Feeder Protection Fundamentals

103
Relion . Thinking beyond the box.  Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library , the Relion family of protection and control delivers advanced functionality and improved performance. This webinar brought to you by the Relion ® product family  Advanced protection and control IEDs from ABB

Transcript of Feeder Protection Fundamentals

Page 1: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 1/103

Relion. Thinking beyond the box. 

Designed to seamlessly consolidate functions, Relion relays aresmarter, more flexible and more adaptable. Easy to integrate andwith an extensive function library, the Relion family of protectionand control delivers advanced functionality and improved

performance.

This webinar brought to you by the Relion® product family Advanced protection and control IEDs from ABB

Page 2: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 2/103

 ABB is pleased to provide you with technical information regarding

protective relays. The material included is not intended to be a complete

presentation of all potential problems and solutions related to this topic.

The content is generic and may not be applicable for circumstances or

equipment at any specific facility. By participating in ABB's web-based

Protective Relay School, you agree that ABB is providing this information

to you on an informational basis only and makes no warranties,

representations or guarantees as to the efficacy or commercial utility of

the information for any specific application or purpose, and ABB is not

responsible for any action taken in reliance on the information contained

herein. ABB consultants and service representatives are available to

study specific operations and make recommendations on improving

safety, efficiency and profitability. Contact an ABB sales representative

for further information. 

 ABB Protective Relay School Webinar Series

Disclaimer

October 29, 2013

l Slide 2

Page 3: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 3/103

Feeder Protection FundamentalsTim ErwinOctober 29, 2013

 ABB Pro tective Relay School Webinar Ser ies

Page 4: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 4/103

 Topics

System Overview

Why is feeder protection necessary

The Protection team

Fuses

Breakers/reclosers

Relays

CT’s

Characteristics of protective devices

● Fuses

● Circuit breakers, relays and reclosers

Principles of feeder coordination

Page 5: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 5/103

15 kV

62%

25 kV

20%

35 kV

12%

5 kV

6%

Distribution System Voltage Class

Trend to larger nominal voltage class

Increasing load density

Lower cost of higher voltageequipment

Percent of Distribution Systems at

the Nominal voltage Class

Page 6: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 6/103

WHY IS FEEDER PROTECTIONNECESSARY?

Page 7: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 7/103

City Lights

Page 8: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 8/103

Lightning

© ABB GroupOctober 29, 2013 | Slide 8 

Page 9: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 9/103

Blackout

© ABB GroupOctober 29, 2013 | Slide 9 

Page 10: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 10/103

Page 11: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 11/103

Transmission Line Tower Flashover

Page 12: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 12/103

Transformer Failure

Page 13: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 13/103

Generator Failure

Page 14: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 14/103

Overhead Distribution Feeder Faults

Temporary (non-persistent) – 85%

● Lightning causing flashover

● Wind blowing tree branches into line(s)

Permanent (persistent) – 15%

● Broken insulator

● Fallen tree

● Automobile accident involving utility pole

Page 15: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 15/103

Feeder Circuit

Breaker in protective zone

Breakers controlled by protective relays

Reclosers

Sectionalizers

Lateral Tapped Fuses

Transformer Primary Rural – primary fuses

Urban – breaker or circuit switch

B R

Relay

Fuse

Recloser Sectionalizer  

Relay

Typical Distribution Substation Feeder Circuit

Page 16: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 16/103

Function of

● Substation transformersize (source impedance)

● Distribution voltage

● Fault location

10kA - majority

10-20kA - moderatenumber

20kA - few

TransformerSecondary

End ofLine

Fault Current Vs. Distance to Fault onthe Feeder

Fault Current Levels

Page 17: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 17/103

Protection to be applied based on exposure

Higher voltage feeders tend to be longer with moreexposure to faults

 Apply downline devices . . . reclosers, fuses, based

typically on 3 to 5 MVA of load per segment

 Application

Page 18: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 18/103

Feeder protection consists

of a team of coordinated devices: Fuses

Breakers/Reclosers

• Relay(s)

• The sensors

 –  PTs –  CTs

 –  Etc.

