FEA Solution Final and Complete

download FEA Solution Final and Complete

of 23

Transcript of FEA Solution Final and Complete

  • 8/14/2019 FEA Solution Final and Complete

    1/23

    (1)

    Question No 1

    As a general procedure, we take the node numbering as shown in the right side figure.Moreover, all the equations are derived using same node number arrangement. So, asa first step, we will transform the node numbering so as to make them the same for

    which the derivation of element stiffness matrices and shape functions has been carriedout.

    12

    3 4

    x

    y

    1 2

    34

    1 2

    34X3

    X4

    X2

    Y4 Y3

    Y2

    3 in

    2 in

  • 8/14/2019 FEA Solution Final and Complete

    2/23

    (2)

    , ,

    00 00 00 00 11

    1

    1 3 2 20 10 2010 0,122 , 2, 0 : 20102010

    10 10

    1010

    0,0 ,3, 13 3 :

  • 8/14/2019 FEA Solution Final and Complete

    3/23

    (3)

    15151515

    201035251515

    { }

    =

    +=

    =

    538.1100

    0385.40308.17

    0308.17385.40

    10

    221

    10

    01

    01

    )21)(1(

    '']15152535102000[

    :

    6 D

    E D

    conditions strain plane For

    Dmatrix g Calculatin Nowq

    vector forceresulting theSoT

  • 8/14/2019 FEA Solution Final and Complete

    4/23

    (4)

    { } [ ]{ }

    =

    =

    =

    =

    +

    +

    +

    +

    +

    ++

    +

    ++

    +

    +

    +

    +

    +

    +

    +

    +

    ++

    4

    4

    3

    3

    2

    4

    4

    3

    3

    2

    2

    1

    1

    3

    33

    3

    224

    3312

    3

    33

    3

    11

    3

    33

    6

    22

    4

    3312

    3

    33

    3

    22

    4

    3312

    6

    33

    3

    11

    4

    3312

    3

    33

    3

    11

    3

    33

    6

    22

    4

    3312

    6

    33

    3

    22

    4

    3312

    3

    33

    3

    22

    4

    3312

    6

    33

    6

    11

    4

    3312

    3

    33

    6

    11

    4

    3312

    3

    33

    3

    11

    633

    322

    43312

    633

    622

    43312

    333

    622

    43312

    633

    322

    4

    3312

    3

    33

    6

    11

    4

    3312

    6

    33

    6

    11

    4

    3312

    6

    33

    3

    11

    4

    3312

    3

    33

    3

    11

    44332211

    :

    :

    :tan

    v

    u

    vu

    u

    uaretsdiplacemennodal free Now

    u

    u K K

    K K

    q

    q

    nodesrestrained and freeof formtheinrewrittenbecanequationThe

    u K q

    that we Now

    v

    u

    v

    u

    v

    u

    v

    u

    t K

    vuvuvuvu

    as giveniselement gular rec for matrix stiffnessThe

    f

    s

    f

    ss sf

    fs ff

    s

    f

    ii

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b Da

    b D

    b

    a D D D

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b Da

    b D

    b

    a D D D

    a

    b D

    b

    a D D D

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D D D

    a

    b D

    a

    b Da

    b D

    b

    a D D D

    a

    b D

    b

    a D D D

    a

    b D

    b

    a D D D

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D

  • 8/14/2019 FEA Solution Final and Complete

    5/23

    (5)

    { } [ ]{ } [ ]{ }{ }

    { } [ ]{ }{ }[ ] { }

    =

    =

    ==

    +=

    ==

    =

    =

    +

    +

    +

    +

    +

    +

    +

    +

    +

    15

    15

    25

    35

    20

    22756410

    7211538-14743590

    75320511442308-22756410

    14423086089744-72115384395561

    72115387371795-14423081282051-14743590

    0

    15

    15

    25

    35

    20

    22756410

    7211538-14743590

    75320511442308-22756410

    14423086089744-72115384395561

    72115387371795-14423081282051-14743590

    ,

    1

    4

    4

    3

    3

    2

    1

    4

    4

    3

    3

    2

    4

    4

    3

    3

    2

    44332

    3

    33

    3

    22

    4

    3312

    3

    33

    3

    11

    3

    33

    6

    22

    4

    3312

    3

    33

    3

    22

    4

    3312

    6

    33

    3

    11

    4

    3312

    3

    33

    3

    11

    4

    3312

    6

    33

    6

    11

    4

    3312

    3

    33

    6

    11

    3

    33

    3

    11

    v

    u

    v

    u

    u

    q K uthat impliesThis

    u K q so

    u

    u K u K q As

    y

    x

    y

    x

    x

    q

    K

    v

    u

    vu

    u

    K

    vuvuu

    so

    f ff f

    f ff f

    s

    s fs f ff f

    f

    ff

    ff

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b Da

    b D

    b

    a D D D

    a

    b D

    b

    a D

    D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D

    D D

    b

    a D

    a

    b D D D

    b

    a D

    a

    b D

    a

    b D

    a

    b D

  • 8/14/2019 FEA Solution Final and Complete

    6/23

    (6)

