Feedback Control Systems (FCS)

50
Feedback Control Systems (FCS) Dr. Imtiaz Hussain email: [email protected]. pk URL :http://imtiazhussainkalwar.weeb ly.com/ Lecture-26-27-28-29 State Space Canonical forms

description

Feedback Control Systems (FCS). Lecture-26-27-28-29 State Space Canonical forms. Dr. Imtiaz Hussain email: [email protected] URL : http://imtiazhussainkalwar.weebly.com/. Lecture Outline. Canonical forms of State Space Models Phase Variable Canonical Form - PowerPoint PPT Presentation

Transcript of Feedback Control Systems (FCS)

Page 1: Feedback  Control  Systems (FCS)

Feedback Control Systems (FCS)

Dr. Imtiaz Hussainemail: [email protected]

URL :http://imtiazhussainkalwar.weebly.com/

Lecture-26-27-28-29State Space Canonical forms

Page 2: Feedback  Control  Systems (FCS)

Lecture Outline– Canonical forms of State Space Models

β€’ Phase Variable Canonical Form

β€’ Controllable Canonical form

β€’ Observable Canonical form

– Similarity Transformations

β€’ Transformation of coordinates

– Transformation to CCF

– Transformation OCF

Page 3: Feedback  Control  Systems (FCS)

Canonical Formsβ€’ Canonical forms are the standard forms of state space models.

β€’ Each of these canonical form has specific advantages which makes it convenient for use in particular design technique.

β€’ There are four canonical forms of state space models– Phase variable canonical form– Controllable Canonical form– Observable Canonical form– Diagonal Canonical form– Jordan Canonical Form

β€’ It is interesting to note that the dynamics properties of system remain unchanged whichever the type of representation is used.

Companion forms

Modal forms

Page 4: Feedback  Control  Systems (FCS)

Phase Variable Canonical form

β€’ The method of phase variables possess mathematical advantage over other representations.

β€’ This type of representation can be obtained directly from differential equations.

β€’ Decomposition of transfer function also yields Phase variable form.

Page 5: Feedback  Control  Systems (FCS)

Phase Variable Canonical formβ€’ Consider an nth order linear plant model described by the

differential equation

β€’ Where y(t) is the plant output and u(t) is the plant input.

β€’ A state model for this system is not unique but depends on the choice of a set of state variables.

β€’ A useful set of state variables, referred to as phase variables, is defined as:

𝑑𝑛 𝑦𝑑𝑑𝑛

+π‘Ž1π‘‘π‘›βˆ’ 1π‘¦π‘‘π‘‘π‘›βˆ’ 1 +β‹―+π‘Žπ‘›βˆ’1

𝑑𝑦𝑑𝑑 +π‘Žπ‘› 𝑦=𝑒(𝑑)

π‘₯1=𝑦 , π‘₯2=οΏ½Μ‡οΏ½ , π‘₯3=𝑦 ,β‹― , π‘₯𝑛=π‘‘π‘›βˆ’1 π‘¦π‘‘π‘‘π‘›βˆ’1

Page 6: Feedback  Control  Systems (FCS)

Phase Variable Canonical form

β€’ Taking derivatives of the first n-1 state variables, we have

π‘₯1=𝑦 , π‘₯2= οΏ½Μ‡οΏ½ , π‘₯3=𝑦 ,β‹― , π‘₯𝑛=π‘‘π‘›βˆ’1 π‘¦π‘‘π‘‘π‘›βˆ’1

οΏ½Μ‡οΏ½1=π‘₯2 , οΏ½Μ‡οΏ½2=π‘₯3 , οΏ½Μ‡οΏ½3=π‘₯4β‹― , οΏ½Μ‡οΏ½π‘›βˆ’1=π‘₯𝑛

�̇�𝑛=βˆ’π‘Žπ‘› π‘₯1βˆ’π‘Žπ‘›βˆ’1π‘₯2βˆ’β‹―βˆ’π‘Ž1π‘₯𝑛+𝑒(𝑑)

u

xx

xx

aaaaxx

xx

n

n

nnnn

n

10

00

1000

01000010

1

2

1

131

1

2

1

Page 7: Feedback  Control  Systems (FCS)