The interconnection

The Protection Team

Page 19: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 19/103

Distribution Protection

Required characteristics of protective devices are:

Sensitivity – responsive to fault conditions

Reliability - operate when required (dependability) andno-operation when not required (security)

Selectivity –isolate minimum amount of system andinterrupt service to fewest customers

Speed – minimize system and apparatus damage

Page 20: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 20/103

Reliability

DEPENDABILITY SECURITY

The certainty ofcorrect operationin response tosystem trouble.

The ability of thesystem to avoid

undesiredoperations with or

without faults.

Page 21: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 21/103

Reliability

DEPENDABILITY SECURITY

The certainty of operation

in response to systemtrouble

The ability of the system

to avoid misoperationwith or without faults

Main 2

Main1

Main 1

Main2

Page 22: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 22/103

“Zone Protection” Generator

Transformer

Bus

Transmission Lines

Motors

General Relaying Philosophy

Page 23: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 23/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Page 24: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 24/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Generator

Protection

Page 25: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 25/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Transformer

Protection

Page 26: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 26/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Bus

Protection

Page 27: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 27/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Line

Protection

Page 28: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 28/103

Zones of Protection

Station A

Station B

Station C

Station D

G

G

G

M

Motor/Feeder

Protection

Page 29: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 29/103

Distribution Fuses

Page 30: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 30/103

Typical Distribution Substation Feeder Circuit:Fuses

B R

Relay

Fuse

Recloser Sectionalizer  

Relay

Page 31: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 31/103

Continuous current rating

Interruption rating

Curve characteristics

Minimum melt

Total clearing

Distribution Fuses

Page 32: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 32/103

Fuse Characteristic 

 Amperes 

10 

0.1 

   T   i  m  e   i  n   S  e  c

  o  n   d  s

1.0 

10 

100 

1000 

100  1000  10000 

Minimum Melt(Response Time) 

Total Clearing(Interruption Time) 

 Arc Clearing 

Fuse melting time(damage) 

Page 33: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 33/103

K link

T link (slower clearingat high current)

Common low currentclearing time based onfuse rating

300 sec <=100 A rating

600 sec > 100 Arating

Distribution Fuses - Expulsion

Page 34: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 34/103

Distribution Fuses – Current Limiting

General purpose

Rated maximum interruptingdown to current that causesmelting in one hour

Melting - 150% to 200%

Page 35: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 35/103

Distribution Fuses – Current Limiting

Backup

Rated maximum interruptingdown to rated minimuminterrupting

Requires application withexpulsion fuse for low current

protection

Page 36: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 36/103

Fuse Coordination - Rule of Thumb

 Amperes 

10 

0.1 

   T   i  m  e   i  n   S  e  c

  o  n   d  s

1.0 

10 

100 

1000 

100  1000  10000 

Minimum Melt(Response Time) 

Total Clearing(Interruption Time) 

Upstream

Downstream

Maximum clearing time of

downstream fuse should beless than 75% of minimummelt time of upstream fuse(device)

Page 37: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 37/103

Line terminal

MountingBracket

PorcelainHousing

HousingDoorFuse Tube

Mounted InsideHousing Door

Enclosed Open Link

Line terminal

Line terminal

Silicon/PolymerSupport

FuseHolder

MountingBracket

Fused Cutout

 Arc Arrester

Open LinkFuse Link

Line terminal

Line terminal

SpringContacts

Silicon/PolymerSupport

MountingBracket

Fused Cutouts

Page 38: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 38/103

Page 39: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 39/103

Typical Distribution Substation Feeder Circuit:Breakers and Reclosers

B R

Relay

Fuse

Recloser Sectionalizer  

Relay

Page 40: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 40/103

Distribution Circuit Breaker / Recloser

Interruption medium

Oil

Vacuum under oil

Vacuum

Operating mechanism Electromechanical (spring charging)

