FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University [email protected].

44
FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University [email protected]

Transcript of FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University [email protected].

Page 1: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

FEEDING A HOT AND HUNGRY PLANET

Tim Searchinger

Princeton University

[email protected]

Page 2: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Ag’s Contribution to World Greenhouse Gases ~ 30%

(IPCC 2007; Bellarby 2008 , in CO2 eq.)

• Nitrous oxide – fertilizer, manure

• Methane – cows, rice, manure, biomass burning

• Energy – farm machinery, fertilizer, irrigation pumps

• 33 million acres/yr gross deforestation

Non-Ag33.5 Gt

69%

Ag Land Expansion

8.5Gt17%

CO2 from Energy

Use1 Gt2% N2O and

NH46 Gt12%

2004

49 Gt Total

Page 3: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Land Use Change

Page 4: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Biofuels send price signal:

Page 5: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 6: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 7: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 8: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 9: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Undernourished People and Recent Changes

Source: FAO. 2009. The State of Food Insecurity In the World, 2008

Page 10: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 11: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

- 16% of world malnourished- 1/3 of children in developing world stunted- 30 million babies born impaired due to lack of natal nutrition - 5 million children die annually from causes related to lack of nutrition

Page 12: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

The Hunger ChallengeThe Hunger Challenge

Source: Keyzer 2006

Page 13: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Food for a Week, Darfur Refugees, Chad© 2007 PETER MENZEL PHOTOGRAPHY

Page 14: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Food for a Week, Germany© 2005 PETER MENZEL PHOTOGRAPHY

Page 15: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 16: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Tilman, Forecasting Global Agricultural Driven Environmental Consequences

Page 17: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

IrelandUK

DenmarkSweden

Netherlands

Belgium

Germany

France

Rwanda

Zimbabwe

Namibia

Zambia

Egypt

R2 = 0.8788

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

Yield (kg ha-1)

Cro

p W

ater

Pro

du

ctiv

ity

(kg

m-3

)

Asia

Europe

North America

South America

Africa

Oceania

Ireland

UK

DenmarkSweden

Eritrea

Chad

Sudan

Mali

R2 = 0.7859

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000 12000 14000

Yield (kg ha -1)

Cro

p W

ater

Pro

du

ctiv

ity

(kg

m-3

)

Asia

Europe

North America

South America

Africa

Oceania

Potential yield and yield gap at a global scale

Page 18: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

GEPIC Outputs: global map of wheat yield

Page 19: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

crop water productivity of wheat

Page 20: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Areas of Water Stress

Page 21: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 22: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Can we limit LUC for food alone

Optimism

• Big yield gaps• Much food waste• Biotechnology• Livestock intensification

potential

Pessismism

• Declining trend lines• Irrigation limits• Improved knowledge for

tropical forest agriculture• Population? • Climate change (high

temperature; declining snowpack)

Page 23: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

IPCC SRES ScenariosPredicted Emissions from Land Use Change

Year B-1 B-2

2020 2.2 0

2050 -0.4 -0.2

Page 24: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Other Uses of Land

• More cropland and pasture for food –200-500 million hectares by 2050

• Terrestrial carbon sink – 9.5 GT CO2/yr

• Avoided deforestation potential – 9 Gt/year

• Afforestation mitigation potential – 4 Gt/year

• Restore peatlands – 1.3 gigatons/year

All from IPCC 2007 Mitigation Report, chapters 8 & 9

Page 25: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Agriculture Mitigation Potential at $100/t

Page 26: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Some Technical Options

Somewhat Known

• Crop & livestock yield gains

• Chickens, tilapia over beef

• Manure biogas

• Improved N use efficiency

• Livestock feeding

• Pasture improvement

• Some rice water management

Innovations Required

• Perennial feed crops & other new cropping systems

• Cover crops?

• Cow stomach bug changes

• More nitrogen crops

• Upland or alternative rice

• New nitrification inhibitors

• Biochar

Page 27: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 28: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Conventional approach But . . .