Phase Variable Canonical form

β€’ Output equation is simply

π‘₯1=𝑦 , π‘₯2= οΏ½Μ‡οΏ½ , π‘₯3=𝑦 ,β‹― , π‘₯𝑛=π‘‘π‘›βˆ’1 π‘¦π‘‘π‘‘π‘›βˆ’1

n

n

xx

xx

y

1

2

1

0001

Page 8: Feedback  Control  Systems (FCS)

8

∫ ∫ ∫ ∫

1a

2a

na

1xy 2xy

nn xy )1(

)(ny

1)2(

nn xy

…

)(tu

οΌ‹ οΌ‹

Phase Variable Canonical form

Page 9: Feedback  Control  Systems (FCS)

9

Phase Variable Canonical form

yu s1

s1

s1

s1

1 1

1

2

3

1 n

n

1x

21 xx nx 1nx2nx

Page 10: Feedback  Control  Systems (FCS)

β€’ Obtain the state equation in phase variable form for the following differential equation, where u(t) is input and y(t) is output.

β€’ The differential equation is third order, thus there are three state variables:

β€’ And their derivatives are (i.e state equations)

2 𝑑3 𝑦𝑑𝑑3 +4 𝑑2 𝑦

𝑑𝑑2 +6 𝑑𝑦𝑑𝑑 +8 𝑦=10𝑒 (𝑑)

π‘₯1=𝑦 π‘₯2=οΏ½Μ‡οΏ½ π‘₯3= �̈�

οΏ½Μ‡οΏ½1=π‘₯2

οΏ½Μ‡οΏ½2=π‘₯3

οΏ½Μ‡οΏ½3=βˆ’4 π‘₯1βˆ’3π‘₯2βˆ’2π‘₯3+5𝑒 (𝑑)

Phase Variable Canonical form (Example-1)

Page 11: Feedback  Control  Systems (FCS)

Phase Variable Canonical form (Example-1)

β€’ In vector matrix form

π‘₯1=𝑦 π‘₯2=οΏ½Μ‡οΏ½ π‘₯3= οΏ½ΜˆοΏ½οΏ½Μ‡οΏ½1=π‘₯2

οΏ½Μ‡οΏ½2=π‘₯3

οΏ½Μ‡οΏ½3=βˆ’4 π‘₯1βˆ’3π‘₯2βˆ’2π‘₯3+5𝑒 (𝑑)

3

2

1

3

2

1

3

2

1

001)(

)(500

234100010

xxx

ty

tuxxx

xxx

Home Work: Draw Sate diagram

Page 12: Feedback  Control  Systems (FCS)

β€’ Consider the transfer function of a third-order system where the numerator degree is lower than that of the denominator.

β€’ Transfer function can be decomposed into cascade form

β€’ Denoting the output of the first block as W(s), we have the following input/output relationships:

Phase Variable Canonical form (Example-2)

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ 2+𝑏1𝑠+𝑏2

𝑠3+π‘Ž1𝑠2+π‘Ž2𝑠+π‘Ž3

1𝑠3+π‘Ž1𝑠2+π‘Ž2𝑠+π‘Ž3

π‘π‘œπ‘ 2+𝑏1𝑠+𝑏2π‘ˆ (𝑠) π‘Œ (𝑠)π‘Š (𝑠)

π‘Š (𝑠)π‘ˆ (𝑠)

= 1𝑠3+π‘Ž1𝑠

2+π‘Ž2𝑠+π‘Ž3

π‘Œ (𝑠)π‘Š (𝑠)

=π‘π‘œπ‘ 2+𝑏1𝑠+𝑏2

Page 13: Feedback  Control  Systems (FCS)

β€’ Re-arranging above equation yields

β€’ Taking inverse Laplace transform of above equations.