Magnetic actuator

Fault sensing and control

Electromechanical Solid state

Microprocessor

Page 41: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 41/103

Operating Mechanisms: ESV (spring charge) vs. OVR

Spring charged mechanism

Over 300 total parts Many moving parts

2000 Operation

Three phase operation only

Magnetic actuator

One moving part No maintenance

10,000 Operation

Single and three phase

Page 42: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 42/103

Oil Reclosers vs. Solid Dielectric

Oil

Lower interrupting ratings

Clearing time / coordination can varydepending on temperature andcondition of oil

Reclosing must be delayed on older

units without vacuum bottles to allow forout gassing

2000 Operations or less

Requires 5 – 7 year maintenanceschedule

Magnetic Actuation, Solid

Dielectric High fault interrupting capability

High load current rating

One size fits all amp rating(interchangeability)

Low maintenance costs Environmentally friendly

Page 43: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 43/103

Medium Voltage Vacuum Breakers

15kV/27kVBreaker

● Single Bottle design● 15kV & 27kV

● Stored Energy or magnetic

Mechanism

38 KV Breaker

● 38kV

● Two bottle per phase design

● Stored Energy or Magnetic

Mechanism

Vacuum Interruption Definite purpose rated – ANSI C37.06 – 2000

Table 2A

Page 44: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 44/103

MV Breaker Ratings

Type V two bottle design allows for back-to-back capacitor

switching up to 1200 A

Type X R-MAG Type R R-MAG Type V

Voltage , kV 15 15 27 27 38

Continuous

Current, A

600 / 1200 /

2000 / 3000

600 / 1200 /

2000 / 30001200 / 2000 1200 / 2000 1200 / 2000

Interrupting, kA 12 - 25 12 - 25 12 - 20 12 - 25 25 - 40

BIL 110 110 125 - 150 125 - 150 150 - 200

BIL (Basic Impulse Level): Impulse withstand voltage

A i R l

Page 45: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 45/103

 Automatic Recloser

Improve reliability of service

Pole-top mounting - eliminates need to buildsubstation

Three-phase unit can replace breaker in substationfor lower current ratings

Three Phase

Single Phase

Page 46: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 46/103

Breakers and Reclosers provide the physical interruption

Both require a protective relay to signal when to operate

© ABB Group

October 29, 2013 | Slide 46 

Page 47: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 47/103

Distribution Circuit Protective Relays

Page 48: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 48/103

 

WHAT ISRELAYING

R l

Page 49: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 49/103

Relays

Relays are electromechanical, solid-state (static) or

microprocessor-based (digital/numerical) devices that are

used throughout the power system to detect abnormal and

unsafe conditions and take corrective action

© ABB Group

October 29, 2013 | Slide 49 

Cl ifi ti f R l D fi d i IEEE C37 90

Page 50: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 50/103

Classification of Relays - Defined in IEEE C37.90

Classification by Function  Protective - Detects intolerable conditions and defective apparatus. Monitoring - Verify conditions in the protection and/or power

system.

Reclosing - Establish closing sequences for a circuit breakerfollowing a protective relay trip.

Regulating - Operates to maintain operating parameters within adefined region.

 Auxiliary  - Operates in response to other [relay] actions to provideadditional functionality

Synchronizing - Assures that proper conditions exist forinterconnecting two sections of the power system.

Cl ifi ti f R l

Page 51: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 51/103

Classification of Relays

Classification by Input

Current (Generator, Motor, Transformer, Feeder)

Voltage (Generator, Motor, Transformer, Feeder)

Power (Generator, Motor, Transformer, Feeder)

Frequency (Generator, Motor, Feeder)

Temperature (Generator, Motor, Transformer) Pressure (Transformer)

Flow (Generator, Motor, Transformer, Feeder)

Vibration (Generator, Motor)

Cl ifi ti f R l

Page 52: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 52/103

Classification of Relays

Classification by Performance Characteristics

Overcurrent

Over/under voltage

Distance

Directional Inverse time, definite time

Ground/phase

High or slow speed

Current differential

Phase comparison Directional comparison

Classification of Relays

Page 53: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 53/103

Classification of Relays

Classification by Technology  Electromechanical Solid state (Static)