Land grows plants (carbon) anyway

* forest

* food

Only ADDITIONAL plant growth helps

Biofuels & Greenhouse Gases

Page 29: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Direct Effects of Diverting Crops to Biofuels – No Change in Emissions

Corn uptake

Car, gasoline

Corn uptake

Car, ethanol

Page 30: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 31: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 32: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Indirect Scenario 1 – Ethanol Leads to Less Crop Consumption for Food, which Reduces CO2

Crop uptake

Car, gasoline

Livestock & human

respiration

Crop uptake

Car, ethanol

Reduced livestock & human

respiration

Page 33: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Indirect Scenario 2 – Ethanol Leads to Yield Growth on Existing Farmland to Replace Diverted Crops, which Absorb More Atmospheric Carbon and Reduces CO2

Car, gasoline

Crop uptake

Increased yields, which absorb more carbon on the same land but may

involve increased emissions from inputs, such as nitrous oxide

Car, ethanol

Page 34: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

N2O Formation Rate

Greenhouse gases (CO2 eq.)/km

2% 401

3% 603

4% 803

5% 1003

6% 1204

GHGs from Nitrous Oxide For Yield Gains

Through Fertilizer (assuming 7 extra additional lbs of fertilizer/bushel of corn)

Compare 316 g/km from land use

Page 35: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Implied Yield Growth by 2020Scenario 10.2% Transport

Fuel(Etech 4)

Crop Biofuels, adjusted for by products

Non Biofuel food demand

Biofuel and Non Biofuel

1996-2006 Trend

Cereals (corn,wheat 0.8% 1.8% 2.6% 1.3%Oilseeds (soy, rape) 0.9% 2.2% 3.2% 1.5%Sugar (cane) 5.0% 0.6% 5.5% 0.8%

Palm 3.0% 3.9% 6.9% 1.9%

Page 36: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.
Page 37: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Viewed as Opportunity CostCarbon Benefit• 3 t/ha/yr – corn ethanol – GREET (incorporating by-product

credit)• 8.6 t/ha/yr – cellulosic ethanol – GREET (swtichgrass at 18

t/ha/yr, 359 l/t)Carbon Cost• Fallow land - forest regeneration temperate, 7.5-12 t/ha/yr• Forest regeneration tropical – 20+ t/ha/yr• Existing forest (lose 600-1000 tons) 15-35 t/ha/yr (over 30

years)• Existing grassland/savannah (lose 75-300 tons), 2.5-10 t/ha/yr

(over 30 years) plus lost forage

Page 38: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Bioenergy

How? • Large % of potential arable land – IPCC 2007 chapter

8 (based on Smith 2007) 1.3billion hectares and/or

• All forest growth in excess of harvest (Smeets 2008)and/or

• All “abandoned” cropland (Hoodwijk (2004) and/or

• Hundreds of millions of hectares of “grazing” or “other” land – savannah (Fischer 2001; Smith 2007)

Recounts existing forest, forest re-growth, net terrestrial carbon sink, land counted for grazing

Page 39: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Exemption for Bioenergy

Under a Cap & Trade System

• IPCC 2000 Land Use Report (p. 355): Because “fossil fuel substitution is already ‘rewarded’” by excluding emissions from the combustion of bioenergy, “to avoid underreporting . . . any changes in biomass stocks on lands . . . resulting from the production of biofuels would need to be included in the accounts.”

The Big Issue

Page 40: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Natural Forest

Natural Forest (Melillo, Gurgel, et al. 2008)

Page 41: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Natural Forest (“Deforestation” Scenario)

Natural Forest

Page 42: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Wise et al., Science 324:1183 (2009)

Page 43: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

National Academy of Sciences (May 2009)

• "If food crops or lands used for food production are diverted to produce biofuels rather than food, additional land will probably be cleared elsewhere in the world and drawn into food production.  The greenhouse gas emissions caused by such clearing of land, especially forests, will decrease or even negate the greenhouse-gas benefits of the resulting biofuels."  p. 79

• "Producers need to grow biofuel feedstocks on degraded agricultural land to avoid direct and indirect competition with the food supply and also need to minimize land-use practices that result in substantial net greenhouse-gas emissions."  p. 79

Page 44: FEEDING A HOT AND HUNGRY PLANET Tim Searchinger Princeton University tsearchi@princeton.edu.

Other 2008/09 Studies – Similar Conclusions

• UK Renewable Fuels Agency (Gallagher Review)

• EU Joint Research Center

• World Bank• FAO• Netherlands

Environmental Assessment Agency

• OECD• European Economic

and Social Committee• Scientific Committee

on Problems of the Environment

• British Royal Society