi ta / %T HMfibres(M40A)showahi gherconduct i vi t y ofUD and (0"; :t: 45*, 90*) fibre composites at77K t hreshol dtestsat77Kt heval ueis85%. Theval uesofot herUDandangleplycomposi t esareshownin Fig,5.Testsundercompressivefatigueloading yieldlower valuesbecauseofmi crobuckl i ng, especiallyforfibresComposites?11.~.__19140A whi chareweakint hetransversedirection.Thedat a(so v o l%)/ - ~areveryscarce.Somei nf or mat i ononfibreglass composi t eshasbeenpubl i shed?/(Steel ) O nei mpor t ant quest i onist hedegr adat i onof Io1~~~ epropert i esint hecourseoffatiguecycling.For fibrepoxy. . . ~ . - - T3 0 0g l a s s a n d c a r b o n f i b r e c r o s s - p l i e s i t wa s s h o wn t h a t / , / " ! / ' / " x,,_ _stiffnessdoesnot degradebymor et han15%under Kevlor/epoxy uni axi al tensilefatiguecondi t onsat77Kunt i l fracture' l [ ] / _. . . . - ~ - -occurs.Under bi axi al fatiguecycling withcombi nedI t orsi onandt ensi onamuchhi gher andcumul at i ve. . . . . . _ ~_ Gloss/epoxy degradat i onhasbeenfound.1 E.......- ~~~_ _ - - - - Epoxy Interlaminarshearstrength(ILS)~io-I I /For shear l oadi ngofcomposi t est hedecisive limitingpar amet er ist heILS.I fthisval ueisexceeded,del ami nat i onofcomposi t elayersoccurs.Fi bre breakageoccursatl oadsdefi nedbybendi ngstrength. TheILSmeasur ement sareper f or medinshort beam162 tests.Theval uesofILSaredet er mi nedmai nl yby failuresoft hematrix,i nt erfaci al bondorfibres. Thequest i onoft heupper l i mi t ofILSarisesand anot her quest i oniswhi chcomponent sconst i t ut ethe l i mi t at i onsofthecomposi t esconsidered. Thelow t emper at ur eshear strengthofepoxyresins( andmost i63IIIIIIIIIIIII~~iii~iI pol ymers)liesbet ween150and200MPaatT ~77Kotoozoo3o0 andconstitutest heupper limitofcomposi t escon-Temperoture,K t ai ni ngepoxyresins.For fibreglasscomposi t est he high,nearl yi sot ropi cfibrestrengthandverylikelytheFig.6Survey of t hermal conduct i vi t i esof UDf i brecomposi t esversus bondstrengthsdonot constitutet helimitingfactors,t em p er a t ur e 6 4 4 CRYOGENI CS. NOVEMBER19 8 4Carbonf i br es/ epoxyKevl arf i bre-composi t e 60vol%Fi bre content60vol % 150 M40AIIxl O - 4~-E.~ox~yr ~~M40A_+ 450--~ ' ~ , ~ ~, , ~r a n s v e r se oo o o oo i / / / , " " ~T 3 0 0 I I -~" "~ /f/T SO0 0", + -45" , 90 50_~""... "-. / / / ~" / f ~ T : 500 45~EIm~ 0 IIIII - , o~ / / / ~ ' / / / Epoxy resinxt O" 5-- I0- I~ / / f ~ . / ~ CY221HY979- I 00- 6 4 5 tI[II~IIIIIIIII 0I 00200300 16 2IIIII I II I IIIII 20406080IO0150200250500Tempereture, K Fig.8Longi t udi nal andt r ansver sei nt egral t her mal expansi onf or UD 7", KKevl arf i br ecomposi t esver sust emper at ur e Fig.7T her mal conduct i vi t yof di f f er ent car bonf i br ecomposi t esver sus t em per at ur ethefibredirectionsduetostretchingvibrationsin covalentbondi ngpotentials.Thenegativeexpansi onof compar edtothosewithHTfibres.TheelectricKevlarfibresisassumedtoarisefrombendi ng conductivityof HMfibresatRTisabout 2.5timesvibrationsperpendi cul artothealignedmol ecul ar highert hanthatof HTfibres.Thisisduetolargerchainsoffibres.Incont