Microprocessor-based (Digital/Numerical)

Page 54: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 54/103

© ABB GroupOctober 29, 2013 | Slide 54 

Relay Input Sources

Page 55: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 55/103

Typical Distribution Substation Feeder Circuit

B R

Relay

Fuse

Recloser Sectionalizer  

Relay

Purpose

Page 56: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 56/103

Provide input signal (replica of power systemvoltage and current) to Relays

Reduce level - suitable for relays (typically 120V and69V depending on line-line or line to neutralconnection)

Provide isolation

Purpose

Types

Page 57: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 57/103

Voltage transformation

Electromagnetic voltage transformer

Coupling capacitance voltage transformer

Optical voltage transformer

Current transformation

Electromagnetic current transformer

Optical current transformer

Rogowski coil

Types

Voltage (potential) Transformer (VT/PT)

Page 58: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 58/103

Do not differ materially from constant-potentialpower transformers except

Power rating is small

Designed for minimum ratio & phase angle error

Voltage (potential) Transformer (VT/PT)

Current Transformer Basics

Page 59: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 59/103

Current or series transformer primary connected inseries with the line

Ratio of transformation is approximately inverseratio of turns. i.e 2000/5

Differs from constant-potential transformer Primary current is determined entirely by the

load on the system and not by its ownsecondary load

Current Transformer Basics

Current Transformer Basics

Page 60: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 60/103

 © ABB GroupOctober 29, 2013 | Slide 60 

Secondary winding should never  be open-circuited

Flux in the core, instead of being the difference ofthe primary & secondary ampere-turns, will now bedue to the total primary ampere-turns acting alone

This causes a large increase in flux, producing

excessive core loss & heating, as well as highvoltage across the secondary terminals

VCD= VS= IL(ZL+ Zlead + ZB)VCD= VS= IL(ZL+ Zlead + ∞)Where Z

B

 is the load presented tothe CT by the relay.

Current Transformer Basics

Steady State Performance of CT

Page 61: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 61/103

 © ABB GroupOctober 29, 2013 | Slide 61 

 ANSI accuracy classes

Class C indicates that the leakage flux is

negligible and the excitation characteristic can

be used directly to determine performance. The

Ct ratio error can thus be calculated. It isassumed that the burden and excitation

currents are in phase and that the secondary

winding is distributed uniformly.

Steady State Performance of CT

Steady State Performance of CT

Page 62: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 62/103

 © ABB GroupOctober 29, 2013 | Slide 62 

 ANSI accuracy classes

Steady State Performance of CT

D C Saturation of a CT

Page 63: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 63/103

D.C. Saturation of a CT

© ABB GroupOctober 29, 2013 | Slide 63 

Saturation of a CT may occur as a result of any oneor combination of:

Off-set fault currents (dc component)

Residual flux in the core

D C Saturation Effect in Current

Page 64: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 64/103

 © ABB GroupOctober 29, 2013 | Slide 64 

D.C. Saturation Effect in Current

Page 65: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 65/103

Over Current Relay Characteristics

© ABB Group

October 29, 2013 | Slide 65 

Recloser or Breaker Relay Characteristic

Page 66: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 66/103

Recloser or Breaker Relay Characteristic 

 Amperes 

100 

0.1 

   T   i  m  e   i  n   S  e

  c  o  n   d  s

1.0 

10 

100 

1000 

1000  10000 

Response Time 

Breaker / RecloserInterruption Time 

Contact openingand arc clearing 

Overcurrent Current Device Characteristics

Page 67: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 67/103

Overcurrent Current Device Characteristics 

Current in Secondary Amperes 

0.1 

0.1 

   T   i  m  e   i  n   S  e

  c  o  n   d  s

10 

0.001 

100 

10  1000 

51 

1  100 

 ANSI Numbers

50 - Instantaneous Overcurrent (Nointended delay)