β€’ Choosing the state variables in phase variable form

Phase Variable Canonical form (Example-2)

π‘Š (𝑠)π‘ˆ (𝑠)

= 1𝑠3+π‘Ž1𝑠

2+π‘Ž2𝑠+π‘Ž3

π‘Œ (𝑠)π‘Š (𝑠)

=π‘π‘œπ‘ 2+𝑏1𝑠+𝑏2

+

π‘Œ (𝑠)=π‘π‘œπ‘ 2π‘Š (𝑠 )+𝑏1π‘ π‘Š (𝑠)+𝑏2π‘Š (𝑠)

+

𝑦 (𝑑)=π‘π‘œοΏ½ΜˆοΏ½ (𝑑 )+𝑏1 οΏ½Μ‡οΏ½ (𝑑 )+𝑏2𝑀(𝑑 )

π‘₯1=𝑀π‘₯2=οΏ½Μ‡οΏ½π‘₯3=�̈�

Page 14: Feedback  Control  Systems (FCS)

β€’ State Equations are given as

β€’ And the output equation is

οΏ½Μ‡οΏ½1=π‘₯2 οΏ½Μ‡οΏ½2=π‘₯3 οΏ½Μ‡οΏ½3=βˆ’π‘Ž3π‘₯1βˆ’π‘Ž2π‘₯2βˆ’π‘Ž1π‘₯3+𝑒(𝑑 )

Phase Variable Canonical form (Example-1)

𝑦 (𝑑 )=𝑏2π‘₯1+𝑏1π‘₯2+π‘π‘œ π‘₯3

π‘π‘œ

𝑏2

𝑏1

π‘Ž1π‘Ž2

π‘Ž3

Page 15: Feedback  Control  Systems (FCS)

β€’ State Equations are given as

β€’ And the output equation is

οΏ½Μ‡οΏ½1=π‘₯2 οΏ½Μ‡οΏ½2=π‘₯3 οΏ½Μ‡οΏ½3=βˆ’π‘Ž3π‘₯1βˆ’π‘Ž2π‘₯2βˆ’π‘Ž1π‘₯3+𝑒(𝑑 )

Phase Variable Canonical form (Example-1)

𝑦 (𝑑 )=𝑏2π‘₯1+𝑏1π‘₯2+π‘π‘œ π‘₯3

π‘π‘œ

𝑏2

𝑏1

βˆ’π‘Ž1

βˆ’π‘Ž2

βˆ’π‘Ž3

Page 16: Feedback  Control  Systems (FCS)

β€’ State Equations are given as

β€’ And the output equation is

β€’ In vector matrix form

οΏ½Μ‡οΏ½1=π‘₯2 οΏ½Μ‡οΏ½2=π‘₯3 οΏ½Μ‡οΏ½3=βˆ’π‘Ž3π‘₯1βˆ’π‘Ž2π‘₯2βˆ’π‘Ž1π‘₯3+𝑒(𝑑 )

3

2

1

12

3

2

1

1233

2

1

)(

)(100

100010

xxx

bbbty

tuxxx

aaaxxx

o

Phase Variable Canonical form (Example-1)

𝑦 (𝑑 )=𝑏2π‘₯1+𝑏1π‘₯2+π‘π‘œ π‘₯3

Page 17: Feedback  Control  Systems (FCS)

Companion Forms

β€’ Consider a system defined by

β€’ where u is the input and y is the output. β€’ This equation can also be written as

β€’ We will present state-space representations of the system defined by above equations in controllable canonical form and observable canonical form.

ububububyayayay nn

nn

onn

nn

1

1

11

1

1

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ π‘›+𝑏1π‘ π‘›βˆ’1+β‹―+π‘π‘›βˆ’1𝑠+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

Page 18: Feedback  Control  Systems (FCS)

Controllable Canonical Form

β€’ The following state-space representation is called a controllable canonical form:

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ π‘›+𝑏1π‘ π‘›βˆ’1+β‹―+π‘π‘›βˆ’1𝑠+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

u

xx

xx

aaaaxx

xx

n

n

nnnn

n

10

00

1000

01000010

1

2

1

121

1

2

1

Page 19: Feedback  Control  Systems (FCS)

Controllable Canonical Form

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ π‘›+𝑏1π‘ π‘›βˆ’1+β‹―+π‘π‘›βˆ’1𝑠+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

ub

xx

xx

babbabbabbaby o

n

n

ooonnonn

1

2

1

112211

Page 20: Feedback  Control  Systems (FCS)