r ast theirtransverseexpansi on graphi t i zedareasof HMfibres,islargeandlargert hanthatof mostepoxyresins.This Atverylowtemperaturesthisdifferencevani shesis, duetovibrationsintheweakasymmet ri cVander becausewavelengthswhicharecharacteristicof thatWaalsorhydrogenbondpotentials.Thus,alow temperaturerange( domi nant phononwavelength)arethermalexpansi onisonl yavailableinthefibre toolargetbrresolvingthemicrostructuresof fibres.Adirection.Thisisdemonst rat edinFig.8forthe similarconsi derat i onholdsforthel ongi t udi nal andthermalexpansi oninthelongitudinalandtransverse transversecomponent softhefibreconductivitytensor,directionsofKevlarfibreUDcomposites./3For car bon AtRTitisrat herani sot ropi candgetsmoreisotropicfibrecomposi t essimilarresultsapply. atlowtemperaturesduetotheincreaseoftheInangle-pliesamedi umlowt hermal cont ract i on domi nant phononwavelengths.Inadditionthecar boncanbeachievedinplanebymeansof residualstresses fibreconduct i vi t ydecreaseswithdecreasingbetweenplies.Howeveralarget hermal cont ract i on temperaturesandgetscompar abl etoorlowert hanthatexistsinthedirectionperpendi cul artothelaminates. oftheepoxymatrix.Thecoefficientofthermalexpansi onofUD AsseenfromFig.7thedifferenttypesofcar boncompositesatc IIcanbecalculated 5 fromthoseofthe fibrecomposi t esconsi deredvarybyafactorof50atfibreso~F IIandthematrixo~M by RT.At7Kthisfactorreducesto1.5. Forthet hermalconduct i vi t ytransversetothefibredirectionat hermal C~M--~rll boundar yresistancebyphononmi smat ch(KapitzaSell=erll+(8) resistance)mayberelevantatverylowtemperatures.1 +1.1F/ (1-1. 1/ 7)(Evl p / EM)Thismeansthatatlowtemperaturesthet hermalconductivityofcar bonfibrecompositesisrathersmallwhereFisthefibrecont ent pervolume:E M and andnearlyi ndependent offibretypeandarrangement.Thust hermal conductivityimposesnomaj or restric-EF IIarethemodul i ofmatrixandfibre,respectively. Forcalculatingt hermal expansi onofangle-pliesseea tionsif onewantstoopt i mi zeot hercomposi t epreviouspubl i cat i on? propertiesatlowtemperatures.Thet hermal expansi oncanbevariedbythefibre T h e r ma l e x p a n s i o n cont ent andarrangement orbydifferentthicknessesofangle-plies. Forseveralappl i cat i onsincryogenic t emperat ureExperi ment al valuesofintegralthermal t echnol ogylowcontractivematerialsareofadvantage,expansi on Duetotheani sot ropi ct ensoroft hermal expansi onthis isnotpossibleforallfibrecomposi t esinalldirections.4.2 Fibreglasshasalowcoefficientoft hermal A L / L =(e cd Texpansi on(at r~4.810-nK -1)whichisnearlyisotropic inalldirections.Thus,thecont ract i onofthose293 composi t essi mul t aneousl ycanbemadesmallinall threedirections,onangle-plyfibreglasscomposi t esareshowninFig.9. Car bonandKevlarfibresexhibitaverysmallorTheparamet erofthecurvesisthefibreangle__.to evennegativecoefficientoft hermal expansi ononl yinrelatedtothedirectionofmeasur ement )4 C R Y OGE N I C S . N OV E MB E R 1 9 8 4 6 4 5Fibregloss/epoxy Fibregloss/epoxy7 0-',c_5vol % I ~ ' ~ x 70 -+ 3vol % Directionof~ _ :500Directionof+ ~ _ ~ _ + ~= 90 measurement+