Recloser –Fast Curve

51 - Inverse-time OvercurrentRecloser – Slow curve

50 

M1 PU 

Time Overcurrent Curves

Page 68: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 68/103

Time Overcurrent Curves 

Current in Multiples of Pickup 

DefiniteTime 

0.2 

   T   i  m  e   i  n   S  e

  c  o  n   d  s

0.4 

0.6 

0.8 

1.0 

10  15  20 

ModeratelyInverse 

Inverse 

Very

Inverse 

Extremely

Inverse 

Time Overcurrent Curve – Time Dial

Page 69: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 69/103

Time Overcurrent Curve Time Dial

Recloser Curves

Page 70: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 70/103

Recloser Curves

 Variety of recloser curves are offered tomatch existing practices, fuses, conductorannealing, etc.

Page 71: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 71/103

Distribution Feeder Ground Protection

Page 72: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 72/103

Distribution Feeder Ground Protection

Pickup commonly based on one of the following

% Above estimated normal load unbalance % Above estimated load unbalance due to switching

% Of the phase overcurrent pickup

% Of the feeder emergency load rating

% Of the feeder normal load rating

Permissible Unbalance

Not above 25% of load current is typical rule-of-thumb, but some allow up to50%

Pickup setting of ground element to be 2 - 4 times the permissible unbalance

Page 73: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 73/103

Principles of Feeder Coordination

P i i l f F d C di ti

Page 74: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 74/103

Principles of Feeder Coordination

Fault Current Vs. Distance to

Fault on the Feeder

Principles of Feeder Coordination

Page 75: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 75/103

p

If2 If1

   T   i  m  e

CurrentIf2If1

T1

T2

51 – Inverse time-overcurrent characteristic

Page 76: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 76/103

Principles of Feeder Coordination

If3 If2If1

   T   i  m  e

CurrentIf3If2If1

Relay 

Recloser Fuse

Fuse

MinimumMelt

RecloserRelay

CTI - Coordination Time Interval(typical - 0.35 sec)

CTI

CTI

P2 

P3 

TotalClearing

InterruptTime

Response

Time

P1 

Breaker

© ABB Group

October 29, 2013 | Slide 76 

Principles of Feeder Coordination

Page 77: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 77/103

p

Upstream

Source-side

Protected

Backup

B

Downstream

Load-side

Protecting

Down-line

Local(where you are)

LOADSOURCE

Coordination Terminology

R

© ABB Group

October 29, 2013 | Slide 77 

Principles of Feeder Coordination

Page 78: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 78/103

p

   T   i  m  e

CurrentIf1M

1. Determine critical fault current

locations and values of mostdown stream device, and plot• Maximum – If1M

Min Zs, at device• Minimum – If1m

Max Zs, end of segment

MIN  MAX 

If1m

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

© ABB Group

October 29, 2013 | Slide 78 

Principles of Feeder Coordination

Page 79: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 79/103

p

   T   i  m  e

CurrentIf1M

IRpu1.  Determine critical fault current

locations and values, and plot.2. Set the pickup of the most

downstream device as sensitiveas possible(0.5*If1m > IRpu > 2*LOAD )

MIN  MAX 

If1m

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 80: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 80/103

p

   T   i  m  e

CurrentIf1M

IRpu1. Determine critical fault current

locations and values, and plot.2. Set most downstream device as

sensitive as possible.3. Plot operating times of Relay R

based on characteristic of deviceselected.

T2

T1

MIN  MAX 

If1m

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 81: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 81/103

p

   T   i  m  e

CurrentIf1M

IRpu

T2

T1

MIN  MAX 

If1m

CTI

1.  Determine critical fault currentlocations and values, and plot.

2. Set most downstream deviceas sensitive as possible.Plot operating times of Relay R.

3. Add Coordination Time Interval(CTI). 

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 82: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 82/103

p

   T   i  m  e

CurrentIf1M

IRpu

T2

T1

MIN  MAX 

If1m

CTI

Coordination Time Interval

CTI is the minimum time interval added to the

local device (relay/breaker, fuse) that permitscoordination with the next remote upstreamdevice. Coordination is achieved where theremote device will not [normally] operate forfaults downstream of the local device, but willoperate for all faults between the two.