Controllable Canonical Form

∫ ∫ ∫ ∫

1

2

n

1xv 2xv )(nv…

)(tu

οΌ‹ οΌ‹ n

1n

1dtd

dtd

dtd

…

οΌ‹

Page 21: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)π‘Œ (𝑠)π‘ˆ (𝑠 )

= 𝑠+3𝑠2+3𝑠+2

0 1 3 3 2 1212 obbbaa

π‘Œ (𝑠)π‘ˆ (𝑠 )

=0𝑠2+𝑠+3𝑠2+3𝑠+2

β€’ Let us Rewrite the given transfer function in following form

uxx

aaxx

1010

2

1

122

1

uxx

xx

10

3210

2

1

2

1

Page 22: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)

0 1 3 3 2 1212 obbbaa

π‘Œ (𝑠)π‘ˆ (𝑠 )

=0𝑠2+𝑠+3𝑠2+3𝑠+2

ubxx

babbaby ooo

2

11122

2

113xx

y

Page 23: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)π‘Œ (𝑠)π‘ˆ (𝑠 )

= 𝑠+3𝑠2+3𝑠+2

β€’ By direct decomposition of transfer function

)()(

233

)()(

2

2

2 sPssPs

sss

sUsY

)(2)(3)()(3)(

)()(

21

21

sPssPssPsPssPs

sUsY

β€’ Equating Y(s) with numerator on the right hand side and U(s) with denominator on right hand side.

)1.......().........(3)()( 21 sPssPssY

)2.......().........(2)(3)()( 21 sPssPssPsU

Page 24: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)β€’ Rearranging equation-2 yields

)3.......().........(2)(3)()( 21 sPssPssUsP

β€’ Draw a simulation diagram using equations (1) and (3)

)(3)()( 21 sPssPssY )(2)(3)()( 21 sPssPssUsP

1/s 1/sU(s) Y(s)

-2

-3

P(s)

2x

12 xx 1x3

1

Page 25: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)

β€’ State equations and output equation are obtained from simulation diagram.

213)( xxsY

122 23)( xxsUx

1/s 1/sU(s) Y(s)

-2

-3

P(s)

2x

12 xx 1x3

1

21 xx

Page 26: Feedback  Control  Systems (FCS)

Controllable Canonical Form (Example)

β€’ In vector Matrix form

213)( xxsY 122 23)( xxsUx 21 xx

)(10

3210

2

1

2

1 tfxx

xx

2

113xx

y

Page 27: Feedback  Control  Systems (FCS)

Observable Canonical Form

β€’ The following state-space representation is called an observable canonical form:

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ π‘›+𝑏1π‘ π‘›βˆ’1+β‹―+π‘π‘›βˆ’1𝑠+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

u

babbab

babbab

xx

xx

aa

aa

xx

xx

o

o

onn

onn

n

n

n

n

n

n

11

22

11

1

2

1

1

2

1

1

2

1

100000

001000

Page 28: Feedback  Control  Systems (FCS)

Observable Canonical Form

π‘Œ (𝑠)π‘ˆ (𝑠 )

=π‘π‘œπ‘ π‘›+𝑏1π‘ π‘›βˆ’1+β‹―+π‘π‘›βˆ’1𝑠+𝑏𝑛

𝑠𝑛+π‘Ž1π‘ π‘›βˆ’1+β‹―+π‘Žπ‘›βˆ’1𝑠+π‘Žπ‘›

ub

xx

xx

y o

n

n

1

2

1

1000

Page 29: Feedback  Control  Systems (FCS)

Observable Canonical Form (Example)π‘Œ (𝑠)π‘ˆ (𝑠 )

= 𝑠+3𝑠2+3𝑠+2

0 1 3 3 2 1212 obbbaa

π‘Œ (𝑠)π‘ˆ (𝑠 )

=0𝑠2+𝑠+3𝑠2+3𝑠+2

β€’ Let us Rewrite the given transfer function in following form

ubabbab

xx

aa

xx

o

o

11

22

2

1

1

2

2

1

10

uxx

xx

13

3120

2

1

2

1

Page 30: Feedback  Control  Systems (FCS)

Observable Canonical Form (Example)

0 1 3 3 2 1212 obbbaa

π‘Œ (𝑠)π‘ˆ (𝑠 )

=0𝑠2+𝑠+3𝑠2+3𝑠+2

ubxx

y o

2

110

2

110xx

y

Page 31: Feedback  Control  Systems (FCS)

Similarity Transformationsβ€’ It is desirable to have a means of transforming one state-space

representation into another.