    inches

    v

    u

    v

    u

    u

    =

    06-1.11924E

    06-5.94637E

    07-9.31463E-

    06-5.55496E

    06-4.35641E

    4

    4

    3

    3

    2

    Now we will write the results in the original node numbering which was given in questionstatement

    4.35645.554960.931465.946371.1192

    10

  • 8/14/2019 FEA Solution Final and Complete

    7/23

    (7)

    Question No 2

    Part (a)

    As a first step, we will determine Aatrix [D].

    =

    ==

    =

    =

    =

    ==

    y x y x y x y x

    x x x x

    y y y y

    B

    elementsthreetheall for samethebewill BmatrixTherefore

    inb

    ina figure giventheinelementstheall for

    y xa y x yb x yb xa

    xa x x xa

    y y yb yb

    ab B

    by givenis Bmatrixof form general the Now

    D

    E D

    conditions strain plane For

    Dmatrix g Calculatin Now

    ConditionStress PlaneStateStress

    X E

    )4()3()3()4(

    )4(000)4(0

    000)3(0)3(

    121

    ][

    3

    4

    )()()()(

    )(000)(0

    000)(0)(1

    :][

    538.1100

    0967.3289.9

    089.9967.32

    10

    21

    10

    01

    01

    )1(

    ''

    30.0

    1030

    6

    2

    6

  • 8/14/2019 FEA Solution Final and Complete

    8/23

    (8)

    Part (b)

    In the given question statement, the displacements U 1, U 2U 13 are the valuesof global displacements. We first draw each element separately and establishrelationship between local displacements of that particular element with the global

    displacements. Subsequently, we will determine the respective elements of ElementStiffness Matrix for each element. We will then use the principle of superposition to therequired elements of Structural Stiffness Matrix [K]. Now taking each element one byone, we follow the above mentioned procedure.

    Figure 2 (a)

    1 2

    34

    1 2

    34

    1 2

    34

    1 2

    34

    Elea 1

    U1

    U2

    U3

    U4

    U5

    2

    34Elea 2

    U6

    U7

    U8

    U9

    U4

    U5

    1

    U2

    U3

    2

    34Elea 3

    U10

    U11

    U12

    U13

    U8

    U9

    1

    U6

    U7

    u1

    v1

    u2

    v2

    u3

    v3

    u4

    v4

    u1

    v1

    u2

    v2

    u3

    v3

    u4

    v4

    u2

    v2

    u3

    v3

    U2

    U3

    U4

    U5

    U1

    U6

    U7

    U8

    U9

    U10

    U11

    U12

    U13

  • 8/14/2019 FEA Solution Final and Complete

    9/23

    (9)

    Figure 2(b)

    Element K U2U2

    The displacement U 2 is shared by Element 1 and 2. So the effect of KU2U2 will come

    from both the elements. So, considering both the elements one by one.Element 1:Global U 2 ------- Local u 2 So KU2U2 ------- K u2u2 for element 1From stiffness matrix [K] (given in question No 1) we find

    3 3 Element 2:Global U 2 ------- Local u 1

    So KU2U2 ------- K u1u1 for element 2From stiffness matrix [K] (given in question No 1) we find

    3 3 3 3 3 3 2 32.967 33 411.538 43 311.538 33 4 10 24.967 10 Element K U6U7 The displacement U 6 and U 7 are shared by Elements 2 and 3. So the effect of KU6U7 will

    come from both the elements. So, considering both the elements one by one.

    Element 2:Global U 6 ------- Local u 2 Global U 7 ------- Local v 2 So KU6U7 ------- K u2v2 for element 2From stiffness matrix [K] (given in question No 1) we find

    4

    Element 3:Global U 6 ------- Local u 1 Global U 7 ------- Local v 1 So KU6U7 ------- K u1v1 for element 3From stiffness matrix [K] (given in question No 1) we find

  • 8/14/2019 FEA Solution Final and Complete

    10/23

    (10)

    4

    4 4

    0Element K U7U6 The displacement U 6 and U 7 are shared by Elements 2 and 3. So the effect of KU7U6 willcome from both the elements. So considering both the elements one by one.