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 83: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 83/103

   T   i  m  e

CurrentIf1M

IRpu

T2

T1

MIN  MAX 

If1m

CTI

Coordination Time Interval

Factors that influence CTI are:• Breaker fault interruption time of upstreamdevice

• Relay dropout (over-travel) time ofupstream device [momentum]

• Safety margin to account for setting, tap,

CT and operating time errors• 0.35 seconds typical 

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 84: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 84/103

   T   i  m  e

CurrentIf1M

IRpu

T2 

T1

MIN 

MAX 

MIN 

MAX 

If1mIf2MIf2m

4. Add CTI.

5. Determine critical fault currentlocations for device H, and plot•Maximum – If2M

Min Zs, at device•Minimum – If2m

Max Zs, end of segment.6. Plot operating times for H.

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 85: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 85/103

   T   i  m  e

If1M

IRpu

T2 

T1

MIN 

MAX 

MIN 

MAX 

If1m

IHpu

If2MIf2m

4.  Add CTI.

5. Determine critical fault currentlocations for device H, and plot.6. Plot operating times of Relay H.7. Select pickup settings for Relay H

(IHpu ) to operate for minimumfault and not operate onmaximum load.(0.5*If2m > IHpu > 2* Load or

compromise)

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

Principles of Feeder Coordination

Page 86: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 86/103

   T   i  m  e

CurrentIf1M

IRpu

T2 

T1

MIN 

MAX 

MIN 

MAX 

If1m

IHpu

If2MIf2m

4.  Add CTI.

5. Determine critical fault currentlocations for device H.6. Plot operating times of Relay H.7. Select pickup settings for Relay H.8. Select time dial for Relay H so

curve passes through or above allCTI points.

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

© ABB Group

October 29, 2013 | Slide 86 

Principles of Feeder Coordination

Page 87: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 87/103

   T   i  m  e

CurrentIf1M

IRpu

MIN 

MAX 

MIN 

MAX 

IHpu

If2M

Relay at H is comparatively slow

in the defined region of I > If1M

If2M If2M If1M

H  R 

If1MLOAD  LOAD 

If1mIf2m

© ABB Group

October 29, 2013 | Slide 87 

Principles of Feeder Coordination

Page 88: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 88/103

   T   i  m  e

CurrentIf1M

IRpu

T2 

T1

MIN 

MAX 

MIN 

MAX 

IHpu

Relay at H is comparatively slow

in the defined region  Apply Instantaneous at H at value

greater than 1.25*If1M 

IH50pu

If2M If2M If1M

H R 

If1MLOAD  LOAD 

If1mIf2m

Fuse Coordination - Rule of Thumb

Page 89: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 89/103

 Amperes 

10 

0.1 

   T   i  m  e   i  n   S  e

  c  o  n   d  s

1.0 

10 

100 

1000 

100  1000  10000 

Minimum Melt

(Response Time) 

Total Clearing

(Interruption Time) 

UpstreamDownstream

Maximum clearing time ofdownstream fuse should be less than75% of minimum melt time of

upstream fuse.

Fuse Coordination - Rule of Thumb

Page 90: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 90/103

 Amperes 

10 

0.1 

   T   i  m  e   i  n   S  e

  c  o  n   d  s

1.0 

10 

100 

1000 

100  1000  10000 

Minimum Melt

(Response Time) 

UpstreamRecloser

DownstreamFuse

Maximum clearing time of downstreamfuse should be 75% of the 51characteristic of the upstreamrecloser/relay for desirablecoordination. It may be necessary,

however, to to set the CTI down to aslow as 5 cycles to achieve completefeeder coordination.