β€’ This is achieved using so-called similarity transformations.β€’ Consider state space model

β€’ Along with this, consider another state space model of the same plant

β€’ Here the state vector , say, represents the physical state relative to some other reference, or even a mathematical coordinate vector.

)()()( tButAxtx

)()()( tDutCxty

)()()( tuBtxAtx

)()()( tuDtxCty

Page 32: Feedback  Control  Systems (FCS)

Similarity Transformationsβ€’ When one set of coordinates are transformed into another

set of coordinates of the same dimension using an algebraic coordinate transformation, such transformation is known as similarity transformation.

β€’ In mathematical form the change of variables is written as,

β€’ Where T is a nonsingular nxn transformation matrix.

β€’ The transformed state is written as

)( )( txTtx

)( )( 1 txTtx

Page 33: Feedback  Control  Systems (FCS)

Similarity Transformationsβ€’ The transformed state is written as

β€’ Taking time derivative of above equation )( )( 1 txTtx

(t) )( 1 xTtx

)()( )( 1 tButAxTtx

)( )( txTtx

)()()( tButAxtx

)()( )( 1 tButxATTtx

)()()( 11 tBuTtxATTtx )()()( tuBtxAtx

ATTA 1 BTB 1

Page 34: Feedback  Control  Systems (FCS)

Similarity Transformationsβ€’ Consider transformed output equation

β€’ Substituting in above equation

β€’ Since output of the system remain unchanged [i.e. ] therefore above equation is compared with that yields

)()()( tuDtxCty

)()()( 1 tuDtxTCty

CTC DD

Page 35: Feedback  Control  Systems (FCS)

Similarity Transformations

β€’ Following relations are used to preform transformation of coordinates algebraically

CTC DD

ATTA 1 BTB 1

Page 36: Feedback  Control  Systems (FCS)

Similarity Transformationsβ€’ Invariance of Eigen Values

ATTsIAsI 1

ITTATTTsT 111

TAsIT 1

AsI

AsIAsI

Page 37: Feedback  Control  Systems (FCS)

Transformation to CCFβ€’ Transformation to CCf is done by means of transformation matrix

P.

β€’ Where CM is controllability Matrix and is given as

and W is coefficient matrix

Where the ai’s are coefficients of the characteristic polynomial

WCMP

𝐢𝑀=[𝐡 𝐴𝐡 β‹― π΄π‘›βˆ’1 𝐡 ]

0001001

011

1

32

121

a

aaaaa

Wnn

nn

s+

Page 38: Feedback  Control  Systems (FCS)

Transformation to CCFβ€’ Once the transformation matrix P is computed following

relations are used to calculate transformed matrices.

CPC DD APPA 1 BPB 1

Page 39: Feedback  Control  Systems (FCS)

Transformation to CCF (Example)β€’ Consider the state space system given below.

β€’ Transform the given system in CCF.

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

Page 40: Feedback  Control  Systems (FCS)

Transformation to CCF (Example)

β€’ The characteristic equation of the system is

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

|π‘ πΌβˆ’ 𝐴|=|π‘ βˆ’1 βˆ’2 βˆ’10 π‘ βˆ’1 βˆ’3βˆ’1 βˆ’1 π‘ βˆ’1|=𝑠3βˆ’3𝑠2βˆ’π‘ βˆ’3

π‘Ž1=βˆ’3 ,π‘Ž2=βˆ’1 ,π‘Ž3=βˆ’1

001013131

001011

1

12

aaa

W

Page 41: Feedback  Control  Systems (FCS)

Transformation to CCF (Example)