    Element 2:Global U 6 ------- Local u 2

    Global U 7 ------- Local v 2 So KU7U6 ------- K v2u2 for element 2From stiffness matrix [K] (given in question No 1) we find

    4 Element 3:Global U 6 ------- Local u 1 Global U 7 ------- Local v 1 So KU7U6 ------- K v1u1 for element 3From stiffness matrix [K] (given in question No 1) we find

    4

    4 4 0Element K U5U12

    The displacements U 5 and U 12 does not have any common element. U 5 belongs toelements 1 and 2, while U 12 is associated with element 3. Therefore, in the StructuralStiffness Matrix, the place of element K U5U12 will be empty. Hence we can conclude that

    0

  • 8/14/2019 FEA Solution Final and Complete

    11/23

    (11)

    Part (c)

    In order to find the nodal loads, we will have to convert the distributed loading toits equivalent nodal loading. For this purpose, as the distributed load is applied toelement 3 only, for simplicity purpose, we will consider only this element in our

    calculations.

    ,

    0234 0,0,4, 44 00 0 0 00 00 00 0 0 00 00

    0 0 0 0 04234044234 0 0 0 0 0 416 0 238 416

    00000806

  • 8/14/2019 FEA Solution Final and Complete

    12/23

    (12)

    Question No 3

    As per the principle of Virtual Work, the work done by the body forces aust beequal to the work done by the concentrated applied loads in the absence of any other type of loading.

    ,

    1 1

    2 10,0 2,0 3, 40, : 1111 00 00 000

    1 3

    1

    1 0 0 0110 010 011 11 1

    1

  • 8/14/2019 FEA Solution Final and Complete

    13/23

    (13)

    1 1 00 00 00 00

    101 2201

    101 22 1

    1 22 11 2211 22 1

    2 , 1 353403553403553503353503

  • 8/14/2019 FEA Solution Final and Complete

    14/23

    (14)

    353403553403553503353503

    , 60451500000

    60 15=0 403403503503 450

    0, ,

  • 8/14/2019 FEA Solution Final and Complete

    15/23

    (15)

    Q No 4

    Part (a)

    In this question, the center of the coordinate system has been shifted to the

    centroide of the rectangle. Therefore, the corresponding shape matrix will be differentfor this case. Hence, before going to the matlab programming we will first find matrix [A]which will subsequently be used in matlab code for calculation of shape matrix.

    1 1 2

    x

    y

    12

    34

    a

    b

    12

    34

    a

    b

    qx2

    qy2qy1

  • 8/14/2019 FEA Solution Final and Complete

    16/23

    (16)

    12,2 2 2 4 22,2 2 2 4 32,2 2 2 4

    42,2 2 2 4 : 122412 2 4122 4122 4

    122412 2 4122 4122 4

  • 8/14/2019 FEA Solution Final and Complete

    17/23

    (17)

    Part (b)

    Now, we will use this new [A] for calculation of our shape matrix using matlab

    The Matlab code is as follows:

    %---------- SOLUTION CODE FOR Q NO 4 ---------------%----------(ASSIGNMENT FEA)-------------------------clcclear allsyms x yP=1000;% DEFINING a AND ba=2.0;

    b=2.0;% DEFININT MATERIAL PROPERTIESv=0.3;E=70000000000;%A=[1 -a/2 -b/2 a*b/4;1 a/2 -b/2 -a*b/4;1 a/2 b/2 a*b/4;1 -a/2 b/2 -a*b/4];phi=[1 x y x*y];N=phi*(inv(A));N1=N(1,1);N2=N(1,2);N3=N(1,3);N4=N(1,4);NN=[N1 0 N2 0 N3 0 N4 0;0 N1 0 N2 0 N3 0 N4];B=[diff(N1,x) 0 diff(N2,x) 0 diff(N3,x) 0 diff(N4,x) 0;0 diff(N1,y) 0 diff(N2,y) 0 diff(N3,y) 0diff(N4,y);diff(N1,y) diff(N1,x) diff(N2,y) diff(N2,x) diff(N3,y) diff(N3,x) diff(N4,y)diff(N4,x)];% DEFINING MATRICES [D] AND [B]D=(E/((1+v)*(1-2*v))).*[1-v v 0;v 1-v 0;0 0 (1-2*v)/2];Bt=transpose(B); %TRANSPOSE OF [B]k1=Bt*D*B;K=int(int(k1,x,-a/2,a/2),y,-b/2,b/2);% DEFINING Kff -----------------%% FREE NODES -- U1, U3, V3, U4, V4Kff=[K(1,3) K(1,5) K(1,6) K(1,7) K(1,8); K(5,3) K(5,5) K(5,6) K(5,7) K(5,8);K(6,3) K(6,5)K(6,6) K(6,7) K(6,8);K(7,3) K(7,5) K(7,6) K(7,7) K(7,8);K(8,3) K(8,5) K(8,6) K(8,7)K(8,8)];F=[0;0;-P;0;0] % DEFINING LOAD VECTOR {F}Uf=(inv(Kff))*F;%