Fuse - TC 

Principles of Feeder Coordination

Page 91: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 91/103

Most utilities require complete coordination between phase time-overcurrentelements down through customer owned protective devices

Those who allow miscoordination only permit it at high current levels where theresult is likely to be simultaneous fuse blowing and feeder tripping

Typical Feeder Coordination

Page 92: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 92/103

Typical Feeder Coordination

BR

Relay

Recloser 

Fuse

115 kV - 13.2/7.62

kV Grd Y

15/20/25 MVAZ = 8% @ 15 MVA

125E 100T

100T 65T

I3Ph

 = 7850

I1Ph

 = 7950

I3Ph = 1100

I1Ph

 = 950

I3Ph

 = 6300

I1Ph

 = 6000

I3Ph

 = 2300

I1Ph

 = 950

X

X

X

X

Feeder Coordination Example

Typical Feeder Coordination

Page 93: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 93/103

Time-Current Curves drawn based on the 13.2kv system currents

 Assumptions Maximum load through recloser = 230A

Maximum load at feeder breaker = 330A

65T and 100T fuses used at lateral taps

Typical Feeder Coordination

Page 94: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 94/103

With 230A maximum load, select 560A phase pickup setting for the recloser(240%)

for both phase time and instantaneous units

Select 280A pickup for ground overcurrent element (50% of phase pickup)

for both ground time and instantaneous units

Select ground time-curve of recloser to coordinate with the 100T fuse

Typical Feeder Coordination

Page 95: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 95/103

 Assuming 400:5 ct ratio for the substation relays, 330A max load = 4.125Asecondary

Select 9A tap for phase relays = 720A pickup

Select 4A tap for ground relay = 320A pickup

Select ground relay time-dial to coordinate with recloser ground curve. Selectphase relay time dial to coordinate with recloser phase curve

Typical Feeder Coordination

Page 96: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 96/103

Phase overcurrent relay curve must also coordinate with transformer primaryside fuses and transformer frequent-fault capability

Primary side fuse must protect transformer per transformer infrequent-faultcapability curve

Page 97: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 97/103

Typical Feeder Coordination

Page 98: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 98/103

Transformer fuse is theslowest (C&D)

OC Relay and Recloserslow curves faster than65T and 100T Fuses(3,4,5 & 6)

Typical Feeder Coordination

Page 99: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 99/103

Typical Feeder Coordination

© ABB GroupOctober 29, 2013 | Slide 99 

•Recloser fast curves faster than 65T and 100T Fuses

•Recloser is operating in a “fuse save” mode:

•Fast curve (1&2) will open recloser before downstream fuses open

•This will allow a transient fault on a fused tap tobe cleared before blowing the fuse

•After a pre-determined number of operations,usually one or two, the fast curves are blockedand the recloser allows the fuse to blow if thefault is in the fuse’s zone of protection.

•If the fault is on the feeder the recloser willoperate again, typically going to lockout afterone or two more operations.

•Each recloser operation will have a longer opentime to allow the fault to clear

•This reduces the outage time on the taps fortransient faults, saving the fuse and not havingto dispatch a crew to replace the fuse.

Typical Feeder Coordination

Page 100: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 100/103

The breaker is operating in a fuse blowing mode:

• If the fault is on the tap above the recloserthe 100T fuse will open before the breaker

•This reduces the number of customersaffected  by the outage to only those on thetap.

This webinar brought to you by the Relion® product familyAdvanced protection and control IEDs from ABB

Page 101: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 101/103

Relion. Thinking beyond the box. 

Designed to seamlessly consolidate functions, Relion relays aresmarter, more flexible and more adaptable. Easy to integrate andwith an extensive function library, the Relion family of protectionand control delivers advanced functionality and improvedperformance.

 Advanced protection and control IEDs from ABB

Page 102: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 102/103

 

Thank you for your participation

Shortly, you will receive a link to an archive of this presentation.To view a schedule of remaining webinars in this series, or for more

information on ABB’s protection and control solutions, visit:

www.abb.com/relion

October 29, 2013 | Slide 102© ABB Group

Page 103: Feeder Protection Fundamentals

8/12/2019 Feeder Protection Fundamentals

http://slidepdf.com/reader/full/feeder-protection-fundamentals 103/103