β€’ Now the controllability matrix CM is calculated as

β€’ Transformation matrix P is now obtained as

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

𝐢𝑀=[𝐡 𝐴𝐡 𝐴2 𝐡 ]

𝐢𝑀=[ 1 2 100 3 91 2 7 ]

𝑃=πΆπ‘€Γ—π‘Š=[1 2 100 3 91 2 7 ] [βˆ’1 βˆ’3 1

βˆ’3 1 01 0 0 ]

𝑃=[3 βˆ’1 10 3 00 βˆ’1 1]

Page 42: Feedback  Control  Systems (FCS)

Transformation to CCF (Example)β€’ Using the following relationships given state space

representation is transformed into CCf as

APPA 1 BPB 1

313100010

1APPA

100

1BPB

|π‘ πΌβˆ’ 𝐴|=𝑠3βˆ’3𝑠2βˆ’π‘ βˆ’3

Page 43: Feedback  Control  Systems (FCS)

Transformation to OCFβ€’ Transformation to CCf is done by means of transformation matrix

Q.

β€’ Where OM is observability Matrix and is given as

and W is coefficient matrix

Where the ai’s are coefficients of the characteristic polynomial

1)( OMWQ

𝑂𝑀=[𝐢 𝐢𝐴 β‹― πΆπ΄π‘›βˆ’1 ]𝑇

0001001

011

1

32

121

a

aaaaa

Wnn

nn

s+

Page 44: Feedback  Control  Systems (FCS)

Transformation to OCFβ€’ Once the transformation matrix Q is computed following

relations are used to calculate transformed matrices.

CQC DD AQQA 1 BQB 1

Page 45: Feedback  Control  Systems (FCS)

Transformation to OCF (Example)β€’ Consider the state space system given below.

β€’ Transform the given system in OCF.

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

𝑦 (𝑑)= [1 1 0 ] [π‘₯1

π‘₯2

π‘₯3]

Page 46: Feedback  Control  Systems (FCS)

Transformation to OCF (Example)

β€’ The characteristic equation of the system is

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

|π‘ πΌβˆ’ 𝐴|=|π‘ βˆ’1 βˆ’2 βˆ’10 π‘ βˆ’1 βˆ’3βˆ’1 βˆ’1 π‘ βˆ’1|=𝑠3βˆ’3𝑠2βˆ’π‘ βˆ’3

π‘Ž1=βˆ’3 ,π‘Ž2=βˆ’1 ,π‘Ž3=βˆ’1

001013131

001011

1

12

aaa

W

Page 47: Feedback  Control  Systems (FCS)

Transformation to OCF (Example)

β€’ Now the observability matrix OM is calculated as

β€’ Transformation matrix Q is now obtained as

[π‘₯1

π‘₯2

π‘₯3]=[1 2 1

0 1 31 1 1] [π‘₯1

π‘₯2

π‘₯3]+[101 ]𝑒(𝑑 )

𝑂𝑀=[𝐢 𝐢𝐴 𝐢𝐴2 ]𝑇

𝑂𝑀=[1 1 01 3 45 6 10]

𝑄=(π‘Š ×𝑂𝑀 )βˆ’ 1=[ 0 .333 βˆ’0.166 0.333βˆ’0.333 0.166 0.6660.166 0.166 0.16 6]

𝑦 (𝑑)= [1 1 0 ] [π‘₯1

π‘₯2

π‘₯3]

Page 48: Feedback  Control  Systems (FCS)

Transformation to CCF (Example)β€’ Using the following relationships given state space

representation is transformed into CCf as

310101300

1AQQA

123

1BQB

CQC DD AQQA 1 BQB 1

100CQC

Page 49: Feedback  Control  Systems (FCS)

Home Work

β€’ Obtain state space representation of following transfer function in Phase variable canonical form, OCF and CCF by – Direct Decomposition of Transfer Function– Similarity Transformation– Direct Approach

π‘Œ (𝑠)π‘ˆ (𝑠 )

=𝑠2+2 𝑠+3

𝑠3+5𝑠2+3 𝑠+2

Page 50: Feedback  Control  Systems (FCS)

END OF LECTURES-26-27-28-29

To download this lecture visithttp://imtiazhussainkalwar.weebly.com/