  • 8/14/2019 FEA Solution Final and Complete

    18/23

    (18)

    %%---- PART (b)-------%U=[0;0;Uf(1,1);Uf(2,1);Uf(3,1);Uf(4,1);0;0];U=[Uf(1,1);0;0;0;Uf(2,1);Uf(3,1);Uf(4,1);Uf(5,1)]

    Epsilon=B*USigma=D*Epsilon

    The Resultant displacement and stress values are as follows:

    Displacement ValueU1 5.57143E 09V1 0U2 0V2 0U3 3.03333E 08

    V3 3.77619E 08U4 2.47619E 08V4 1.17619E 08

    Part (c)

    The resulting relations for stresses are as follows:

    Stress Value x 262.5y 262.5 500x y 112.5y 612.5 1166.667xXY 75x 333.333y

  • 8/14/2019 FEA Solution Final and Complete

    19/23

    (19)

    Part (d)

    The same problem was modeled and run in Ansys. The model with boundary conditionsand displacement plot are shown below:

    (Figure 1- Force and Boundary Conditions)

    (Figure 2- Displacement Plot)

  • 8/14/2019 FEA Solution Final and Complete

    20/23

    (20)

    In the following table, Ansys results are shown in comparison with Matlab results:

    PARAMETER MATLAB RESULTS ANSYS RESULTSU1 5.57143E 09 -5.234E-9V1 0 0

    U2 0 0V2 0 0U3 3.03333E 08 2.9123E-8V3 3.77619E 08 -3.567E-8U4 2.47619E 08 -2.442E-8V4 1.17619E 08 -1.23E-8

  • 8/14/2019 FEA Solution Final and Complete

    21/23

    (21)

    Question No 5

    1 2

    3 , , 200 00 ,3 4

    12664 10000 10 121223 1000010230.12 0.60.6 4

    4 320001003 55 1200

    P=20

    B

    X

    Y

    v2, 2

    v1, 1

  • 8/14/2019 FEA Solution Final and Complete

    22/23

    (22)

    1320 2 12662 20003 0.12 0.60.6 2 20003 0.12 0.60.6 21320 20200 200 1

    23300

    1

    300 Part (b)

    The matlab code for the beam problem is as follows:

    %---------- SOLUTION CODE FOR Q NO 5 ---------------%----------(ASSIGNMENT FEA)-------------------------clcclear allP=20; %FORCE AT THE FREE ENDM=0; %MOMENT AT THE FREE END% DEFINING GeometryNumberofElement=10;L=10;b=1;h=2;% DEFININT MATERIAL PROPERTIESE=10000;I=(b*h^3)/12;m=2*NumberofElement;%% CONSTRUCTING Kff %n=m;temp=1;for i=1:m

    for j=1:n

  • 8/14/2019 FEA Solution Final and Complete

    23/23

    (23)

    Kff(i,j)=0;end

    endfor i=1:m

    for j=1:n

    if i==jif temp==1if (m-i)>1

    Kff(i,j)=2*E*I/L*(12/L^2);else Kff(i,j)=E*I/L*(12/L^2);end

    endif temp==0

    if (m-i)>1Kff(i,j)=2*E*I/L*4;

    else Kff(i,j)=E*I/L*4;

    endendendif abs(i-j)==1

    Kff(i,j)=E*I/L*(6/L);endendif temp==0

    temp=1;else temp=0;end

    end%% CONSTRUCTING qf %for i=1:m

    qf(i)=0;endqf(m-1)=P;qf(m)=M;

    qf=transpose(qf);

    uf=-inv(Kff)*qf vc=uf(m-1)thetac=uf(m)%----------------------------------------------------